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Vacuum birefringence produces a differential phase between orthogonally polarized components of a
weak electromagnetic probe in the presence of a strong electromagnetic field. Despite representing a
hallmark prediction of quantum electrodynamics, vacuum birefringence remains untested in pure light
configurations due to the extremely large electromagnetic fields required for a detectable phase difference.
Here, we exploit the programmable focal velocity and extended focal range of a flying focus laser pulse to
substantially lower the laser power required for detection of vacuum birefringence. In the proposed scheme,
a linearly polarized x-ray probe pulse counterpropagates with respect to a flying focus pulse, whose focus
moves at the speed of light in the same direction as the x-ray probe. The peak intensity of the flying focus
pulse overlaps the probe over millimeter-scale distances and induces a polarization ellipticity on the order
of 10−10, which lies within the detection sensitivity of existing x-ray polarimeters.
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I. INTRODUCTION

Vacuum-polarization effects arise from the interaction of
electromagnetic fields in vacuum. These effects are purely
quantum in origin, and their discovery contrasts one of the
most fundamental principles of classical electrodynamics—
the linearity of Maxwell’s equations and superposition of
their solutions. Well before the foundation of quantum
electrodynamics (QED) had been fully developed, it was
realized that the existence of antiparticles [1] gives rise to
nonlinear effects that modify the propagation of electro-
magnetic waves in vacuum. This idea was first formulated
in Refs. [2,3], which presented a quantum Lagrangian
density for a slowly varying, but otherwise arbitrary,
electromagnetic field that included the effects of elec-
tron-positron “vacuum fluctuations.” This so-called Euler-
Heisenberg (EH) Lagrangian densitywas later rederived by
Schwinger who employed the proper-time method and
techniques of the newly formulated QED [4]. Within the
framework of the EH-Lagrangian, the importance of non-
linear effects depends on the strength of the electromag-
netic field as compared to the critical electric and magnetic
fields [2–4]: Ecr ¼ m2c3=ℏjej ≈ 1.3 × 1016 V=cm and

Bcr ¼ m2c2=ℏjej ≈ 4.4 × 109 T, where m is the electron
mass and e < 0 its charge.
In order to appreciate the exceedingly large values of the

critical fields, they can be compared to some of the most
intense electromagnetic fields produced in the laboratory,
i.e., those of high-power lasers. The current world record
for laser intensity is about 1.1 × 1023 W=cm2 [5], corre-
sponding to an electric field of about 6.4 × 1012 V=cm.
There are several laser facilities, either under construction
or planned, that may surpass this record by 1-to-2 orders of
magnitude (e.g., see Refs. [6–12] and the Multi-Petawatt
Physics Prioritization Workshop report [13]). Nevertheless,
the intensities produced at these facilities will still be orders
of magnitude below the intensity required to reach the
critical fields, Icr ¼ 4.6 × 1029 W=cm2.
Despite such a large disparity in intensity, vacuum

polarization effects can, in principle, be observed at much
lower intensities by taking advantage of sensitive detectors,
the accumulation of signatures over long interaction
lengths, and/or favorable scalings with respect to the
frequency of a probe field. These possibilities have led
to the proposal of several experimental concepts for
detecting vacuum-polarization effects [14–19]. Examples
include harmonic-generation/photon merging and photon
splitting in intense laser fields [20–27], vacuum Bragg
scattering and Cherenkov radiation [28–31], vacuum-
polarization effects in plasmas [32–36], and photon-photon
scattering in a variety of configurations [37–43], among
others [44–49]. As an alternative to pure light configura-
tions, vacuum-polarization effects have been recently
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measured in ultraperipheral heavy-ion collisions [50]. Of
interest here is the vacuum birefringence (and dichroism)
experienced by an electromagnetic wave as it propagates
through a high-intensity laser beam [51–75].
Previously proposed setups to measure vacuum birefrin-

gence employed ultra-intense laser pulses to maximize the
observable effects, e.g., the polarization rotation of an x-ray
probe, and extremely sensitive diagnostics for their meas-
urement. Here, we propose using the extended focal range
and moving focal point of a flying focus (FF) pulse [76,77]
to lower the intensity, and power, required to measure
vacuum birefringence by orders of magnitude. The first
experimental realization of a FF pulse used chromatic
focusing of a chirped laser pulse to control the velocity
of the focal point over distances much longer than a
Rayleigh range [77,78]. More recent concepts would allow
for higher focused intensities by using axiparabola-echelon
optics [79] or nonlinear media [80,81]. These concepts
have been motivated by a number of theoretical studies into
the unique possibilities that FF pulses offer for laser-based
applications and fundamental physics studies [79,82–86].
In the realm of high-field physics, FF beams have been
proposed to enhance observable signatures of the transverse
formation length of electromagnetic radiation in the quan-
tum regime [87] and radiation-reaction effects at relatively
low laser intensities [88].

In the context of vacuum-polarization, we consider a
setup in which a linearly polarized x-ray probe pulse
counterpropagates with respect to a FF pulse. The focus
of the FF pulse moves in the same direction and with the
same velocity as the probe vF ¼ vγ ¼ c (left column of
Fig. 1). The x-ray probe pulse propagates inside the focus
of the FF pulse over a macroscopic distance that is
independent of the Rayleigh range ZF and limited only
by the energy of the FF pulse. This is in contrast to
configurations that employ conventional fixed-focus
Gaussian pulses (right column of Fig. 1), which limit
the interaction region to their Rayleigh range ZG. In both
cases, vacuum-polarization produces different phase shifts
in the two polarization components of the probe pulse,
resulting in an ellipticity that accumulates over the inter-
action length. By extending the interaction length, the FF
configuration results in ellipticities that are measurable with
state-of-the-art detection techniques at powers (and inten-
sities) that are orders of magnitude lower than those
required by conventional laser pulses.

II. PHASE DIFFERENCE DUE
TO VACUUM BIREFRINGENCE

The main analytical result of this work is the formula for
the phase difference Δθl between orthogonal polarizations

FIG. 1. Interaction geometries for producing an observable signature of vacuum birefringence. An x-ray probe pulse (blue) encounters
a (red) comoving flying focus pulse (a) or conventional Gaussian pulse with a stationary focus (b). The three snapshots from top to
bottom show the progression of time. The x-ray probe pulse has a length L, spot size ŵγ , and travels to the right with a velocity vγ ¼ c.
The optical pulse has a spot size ŵl, Rayleigh range Zl, and a phase velocity vϕ ¼ −c, where l is either F (FF case) or G (conventional
case). The peak-intensity of the FF pulse travels to the right with a velocity vF ¼ c. By extending the interaction length, the FF pulse
produces the same birefringent phase difference with a much lower laser power.

