PHYSICAL REVIEW D 109, 056006 (2024)
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In the limit of large nuclear charge, Z > 1, or small lepton velocity, f < 1, Coulomb corrections to
nuclear beta decay and related processes are enhanced as Za/f and become large or even nonperturbative
(with a the QED fine structure constant). We provide a constructive demonstration of factorization to all
orders in perturbation theory for these processes and compute the all-orders hard and soft functions
appearing in the factorization formula. We clarify the relationship between effective field theory amplitudes
and historical treatments of beta decay in terms of a Fermi function.

DOI: 10.1103/PhysRevD.109.056006

I. INTRODUCTION

The Coulomb field of a nucleus can have dramatic
consequences for low energy phenomena. Relative to other
QED effects, Coulomb corrections are large because (i) they
are enhanced by the charge of the nucleus [1-4], (ii) they
are enhanced at low relative velocity [5-8], and (iii) loop
integrals receive systematic z enhancements [9]. Many
precision experiments involve leptons interacting with
nuclei [10-44] and require the systematic treatment of
Coulomb corrections and their interplay with other sub-
leading effects [45-51].

Factorization theorems underlie much of our ability to
retain theoretical control in precision measurements involving
nucleons, nuclei, and other hadrons [52-57]. Factorization
arises from the separation of different energy scales involved
in a physical process, with the components in the factorization
formula identified with contributions from each scale [58,59].
In terms of a sequence of effective field theories (EFTs), the
components are identified as the corresponding sequence of
matching coefficients, and the final low-energy matrix
element. Historically, Coulomb corrections have been under-
stood not in terms of EFT, but by appealing to wave function
methods i.e., solutions of the Dirac or Schrodinger equation
[2,60-62]. Such wave function descriptions contain the
correct long-distance behavior which is, however, intertwined
with model-dependent short-distance behavior. Separating
scales allows us to systematically resum logarithms and study
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higher order radiative corrections using standard tools of
effective field theory. The interplay of high order Coulomb
corrections with other subleading effects is crucial for
precision measurements, and in particular for nuclear beta
decays [50].

In this paper, we demonstrate factorization for radiative
corrections induced by photon exchange between charged
leptons and a static Coulomb field, and compute explicit
all-orders expressions for the components of the factori-
zation formula. We describe how traditional wave function
methods are related to dimensionally regulated Feynman
integrals order by order in perturbation theory. Using this
correspondence, and a new all-orders calculation of the
short-distance region, we extract the universal MS
Coulomb corrections to the matrix element for a contact
interaction (as is relevant for nuclear beta decays) to all
orders in perturbation theory.

The remainder of the paper is organized as follows.
Section II introduces notation for Coulomb corrections
from a diagrammatic perspective. Section III considers the
Schrodinger-Coulomb problem and establishes the corre-
spondence between wave functions and the diagrammatic
expansions. Section IV considers the Dirac-Coulomb
problem and extracts the relevant EFT matrix element to
all orders in perturbation theory. Section V highlights new
and interesting features of the preceding analysis and
comments on phenomenological applications.

II. COULOMB CORRECTIONS
AND CONTACT INTERACTIONS

Consider a reaction that takes place via an effective
contact interaction in the vicinity of a heavy particle with
charge Z. The outgoing charged particles (“leptons”) can
exchange photons with the heavy particle (“nucleus”).

Published by the American Physical Society
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For neutral current processes (i.e., when the initial and final
nuclear states have the same charge Z), QED radiative
corrections can be straightforwardly organized as a series in
powers of a, Za, and Z?a, with each power being
separately QED gauge invariant." We will consider the
static limit, in which the particle of charge Z in the initial
and final state is heavy, so that recoil corrections can be
neglected. For low momentum probes satisfying |p| < 1/R
with R the charge radius of the heavy particle, the pointlike
limit is applicable and universal corrections to the ampli-
tude can be computed using Feynman rules for a static
external Coulomb field [64]. In this static limit, terms

(

~Z"a" vanish for m > n [65]. In the following we consider
the leading series of terms, ~(Za)", for n > 0.

As an explicit example, consider dilepton production via
a short-range neutral current in some nuclear decay,2

A(vs) = B(vg) + £ (p1) + £ (p2)s (1)

where states A and B have charge Z, and v}y = v, = o* =
(1,0) which defines the static limit. As discussed above,
this can be reduced to an external field problem describing
the production of a dilepton pair in a static Coulomb field,

=g =
-ﬁ£+

For a contact interaction, the Coulomb corrections on each leg factorize. For example,

-
—

T
—

In general, the Coulomb corrected matrix element can be represented as

'For charged current process, e.g., A[Z + 1] = B[Z] + #* 4 v,, the same Coulomb factor describes the leading Z-enhanced
contributions. See Ref. [63] for a discussion of how subleading contributions are organized.

’An electromagnetic EO transition can mimic the same phenomenology if both e¢* and e~ are nonrelativistic, such that the virtual

photon that mediates the transition is far off-shell.
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We may therefore, without loss of generality, study the
Coulomb corrections on a single leptonic leg: any process
with multiple leptons that is mediated by a hard current
reduces to a product of Coulomb corrections on each leg.
The perturbative series for a relativistic lepton contains
nontrivial Dirac structure that must be inserted between
external polarization spinors. For the process (1), Eq. (4)
becomes

M = Zﬁ(pl)i('")ijr;'rlfe('“)klv<p2)l' (5)

ijkl

Traditional analyses of beta decay are expressed in terms
of position-space Coulomb wave functions for the leptons
evaluated at the origin of coordinates, y(r = 0) [2,60-62].
As we discuss in Appendixes B and C, the diagrammatic
series represented in Eq. (4) is equivalent to a wave function
solution. However, starting at two-loop order the wave
function y(r = 0) is UV divergent.’ The amplitude must
be renormalized and matched consistently with the under-
lying contact interaction. In order to execute this program, we
phrase the problem in terms of factorization of momentum
space amplitudes, using dimensional regularization in the
MS scheme. Coulomb corrected amplitudes can then be

’An exception is the nonrelativistic Schrodinger Coulomb
wave function, which is UV finite to all orders.

