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We study the higher-order anisotropy coefficients v4 and v6 in the photon and dilepton emission from a
hot magnetized quark-gluon plasma. Together with the earlier predictions for v2, these results show a
distinctive pattern of the anisotropy coefficients in several kinematic regimes. In the case of photon
emission, nonzero coefficients vn (with even n) have opposite signs at small and large values of the

transverse momentum (i.e., kT ≲ ffiffiffiffiffiffiffiffiffijeBjp
and kT ≳ ffiffiffiffiffiffiffiffiffijeBjp

, respectively). Additionally, the vn signs alternate
with increasing n, and their approximate values decrease as 1=n2 in magnitude. The anisotropy of dilepton
emission is well pronounced only at large transverse momenta and small invariant masses (i.e., when

kT ≳ ffiffiffiffiffiffiffiffiffijeBjp
and M ≲ ffiffiffiffiffiffiffiffiffijeBjp

). The corresponding v4 and v6 coefficients are of the same magnitude and
show a similar alternating sign pattern with increasing n as in the photon emission.

DOI: 10.1103/PhysRevD.109.056008

I. INTRODUCTION

Quark-gluon plasma (QGP) is a state of extremely hot
matter made of deconfined quarks and gluons that carry
non-Abelian color charges [1–3]. The existence of such a
plasma state stems from the asymptotic freedom in quan-
tum chromodynamics (QCD) [4,5]. QGP was present
naturally in the early Universe about a microsecond after
the big bang. It can also be produced in heavy-ion colli-
sions at the Relativistic Heavy Ion Collider in Brookhaven
and the Large Hadron Collider at CERN. The correspond-
ing “little bang” experiments allow one to study the funda-
mental properties of QGP [6].
Despite small sizes and short interaction times in

relativistic collisions, experimental data provide strong
evidence that the QGP forms a strongly interacting viscous
liquid [7–9]. The flow measurements, quantified by the
anisotropy coefficients vn, support the scenario of QGP
evolving hydrodynamically for a considerable fraction of

its lifetime [10]. Theoretical models also indicate that the
plasma has low viscosity [11], consistent with a strongly
interacting regime.
The dynamics responsible for the QGP production in

heavy-ion collisions are complicated and only partially
understood. One of the aspects in dire need of better under-
standing is the possible generation and evolution of back-
ground magnetic fields in noncentral collisions. Theoretical
studies suggest that the initial magnetic field B could be of
the order of m2

π=e ≈ 3 × 1018 G [12–17]. Such an incred-
ibly strong field could modify the thermodynamic and
transport properties of QGP, trigger chiral anomalous
effects [18–20], and ultimately affect numerous observ-
ables. For reviews, see Refs. [21–24].
To verify whether the QGP in noncentral collisions is

magnetized and to estimate the strength of the magnetic
field, one can try scrutinizing the most promising electro-
magnetic observables. It is reasonable to start by analyzing
the photon [25–27] and dilepton emission rates [28].
First, the magnetic field affects the corresponding rates
already at leading order in coupling. Second, the photons
and dileptons are clean probes of the QGP at early times.
Indeed, owing to their long mean-free path, they do not
suffer much from rescattering in a small volume of the
plasma.
The heavy-ion experiments reveal that direct photons

have a sizable elliptic flow, quantified by a large ellipticity
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coefficient v2 [29–31]. Their flow appears to be comparable
to that of hadrons, which is truly surprising. Unlike
hadrons, the direct photons are emitted at early times of
QGP when collective flow may not have had the chance to
form yet. This is known as the “direct photon” puzzle.
Many theoretical studies tried to address it [32–53]. In our
detailed studies of the differential rates in Refs. [54,55], in
particular, we argued that a large positive v2 of the direct
photons may be explained by the presence of a strong
background magnetic field in the QGP. It is fair to note that
further phenomenological investigations are needed to
settle the issue. This study is one of the key steps in that
direction. It extends the knowledge of the differential
emission rates from a strongly magnetized plasma.
The dilepton emission is another complementary probe

of the QGP. Since their spectra are not affected by the
blueshift of the expanding medium, dileptons can serve as
an excellent thermometer of the QGP [56]. On the other
hand, the dilepton rate should be affected by the mag-
netic field [57–65]. Moreover, as we demonstrated in the
earlier study [66], dilepton emission is characterized by a
sizable ellipticity at small values of the invariant mass
(M ≲ ffiffiffiffiffiffiffiffiffijeBjp

