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Gubser flow provides an analytic model for describing the spacetime dynamics of the quark-gluon
plasma produced in heavy-ion collisions. Along with boost and rotation invariance along the beam axis, the
model assumes invariance under a combination of translations and special conformal transformations in the
transverse plane, leading to a flow profile which evolves not just along the beam axis, but also radially. We
argue that Gubser flow and its associated symmetry assumptions arise naturally as a consequence of
Carrollian symmetries for a conformal Carroll fluid, thereby providing a dual geometric picture for the
flow. Given the inherent ultrarelativistic nature of the flow, this duality with Carroll hydrodynamics which
arises in the c → 0 limit of relativistic hydrodynamics, is natural. We provide a precise map between
Gubser flow and the conformal Carroll fluid, appropriate to capture the duality between the two, not just at
the ideal level, but also with the inclusion of hydrodynamic derivative corrections.
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I. INTRODUCTION

A pervading theme in modern high-energy physics is the
investigation of the exotic state of matter that filled the
universe ephemerally after the hot big bang. This primordial
state is known as the quark-gluon plasma (QGP), owing to
the fact that the quarks and gluons that constitute ordinary
hadronic matter around us existed at these early moments
after the big bang in a deconfined plasma state. Confinement
of the color charge is an important feature of quantum
chromodynamics (QCD), the theory describing the strong
interactions between quarks and gluons, both of which carry
a color charge. It is at the extreme energy scales present at the
birth of the Universe that the conditions were right for QCD
to display asymptotic freedom, leading to the deconfinement
of quarks and gluons and appearance of the QGP.
Needless to say, it is of immense importance to examine

the physical properties of the QGP, to better understand the
state of the very early Universe and its subsequent
evolution, as well as to test QCD under limiting conditions.

Experiments such as the Relativistic Heavy Ion Collider
(RHIC) at the Brookhaven National Laboratory and A
Large Ion Collider Experiment (ALICE) at the Conseil
Européen pour la Recherche Nucléaire (CERN) recreate the
extreme conditions that were present in the very early
universe by colliding highly energetic heavy-ions at ultra-
relativistic speeds. When the collision occurs, the local
energy density and temperatures produced are high enough
to “melt” the constituent protons and neutrons of the heavy
nuclei, leading to the formation of QGP. A profound
outcome of these experiments has been the surprising
realization that QGP behaves as a nearly perfect fluid,
with the ratio of shear viscosity to entropy density, η=s,
being very small [1].
A prominent hydrodynamic model that attempts to

describe the collective flow of the QGP produced after
the heavy-ion collision was proposed by Bjorken [2]. The
model, known as Bjorken flow, predicts the evolution of the
energy density, temperature, etc., for the QGP as a function
of the proper time τ, by making certain simplifying
assumptions. These include the premise that the flow
profile is boost (more precisely, rapidity) independent
along the beam axis, as well as translation and rotation
invariant in the plane transverse to the beam axis. Given
that at the extreme energies of the QGP one can neglect the
masses of the quarks and assume the matter to be
approximately conformal, Bjorken flow predicts the energy
density ϵ of the QGP to evolve as ϵ ∝ τ−4=3, where one has
to make use of the conformal equation of state relating the
pressure P to the energy density via P ¼ ϵ=3.
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The presumption of boost invariance that underlies
Bjorken flow works well in the central rapidity region,
whilst rotation invariance in the transverse plane is also a
symmetry assuming the heavy nuclei collide head-on.
However, the assumption of translation invariance in the
transverse plane is quite drastic, as it does not allow for the
possibility of a radial flow, and is thus certainly an
oversimplification. In [3], Gubser proposed a generaliza-
tion of Bjorken flow, referred commonly to as Gubser flow,
which does allow for a nontrivial radial flow profile for the
QGP in the transverse plane. A key ingredient of Gubser
flow is the assumption of conformal symmetry, which, as
mentioned earlier, is well-motivated at the energy scales
involved. With the boost and rotation invariance along the
beam axis kept intact, Gubser flow gets rid of exact
translation invariance in the transverse plane, by replacing
it with conformal invariance under a combination of
translations and special conformal transformations. As it
turns out, the equations of conformal relativistic hydro-
dynamics do admit a solution that has the above sym-
metries, with velocity and energy density profiles that now
carry a radial dependence as well.
From a geometric point of view, the ultrarelativistic

nature of the hydrodynamic flow produced after a heavy-
ion collision implies that the fluid is constrained to move on
or near a null hypersurface. It must, therefore, be imbued
with the underlying symmetries of this hypersurface.
Carrollian symmetries are known to appear generically
on null hypersurfaces. The Carroll algebra arises as a
contraction of the usual Poincaré algebra in the vanishing
speed of light limit i.e., c → 0 [4,5]. One can construct a
hydrodynamic description for fluids that are restricted to a
Carroll manifold, dubbed Carroll hydrodynamics, by
starting from an ordinary relativistic fluid and carefully
taking the c → 0 limit [6–9]. This geometric picture for
ultrarelativistic fluids was put on a firm footing in [10],
where it was argued that Bjorken flow admits a dual
description in terms of a Carroll fluid on a specific Carroll
manifold. In particular, the phenomenological assumption
of boost invariance of Bjorken flow follows from the
underlying Carrollian symmetries in the dual description.
Reference [10] also provided the first concrete example
of a physical realization of a Carroll fluid, which earlier
had been thought to be only of theoretical interest in
the context of e.g. the flat version of the fluid-gravity
correspondence.
In the present work, we take another significant step

forward in understanding ultrarelativistic fluids in terms of
the Carroll framework. We will here go beyond the some-
what simplistic setup of Bjorken flow and construct the
dual Carrollian description for Gubser flow. It would
provide us a geometric picture for this more general model
for the evolution of QGP, which then paves the way to
systematically compute rapidity-dependent corrections
using the Carrollian perspective.