—

matched consistently to underlying quark-level Lagrangians,
and model-dependent position-space wave functions are
replaced by a systematic expansion in EFT operators.

III. SCHRODINGER-COULOMB PROBLEM

Consider the quantum mechanical corrections to a tree-
level process for a final-state particle of mass m and electric
charge (—e) scattering from a Coulomb potential with
source charge (+Ze) (we suppress the overall tree-level
amplitude factor):

M=3 M0
n=0
-~ d°L d°’L
= emzey [ G5 [ G
5 / L, 1 1
2n)P L2+ 2(L, —p)—p2—i0
X 1 1
(Ly —Ly)* +2* (L, —p)? —p* —i0
1 1

. 6
‘T L 2L, ~pi-p=i0 O

Here, D = 3 —2¢ is the spatial dimension with dimen-
sional regularization parameter €, and A is a photon mass
regulator. The Schrodinger-Coulomb problem describes the
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limit p < Ayy < m, where Ayy ~ R~ denotes the scale
of nuclear or hadronic structure.

The amplitude (6) can be evaluated at each order in
perturbation theory. With the photon mass regulator in
place, the integrals in Eq. (6) are UV and IR finite at ¢ — 0.
By convention M(© = 1 and at one-loop order,

L, 1 1
MO =2 22/ 1
e | P LI 2 (L —p) —p?—i0
imZe? 2p im
M2 (1og =P 17 7
Ty 4n <°g 2 2> @

where the final expression denotes the limit ¢ — 0, 1 — 0.

A. Factorization

Two momentum regions [58,59] are relevant in the
integrals (6): the soft region with |L|~ 4; and the hard
region with |L| ~ p. Neglecting power corrections in 1/ p,
the amplitude may be written

M = MeMy,. (8)

In the language of effective operators, My represents a
matching coefficient and Mg represents a low-energy
operator matrix element, when the full theory represented
by Eq. (6) is matched onto a low-energy theory containing
only soft degrees of freedom.”

B. Soft factor

The soft limit of Eq. (6) is readily seen to exponentiate,
yielding the soft factor to all orders [68,69],

n 1 n
M = (M) ©)

where the one-loop result is

D
" , [ dPL 1 1
=2mZ
My =2mZe /(2ﬂ)DL2+/12—2p~L—i0
im Ze? 1
=28 (1) 10
p (4m)'=¢ (I+e) 2¢ (10)

“In applications, IR divergences are regulated by physical
scales associated with e.g., bremsstrahlung radiation or screening
effects from atomic electrons [62]. It is interesting to note that a
photon mass mimics the Yukawa potential typical of the Thomas-
Fermi model of atomic screening [66,67].

C. Hard factor

The hard factor can similarly be evaluated explicitly,
order by order in perturbation theory. The hard momentum
region is isolated by expanding at L2 > 2. At first
order,

dPL 1 1
(2m)P L? (L = p)* —p*> —i0

_imzé [(16’”6”% + 6—)} (=4p? —i0)~ (‘_1>

My = 2mZeZ/

Cp4n V7 2e
- {1275‘(_4172/,42—10)—6} E—H (11)

where® # = p/m and the MS coupling @ is related to the
bare charge ¢ in D = 3 — 2¢ dimensions as®

2 € 1
e — e? [(16x) F(§+€)
€ = |—==—7. 12
ol = 4 [ (12)
At € — 0, it is readily seen that
MO =MD + M. (13)

At second order

2 22 dDLl/dDLz 1 1
My =z [ 65 |Gt
1 1
X
(L;—Ly)*(L,—p)*—p?—i0
- 2
= [1?((—4192/#!2 —iO)‘é}
1 7 5
X @+E+5§(3)€+0(6) , (14)

where the integral is evaluated in Appendix A. At third
order,

>For the relativistic case, we use S = p/E to denote the usual
relativistic velocity.

%0ther common definitions in the literature are wWena(u)/e* =
(47)T(1 + €) or p*4na(u)/e* = (4x)¢ exp(—yge). The choice in
Eq. (12) is convenient for expressions arising from loop integrals in
three dimensions. These definitions only differ at order ¢* and
therefore yield identical expressions for the renormalized ampli-
tudes that we consider.
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@ b [ dPL /dDL2 /dDL3 1 1 1
My’ = (2mZe?) /(2ﬂ)D (2x)P | (27)P L% (L, —p)?-p*-i0(L, — L,)?
1 1 1
“Ly—p)—p?—i0(Ly— Ly (Ly—p)’ —p*> = i0
i7G -1 2 133
= {%(—4}72/#2—10)_6] [@ 2%%—%‘%0(6)] (15)

The evaluation of this integral is also performed in
Appendix A. At higher-loop order, direct evaluation of
integrals becomes increasingly difficult. We will see how
wave function methods provide a closed-form expression
for arbitrary loop order.

D. Renormalization

Before turning to the all-orders discussion, we present
the renormalized hard matching coefficient through three-
loop order in the MS scheme. Identifying the above
amplitudes as bare matching coefficients, My = M,
writing

M = 27 My (u). (16)

and requiring that Z(u) has only 1/e terms when expressed
in terms of &, we find

Z =1+ f: <%>”z("), (17)

n=1

with

) Bk S ) L

- 2€’ 8e2’ (18)

The renormalized matching coefficient (at ¢ = 0) is then

M) = 1+ﬁ<+log >

Za 2p 1 2p
L (% ___102_>
(ﬂ) ( poo2 & 7

Za iz?  2p
+<ﬂ> ( ﬁl"g?