). In the same kinematic region, the rate is also
strongly enhanced. It is fair to mention that the correspond-
ing theoretical claims may be hard to verify systematically
in current experiments.
Here, we extend the previous studies by showing that the

presence of a strong magnetic field in the QGP should be
encoded not only in v2, but also in high-order anisotropy
coefficients. By using the same theoretical framework as in
Refs. [54,55,66], here we obtain detailed theoretical pre-
dictions for the higher-order anisotropy coefficients v4
and v6 for a magnetized plasma at rest. Similarly to v2,
they show nontrivial dependence on the kinematic param-
eters. We argue that future detailed measurements of the
photon and dilepton anisotropy coefficients could provide
a distinctive fingerprint for verifying the presence of the
background magnetic field in the plasma produced by
noncentral heavy-ion collisions. Of course, to produce
theoretical predictions for the corresponding heavy-ion
observables, one needs to convolute the differential rates
with the specific dynamical models of plasma. The latter
task is left for future studies.
This paper is organized as follows. In Sec. II, we

introduce the key definitions and model assumptions in
our study of the photon and dilepton emission from a hot
magnetized QGP. The numerical results for higher-order
anisotropy coefficients v4 and v6 are obtained and dis-
cussed in Sec. III. The summary of the main findings and
conclusions are given in Sec. IV. In the Appendix, we quote
the expression for the imaginary part of the Lorentz-
contracted polarization tensor, which is needed for calcu-
lating the photon and dilepton rates.

II. MODEL

Here, we make the same model assumptions about the
QGP as in Refs. [54,55,66]. We consider a plasma made of
the lightest up and down quarks. While the quantitative
results may change slightly with the inclusion of the strange
quarks, all qualitative results are to remain the same. For
simplicity, we also assume that the masses of the up and
down quarks are equal, i.e., mu ¼ md ¼ m ¼ 5 MeV. It is
a good approximation for the QGP with a temperature of
several hundred megaelectronvolts.
In this study, we consider the QGP plasma in the rest

frame. By assumption, the magnetic field points along the
z axis. The two setups for photon and dilepton emission are
illustrated schematically in the two panels in Fig. 1.
In the case of photon emission, the corresponding four-

momentum kμ ¼ ðΩ;kÞ satisfies the on-shell condition
k2 ≡ kμkμ ¼ 0. In the dilepton case, on the other hand, the
photon γ� is virtual. Its momentum describes a lepton pair
and satisfies a different on-shell condition, i.e., k2 ¼ M2,
where M is the dilepton invariant mass. Note that, without
loss of generality, we can set kx ¼ 0 in the rest frame. The
nonzero transverse components of the momentum are

ky ¼ kT cosðϕÞ; kz ¼ kT sinðϕÞ; ð1Þ

where kT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2y þ k2z

q
is the magnitude of the transverse

momentum and ϕ is the azimuthal angle measured from the
y axis. (The transverse component of the momentum kT

should not be confused with k⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
, which is the

component perpendicular to the magnetic field.)

A. Photon emission rate and its anisotropy

The thermal photon production rate from the QGP can be
conveniently expressed in terms of the imaginary part of the
retarded polarization tensor as follows [67]:

k0
d3R

dkxdkydkz
¼ d3R

kTdkTdϕdy
¼ −

nBðΩÞ
ð2πÞ3 Im

�
Πμ

R;μðΩ;kÞ
�
;

ð2Þ

where nBðΩÞ ¼ 1=½exp ðΩ=TÞ − 1� is the Bose-Einstein
distribution function and T is the temperature. The latter
expression has the same form in QGP with and without a
background field. However, a nonzero magnetic field can
strongly affect the photon polarization tensor and, in turn,
modify the photon emission rate. Below, we will utilize
the leading-order one-loop expression for Im½Πμ

R;μðΩ;kÞ�
derived in Refs. [54,66,68] by using the Landau-level
representation for quarks. For convenience, we also quote
the corresponding result in the Appendix.
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When the differential rate (2) is known, the anisotropy
coefficients vn can be evaluated as follows:

vnðkTÞ ¼
1

R0

Z
2π

0

d3R
kTdkTdϕdy

cosðnϕÞdϕ; ð3Þ

where the normalization factor is determined by integrating
the emission rate over the azimuthal angle ϕ, i.e.,