MARTIN FORMANEK et al. PHYS. REV. D 109, 056009 (2024)

056009-2



of an x-ray probe pulse induced by a counterpropagating
optical laser pulse with energy El,

Δθl ≈
8α2

15π

El

e2E2
cr

ℏhωγi
ŵ2
l

ΣlΛl; ð1Þ

where α ¼ e2=ð4πε0ℏcÞ ≈ 1=137 is the fine-structure con-
stant and hωγi is the average angular frequency of the x-ray
pulse. This formula was derived by perturbatively solving
Maxwell’s equations for an x-ray probe pulse propagating
in a medium whose magnetization and polarization corre-
spond to the vacuum modified by an optical laser pulse (see
Appendixes A–E for the detailed derivation). Equation (1)
accounts for the transverse structure of the interacting
pulses through the factor Σl and the lengths and synchro-
nization of the pulses through the longitudinal form factor
Λl. Both of these quantities will be discussed below. The
spot size of the laser pulse at focus is denoted by ŵl, where
the subscript l is either “F” for a FF pulse or “G” for a
conventional Gaussian pulse. Equation (1) allows for a
straightforward comparison of FF and conventional
Gaussian pulses. A complete description and justification
of the approximations that go into the derivation of Eq. (1)
is presented in Appendix A.
Figure 2 displays the predictions of Eq. (1) and dem-

onstrates that for the same laser pulse energy, a FF pulse
can induce the same birefringent phase difference as a
conventional Gaussian pulse at a much lower power Pl.
The parameters used to generate Fig. 2 were motivated
by current x-ray sources and near-term laser facilities.
Specifically, a 10 keV x-ray pulse with a length L ¼
7.5 μm (25 fs) and focal spot ŵγ ¼ 1.5 μm colliding with a
λl ¼ 1 μm wavelength optical pulse.
The cycle-averaged powers of rectangular FF and con-

ventional pulses are given by

Pl ¼ El

τl
; ð2Þ

where the pulse duration τl determines the interaction
length: Dl ¼ τl=2 (see Appendix E). In Fig. 2, the
interaction length of the FF pulse was chosen to be
DF ¼ 1 cm based on experimentally demonstrated focal
ranges [77]. Perfect synchronization between the center of
the x-ray probe pulse and intensity peak of the FF pulse was
also assumed. The interaction length of the conventional
pulse was set to DG ¼ ZG, where ZG ≡ ωGŵ2

G=2c is its
Rayleigh range and ωG its angular frequency. The centers
of the conventional and x-ray pulses were set to meet at the
focus of the conventional pulse (see Appendix D). This
ensures a near-optimal configuration where the conven-
tional and x-ray pulses interact over an entire Rayleigh
range of the conventional pulse. For fixed laser energy
and phase difference, the spot sizes of the conventional
and FF pulses are nearly equal (Fig. 2), such that
Δθl ∝ El ∝ PFDF ≈ PGDG, or

PF ≈
DG

DF
PG: ð3Þ

Thus the FF reduces the power required for an observable
phase difference by extending the interaction length:
DF ≫ DG implies PF ≪ PG.
The vertical dashed line in Fig. 2 indicates the threshold

for currently measurable phase differences, i.e.,
Δθl ¼ 1.8 × 10−5. The ellipticity of the x-ray pulse δ2 is
related to the phase difference by δ2 ≈ Δθ2l=4. It is assumed
that the x-ray pulse is initially linearly polarized at an angle
of 45° with respect to the fields of the optical pulse and
has polarization purity better than the detection threshold.
This can be achieved using a monochromator and multiple
Bragg reflections from channel-cut crystals [89] and
tested by a null experiment without the laser pulse. A
narrow band x-ray pulse (∼1 eV bandwidth [89]) is
produced. Ellipticities δ2 ≈ 8 × 10−11 are within the detec-
tion limits of existing experimental techniques [51,89]. As
an example, a 1 kJ laser pulse focused to a ŵl ¼ 3 μm spot
can induce a phase difference Δθl ¼ 3.5 × 10−5 and an
ellipticity δ2 ≈ 3 × 10−10. In the conventional case, this
would require a power of 5.3 PW and an intensity of
7.8 × 1022 W=cm2, which is nearly equal to the world
record [5]. In the FF case, only 15 TW are needed,
corresponding to an intensity of 2.2 × 1020 W=cm2, a
value approximately 350 times smaller than the conven-
tional case.
These examples suggest that vacuum birefringence

measurements could be made experimentally accessible

FIG. 2. The ratio of laser powers required to achieve a phase
difference Δθl for a given laser pulse energy El. The dashed red
lines correspond to log10ðPF=PGÞ∈ f−2;−1; 0g. The solid blue
lines and dash-dotted gray lines indicate the spot sizes ŵG=F ¼ 2

and 5 μm for the conventional and FF pulses, respectively. The
plot is cut off at ŵG ¼ 2 μm, representing the paraxial approxi-
mation limit of a λl ¼ 1 μm wavelength laser pulse. The vertical
dashed line marks the current threshold for experimental detec-
tion. For the parameters of the pulses, see the labels and text.
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by pairing a high-energy laser system capable of producing
a FF pulse with a hard x-ray source. Figure 3 shows the
accumulated phase difference ΔθF that could be achieved
with x-ray pulses from currently available XFELs (see
Table I for the parameters). For each XFEL considered, the
phase difference reaches measurable values after just a few
millimeters of propagation (outside the red shaded region).
Ultimately, the experimental feasibility of measuring the

phase difference will depend on the sensitivity ofΔθl to the
transverse and longitudinal overlap of the optical and x-ray
pulses. In Fig. 2, near-ideal longitudinal overlap was
assumed. For the FF, this means that the longitudinal
center of the x-ray pulse was colocated with the peak
intensity of the FF. For the conventional pulse, this means
that the leading and trailing edges of the x-ray and optical
pulses met symmetrically at points located a distance ZG=2
from the focus of the optical pulse.
The effect of imperfect longitudinal overlap on Δθl is

captured by the form factor Λl and is illustrated in
Fig. 4. The full analytic expressions for the Λl appear in