2p i .2

o2 g ”)+O< Yy, (19)

4 u 6 u

where @ reduces to the on-shell QED coupling @ at ¢ — 0
(recall that there are no dynamical leptons in the non-
relativistic theory). Since the product MM is UVand IR
finite (at A # 0), the quantity Z is identical to the (MS)
operator renormalization constant for the soft operator,

MY — Z M (). (20)

From the explicit form of Egs. (9) and (10), the renorm-
alization constant to all orders is given by

Z = exp <1Z‘Z>, (1)

in agreement through three-loop order with Eq. (18). The
renormalized soft function is

Ms(g) = exp (127“ 1og§>. (22)

E. Wave function solution and all-orders
hard function
We recognize Eq. (60) as the perturbative expansion of the
position-space wave function evaluated at r =0 for a

particle scattered by a Coulomb source and described by
the Hamiltonian,

H=———¢™. (23)

The all-orders
Appendix B),

solution at leading power is (see

M = [y (0)]*

1ol )
o)

where y(7) denotes the scattering solution that matches
asymptotically to a plane wave plus an ingoing spherical
wave. Combining Egs. (22) and (24) we obtain the closed
form result

M

:F<1 _i27a> exp [% <g+ilog27p—iyE>] . (25)

This result reproduces the above results, cf. Eq. (19),
through three-loop order.
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IV. DIRAC-COULOMB PROBLEM

In place of Eq. (6), consider the amplitudes for a relativistic fermion in the Coulomb field of an extended object with a

charge form factor F(L?)

1 F((L; —Ly)?) 1

_ e . [d°Ly [dPL d’L, F(L3?)
i(p)M =) (z€%) /(27:)0/(27:)'23"'/(27:)DL%+22 (L —p)-p?—i0(L; —Ly)* + 2 (Ly—pP-p>—i0

n=0
F((Lyoy = L,)?) 1 _
X — i
(Ln—] - Ln)z + /12 (Ln - p)2 - p2 —i0

The Dirac-Coulomb problem corresponds to the hier-
arcchy p~m<Ayy. For F(L?)=1, E=m, and
py—E;+m—2m, the amplitude reduces to the
Schrodinger Coulomb problem (6). The fermionic case
represented by Eq. (26) involves nontrivial Dirac structure,
and a dependence on UV momentum scales |L| > p. In the
limit of a pointlike source we have F(L?) = 1. Similar to
the Schrodinger-Coulomb case, we first consider the low-
order contributions. At one loop, for 1 — 0 and ¢ — 0,

L1 1
() =2EZ 2/
M “ ) CnPLZr 2L —p)P—-p’ -0

iZa 2p iz 1 (my®
—>7 |:<10g7—3) +§<T—1>]' (27)

Similar to Eq. (8), we can express the result, up to A/E
power corrections as the product of soft and hard factors,
with My as in Eq. (10), and My now containing two
different Dirac structures,

0

My = My, + (’"77 - 1>MH2. (28)

At tree level, the hard factor is given by
Mii=1, M=o, (29)

and at one loop,

M= 28 cape -i0] | 2.
M= 28 cap e -0y |5t G0

P Pp—E+m)y’(p—E+m)---°(p— K, +m). (26)

At two-loop order, using integrals from Appendix A,

M = D a2 -0
1 -1 5
X [@+E+ﬁ2<§—z> +O(€):|,
iZa 2[-1 1
M= 2 e -0y -5+ 0] @

A. Factorization

The integrals in Eq. (26) are UV divergent by power
counting when F(L?) = 1. The explicit computations
above show that M My is UV divergent beginning at
two-loop order, indicating sensitivity to short distance
physics. Regulating UV divergences with F(L?) introdu-
ces a new UV scale, and a corresponding momentum
region in loop diagrams with |L| ~ Ayy > p. The factori-
zation formula is

M = MMpMyy. (32)

In the following, we compute the explicit form of Myy
using an illustrative charge form factor. We then introduce
an alternative finite-distance regulator that permits an all
orders solution of Myy. Combined with an all orders
solution for the total amplitude M using the same UV
regulator, and the all orders solution of Mg, we then extract
My to all orders in perturbation theory.

B. UV contribution from a charge form factor

In dimensional regularization, the factor Myy is com-
puted by setting 4 = p = 0. For simplicity, we take

(33)
At one-loop order,

d°L F(L2
nglgl = 262/ (ZE)D (I<42)2) 7/07 ‘L =0. (34)
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Nontrivial contributions begin at two-loop order,

My = (7€)

, [dPL, /dDLz F(L}) F((L, - Ly)*)
(2m)P ) (@2m)P (L7)* Li(L, - L,)?

x P07 - Ly’ - L,

1 1

~ Zalu/ Ao P g -5 0] 69

Z 2p i i
My (ps.pp) =1 —l——a {i (log—p—lf> +i <

2

p us 2

Let us compute renormalized expressions through two-loop
order. In the MS scheme, the renormalized soft function is
again given by Eq. (22),

_ 1 Za &_(Z“)2 2Hs 3
M(ug) =1+ 5 log/1 o log 7 + O(a). (36)

The renormalized hard function through two-loop order is

Za\2 (-n* 1 2p im\?
—9_1 - [ logZE_Z
o)) () (e -5)
1 2p im\ (m
—(log=™= == ) [ =y"—1
2(oe2) (1) |

and the renormalized UV function for the form factor in Eq. (33) is

Muyy(uy) =1+ (Za)? {_% -

5 1 2p i
i (oep-3) ) o), &7
1 Jadil

It is readily checked that with the explicit results (36)—(38), the product (32) is independent of xg and py through two-

loop order.

C. UV contribution with finite distance regulator

Consider the series of amplitudes representing the perturbative expansion of the Dirac wave function at finite distance:

d’L 1 1

n —iL,r

ﬁ(p)Mr—i(ZeZ)"/(d;L)l‘)/(d;ﬂL)g.../

n=0
1 1

(2n)P°©

Li+2 (L —p)’-p* -0
1 1

L -L) + 2 (L,—pP-p*=i0 (L —L,)’+2(L,—p)—p’—i0
xu(pp—E +m)’(p—E+m) - y°(p—E,+m). (39)

For loop momentum |L| > 1/|r| the rapid oscillations of
the exponential regulate the integral, and the finite distance
r acts as UV regulator. In the limit 1 /r > p, the amplitudes
are described by the factorization theorem Eq. (32).