R0 ¼
d2R

kTdkTdy
¼

Z
2π

0

d3R
kTdkTdydϕ

dϕ: ð4Þ

We will use the definition in Eq. (3) to quantify the
anisotropy of the photon emission from a hot magnetized
QGP in Sec. III.
It is appropriate to comment on the approximation used

here. When utilizing the one-loop polarization tensor in
Eq. (2), one accounts for the following three leading-order
processes: (i) the quark splitting (q → qþ γ), (ii) the
antiquark splitting (q̄ → q̄þ γ), and (iii) the quark-
antiquark annihilation (qþ q̄ → γ) [54,68]. Their contri-
butions to the rate are of the order of α, where α≡
e2=ð4πÞ ¼ 1=137 is the fine structure constant. Recall that
the same processes are forbidden by energy-momentum
conservation in the absence of the magnetic field. Instead,
leading contributions at B ¼ 0 come from the gluon-
mediated 2 → 2 processes qþ g → qþ γ, q̄þ g →
q̄þ γ, and qþ q̄ → gþ γ, where g represents a gluon
[69–75]. Formally, they are suppressed by an extra power
of αs, where αs ≡ g2s=ð4πÞ is the QCD strong coupling
constant.

Unfortunately, the gluon-mediated 2 → 2 processes have
not been analyzed in a magnetic field. Thus, it is unclear
how the relative contributions of the leading and subleading
diagrams vary when one goes continuously from the zero-
field to the strong-field limit. Here, we will assume that the
magnetic field is sufficiently strong for the leading-order
contributions ∼α (from the 1 → 2 and 2 → 1 processes) to
dominate the anisotropy coefficients. It can be true even in
some cases when the subleading contributions ∼ααs (from
the gluon-mediated 2 → 2 processes) dominate the rates.
With the current knowledge, however, we cannot establish
a rigorous range of validity for the approximation used. It is
an important issue and should be addressed in detail in
future studies.

B. Dilepton emission rate and its anisotropy

Similarly to the photon emission, the differential dilep-
ton production rate can be expressed in terms of the
imaginary part of the photon polarization tensor, i.e.,

dRll̄

d4k
¼ α

12π4
nBðΩÞ
M2

Im
�
Πμ

R;μðΩ;kÞ
�
; ð5Þ

where nBðΩÞ ¼ ðeΩ=T − 1Þ−1 is the Bose-Einstein distribu-
tion function. Here, we neglected the nonzero lepton masses
and took into account that k2 ≡Ω2 − k2⊥ − k2z ¼ M2. Note
that Ω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ k2⊥ þ k2z

p
and d4K ¼ MdMkTdkTdydϕ.

To quantify the anisotropy of dilepton emission in
Sec. III, we will use the Fourier coefficients similar to
those in Eq. (3), i.e.,

FIG. 1. Schematic illustrations of the photon (a) and dilepton (b) emission from a magnetized plasma in the rest frame. The transverse
momenta kT of the on-shell (a) and virtual (b) photons lie in the y − z plane. The azimuthal angle ϕ is measured from the y axis.
The lepton momenta outside the magnetized plasma are q1 and q2 (b).
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vnðM; kTÞ ¼
R
2π
0 dϕ cosðnϕÞðdRll̄=d

4kÞR
2π
0 dϕðdRll̄=d

4kÞ : ð6Þ

It is instructive to emphasize that the approximation for
the dilepton rate in Eq. (5), given in terms of the one-loop
photon polarization tensor, is comparable to the leading-
order result in the case of the vanishing magnetic field [76].
Moreover, as shown in Ref. [66], it reduces to the zero-field
Born rate when the magnetic field goes to zero. Therefore,
unlike the photon emission, the leading-order dilepton
emission is under theoretical control in the whole range
from the vanishing to strong magnetic fields.