Appendixes D and E. The expressions can be summarized
as follows. In the FF case, ΛF depends on the length of the
x-ray probe pulse L and the offset of its center from the
traveling intensity peak of the FF d [Fig. 4(a)]. For
ultrashort x-ray pulses (L ≪ ZF) that are colocated with
the center of the FF intensity peak (d ¼ 0), ΛF ≈ 1. X-ray
pulses that are either offset from the center of the FF
intensity peak or appreciably longer than the Rayleigh
range of the FF will experience a lower intensity. This
causes a smaller value of the form factor and, as a result, the
phase difference.
In the conventional case, ΛG depends on the length of

the x-ray probe pulse L and on the interaction length DG
[Fig. 4(b)]. When DG ≪ ZG, an ultrashort x-ray pulse
(L ≪ ZG) will encounter an approximately constant field
amplitude near the center of the fixed focus, such that
ΛG ≈ 1. The near-optimal case of DG ¼ ZG used in Fig. 2

FIG. 3. Accumulated phase difference between orthogonal
polarizations of an x-ray pulse from an XFEL interacting with
a FF pulse as a function of distance relative to the focus of the x-
ray pulse (z ¼ 0). The FF pulse has a λF ¼ 1 μm wavelength,
ŵF ¼ 3 μm spot size, PF ¼ 15 TW, and EF ¼ 1 kJ. See Table I
for the XFEL parameters. Phase differences outside of the red
shaded region would be measurable with current x-ray polar-
imeters [51,89]. The analytical results are plotted as dotted lines.

TABLE I. Parameters of the x-ray probe pulses used in the
analytical estimates and numerical simulations for Fig. 3.

Name ℏωγ(keV) λγ(nm) ŵγ(μm) L(fs) Reference

LCLS 25 0.0496 1 50 [90]
European XFEL 15 0.0827 3 25 [91]
SACLA 10 0.124 1.4 10 [92]
PAL-XFEL 9.7 0.128 5 25 [93]

(a)

(b)

FIG. 4. Geometric form factor Λl for the FF configuration (a)
and a conventional configuration (b). The x-ray probe pulse has a
length L. In the FF configuration, the x-ray pulse is offset from
the center of the FF intensity peak by a distance d. In the
conventional configuration, the interaction length is DG. For this
plot, the spot sizes are ŵγ ¼ 1.5 μm and ŵl ¼ 3 μm. The red
dash-dotted line indicates DG ¼ ZG.
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is displayed as the red dash-dotted line in Fig. 4(b). For
longer interactions lengths or x-ray pulse lengths, the x-ray
pulse intersects the conventional pulse while it is out of
focus and has a lower intensity. This decreases the form
factor and results in a smaller phase difference.
The effect of transverse overlap is captured by the factor

Σl, which depends solely on the ratio of the x-ray and
optical spot sizes σl ≡ ŵγ=ŵl,

Σl ≡ 1þ 2σ2l
ð1þ σ2lÞ2

: ð4Þ

As σl → 0, Σl rapidly approaches 1. Thus, it is unneces-
sary to focus the x-ray pulse to a spot size that is much
smaller than that of the laser pulse. For instance, when the
spot size of the x-ray pulse is half that of the laser pulse,
σl ¼ 0.5 and Σl ¼ 0.96. Aside from being easier to realize
in practice, larger x-ray spot sizes improve the validity of
the analytical approximationDF=Zγ ≪ 1 (see Appendix A)
used to derive Eq. (1).
In optimal conditions where ΣF ¼ ΣG ¼ ΛF ¼ ΛG ¼ 1,

FF and conventional pulses with equal energies result in
identical phase differences. This means that FF pulses do
not provide any enhancement in the phase difference when
compared to experimentally relevant ultrashort Gaussian
pulses. However, the FF configuration requires signifi-
cantly lower laser powers and peak intensities, allowing for
more controllable conditions at the cost of proportionally
longer interaction lengths.

III. SUMMARY AND CONCLUSIONS

The extreme field scales inherent to nonlinear QED
complicate experimental efforts to test hallmark predictions
of the theory, such as vacuum polarization and birefrin-
gence. In order to produce an observable signature that
could test these predictions, an experimental configuration
must take advantage of strong or high-frequency fields,
long interaction lengths, or sensitive detectors. A promising
configuration for detecting vacuum birefringence uses the
collision of a conventional, high-intensity laser pulse with
an x-ray probe pulse to induce a differential phase between
orthogonally polarized components of the x-ray pulse.
However, even in this configuration, an extremely high
laser intensity is required to produce an appreciable phase
difference. This is because the interaction length is limited
by the Rayleigh range of the laser pulse.
The programmable focal velocity and extended focal

range of a flying focus (FF) pulse allows for the accumu-
lation of the birefringent phase difference over much longer
distances. This reduces the required laser intensity (and
power) by orders of magnitude. Unlike a conventional
Gaussian pulse, the interaction length of a FF pulse is
independent of the Rayleigh range. Thus the interaction
length can be increased without changing the spot size.

As a result, a FF pulse with the same energy as a
conventional pulse can induce the same birefringent phase
difference at a much lower power and intensity.
Specific examples were presented for kJ-class laser

pulses colliding with x-ray pulses from current XFEL
facilities. In one such example, detectable signatures of
vacuum birefringence were possible with either a 5.3 PW
conventional pulse or a 15 TW FF pulse. By mitigating the
need for temporal compression to achieve a high laser
power, the FF configuration could alleviate engineering
constraints on the optical elements. Further, lower laser
powers (and intensities) allow for more reliable in situ
diagnostics of the pulse.
The focal range of the FF pulse used in the examples

was 1 cm, which has already been experimentally dem-
onstrated [77], albeit at low intensities (1014 W=cm2).
Several paths to higher intensities have been outlined in
Refs. [79–81]. Kilojoule class short pulse systems, such as
theOMEGA-EP laser [94], are in routine operation, and tight
focusing is regularly used at several facilities [5,95–97]. The
promise of this work, and others like it, will continue to
motivate the technological development of FF pulses at
higher intensities. Once realized, the configuration proposed
here would provide a unique experimental platform for
testing properties of the QED vacuum. For instance, the
detectable signatures of other effects arising from the EH
Lagrangian, such as photon splitting and photon-photon
scattering [98], also accumulatewith the interaction distance.
For photon-photon scattering in particular, the framework
developed in this paper could be adapted to look at the
defocusing of the probe pulse instead. These effects can be
experimentally distinguished from the effect discussed here
by detectors with frequency or angular discrimination, the
details of which will be left to future studies.
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produced by optimal conventional and flying focus pulses
with the same energy.