The finite distance regulator is convenient since regu-
lated amplitudes correspond to coordinate space solutions
of the Dirac equation, which for |p| < 1/r have a closed
form solution (cf. Appendix C). We may relate the finite
distance regulator scheme to a conventional MS-regulated
amplitude by applying the method of regions [58,59]. The
finite-distance regulated amplitude M, satisfies the fac-
torization theorem (32),

M, = MgMyMyy(r), (40)

where the UV matching coefficient depends on r.
We will now show that Myy(r) can be computed to all
orders in perturbation theory. This fact is related to the

structure of the loop integrals with a finite distance regulator,
Eq. (39), as compared to a charge form factor, Eq. (26): the
regulator affects only the final (d°L,,) loop integration, so
that all of the preceding integrals are recursively one-loop.
Details are presented in Appendix D, with the results for bare
amplitudes at arbitrary even and odd orders in perturbation
theory respectively:

M2 = (—nl)n <(za)2/g>n[ﬁ .

| @

! € o 1+ 2me
earty _ (=1)" ((Z&)*/8\"[y7 1
My n! ( € r!;[() 1+ 2me
x [— a—‘yo’z’ : r] . (42)
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The quantity & is given in terms of the MS coupling @& in
Eq. (12), by

o ee\TB-g
a=a (m) rite) (43)

As discussed in Appendix D, both series can be expressed in
closed form for arbitrary nonzero e in terms of Bessel
functions. The MS renormalization constant can also be
computed in closed form. A careful treatment of the small-¢
asymptotics of the bare amplitudes, cf. Appendix D, then
yields the all orders result,

= (urer)r!

1+ Za
Muyy (1) S [1

N AREY

where 7 = /1 — (Za)?. The result (44) is renormalized in
the MS scheme using the coupling defined in Eq. (12).

irar ] (44)

D. Wave function solution and all orders hard function

The amplitude (39) is related to the perturbative expan-
sion of a solution to the Dirac equation,

. Za
<—1y07 -0+ my® — 76‘”) v = Ey, (45)
namely:

a(p)M = [y (=r)]7y". (40)

where (=) (r) denotes the solution that is asymptotically a
plane wave plus incoming spherical wave. The solution,
ignoring power corrections in 4/p and p/r7!, is

W) = et [ FZE (147 )
<[ 0o (@)

Here F(Z,E,r) is the Fermi function,

FZEr) =00 r e periaprom),  (48)

[C(2n+1)]

the phase factor ¢! is given by

s Lln i) [n+ié
oo |1 rer @

and the quantity M is given by

ei¢ — e_ié(IngTp_yE)‘H(n

E+m ..m
:E—l—nm <1+1§E>. (50)

In the Dirac (i.e., “Bjorken and Drell”) basis for y#
and with relativistic normalization u(p)'u(p) = 2E, the
expression is

y)(r) = e F(ZE,r)(l—Q—Fyy >U(p) (51)

where

1

00) = VEF( L o Jo (5D

E/ E4+nm

and y is a two-component spinor. Using Eq. (46), the
explicit all orders results for My in Eq. (22), and Myy in
Eq. (44), the hard function appearing in the factorization
formula (32) is

My (s, p) = M (ug) MMy ()

_ eﬂéﬂg(log——yh) i(n— ( - 15) n— 15
(277 +1)\1-i E

JE+nm | 2 2pe‘7E n-1
E+m\ 1479
1+M =M
. 53
[ ML y} (53)

The amplitude has been explicitly decomposed into sep-
arate factors depending on a single scale, 4, p, or r~! (here
we are not distinguishing the scales p, m, and E). We
remark that the explicit appearance of exp(yg) accompany-
ing 2p/u in Eq. (53) may seem unexpected since the
hard amplitude must match conventional MS renormalized
amplitudes order by order in perturbation theory. However,
these factors cancel against implicit factors’ of y from the
expansion of T'(y —i&)/T(1 4 27).

Given Eq. (53) we can extract the anomalous dimension
for contact operators to all orders in Za. We differentiate
My with respect to yy and obtain

vo=1/1-(Za)* - 1. (54)

"This can be seen most easily by noting that the two
perturbative parameters that appear are 5 — 1 ~ O([Za]?) and
&~ O(Za). Then, using I'(1427)=2y(2n—1)I'(1+2(n—1)) and
logI'(1+2) =—log(1+2) +2z(1=yg) + 3257, (=1)" (¢ (n) - D)2,
it is easy to show that the combination e 7:T"(5 — i&)e~ (=17 /
I'(1 + 2#) contains no factors of yg at any order in perturbation
theory.
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This is the contribution to the anomalous dimension from
each light-particle leg. For example the operator mediating
Eq. (1) has an anomalous dimension of 2y,. For an
operator mediating a beta decay, A[Z+1]— B[Z]+¢"v,
Eq. (54) is the leading-Z contribution to the anomalous
dimension [50,51]. Including the one-loop beta function
with n; dynamical fermions, the scale dependence of
contact operators can be obtained in closed form

an yp(d) a  N1=Z2a? -1
dar = dod —————
ap ﬁ(a) ar, 3—7;(1/2

. kY4 1—7’]].[ l—i’]L
_2nf ay ay,

— Z|arcsin(Zay ) — arcsin(Zay )] }, (55)

i

T — a2
My =e

M, = e%‘f+i§(1ogi—§—75)l—~(2 _ i§){l + B [}L‘f + & <_

where y denotes the digamma function, y(x) =I"(x)/I'(x).
At each order in $?, the expressions (57) sum an infinite
series of terms involving powers &". At f — 0, the leading
term for the “large” upper component M}, reduces to the
Schrodinger-Coulomb result (25) which corresponds to a
“nonrelativistic Fermi function,” cf. Refs. [49,60].

V. DISCUSSION

The formula (32), and its nonrelativistic analog (8),
provides an all orders explicit demonstration of factorization
for the Coulomb problem. We find that Coulomb corrections
factorize among different legs for a contact interaction (see
Sec. II). The universal hard matching coefficient in this
formula, My in Eq. (53), can be applied to different
processes, and large logarithms can be summed to all orders
using renormalization group methods. The nonrelativistic
limit for p << m < Ayy is given by Eq. (57). By identifying
the amplitudes as quantum field theory objects in a standard
regularization scheme (i.e., MS scheme in dimensional
regularization), we can systematically compute subleading
perturbative contributions and match to hadronic and nuclear
matrix elements. More detailed discussions of these points
are presented elsewhere [9,50,51]. Itis interesting to note that
for unpolarized observables to beta decay, the spin-summed
matrix element squared,8

*Explicitly we define (|Mpy|?) = 3 [@MproProf?/
2 spins |ityoPLv|* where yoP, = y,0"Py is the tree-level Dirac
structure, with v, = (1,0,0,0).

where we have introduced the notation 7, 5 = n(a, y).
This expression is useful when analyzing QED radiative
corrections for the beta decays of heavy nuclei [50].