III. RESULTS

To extend our previous studies of the photon and
dilepton emission rates in Refs. [54,66], here we analyze
the emission anisotropies in more detail. In particular,
we study the higher-order coefficients vn, as defined by
Eqs. (3) and (6). Note that all odd coefficients v3, v5, etc.,
are vanishing in a magnetized plasma. It is the consequence
of the rotation symmetry about the direction of the mag-
netic field. Here, we will investigate the effect of the
magnetic field on the high-order anisotropy coefficients
v4 and v6. Note that the leading coefficient v2, which
measures the ellipticity of emission, was investigated in
detail in Refs. [54,66]. By scrutinizing the angular depend-
ence of the emission rates below, we will argue that such
higher correlations hold interesting features that may
become invaluable in quantifying the properties of the
QGP produced in noncentral heavy-ion collisions.
In numerical calculations, we express all mass and

energy quantities in units of the (neutral) pion mass
mπ ≈ 0.135 GeV. When presenting the results, however,
we will display the transverse momenta and the dilepton
invariant masses in gigaelectronvolts. To cover a substantial

range of the parameter space without producing an over-
whelming amount of data for the anisotropy coefficients,
we will concentrate on the two representative choices of
the magnetic field strength, jeBj ¼ m2

π and jeBj ¼ 5m2
π ,

and two representative values of temperature, T ¼ 0.2 GeV
and T ¼ 0.35 GeV, which are typical under the conditions
in high-energy heavy-ion collisions [77–79].
As explained in Refs. [54,66], the problem possesses a

mirror symmetry with respect to the reflection in the
reaction plane. Thus, the rates remain invariant when
ϕ → −ϕ. Taking into account also the parity symmetry
(y → −y), we see that the rate for the whole range of
azimuthal angles from ϕ ¼ −π and ϕ ¼ π can be obtained
from that in the range between ϕ ¼ 0 and ϕ ¼ π

2
.

A. Photon emission

Our earlier study in Ref. [54] showed that the photon
emission from a magnetized hot QGP has a well-
pronounced ellipticity characterized by a nonzero v2.
Moreover, its sign changes as some intermediate values
of the transverse momentum. It is predominantly negative
at small kT (i.e., kT ≲ ffiffiffiffiffiffiffiffiffijeBjp

) and positive at large kT (i.e.,
kT ≳ ffiffiffiffiffiffiffiffiffijeBjp

). Here, we extend the study to the higher-order
anisotropy coefficients v4 and v6. As we will see, they also
deviate substantially from zero and show characteristic
patterns of dependence on the transverse momentum.
The numerical results for v4 in the photon emission

are shown in Fig. 2. The left and right panels display the
results for two different magnetic fields, jeBj ¼ m2

π and
jeBj ¼ 5m2

π , respectively. In both cases, the blue solid and
the red dashed lines correspond to two fixed temperatures,
i.e., T ¼ 0.2 GeV and T ¼ 0.35 GeV, respectively.
We should note that the numerical data for v4 (as well as

other anisotropy coefficients below) appear to be very
noisy, especially at small values of kT . There are several

FIG. 2. Anisotropic coefficient v4 for the photon emission as a function of the transverse momentum kT for two different temperatures,
T ¼ 0.2 GeV (blue line) and T ¼ 0.35 GeV (red line), and two different strengths of the magnetic field, jeBj ¼ m2

π (a) and
jeBj ¼ 5m2

π (b).
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reasons for such a behavior. In part, it is caused by the
highly spiky dependence of the rates on the angular
coordinate in the vicinity of the Landau-level thresholds,
which are particularly strong at small kT [54,66]. The
jagged behavior is further exacerbated by a finite angular
resolution of the numerical data. While some points happen
to lie accidentally at or near sharp peaks, others fall near
local minima.
The results reveal a clear qualitative pattern in the

behavior of v4 as a function of the transverse momentum.
At relatively small momenta, kT ≲ ffiffiffiffiffiffiffiffiffijeBjp

, v4 tends to be
positive. However, it becomes negative for kT ≳ ffiffiffiffiffiffiffiffiffijeBjp

.
Notably, its absolute values are of the order of 0.05. Such
large v4 values can be detectable in heavy-ion collisions if
the background contributions due to other effects are under
control.
The numerical results for v6 are shown in Fig. 3. As

before, the left and right panels display the results for two
different magnetic fields, jeBj ¼ m2

π and jeBj ¼ 5m2
π ,

respectively. In both cases, the blue solid and the red
dashed lines correspond to two fixed temperatures, i.e.,
T ¼ 0.2 GeV and T ¼ 0.35 GeV, respectively. In all cases,
the dependence of v6 on the transverse momentum reveals
similar qualitative features. It changes from a negative
value at relatively small momenta, kT ≲ ffiffiffiffiffiffiffiffiffijeBjp