APPENDIX A: WAVE EQUATION
FOR THE X-RAY PULSE

The vacuum response to external electromagnetic fields
is described by the Euler-Heisenberg (EH) Lagrangian
density [2–4]. This density was computed in the limit of
uniform and constant fields; i.e., it does not depend on their
spacetime derivatives. The characteristic scale for the space
(time) variations is determined by the reduced Compton
wavelength (Compton time) ƛC ¼ ℏ=mc ≈ 3.9 × 10−11 cm
(ƛC=c ¼ ℏ=mc2 ≈ 1.3 × 10−21 s), which is about 6 orders
of magnitude smaller than the characteristic wavelength
and period of optical laser pulses. As a result, the derivative
corrections to the EH Lagrangian will be ignored. Until
Appendix E the units ℏ ¼ ε0 ¼ c ¼ 1 are used for the
convenience of derivation.
To illustrate the validity of Eq. (1), consider the under-

lying assumptions of the model:
(1) The paraxial approximation is valid for both the

x-ray and laser pulse. For the x-ray pulse this is a
reasonable assumption because the neglected longi-
tudinal field is suppressed by a factor λγ=2πŵγ
compared to the transverse components. Corrections
to the transverse field are suppressed by the square
of this factor. For 10 keV pulse focused to ŵγ ¼
1 μm this factor is 2 × 10−5. For the laser pulse the
transverse field correction is zero on axis and sup-
pressed by the factor ðr2λ2lÞ=2πŵ4

l off axis. As a
result, this correction is negligible when either a) the
focused spot size ŵl > 2λγ or b) the focused spot
size of the x-ray pulse ŵγ < ŵl. The longitudinal
field of the laser pulse can be neglected outright,
because it only contributes to the birefringence
calculation when multiplied by the negligible longi-
tudinal field of the x-ray pulse.

(2) Only frequencies composing the initial x-ray pulse
are detected. This can be achieved experimentally by
using a spectral filter or spectrometer.

(3) The period (wavelength) of the x-ray probe pulse is
much shorter than its duration (length); i.e., the
slowly varying envelope approximation (SVEA) can
be applied. For a typical 10 fs long 10 keV x-ray
pulse, the period is 4 orders of magnitude smaller
than the duration.

(4) The nonlinear vacuum response is small, and the
solutions need only be found to first order in the field
intensity ∝ Ê2

l=E
2
cr. This is justified for laser inten-

sities much lower than the critical intensity
∼1029 W=cm2, which is certainly the case for any
available or foreseeable laser pulse.

(5) The x-ray probe pulse can be modeled as a Gaussian
beam with a rectangular temporal profile. This
assumption holds because the x-ray probe pulse

does not need to be tightly focused. Other temporal
profiles can be accommodated by averaging over
intensity.

(6) The interaction length Dl is much smaller than the
Rayleigh range of the x-ray probe pulse Zγ . This is
readily satisfied for conventional, high-intensity
Gaussian pulses, which are typically only tens of
femtoseconds (tens of microns) long. With FF pulses,
on the other hand, the interaction can be sustained
over millimeter-scale distances. Thus, depending on
the interaction length, higher x-ray photon energies
or more weakly focused x-ray pulses may be
required. For all FF and x-ray parameters considered
here, the assumption is valid.

(7) The temporal profiles of the laser pulses can be
approximated as rectangles. It is primarily the total
energy of the optical pulse, not its temporal profile,
that determines Δθl (see Appendix F).

These assumptions are referenced in the Appendixes A–D
and when applicable, the order of neglected terms is
included. The last two assumptions have only been made
to simplify the analytical calculations. Numerical simula-
tions that make neither of these assumptions are in excellent
agreement with Eq (1); see Appendix F.
The wave equation for the electric field of the x-ray

probe pulse in the medium (polarized vacuum in this case)
is derived from Maxwell equations and is given by [100]

ð∇2 − ∂
2
t ÞEγ ¼ 4π½∇ × ∂tM þ ∂

2
tP −∇ð∇ · PÞ�: ðA1Þ

The polarization P and the magnetizationM of the quantum
vacuum are obtained from the EH Lagrangian as [44,52]

P ¼ α

180π2E2
cr
½2ðE2 − B2ÞEþ 7ðE · BÞB�; ðA2Þ

M ¼ α

180π2E2
cr
½2ðB2 − E2ÞBþ 7ðE · BÞE�; ðA3Þ

where E ¼ El þ Eγ and B ¼ Bl þ Bγ are the combined
electric and magnetic fields of the intense laser and probe
pulses, respectively [101]. In the configuration considered
here, the laser field is polarized in the positive x̂ direction
and has a phase velocity in the negative ẑ direction,

Elðt; xÞ ¼
Elðt; xÞ

2
e−iωlðtþzÞx̂

þ c:c:þOð1=ωlŵlÞ; ðA4Þ

Bl;⊥ðt; xÞ ¼ −
Elðt; xÞ

2
e−iωlðtþzÞŷ

þ c:c:þOð1=ωlŵlÞ; ðA5Þ
where Elðt; xÞ is the slowly-varying, complex envelope
and ωl ¼ 2π=λl is laser frequency. The x-ray probe pulse
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is polarized in the x̂ and ŷ directions and has a phase
velocity in positive ẑ direction,

Eγðt; xÞ ¼
Eγ;xðt; xÞx̂þ Eγ;yðt; xÞŷ

2
e−iωγðt−zÞ

þ c:c:þOð1=ωγŵγÞ; ðA6Þ

Bγðt; xÞ ¼
Eγ;xðt; xÞŷ − Eγ;yðt; xÞx̂

2
e−iωγðt−zÞ

þ c:c:þOð1=ωγŵγÞ; ðA7Þ
where the Eγ;jðt; xÞ are the slowly-varying, complex
envelopes for the orthogonal polarization components
and ωγ ¼ 2π=λγ is the x-ray photon frequency.
Equations (A4)–(A7) employ the paraxial approximation