The hard function (53), describes the limit p ~m << Ayy,
where Ayy ~ R~ denotes the scale of nuclear or hadronic
structure. When the lepton is nonrelativistic, p <m <K Ayy,
it is convenient to expand the hard function as

My = MEP, + M;P_, (56)

where P, = (1 £ y°)/2. Allowing for arbitrary values of &,
we find through second order in f,

g (log2l-yg) : o 1 o 1. 2p 5 im yg 1 _
WTIT( =i 1 4+ 2| =+ g Py e D0 -
S ( 15){ +p [ 454‘5 ( > OgﬂH+4+4 > 21//( ié) ,

1. 2p 3 im yg 1 .
EIOg;TH+§+Z_E_§W(2_I§)>]}’ (57)
|

2y _ 4n
(IMyl*) = F(Z.E)],, A+ (58)

differs from the historically defined Fermi function even
when evaluated at ry' = uye’™. We observe that finite-
distance regulated amplitudes have special algebraic proper-
ties that allow for explicit all orders expressions, for both
bare and renormalized matrix elements as shown explicitly
in Egs. (41), (42), and (44). This example of all-orders
renormalization may be of formal interest.

As an illustration of how the formalism applies to
different processes, let us return to Eq. (1). For definiteness,
suppose that the neutral current reaction is mediated by
exchange of a vector boson of mass mp. The tree-level
amplitude depicted in Eq. (2) takes the form

2
mp

Mlree — 5 a(preco(p,), (59)

my — (p1 + p2)
where "¢ = y9(A + Bys) for some numbers A and B.
When A > mp > p, the boson mass plays the role of UV
regulator.” The factorization formula describing the infinite
sum in Eq. (2) is

M = i(p ) Ms(p) My (pr) Muy My (p2) Ms(p2)v(ps).
(60)

*We have in mind a Z’ boson extending the Standard Model.
The amplitudes are equivalent to a Standard Model Z boson in the
formal limit A, > m, > m,.
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Here the conjugate amplitude is denoted M = y° MTy0. Tt
is straightforward to compute My from the diagrams in
Eq. (2), neglecting charged lepton masses and momenta.
Through two-loop order, after MS renormalization,

My () = T [1 + (Za)? (% logZ—% _ %ﬂ (6N

It is readily seen that the scale dependence of Myy (uy)
cancels against the product of My (uy) for the charged
leptons.

An important application of the formalism presented
above is to the description of precision nuclear beta decay,
e.g., for |V,4| determination [36] and tests of first row
CKM unitarity [23,24,26,36,40-44,49,70,71]. Consider the
decay of a heavy atom to a negatively charged ion, a
positron, and a neutrino [22,25,30,72-87],

A>T +et +u,. (62)

Beta decays are a complicated multiscale problem, involv-
ing energies from the weak scale ~100 GeV, down to
scales set by atomic screening ~100 eV. Structure depen-
dent corrections e.g., due to nuclear charge distributions,
can be subsumed into a short-distance Wilson coefficient in
the pointlike theory considered here. The embedding of
Coulomb corrections in a broader EFT framework is crucial
for the systematic separation of physical scales and
computation of QED radiative corrections. For charged
current processes such as beta decays, the charge-mismatch
between the initial and final heavy particle (i.e., nucleus)
introduce subleading effects whose analysis can be sub-
stantially simplified using eikonal algebra [63]. Systematic
evaluation of these subleading corrections differ from
previous phenomenological approaches and lead to numeri-
cal differences that are larger than the existing estimated
error budget for outer radiative corrections [36,50]; detailed
calculations are presented elsewhere [50,51].
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APPENDIX A: LOOP INTEGRALS

We collect here some results for loop integrals that are
used in the main text. Integrals are defined in Euclidean
D-dimensional space with D = 3 — 2e.

1. Two-loop integrals
a. Scalar integrals

Consider the two-loop integral

J(alva% as, dy, a5)

B / d’L, d°L, 1 1 1
) @a)P 2n)P [L3) [(p - Ly)* - p?* [Li]@
1 1

X . (A1)
[(p—L;)* = p?*[(L; — Ly)*]

Using that the integral of a total derivative vanishes in

dimensional regularization, and inserting (0/0L5)L) and

(d/0L5)Li under the integral, yields the following “inte-

gration by parts” [88] relation,

OZD—al —ay —2(,15 —a11+(5_ —3_)

—a2" (57 —-47), (A2)
where we use the shorthand m* to denote the raising
or lowering indices in J, e.g., 2%J(ay, a,, as, ay, as) =
J(ay,a, £ 1,as,a4,as). In particular, for the two-loop
integral appearing in Eq. (14),

1
JO.1.1.1.1) = === [7(0.2.1.1.0) = J(0.2.1.0.1)].
(A3)

where the integrals on the right-hand side are recursively
one-loop and are readily evaluated:

N [—2e F(l e) 2/
J(0,2,1,1,0) = (=p* —i0)~'~> [ﬁ] (2_61> (A4)
J(0,2,1,0,1) = (—p? — i0)~12 [%r

) r(5=e) (1 +26)r(-4e) .

r(i+e)r-20r (s - 3¢)
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b. Vector and tensor integrals

In the evaluation of the hard function for a relativistic lepton, Eq. (31), we encounter the following two-loop integrals:

_]i( ) /dDL2 dDLl Lé 1 1 1 1 (A6)
ay,ar,dz,dy, d = 5
1020034 05) = | D G LA [(p = Lo — )% [L3 [(p = L1)? — P [(L1 = Lo ™
5 dPL, dPL, LiL’ 1 1 1 1
JY(ay,ay,a3,a,,a :/ 271 . A7
(a1 a2 a3.00.05) = | 3D G L3 [(p = L) = p7* L2 [~ L, P = o (L L7 A7)

In particular, we require the contractions p'Ji(1,1,0,1,1), p'Ji(0,1,1,1,1), and §7J%(0,1,1,1, 1), which by partial-
fractioning can be written,