, to positive
values at relatively large momenta, kT ≳ ffiffiffiffiffiffiffiffiffijeBjp

. The
absolute values of v6 are of the order of 0.02, which are
quite sizable, too.
The characteristic features of the photon anisotropy are

summarized in Table I. It is interesting to note the
alternating signs of the anisotropy coefficients vn with
increasing n. (Recall that all coefficients with odd n
vanish.) Another curious feature is the overall scaling of
the magnitude, which goes as 1=n2. The latter may be an
approximate numerical result that holds only for the lowest

three nonzero coefficients. However, tentatively it appears
to remain true also for v8, although the data become less
reliable with increasing n when the threshold effects from
Landau levels produce many spikes in the angular
dependence.

B. Dilepton emission

As demonstrated in Ref. [66], dilepton emission from a
magnetized hot QGP shows a sizable ellipticity, described
by a positive v2 of the order of 0.2, in the kinematic regime
of small invariant masses (i.e., M ≲ ffiffiffiffiffiffiffiffiffijeBjp

) and large
transverse momenta (i.e., kT ≳ ffiffiffiffiffiffiffiffiffijeBjp

). Here, we analyze
the higher-order anisotropy coefficients v4 and v6. They
also deviate noticeably from zero in the same kinematic
regime.
Let us start by first reinforcing the results for the

ellipticity of dilepton emission obtained in Ref. [66]. In
particular, here we extend the previous calculations of
the ellipticity coefficient v2 to larger transverse momenta
(up to kT ¼ 2 GeV) and increase the resolution in the
invariant mass (i.e., from ΔM ¼ 0.1 GeV down to
ΔM ¼ 0.01 GeV). The corresponding new results are
shown in Fig. 4. The four panels show the ellipticity
coefficient v2 as a function of the invariant mass for two

FIG. 3. Anisotropic coefficient v6 for the photon emission as a function of the transverse momentum kT for two different temperatures,
T ¼ 0.2 GeV (blue line) and T ¼ 0.35 GeV (red line), and two different strengths of the magnetic field, jeBj ¼ m2

π (a) and
jeBj ¼ 5m2

π (b).

TABLE I. Summary of nonvanishing photon and dilepton
anisotropy coefficients vn.

vn (photon emission) vn (dilepton emission)

kT ≲ ffiffiffiffiffiffiffiffiffijeBjp
kT ≳ ffiffiffiffiffiffiffiffiffijeBjp

kT ≳ ffiffiffiffiffiffiffiffiffijeBjp
& M ≲ ffiffiffiffiffiffiffiffiffijeBjp

v2 ≃ − 0.2a ≃þ 0.2a ≃þ 0.2
v4 ≃þ 0.05 ≃ − 0.05 ≃ − 0.05
v6 ≃ − 0.02 ≃þ 0.02 ≃þ 0.02

aFrom Ref. [54].
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temperatures, i.e., T ¼ 0.2 GeV (two left panels) and T ¼
0.35 GeV (two right panels), and two magnetic fields,
jeBj ¼ m2

π (two top panels) and jeBj ¼ 5m2
π (two bottom

panels). For reference, we also included one of the older
low-resolution datasets for kT ¼ 0.5 GeV from Ref. [66].
By comparing the dependence of v2 on the invariant

massM with the results in Ref. [66], we find that the earlier
conclusions are not only valid, but they also become more
robust with the increasing of the transverse momentum.
Furthermore, the current high-resolution data reconfirm
that the ellipticity coefficient v2 takes generically large
positive values (v2 ∼ 0.2) in the region of small invariant
masses (i.e., M ≲ ffiffiffiffiffiffiffiffiffijeBjp

). Its magnitude is comparable to
the photon v2 calculated in Ref. [54]. By comparing the
data for the two different temperatures in Fig. 4, we also see
that the temperature dependence of the dilepton v2 is nearly
negligible. For the large transverse momenta considered,
of course, it should not be surprising. As we will see below,
both v4 and v6 reveal a similarly weak temperature
dependence.
Now, let us turn to the higher-order anisotropy coef-

ficients v4 and v6. We will concentrate our attention on the

same kinematic region of small invariant masses and large
transverse momenta, where the anisotropy is pronounced
the most. The numerical results for the dilepton v4 as a
function of the invariant mass are shown in Fig. 5. As
before, the four panels present the results for two temper-
atures, i.e., T ¼ 0.2 GeV (two left panels) and T ¼
0.35 GeV (two right panels), and two magnetic fields,
jeBj ¼ m2