(approx. 1) and include only the dominant electric field
components, i.e., those in the polarization directions. With
these prescriptions, the field invariants F ¼ð1=2ÞðB2−E2Þ
and G ¼ −E · B are identically zero when evaluated using
the laser and x-ray fields independently. However, cross
terms in the invariants, which correspond to interactions of
the fields, are nonzero because the phase velocities of the
two pulses are equal and opposite. These cross terms
provide the largest contribution to the vacuum birefrin-
gence experienced by the x-ray pulse.
The exact fields of a conventional Gaussian or FF beam

have nonzero field invariants off axis (see Supplemental
Material of [88]). While this would introduce additional
terms in P and M, these terms are either (1) too small to
significantly affect the propagation of the laser pulse or
(2) negligible compared to the dominant terms that affect
the propagation of the x-ray pulse. More specifically, these
terms are ∼λ2l=ð4π2eEŵ2

lÞ times smaller than the dominant
contributions [88], where eE ¼ 2.718 is Euler’s number.
This factor is approximately 10−3 for the parameters
considered here, ŵl ¼ 3λl. Therefore the nonzero contri-
butions to the individual invariants will be neglected, and P
and M will only include the dominant contributions to the
invariants from the interaction terms.
Using Eqs. (A4)–(A7), the interaction terms in the

invariants are given by

E2 − B2 ¼ 4

�
Elðt; xÞ

2
e−iωlðtþzÞ þ c:c:

�

×

�
Eγ;xðt; xÞ

2
e−iωγðt−zÞ þ c:c

�
þOðνÞ; ðA8Þ

E · B ¼ −2
�
Elðt; xÞ

2
e−iωlðtþzÞ þ c:c:

�

×

�
Eγ;yðt; xÞ

2
e−iωγðt−zÞ þ c:c

�
þOðνÞ: ðA9Þ

where ν≡maxð1=ωγŵγ; 1=ωlŵlÞ. Then, to linear order in
the probe field,

Pωγ
ðt;xÞ ¼ 1

2π

�
ηx

�
Eγ;xðt;xÞ

2
e−iωγðt−zÞ þ c:c

�
x̂þ ηy

×

�
Eγ;yðt;xÞ

2
e−iωγðt−zÞ þ c:c

�
ŷ

�

×
�
Elðt;xÞ

2
e−iωlðtþzÞ þ c:c:

�
2

þOðνÞ; ðA10Þ

Mωγ
ðt;xÞ ¼ 1

2π

�
ηx

�
Eγ;xðt;xÞ

2
e−iωγðt−zÞ þ c:c

�
ŷ− ηy

×

�
Eγ;yðt;xÞ

2
e−iωγðt−zÞ þ c:c

�
x̂

�

×

�
Elðt;xÞ

2
e−iωlðtþzÞ þ c:c:

�
2

þOðνÞ; ðA11Þ

where

ηx ≡ 4α

45πE2
cr
; ηy ≡ 7α

45πE2
cr
: ðA12Þ

Thus, in Pωγ
and Mωγ

, only the terms that oscillate at ωγ

were retained, see the assumption in approx. 2. The
neglected oscillatory terms, once substituted into the
wave equation, would produce sidebands at frequencies
2ωγ � ωl etc., which can be excluded in an experiment
with a spectral filter or spectrometer.
Upon substituting the resulting expressions for Pωγ

and
Mωγ

into Eq. (A1), the wave equation can be reduced to a
simpler form by making the slowly varying envelope
approximation (SVEA—approx. 3). This approximation
uses the fact that

κ≡max

� j∇El;γj
jωγEl;γj

;
j∂tEl;γj
jωγEl;γj

�
≪ 1 ðA13Þ

to drop higher order derivatives. On the right-hand side of
Eq. (A1), the second time derivative of the polarization
simplifies to

4π∂2tPωγ
ðt; xÞ

¼ −
1

2
ω2
γfηx½Eγ;xðt; xÞe−iωγðt−zÞ þ c:c:�x̂

þ ηy½Eγ;yðt; xÞe−iωγðt−zÞ þ c:c:�ŷg

×

�
jElðt; xÞj2 þ

�
1

2
E2
lðt; xÞe−2iωlðtþzÞ þ c:c:

��
þOðν; κÞ; ðA14Þ

and similarly for the magnetization,
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4π∇ × ∂tMωγ
ðt; xÞ

¼ −
1

2
ω2
γfηx½Eγ;xðt; xÞe−iωγðt−zÞ þ c:c:�x̂

þ ηy½Eγ;yðt; xÞe−iωγðt−zÞ þ c:c:�ŷg

×

�
jElðt; xÞj2 þ

�
1

2
E2
lðt; xÞe−2iωlðtþzÞ þ c:c:

��
þOðν; κÞ; ðA15Þ

which is equal to the polarization term. The third and final
term on the right-hand side of Eq. (A1) is proportional to
∇ð∇ · PÞ and does not have an ω2

γ contribution.
Expressions (A6), (A14), (A15) are substituted into

Eq. (A1), which is broken into two equivalent equations
for the nonconjugate and conjugate components. On the
left-hand side of Eq. (A1), the terms arising from ∂

2
t and ∂2z

which are proportional to ω2
γ cancel, and the remaining

second derivative terms are dropped in accordance with the
SVEA. What remains is an equation for the amplitude
components Eγ;jðt; xÞ where j∈ fx; yg. After multiplying
by 2eiωγðt−zÞ, one finds

½2iωγð∂z þ ∂tÞ þ∇2⊥�Eγ;jðt; xÞ
¼ −2ω2

γ ηjjElðt; xÞj2Eγ;jðt; xÞ
− ω2

γηjEγ;jðt; xÞ½E2
lðt; xÞe−2iωlðtþzÞ þ c:c:�

þOðν̃; κÞ: ðA16Þ

This time ν̃≡maxð1=ωγŵγ; 1=ω2
lŵ

2
lÞ since the longi-

tudinal components proportional to 1=ωlŵl were dropped.
The oscillatory terms in the last expression vanish upon
averaging over a laser cycle. Performing a change of
variables to the moving frame coordinates ξ ¼ t − z and
z̃ ¼ z with the associated derivatives ∂t ¼ ∂ξ and ∂z ¼
−∂ξ þ ∂z̃ yields the differential equation,

ð2iωγ∂z þ∇2⊥ÞEγ;jðξ; xÞ
¼ −2ω2

γηjjElðξ; xÞj2Eγ;jðξ; xÞ þOðν̃; κÞ; ðA17Þ

for the components of the complex envelope of the x-ray
probe pulse Eγ;jðξ; xÞ, where z̃ has been renamed as z.