2p0i(1,1,0,1,1) = J(0,1,0,1,1) — J(0,1,1,0, 1),

2p00,1,1,1,1) = J(=1,1,1,1,1) = J(0,0, 1, 1, 1),

260J9(0,1,1,1,1) = J(0,1,0,1,1) + J(=1,1,1,1,1) = J(0,1,1,1,0). (A8)

Applying the integration by parts identity (A2) yields
1
J(-1,1,1,1,1) = m[—](o, 1,1,1,0) +J(0,1,0,1,1) + J(-1,2,1,1,0) = J(-1,2,1,0, 1)]. (A9)

The remaining integrals are recursively one-loop and are given by
_F(% + 6)- g [(§-€)’T(26)0(2 - 4e)
(4r)re | TE+e)l(1-2e)l(3-3¢)

T(l+e) | 2(1-e)

(4r)>e | e(l—2¢)’

J(=1,2,1,0,1) = (=p? —i0)~%

J(=1,2,1,1,0) = (=p> —i0)~%
J(0,0,1,1,1) =0,

rd+e)]® 1

i (4r)re | e(1=2¢) ’

T(+e)]? T -e)r(2e)r(1 - 4e)

(4m)ie | T(z+e)l(1=26)l(3-3¢)’

J(0,1,0,1,1) = (=p> —i0)7%

J(0,1,1,0,1) = (-p? —i0)~2¢

-F(l + 6)- S
J(0,1,1,1,0) = (—p? —i0)7%¢ | 2 . A10
( e e e e e (A10)
2. Three-loop integrals
Consider the three-loop integral,
d°L, [dPL, [dPL; 1 1 1 1 1
I(ay, a4, as) = D D Dy 2 2_ 2 2 2 _ plla 27a
7)) (27)” ) (27)°Li (L, —p)* —p* (L) = Ly)* [(Ly —p)* — p*]* [(Ly — L))
1
. All
(L —pr - A
Integration by parts identities are [cf. Eq. (A2) at a; = 0],
0=D- a, — 2615 - a22+(5_ - 4_), (A12)
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so that the integral of interest in Eq. (15) is

1
1(1,1,1):m[I(Q,I,O)—I(ZO,I)]. (A13)
The first integral in Eq. (A13) is given by the product of two- and one-loop integrals,
1<210)_[/dDL1/dDL2 1 1 1 1 }{/d’)h 1
o (2z)? ) (20)P L} (L, —p)* - p* (L, - Ly)* (L, —p)* —p*| [/ (27)”[(L; —p)* - P’
INCES
— J(0,1,1,1,1)(=p* — i0)+< G 36), (Al4)
(47)
where J(0,1,1,1,1) is evaluated above. The second integral in Eq. (A13) is recursively two-loop,
1(2,0,1) _/dDLl /dDL3 1 1 1 {/ d’L, 1 1
o 27)? ) (27)P L1 (L, —=p)* =p* [(Ls —p)* —p*)* L) (27)” (L; - Ly)* (L, - L3)?
/ dPL, / dPL, 1 1 (L) — Lj)? e 5 r(l+e) B<1 1 )
— — ~——€-—€
2n)? ) 2o)PLi(Ly-p) -p*[(Ls—p)* =P’ (4z)i< \2 2
Fl+e) (1 1 1
= Bl-—-¢,-—€¢]J(0,2,1,1,= . AlS
(4r)s= <2 “2 €> ( 2" 6) (A13)
To evaluate J(0,2,1,1, % + €), we first perform the Lj integral in Eq. (A15),
dPL, 1 | I'(1+2€) /1 ; p> |7I%
L —-L;y)? 7= [ dxx2(1—-x)2¢|(L,—p)*— ., (Al6
| G T =R e, 00 | (A16)
so that
1 (1 +2¢) /1 3
J0.2, 1,1,z 4+€) == [ dxx2(1—x)72K(1,1,1 + 26), Al7
(0.211.5+¢) Rl om0 -0k ) (a17)
where we introduce
L 1 1 1
K(a,a,a‘):/ . (A18)
v (2m)P L2 [(L = p)* = p’]* [(L — p)* = p?/(1 - x)]®
Integration by parts for K yields
O = D - 2(11 - (12 - (122+1_ - a33+(1_ + 2_), (A19)
so that
1
K(1,1,14+2¢) = ﬁ{K(O,Z 14+2¢)+ (142¢)[K(0,1,2 4 2¢) + K(1,0,2 + 2¢)]}. (A20)

As a function of the integration variable x in Eq. (A17), the terms on the right side of Eq. (A20) are
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(=p?) ¥ TG+ 3e)

K(0,2,1+2¢) =
(0.2, 142¢) = = PP T(1 1 2¢)
(=p?) 73 T( + 3e)

K(0,1,2+2¢) =
(O1.2426) ==, b T2+ 2¢)
(=p?) 3 TG+ 3¢)

K(1,0,2+2¢) =
(10,24 2¢) == o7 T2 1 2¢)

Each integral may be evaluated as a series in e, yielding,

[+ 3¢)(=p?) 33 _
J(0,2,1,1,1+6> _TG+36)(=p7) 1{

2 T +e)(4x)P?  2e |3e ' 3
62¢(3) 107 3
+{ 3 3

APPENDIX B: WAVE FUNCTION SOLUTION:
SCHRODINGER-COULOMB

Consider the Lippmann-Schwinger equation and its
related Born series for the solution of the Schrodinger
equation,

A

(£)
X)=(X 1+,\7V
Wi ) <|( oy
1 ~ 1 N
¥
E—Hy+£i0 E—Hy+i0

+...>|p>, (B1)

where H, = p>/(2m) is the free Hamiltonian and V =
V(X) is the potential. For a finite range potential, the +i0
(—10) prescription in Eq. (B1) corresponds to a plane wave
plus outgoing (incoming) spherical wave at large distance.
Inserting a complete set of momentum eigenstates we
arrive at

3
(E) /o inx &L
wp  (x) =eP {1+/(2ﬂ)3eL

/ d&’L; &L, ailax
(27)° (27)°

-2m -
—V
2p-L+L2Fi0
—2m
2p-L,+L2Fi0

(L)

—2m -
sV
2p-L+LyFi0

x V(L,-Ly) (Ly)+ ...,

(B2)

where V(L) = [d*xel*V(x) is the potential in momen-
tum space. In particular, for a Yukawa potential, V(x) =
(=Ze*) exp(=A|x|)/(4z|x|), we have V(L)=—Ze?/
(L% + 2?). Setting x — 0 and choosing the outgoing +i0
prescription, the wave function 1//§,+)(O) provides an all
orders solution for the amplitude Eq. (6).