π (two top panels) and jeBj ¼ 5m2
π (two bottom

panels). As we see from Fig. 5, at small invariant masses,
the coefficient v4 tends to be negative with the absolute
values of about 0.05. Note that these are sizable by any
reasonable standards. They are also comparable to the v4
values in the photon emission at large transverse momenta;
see Fig. 2.
The dilepton results for v6 are shown in Fig. 6. The four

panels show the results for two temperatures, i.e., T ¼
0.2 GeV (two left panels) and T ¼ 0.35 GeV (two right
panels), and two magnetic fields, jeBj ¼ m2

π (two top
panels) and jeBj ¼ 5m2

π (two bottom panels). As we see,
the anisotropy coefficient v6 tends to be positive at small
M, with the maximal values of the order of 0.02. Such
values are comparable to those of photon v6 in Fig. 3.

FIG. 4. Anisotropic coefficient v2 for the dilepton emission as a function of the invariant mass M for several fixed values of the
transverse momentum kT . The top two panels correspond to jeBj ¼ m2

π and the bottom two panels to jeBj ¼ 5m2
π . The panels on the left

are for T ¼ 0.2 GeV, and the ones on the right are for T ¼ 0.35 GeV. The data for kT ¼ 0.5 GeV are taken from Ref. [66].
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It should be noted that nonvanishing v4 and v6 are barely
resolved for the intermediate transverse momentum
kT ¼ 0.5 GeV, especially in the case of the stronger field
jeBj ¼ 5m2

π . It is not surprising, as the corresponding kT is
comparable to

ffiffiffiffiffiffiffiffiffijeBjp
. Nevertheless, the trend becomes

unambiguous for the larger values of kT . As anticipated,
both v4 and v6 have a weak temperature dependence at
sufficiently large transverse momenta. The key features of
the dilepton anisotropy are summarized in Table I.
In addition to the alternating sign pattern and the

hierarchy of coefficients vn ∝ 1=n2 in the region of small
invariant masses, we can also identify other interesting
features in the high-resolution data obtained here. For
example, we see well-pronounced modulations in the vn
dependence on the invariant mass. Indeed, by comparing
the results in Figs. 4–6, one can easily identify correlated
patterns of peaks in all anisotropy coefficients vn. They are
visible even in the region of moderately large invariant
masses. As is easy to verify, they come from the Landau-
level quantization of quarks. In heavy-ion physics, such
modulations could be hard, if not impossible, to observe.

Perhaps, they could have some phenomenological impli-
cations in other contexts.

C. Application to heavy-ion collisions

The main goal of our study is to characterize spatial
profiles of the photon and dilepton emission in the rest
frame of a strongly magnetized plasma. We found that both
emission types could be highly anisotropic. This finding
implies that a background magnetic field serves as an
additional (“intrinsic”) source of anisotropy unrelated to the
hydrodynamic flow of the plasma. Therefore, it is natural to
suggest that the anisotropy coefficients observed in heavy-
ion collisions should contain the following two distinct
contributions:

vobsn ¼ vflown ⊕ vmag
n ; ð7Þ

where vflown is the usual hydrodynamic part while vmag
n is an

intrinsic part due to a nonzero magnetic field. The proxy for
the latter is given by our analysis of the photon and dilepton
emission in the rest frame of a magnetized plasma above.

FIG. 5. Anisotropic coefficient v4 for the dilepton emission as a function of the invariant mass M for several fixed values of the
transverse momentum kT . The top two panels correspond to jeBj ¼ m2

π and the bottom two panels to jeBj ¼ 5m2
π . The panels on the left

are for T ¼ 0.2 GeV, and the ones on the right are for T ¼ 0.35 GeV.
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It should be noted that different types of anisotropy contri-
butions are not necessarily independent or additive.
To perform a systematic study of quantifying and

separating the two contributions in Eq. (7) in the context
of heavy-ion collisions, one would require detailed numeri-
cal investigations. Possible phenomenological approaches
include hydrodynamic simulations or molecular dynamics
models that take into account the space-time evolution of
the plasma. The corresponding studies in the presence of a
magnetic field background have not been done yet. Such
studies are also beyond the scope of this paper.
Without detailed simulations, here we can give only

qualitative arguments, supporting the general idea of an
additional intrinsic source of anisotropy due to the back-
ground magnetic field that have been ignored before. We
can also speculate that the corresponding anisotropy con-
tribution could be substantial if the magnetic field is as
strong as suggested by some estimates [12–17]. It could be
also important that the magnetic field is particularly strong
during the early stages of the plasma evolution, when
hydrodynamic flow did not develop fully.