APPENDIX B: FF AND CONVENTIONAL
LASER PULSE PROFILES

The squared magnitude of the laser field can be
expressed as

jElðξ; xÞj2 ¼ Ẽ2
lðξ; zÞg2lðξþ 2zÞe−2r2=w2

lðξ;zÞ; ðB1Þ

where glðtþ zÞ ¼ glðξþ 2zÞ is the temporal profile of the
pulse and r≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

is the radial distance from the

propagation axis. The amplitude and spot size of the FF
pulse are given by

ẼFðξ; zÞ ¼ ẼFðξÞ ¼
ÊFffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðξ=ZFÞ2
p ; ðB2Þ

wFðξ; zÞ ¼ wFðξÞ ¼ ŵF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðξ=ZFÞ2

q
; ðB3Þ

where ZF ≡ ωlŵ2
F is the Rayleigh range and ŵF is the spot

size at focus [82,87]. Note the factor of 2 difference from
the standard formula [81,102]. Because the focus moves at
the speed of light in the positive z direction, ẼF and wF
depend only on ξ ¼ t − z. The conventional Gaussian pulse
has a stationary focus at z ¼ 0, such that

ẼGðξ; zÞ ¼ ẼGðzÞ ¼
ÊGffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðz=ZGÞ2
p ; ðB4Þ

wGðξ; zÞ ¼ wGðzÞ ¼ ŵG

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðz=ZGÞ2

q
; ðB5Þ

where ZG ≡ ωlŵ2
G=2 is the Rayleigh range and ŵG is the

spot size at focus. In this case, both functions depend only
on z.

APPENDIX C: EVOLUTION OF
THE X-RAY PROBE PULSE

Each time slice of the x-ray pulse travels at the speed of
light. As a result, the electric field of each time slice can
be parametrized by its value of ξ and described by the
ansatz,

Eγ;jðξ;xÞ¼ Ẽγ;jðξ;zÞ

×exp

�
iθjðξ;zÞ−

r2

w2
jðξ;zÞ

þ i
ωγr2

2Rjðξ;zÞ
�
; ðC1Þ

where Ẽγ;jðξ; zÞ, θjðξ; zÞ, wjðξ; zÞ, and Rjðξ; zÞ are all real
functions of z. This ansatz has been chosen so that the
unknown functions take familiar functional forms in the
absence of vacuum-polarization effects, i.e., those of
Gaussian optics. Plugging Eq. (C1) into Eq. (A17),
multiplying through by E�

γ;jðξ; xÞ, and separating the real
and imaginary components provides the equations,

w4
j

 
Ẽ0
γ;j

Ẽγ;j
þ 1

Rj

!
þ 2wj

�
w0
j −

wj

Rj

�
r2 ¼ Oðν̃; κÞ; ðC2Þ

½ω2
γw4

jðR0
j − 1Þ þ 4R2

j �r2 − 2R2
jw

2
jð2þ ωγw2

jθ
0
jÞ

¼ −2ω2
γηjẼ2

lg
2
lR

2
jw

4
je

−2r2=w2
l þOðν̃; κÞ; ðC3Þ

where the prime denotes a partial derivative with respect
to z, and the dependence of all quantities on ξ and z has
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been omitted for brevity. Integrating Eqs. (C2) and (C3)

over 2πe−2r
2=w2

j rdr yields

Ẽ0
γ;j

Ẽγ;j
¼ −

w0
j

wj
þOðν̃; κÞ; ðC4Þ

and

ω2
γw4

jðR0
j − 1Þ − 4R2

j − 4R2
jωγw2

jθ
0
j

¼ −4ω2
γ ηjẼ2

lg
2
lR

2
jw

2
j

w2
l

w2
j þ w2

l
þOðν̃; κÞ: ðC5Þ

Similarly, integrating Eqs. (C2) and (C3) over

2πe−2r
2=w2

j r3dr yields

w0
j

wj
¼ 1

Rj
þOðν̃; κÞ ðC6Þ

and

ω2
γw4

jðR0
j − 1Þ − 2R2

jωγw2
jθ

0
j

¼ −2ω2
γηjẼ2

lg
2
lR

2
jw

2
j

w4
l

ðw2
j þ w2

lÞ2
þOðν̃; κÞ: ðC7Þ

Combining Eqs. (C5)–(C7) provides differential equa-
tions for the spot sizes wjðξ; zÞ and phase shifts θjðξ; zÞ of
the x-ray probe pulse,

w00
j −

4

ω2
γw3

j

�
1 − ω2

γηjẼ2
lg

2
l

w2
lw

4
j

ðw2
j þ w2

lÞ2
�
¼ Oðν̃; κÞ; ðC8Þ

θ0j þ
2

ωγw2
j
− ωγηjẼ2

lg
2
l

w2
lð2w2

j þ w2
lÞ

ðw2
j þ w2

lÞ2
¼ Oðν̃; κÞ: ðC9Þ

In addition, Eqs. (C4) imply conservation of power,
w2
jðξ; zÞẼ2

γ;jðξ; zÞ≈ constant, and the radii of curvature
Rjðξ; zÞ can be found from Eq. (C6) once wjðξ; zÞ
is known.

APPENDIX D: PERTURBATIVE SOLUTION

Equations (C8) and (C9) can be solved perturbatively by
expanding in orders of the small dimensionless parameter
ηjÊ

2
l (approx. 4). The spot sizes and phases are written as

wjðξ; zÞ ¼ wð0ÞðzÞ þ δwjðξ; zÞ; ðD1Þ

θjðξ; zÞ ¼ θð0Þðξ; zÞ þ δθjðξ; zÞ: ðD2Þ

The zeroth-order solutions are equal to the spot size and
phase of a Gaussian beam (approx. 5) in the absence of
vacuum polarization effects,

wð0ÞðzÞ ¼ ŵγ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2=Z2

γ

q
; ðD3Þ

θð0Þðξ; zÞ ¼ θ0ðξÞ − arctanðz=ZγÞ; ðD4Þ

where θ0ðξÞ is an arbitrary real function and Zγ ≡ ωγŵ2
γ=2.

Equations (C4) and (D3) imply that the zeroth-order

amplitudes Ẽð0Þ
j ðξ; zÞ ∝ 1=wð0ÞðzÞ depend only on z.

The corrections δwjðξ; zÞ and δθjðξ; zÞ arise from vac-
uum-polarization effects. To first order in ηjÊ

2
l (approx. 4),

the corrections satisfy the differential equations,

δw00
j þ

12δwj

ω2
γ

	
wð0Þ
4þ4ηjẼ2

lg
2
lw

2
l

wð0Þ

½	wð0Þ
2þw2
l�2

¼Oðν̃;κ;ε2Þ;

ðD5Þ

δθ0j−
4δwj

ωγ

	
wð0Þ
3−ωγηjẼ2

lg
2
lw

2
l

2
	
wð0Þ
2þw2

l

½	wð0Þ
2þw2
l�2

¼Oðν̃;κ;ε2Þ;

ðD6Þ

where ε≡ Ê2
l=E

2
cr. This system of equations can be used to

find numerical solutions for δwjðξ; zÞ and δθjðξ; zÞ. In
order to derive analytical estimates for these quantities, the
equations will be solved in the region where z2=Z2

γ ≪ 1

(approx. 6). Further, the temporal profiles of the laser
pulses will be approximated as rectangles; i.e., gl ¼ 1 for
the duration of the interaction and gl ¼ 0 otherwise
(approx. 7).