(A21)

-1 4 527 8
—+—10g2—|—2—|—<%—§10g22—810g2—12>6

2

2 20
-—+72+ Elog32 + 16log?2 + (— == 5 48) log 2] e+ 0(63)}. (A22)

9

Let us solve the Schrodinger equation,

{ 1 Za 2 (B3)

Ly —e-ﬂr}wx) P ),

2m r 2m

in the limit where A < |p| (but to all orders in Za). Here
r = |x|. Let us write y, (x; ) = eP*F,(x, 4). Choosing p
along the Z direction, p = pZ, we look for the solution that
reduces to F =1 at z > —oo to obtain yw(*), and the
solution that reduces to F =1 at z — +oo for y(~). The
differential equation for F is

mZa
r

—%Vz—ip-V— e |F(x)=0. (B4)

We may now apply boundary layer theory [89], solving
for solutions at short and long distances and matching
the solutions in their common domain of validity
p~! < r< 17! For r < 27!, the Schrodinger equation is

(BS)
with solution
FO(x) = N(p. ), Fi (i€, 1ip(r—z)).  (B6)

where | F(a,b,c) is the confluent hypergeometric func-
tion. For r > p~!, the Schrodinger equation is

[.ﬁﬁ’ £
i _ ¢

—ArF :O,
PR T }>

(B7)

with solution
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z e~V 2=z
F(x) = exp [ié 7, s 2] . (B8)
—oo Vi +ri—z

In the overlap region p~! < r < A~!, the respective
solutions can be expanded as

()

>

F

(B9)

1
PO () g e - S —ioelptr 21 |
— exp{iéj {— log

+)

AMr—2z) _7E:| }
_ g

2
Identifying F. ~’ in the overlap region, and
using that |F(a,b,0) =1, we have, up to 1/p power
corrections,
&L 1

() (x) =
V) [1—’—/(27:)36 prE—m=i0"°

il-x

0) =N(p,4)

=T(1-if) exp{ggz +ié {logz—p —YE

A

Iy

(B10)

The incoming solution w{,_) (x) is given by F()(x)
[FE(=x)]".

APPENDIX C: WAVE FUNCTION
SOLUTION: DIRAC-COULOMB

The Dirac equation can be similarly shown to have a
Lippmann-Schwinger solution and associated Born series.
Let us define ®(x) = u(p)e'P*, where u(p) is a Dirac
spinor. The solution of the Dirac equation with a potential
can be written as

V(L)

N /d3L2 FLy 1

227 2a)°  ptE—mEi0
The amplitude of interest, Eq. (39), is given by &t(p) M, =
@) (=r) = [y (-r)]Ty°. We require the solution ()
with a small but nonzero photon mass 4. References [90,91]
present the angular momentum components for the strict
A =0 solution, which is related to our problem by a
normalization that must be computed.
To determine the complete solution including 4 depend-

)

ence, we identify this solution with 1;/<<_

zation that is fixed by matching to z//(_) in the overlapping
region of validity. For simplicity we perform the matching
by projecting onto the S-wave component of the outgoing
spherical wave.

Let us consider the upper components of w*) in the

Dirac basis for y#, and introduce
xa(2). @

I + )
r2n+1)

, up to a normali-

(+)

1 .

2
|

C(p. A)f-i(pr) = C(p,A)e

where exp(ix) = \/(1 +imé/E)/(n + ié). From the large-

component, we have

C(n +i8)] e

(=)
C(p,A - -
y<' = Cp.4) I'(n+i&) 2ipr

(2pr)r=H{eTPri(y +i€) Fi(n + 1 +1,2n + 1, 2ipr) + c.c.},

roV(L;—L,) V(L)) +- | ®(x). (C1)

1
sk —m=+i0’°

|
where y is a 2-component spinor. Similar to the
Schrodinger-Coulomb problem, we look for solutions
F. when r> p~!' and F_ when r < A7,

The large-distance solution obeys an identical equation
to the Schrodinger-Coulomb problem (with ¢ = Za/f and
f = p/E representing the relativistic velocity). The sol-

ution for FU is given in Appendix B, and for the matching
we require the small-r limit. Considering the outgoing
spherical wave component, the S-wave projection is

eipr

2ipr

)

-

exp {—ié (logZTP—yE> —|—i§10g(2pr)} (C3)

The relevant component of the small-r solution involves the
quantity [90,92]

(C4)

r limit of this expression, taking the outgoing spherical wave

exp |iélog(2pr) —i(n — l)g-l- ix|. (C5)
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Comparison of Egs. (C3) and (C5) in the overlap region p~! < r < 27! determines C(p, 1). Using ,F;(a, b,0) = 1, and
taking the » — O limit of the complete solution, we have [cf. Eq. (16) of Ref. [92]]

‘ 1+n+ié(1-%) _
P_I}(}W(_)(X;i) — el.f[—log(2p//1)+75]en§/2r(;,] 4 lf) % ﬁ(l f(zn) E) e—l(l—’?)ﬂ/2(2pr)'7—l
Za iygy - X 1+M 1-M
1 , C6
[l T (5 o (S5 ) o (c6)
where

E+m m
= 1 +iE— ). 7
Zan (1+iy) &

APPENDIX D: ALL-ORDERS UV FUNCTION WITH A FINITE-DISTANCE REGULATOR

We can compute the UV matching coefficient introduced in Eq. (40) by setting A = p = 0 and evaluating the remaining
integrals using dimensional regularization. Examining the perturbative series we find that the (bare, unrenormalized) UV
matrix element has the following structure:

Mbgs — prare _ prare 5 7OV X (D1)
2|x|
where
Fl])are — 23(262)2111'(1”)7 Fgare X UgT "X — X z 2n+11’ (Dz)
X
n=0 n=0

In particular, all even orders of perturbation theory contribute to F; and all odd orders to F,. The lowest order loop integrals

are given by 7 (10) =1,

(1 _ / d’L, d"L, e-iLox 707 Lo 1 vor Ly 1

! (27)P (27)P L (L,-L;)> L? L%
0) _ d? L, —iL,x Y0V L, 1
7z D3
and for higher orders,
70 _ / d%Loy _ir,,,x70¥ - Loy [2" ‘ / d°Liyoy-L; 1 ] /dDLl I yor Ly 1
! (27)P L3, )P L (Li=Lyy)? 2n)P? (L, - Ly)* Li LY’
70 :/d Lontt i, x Y0V L2n+l|: /dDL, ro¥ - L 1 :|/dDL1 1 vor Li 1 (D4)
: (27)? Lo PLp (Li-Liy) (2m)P (L, -L;)* L Lj

These integrals are recursively one-loop, and can be evaluated by repeated use of the following identity:

1 dPLy; ;1 dPLy; 1 Yoy - Lo 1 vor - Loj
C(yj) ( Vi1 222 (22)P (L L,.)2 L2 L L 2 (L2 Wi
)Y (27)” (27)° ( 2j+1 — Zj) 2j ( 2j 2;—1) ( 2(,'—1) !

1 I'(y; +2-D) <D D ) <D > ( 1 )”j*Z—D
- B(Z-11+2-v,)B(Z-1.D-v,—1 . (DS)
(4m)P (v;) 2 2 2 / L%]H

where 1/1 =2andv;,; =v;+3—Dsothaty; = 2+ 2(j — 1)e. The final integral involving ™t forI (or g7k X

for I ) can be evaluated with a Schwinger parameter, yielding
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-

D 1 D D
M-t =0y(0 11, 0)

1 40PT(,) C\2 2
x2\ tut1-D
X N
)
-
07T (,) | (4
—1}/ 77X
X 2(|)X| (D6)

Using the properties of the Gamma function, the functions
F, and F, can be shown to have the following series
expansion:

o -1 )n 1\ n—1 1
Ftl)are — gn ( (_) |: :| ,
— n! \e E) (1 + 2me)

n

=z o SE () W iama] @7

5= (D8)
with
(BTG
a= a<1—6> m a(ure™)*[1 + O(e?)]. (DY)

VARG A3 (2
lim J, (vz) ~ —=% )
V—>00 \/§1/

with  {(z

In particular, when expressed in terms of @, the coefficients
in the perturbative expansion of F?® are expressible
entirely as rational functions of e. Choosing u =
(re’®)~! so that & can be identified with the MS coupling,
we find that the MS operator renormalization constant can
be written as exp[é > . a,g"] for some numbers' a,. The
sequence of coefficients can be related to the Catalan
numbers C(n) = (2n)!/(n!(n 4 1)!)."" The series in the
exponent then converges, and is given by

log(2) =

1 iZ”C(n) .

n+1

1 808 (/ T 1)+

1 —log(2)].
(D11)

The series in Eq. (D7) can also be summed, and converges
for any nonzero €. The answer is given by

Fhure :2#%(@)1_%( ! )Jl 1<\/§€‘/§>, (D12)

€ 2e

(Za)~! Fhwe =2 <f>_zlgr<1+2€> 2E<\f\[>. (D13)

€

Using Egs. (D12) and (D13) we can see how renormaliza-
tion works at all orders in the coupling. We require the
€ — 0 asymptotic behavior of the Bessel functions. The
relevant identity is [cf. Eq. (10.20.4) of Ref. [94] ]

{ —V1=-22+log(V1-22+1)- log(z))] 2/3, (D14)

where we adopt the notation of Ref. [94] and use ~ to denote “asymptotic to.” Using this identity, Sterling’s approximation,
and the large argument limit of the Airy function, it is straightforward to show that

~)—1 bare 1 /4 1 =
(Za)~'Fhre ~ 1-ss) P Z( 1 —8g—log (

89

For F, it is convenient to introduce 1/2¢’ =1 —1/2¢ and § = (1 4 2¢’). We then find

1 1/4 1
Fhare <1 — 8§’> p[z (V1 -87 —log (/1 -87 +1)—1 +10g(2))} as € = 0.

"The leading orders obtained by direct evaluation from Eq. (D7) are

873 2047
% + 107 g

1
Z=exp[;(§+§2+

We have checked explicitly to sixteenth order in § that the renormalization constant can be written as exp E >

explicit all orders expressions in Egs. (D15) and (D16).

-87+1)—-1+ log(Z))} as € — 0. (D15)
(D16)

85’ o 3660807° 12446720
+68647° + = < - (D10)

a,3"], consistent with the

""We were able to identify this sequence with help from the Online Encyclopedia of Integer Sequences [93].
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Notice that the form of Z that we obtained from recogniz-
ing the infinite sequence using our perturbative result is
precisely what is needed for all orders renormalization,
cf. Egs. (D11) and (D15). We find

Fl |ﬂ:(re7E)—l = li_r)%ZFll)are

:\/1—(Za)2+1< 1
2

1 - (Za

1/4
)2> . (D17)

) . 1 1/4
F2|ﬂ:(re75>*l = ll_r)laZFgae =Za <m> . (D18)

The x4 dependence of the renormalized coefficient functions
F; is governed by the anomalous dimension,

F; =vyoF;, (D19)

dlogu

and yp is determined by the coefficient of 1/¢ in the
corresponding MS operator renormalization constant:

> 1
2 i Zn

Z= (D20)
m=0

4]
= 2a—Z,.
4 “aa 1

Using the explicit form of Z we have, to all orders in the
coupling,

1-(Za)?

1 1
2= [l—q/l—(Za)z—i—log%

and so taking the derivative, cf. Eq. (54), we find

vo=1/1-(Za)* - 1.

Using the solution of Eq. (D19) with initial condition
Eq. (D17), the amplitude (D1) after MS renormalization is

], (D21)

(D22)

Za iygy - X
1+n x|

} . (D23)

where we have used 7 = /1 — (Za)?.
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