IV. SUMMARY AND CONCLUSIONS

In this paper, we investigated the higher-order anisotropy
coefficients v4 and v6 for photon and dilepton emission
from a magnetized hot QGP in the rest frame. For both
processes, we revealed several characteristic features in the
dependence of the anisotropy coefficients on the kinematic
parameters. The summary of the overall magnitudes and
signs of the anisotropy coefficients is given in Table I.
In the case of photon emission, we find qualitatively

different anisotropy patterns at small and large transverse
momenta. At small momenta (i.e., kT ≲ ffiffiffiffiffiffiffiffiffijeBjp

), the signs
and absolute values of the anisotropy coefficients are as
follows: v4 ≃þ0.05 and v6 ≃ −0.02. At large momenta
(i.e., kT ≳ ffiffiffiffiffiffiffiffiffijeBjp

), the signs of vn reverse, but the absolute
values remain about the same, i.e., v4 ≃ −0.05 and
v6 ≃þ0.02. Combining these findings with the v2 results
in Ref. [54], we see that the signs of even coefficients vn
alternate. The absolute values gradually decrease with
increasing n in each kinematic region. Quantitatively, the
scaling appears to go as vn ∝ 1=n2.

FIG. 6. Anisotropic coefficient v6 for the dilepton emission as a function of the invariant mass M for several fixed values of the
transverse momentum kT . The top two panels correspond to jeBj ¼ m2

π and the bottom two panels to jeBj ¼ 5m2
π . The panels on the left

are for T ¼ 0.2 GeV, and the ones on the right are for T ¼ 0.35 GeV.
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We find that the dilepton emission also has a noticeable
anisotropy. However, it is well pronounced only in the kine-
matic regime with large transverse momenta (i.e., kT ≳ffiffiffiffiffiffiffiffiffijeBjp

) and small invariant masses (i.e., M ≲ ffiffiffiffiffiffiffiffiffijeBjp
). The

signs and absolute values of the anisotropy coefficients are
as follows: v4 ≃ −0.05 and v6 ≃þ0.02. Supplementing
these findings with the results for v2 obtained in Ref. [66],
we see that the signs of even coefficients vn alternate,
and their absolute values decrease with increasing n.
The quantitative scaling is similar to that in the photon
emission.
In application to QGP produced by noncentral heavy-ion

collisions, one may argue that the magnetic field could be
too weak, e.g., well below the scale set by the pion mass, to
have observable effects. It is possible and, perhaps, even
likely that the field is weak indeed. Nevertheless, we argue
that even weak fields can affect the anisotropy of both
photon and dilepton emissions in certain kinematic regions.
Indeed, as we see from our calculations, the anisotropy is
sizable even for the transverse momenta that are much
larger than the magnetic field scale. This is analogous
to the anisotropy of the classical synchrotron radiation.
Admittedly, the effects on the photon emission may be
diluted by the subleading gluon-mediated processes. Hope-
fully, the anisotropy does not vanish completely and could
remain observable. The situation with dileptons might be
better, however. Indeed, the same leading-order diagrams
contribute in the case with and without the background
magnetic field.
It is tempting to suggest that a set of the first few nonzero

anisotropy coefficients vn, extracted from the photon and
dilepton data, can provide a distinctive fingerprint of the
background magnetic field in a hot QGP produced by
heavy-ion collisions. The current data with overwhelming
background effects may not allow one to test this idea
easily in experiment. Additionally, the task is complicated
by the convolution with other sources of anisotropy such as
hydrodynamics flow and initial state fluctuations. Never-
theless, we find it valuable to have concrete theoretical
predictions for the intrinsic vmag

n produced by the back-
ground magnetic field. The advances in experimental

techniques, collision simulations, and data analysis could
make the current hopeless task possible in the future.
To give reliable theoretical predictions for the observable