1. FF pulse

For the FF pulse, ẼFðξÞ and wFðξÞ are given
by Eqs. (B2) and (B3). When the length of the x-ray
pulse L is much smaller than the interaction length DF,
the initial conditions δwjð−DF=2Þ ¼ δw0

jð−DF=2Þ ¼ 0,
δθjð−DF=2Þ ¼ 0 can be imposed. The leading order
solution for z∈ ð−DF=2; DF=2Þ is then

δwF
j ðξ; zÞ ¼ −2ηjẼ2

FðξÞ
ŵγw2

FðξÞ
½ŵ2

γ þ w2
FðξÞ�2

×

�
zþDF

2

�
2

þOðν̃; κ; ε2; d3Þ; ðD7Þ

δθFj ðξ; zÞ ¼ ωγηjẼ2
FðξÞ

w2
FðξÞ½2ŵ2

γ þ w2
FðξÞ�

½ŵ2
γ þ w2

FðξÞ�2

×

�
zþDF

2

�
þOðν̃; κ; ε2; d2Þ; ðD8Þ

where higher order terms in d≡Dl=Zγ were neglected
(approx. 6). Thus in obtaining this solution, the terms
proportional to δwj in Eqs. (D5) and (D6) were omitted. By
substituting the solution back into these equations, one can
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verify that this is a valid approximation consistent with
approx. 6.
The vacuum-polarization nonlinearity depends on polari-

zation; i.e., it is birefringent. This results in a different δθ
for each polarization component of the x-ray pulse. The
difference in these phase shifts, ΔθF ¼ δθy − δθx, provides
a measurable signature of the birefringence. Specifically,

ΔθFðξ; zÞ ¼
2α

15

�
ẼFðξÞ
Ecr

�
2 w2

FðξÞ½2ŵ2
γ þ w2

FðξÞ�
½ŵ2

γ þ w2
FðξÞ�2

×
zþDF=2

λγ
þOðν̃; κ; ε2; d2Þ: ðD9Þ

The value of ξ determines the synchronization of a
particular time slice of the x-ray pulse with respect to
the peak intensity of the flying-focus pulse. For the
temporal slice of the x-ray pulse that is colocated with
the intensity peak of the FF, ξ ¼ 0, and this expression
reduces to

ΔθFð0; zÞ ¼
2α

15

�
ÊF

Ecr

�
2 zþDF=2

λγ
ΣF

þOðν̃; κ; ε2; d2Þ; ðD10Þ

where the transverse overlap factor ΣF is given by

ΣF ≡ 1þ 2σ2F
ð1þ σ2FÞ2

; ðD11Þ

and σF ≡ ŵγ=ŵF. The phase difference increases as
σF → 0. However, if this limit is achieved by focusing
the x-ray pulse too tightly, the approximation DF=Zγ ≪ 1

would not be valid. Nevertheless, for σF ≪ 1 and z ¼
DF=2 the phase difference reduces to

ΔθF
�
0;
DF

2

�
¼ 2α

15

�
ÊF

Ecr

�
2DF

λγ

þOðν̃; κ; ε2; d2Þ; ðD12Þ

which matches the result for the interaction of a probe with
a strong plane wave field over a length DF (see, e.g.,
Ref. [103]).
Experimentally, it is infeasible to temporally resolve the

polarization of the x-ray pulse after its interaction with the
FF pulse. This motivates averaging Eq. (D9) over all ξ
within the x-ray pulse,

ΔθFðzÞ≡ 1

L

Z
L=2þd

−L=2þd
ΔθFðξ; zÞdξ

¼ 2α

15

�
ÊF

Ecr

�
2 zþDF=2

λγ
ΣFΛFðL; dÞ

þOðν̃; κ; ε2; d2Þ: ðD13Þ

This is an exact result for the approximate expression in
Eq. (D9). The longitudinal form-factor ΛFðL; dÞ depends
on the initial synchronization and geometry of the pulses
and is given by

ΛFðL; dÞ≡ 1

2

ρF=L
1þ 2σ2F

×

�
σ2Fu

1þ u2
þ ð2þ 3σ2FÞ arctanu

�L=2þd
ρF

−L=2þd
ρF

: ðD14Þ

In Eq. (D14), L is the length of the x-ray probe pulse, d is
the longitudinal displacement of its center from the peak
intensity of the FF pulse, and ρF ≡ ZF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ2F

p
. With

d ¼ 0 and in the limit as L → 0, ΛFðL; dÞ → 1.

2. Conventional Gaussian pulse

For the conventional laser pulse, ẼGðzÞ and wGðzÞ are
given by Eqs. (B4) and (B5). In this case, the length of the
x-ray pulse L is comparable to the interaction length DG
and must be accounted for explicitly. A best case scenario
of perfect synchronization is assumed so that the centers of
both pulses meet at the focus of the conventional pulse
z ¼ 0. This means that leading and trailing edges of both
pulses meet symmetrically around the focus at z ¼
−DG=2þ L=4 and z ¼ DG=2 − L=4, respectively. This
ensures that each temporal slice of the x-ray pulse interacts
with the laser pulse in the vicinity of its focus over the entire
interaction length. The temporal slices of the x-ray pulse
are again parametrized by ξ∈ ð−L=2; L=2Þ but this time
with no offset. The leading order solution of Eq. (D6) after
the entire interaction is then

δθGj ðξÞ ¼
1

2
ηjÊ

2
G

ωγZG

ð1þ σ2GÞ3=2

×

�
σ2Gu

1þ u2
þ ð2þ 3σ2GÞ arctan u

�
ufðξÞ

uiðξÞ
þOðν̃; κ; ε2; d2Þ; ðD15Þ

where ρG ≡ ZG

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ2G

p
, σG ≡ ŵγ=ŵG, and

ufðξÞ≡DG=2þξ=2
ρG

; uiðξÞ≡−DG=2þξ=2
ρG

: ðD16Þ

As in the FF case, the terms proportional to DG=Zγ

(approx. 6), i.e., δwj in Eqs. (D5) and (D6) were neglected.
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The phase difference ΔθG ¼ δθy − δθx is given by