signatures in heavy-ion experiments, one needs to combine
the results of this study with realistic space-time models of
QGP with expansion and nonuniform profiles. The latter
requires the use of phenomenological models, for example,
such as 3þ 1 viscous hydrodynamic simulations in
Refs. [41,80]. The corresponding task is beyond the scope
of this paper. It has to be undertaken, however, before one
can reach the final conclusions about the emission aniso-
tropy as a likely signature of a background magnetic field in
heavy-ion collisions.
While the motivation of this study was triggered by

potential applications in heavy-ion physics, it is instructive
to mention that our main results may also find applications
in astrophysics, where relativistic QED plasmas are
common. With a suitable rescaling of the model parame-
ters, our analysis can be easily generalized to QED plasmas
under conditions in magnetars [81], supernovae [82], and
gamma-ray bursts [83]. It is reasonable to assume that the
anisotropy profiles of the photon and dilepton emission will
be similar.
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APPENDIX: IMAGINARY PART OF THE
LORENTZ-CONTRACTED POLARIZATION

TENSOR

For convenience, here we quote the expression for the
imaginary part of the Lorentz-contracted polarization
tensor that appears in the photon and dilepton rates; see
Eqs. (2) and (5), respectively. In the Landau-level repre-
sentation, the corresponding analytical expression takes the
following form [54,66,68]:

Im
�
Πμ

R;μðΩ;kÞ
� ¼ X

f¼u;d

Ncαf
2πl4

f

X∞
n>n0

gðn; n0Þ�Θ�ðkf−Þ2 − k2k
�
− Θ

�
k2k − ðkfþÞ2

��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�ðkf−Þ2 − k2k

��ðkfþÞ2 − k2k
�q F f

n;n0 ðξfÞ

−
X
f¼u;d

Ncαf
4πl4

f

X∞
n¼0

g0ðnÞΘ
�
k2k − ðkfþÞ2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2k
�
k2k − ðkfþÞ2

�q F f
n;nðξfÞ; ðA1Þ

where ΘðxÞ is the Heaviside step function, αf ¼ e2f=ð4πÞ, ef is the flavor-dependent electric charge of the quark,
k2k ≡Ω2 − k2z , ξf ¼ k2⊥l2

f=2, and lf ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffijefBj

p
is a flavor-dependent magnetic length. The Landau-level thresholds are
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determined by the following two transverse momenta:

kf� ¼
���

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 2njefBj

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 2n0jefBj

q ���: ðA2Þ

Functions gðn; n0Þ and g0ðnÞ are determined by the quark
distribution functions. In thermal equilibrium, they are
given by

gðn; n0Þ ¼ 2 −
X

s1;s2¼�
nF

�
Ω
2
þ s1

Ωðn − n0ÞjefBj
k2k

þ s2
jkzj
2k2k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi	
k2k − ðkf−Þ2


	
k2k − ðkfþÞ2


q �
; ðA3Þ

g0ðnÞ ¼ gðn; nÞ ¼ 2 − 2
X
s¼�

nF

�
Ω
2
þ s

jkzj
2jkkj

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2k − 4ðm2 þ 2njefBjÞ

q �
; ðA4Þ

where nFðEÞ ¼ 1=½exp ðE=TÞ þ 1� is the Fermi-Dirac dis-
tribution function. Finally, F f

n;n0 ðξÞ is the following flavor-
dependent function of the transverse momentum:

F f
n;n0 ðξÞ ¼ 8π

	
nþ n0 þm2l2

f


�
In;n0
0 ðξÞ þ In−1;n0−1

0 ðξÞ�

þ 8π

�k2k − k2⊥
2

l2
f − ðnþ n0Þ

�

×
�
In;n0−1
0 ðξÞ þ In−1;n0

0 ðξÞ�; ðA5Þ

and function In;n0
0 ðξÞ is defined in terms of the Laguerre

polynomials, i.e.,

In;n0
0 ðξÞ ¼ ðn0Þ!

n!
e−ξξn−n

0	
Ln−n0
n0 ðξÞ
2

¼ n!
ðn0Þ! e

−ξξn
0−n

	
Ln0−n
n ðξÞ
2: ðA6Þ

Note that the two different representations for In;n0
0 ðξÞ are

equivalent. Note that, by definition, Laguerre polynomials
with negative lower indices vanish.
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