ΔθGðξÞ ¼
α

15

 
ÊG

Ecr

!
2

ZG

λγð1þ σ2GÞ3=2

×
�

σ2Gu
1þ u2

þ ð2þ 3σ2GÞ arctanu
�
ufðξÞ

uiðξÞ
þOðν̃; κ; ε2; d2Þ: ðD17Þ

After averaging over all ξ within the x-ray pulse, one finds

ΔθG ¼ 1

L

Z
L=2

−L=2
ΔθGðξÞdξ

¼ 2α

15

 
ÊG

Ecr

!
2
2ρG
λγ

ΣGΛ̃GðL;DGÞ

þOðν̃; κ; ε2; d2Þ; ðD18Þ
which is an exact result for the approximate expression in
Eq. (D17). Here, the transverse and longitudinal form
factors are

ΣF ≡ 1þ 2σ2F
ð1þ σ2FÞ2

; ðD19Þ

Λ̃GðL;DGÞ≡ ρG
L

1

1þ 2σ2G
½WðuÞ�ufðL=2Þufð−L=2Þ; ðD20Þ

and the auxiliary function,

WðuÞ≡ ð2þ3σ2GÞuarctanu− ð1þσ2GÞ lnð1þu2Þ: ðD21Þ

In the limit of an ultrashort x-ray pulse (L → 0) and for
small interaction lengths (DG ≪ ZG), Λ̃G ≈DG=2ρG.

APPENDIX E: PHASE DIFFERENCE
AS A FUNCTION OF LASER PULSE ENERGY

In this appendix, the factors ℏ, ε0, and c are made explicit
for clarity. The cycle-averaged power of a laser pulse with a
Gaussian transverse profile is given by

Pl ¼ π

4
ε0cÊ

2
lŵ

2
l þOð1=ω2

lŵ
2
lÞ: ðE1Þ

The energy of the pulse is El ¼ τlPl, where τl is the
duration.
The duration of the FF pulse is determined by the focal

rangeDF and velocity of the focus vF: τF ¼ jc−1 − v−1F jDF
[81,88,102]. For vF ¼ −c,

EF ¼ 2DF

c
PF ¼ π

2
ε0Ê

2
FDFŵ2

F þOð1=ω2
Fŵ

2
FÞ: ðE2Þ

Substituting Ê2
F into Eq. (D13), setting z ¼ DF=2, and

averaging over the x-ray frequency spectrum yields

ΔθF ¼ 8α2

15π

EF

e2E2
cr

ℏhωγi
ŵ2
F

ΣFΛFðL; dÞ

þOðν̃; κ; ε2; d2Þ: ðE3Þ

The phase difference is independent of the focal range DF
and linearly proportional to the laser pulse energy. Given an
energy and a focal range, the average power can be
calculated as

PF ¼ cEF

2DF
; ðE4Þ

which does not depend on the spot size ŵF.
The duration of the conventional pulse is set to ensure

that the x-ray pulse and conventional pulse overlap over the
entire interaction length; i.e., τG ¼ 2DG=c. The energy of
the pulse is then

EG ¼ 2DG

c
PG ¼ π

2
ε0Ê

2
GDGŵ2

G þOð1=ω2
Gŵ

2
GÞ: ðE5Þ

Substituting Ê2
G into Eq. (D18) and averaging over the

x-ray frequency spectrum yields

ΔθG ¼ 8α2

15π

EG

e2E2
cr

ℏhωγi
ŵ2
G

ΣGΛGðL;DGÞ

þOðν̃; κ; ε2; d2Þ; ðE6Þ

where the form factor ΛG contains an additional coefficient
that depends on the interaction length DG,

ΛGðL;DGÞ≡ 2ρG
DG

Λ̃GðL;DGÞ: ðE7Þ

Other than the form factors Λl, the phase difference for a
given pulse energy is identical in the FF [Eq. (E3)] and
conventional cases [Eq. (E6)]. Given an energy and an
interaction length, the average power of the conventional
pulse can be calculated as

PG ¼ cEG

2DG
: ðE8Þ

Typically, the interaction length should be comparable to
the Rayleigh range. For the purposes of Fig. 2, DG ¼ ZG.

APPENDIX F: NUMERICAL IMPLEMENTATION

In order to numerically solve Eqs. (D5) and (D6) in the
FF case, the envelope function gF needs to be specified.
Here a smooth polynomial function is employed, which is
more realistic version of the rectangular pulse profile used
for the analytical estimates. Specifically,
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gFðzÞ ¼

8>>>>><
>>>>>:

10z̃3þ− 15z̃4þ þ 6z̃5þ; z̃þ∈ ð0;1Þ;
1; z̃þ∈ ½1; D̃F�;
−10z̃3− − 15z̃4− − 6z̃5−; z̃−∈ ð−1;0Þ;
0; otherwise;

ðF1Þ

where z̃� ≡ ðz�DF=2� Lr=2Þ=Lr, D̃F ≡DF=Lr, and Lr
is the ramp length. The length of the ramps are set to be
0.5% of the interaction length. This ensures that the ramps
are long compared to the wavelength of the laser, but short
compared to the overall pulse duration.
The system of Eqs. (D5) and (D6) was solved using the

fourth order Runge-Kutta integration scheme [104] with a
step Δz ¼ 0.1 μm. The phase difference ΔθF was calcu-
lated by subtracting the solutions for each polariza-
tion ΔθF ¼ δθFy − δθFx .
As was discussed in Appendix D, the approximation

allowing for an analytical solution begins to break down
when the Rayleigh range of the x-ray pulse Zγ becomes
comparable to the interaction length DF. To determine the
accuracy of the analytical results, the case of a perfectly
synchronized (d ¼ 0), short (L ≪ ZF) 10 keV x-ray probe
pulse was simulated using Eqs. (D5) and (D6). In the
simulations, the phase accumulated over an interaction
length of 1 cm in a vacuum polarized by a FF pulse with a
spot size ŵF ¼ 3 μm and an energy EF ¼ 1 kJ. Figure 5
shows the phase difference predicted by the analytical
result [solid line, Eq. (E3)] and the numerical integration
(discrete points) as a function of the small parameter
DF=Zγ . The results are in excellent agreement for the
range of x-ray spot sizes considered, ŵγ ∈ ð1; 5Þ μm.

The small discrepancy for tightly focused x-ray pulses
disappears if higher x-ray photon energies are considered
(thus increasing ZF). Moreover, focusing the x-ray probe
pulse much tighter than the laser pulse does not appreciably
modify the phase difference (see discussion in the main
text).
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