We achieve our objective by identifying a Carroll
manifold conferred with a specific degenerate metric and
kernel, such that the equations of conformal Carroll hydro-
dynamics on this manifold are the Gubser flow equations.
As is the case with Bjorken flow [10], the phenomeno-
logical assumption of boost invariance that is put into the
Gubser model using a special velocity profile now arises
simply as a consequence of the underlying symmetries of
the Carroll manifold. It is important to note that the duality
we discuss also works beyond the perfect fluid approxi-
mation, when derivative corrections start playing a salient
role in the dynamics of the fluid, under sensible scaling
assumptions for the relativistic hydrodynamic data in the
c → 0 limit. Another important point that we make in our
work is that the duality is not specific to the choice of a
particular coordinate system and we exemplify this by
constructing the duality for two different coordinate sys-
tems in the Gubser flow and two sets of Carrollian data
which specify two different Carroll manifolds.
Before we proceed, it is interesting to point out that

Carroll symmetries arises in a variety of other places as
well. For instance, conformal Carroll algebra is known to
be isomorphic to the Bondi-van der Burg-Metzner-Sachs
(BMS) algebra [11,12], which dictates the symmetries of
asymptotically flat spacetimes [13,14]. Consequently,
Carrollian conformal field theories (CFT) living on the
null boundary of asymptotically flat spacetimes can provide
the dual holographic description for gravitational dynamics
in the bulk. This active field of research is referred to as the
Carrollian approach to flat holography [15–26]. Apart from
this, Carroll symmetries are relevant for certain condensed
matter systems [27,28], in cosmology [29], for string theory
in the tensionless limit [30–32], as well as black holes
[33–37]. Recent work on Carroll gravity and associated
solutions appears in [38,39].
This paper is organized as follows. In Sec. II, we attempt

to provide a self-contained discussion of Gubser flow and
its associated symmetries. In Sec. III, we provide a brief
overview of the construction of Carroll hydrodynamics as
the c → 0 limit of relativistic hydrodynamics, and discuss
the conformal limit. Next, in Sec. IV, we establish the
duality between Gubser flow and conformal Carroll hydro-
dynamics by providing an explicit map between the two,
considering the fluid to be perfect. Subsequently, in Sec. V,
we argue that the duality is not limited only to perfect
fluids, and exhibit its validity in the presence of first order
hydrodynamic derivative corrections. We conclude the
paper with a discussion and an outlook in Sec. VI.

II. HEAVY-ION COLLISIONS ANDGUBSER FLOW

Describing the spacetime evolution of the hot and dense
state of matter produced in heavy-ion collisions, the QGP,
is a challenging task. The situation can be remedied to a
certain extent by utilizing the symmetries of the problem.
For instance, an important simplification occurs by
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realizing that the collision of two nuclei, moving towards
each other at ultrarelativistic speeds and thereby highly
Lorentz contracted, appears approximately the same in all
center-of-masslike Lorentz frames, implying an emergent
boost invariance for the QGP produced after the collision.
Further, assuming the nuclear collision occurs approxi-
mately head-on, the evolution of the plasma must respect
rotational invariance along the beam axis i.e., in the two-
dimensional plane transverse to the direction of collision.
Making use of these symmetry considerations, along with
the assumption of translation invariance in the transverse
plane, a hydrodynamic model describing the spacetime
evolution of the QGP was proposed by Bjorken in [2]. The
model has met with considerable success, not least because
exact solutions to viscous hydrodynamic equations are
scarce. Modern experiments do indeed confirm the almost
perfect fluid like nature of the QGP, and Bjorken’s model
has played a vital role in providing us an intuitive under-
standing of the same.
Despite its resounding success, the imposition of trans-

lation invariance on the transverse plane in Bjorken flow is
perhaps too stringent and unrealistic. For one, demanding
translation invariance does awaywith any radial dependence
in hydrodynamic quantities like the energy density ϵ,
pressure P and temperature T of the plasma. On the other
hand, in an actual heavy-ion collision, various hydrody-
namic quantities will have a falloff as a function of the radial
distance r from the beam axis. To rectify this, it is imperative
to look for hydrodynamic models that do not insist on exact
translation invariance in the transverse plane, and thereby
allow for a radial dependence in hydrodynamic quantities.
A hydrodynamic model that achieves this objective was

proposed by Gubser in [3]. Gubser flow, as it has come to
be known, assumes that the dynamics of the QGP at the
extreme energy scales involved in heavy-ion collisions can
be taken to be conformal. The model further relaxes the
demand of exact translation invariance with conformal
invariance of the flow under a combination of translations
and special conformal transformations. As argued in [3],
the conformal relativistic hydrodynamic equations now
admit a more general solution, which still maintains boost
and rotation invariance about the beam axis, while at the
same time exhibiting nontrivial radial dependence for the
four-velocity profile of the flow, as well as for the hydro-
dynamic quantities, as desired. Gubser flow is thus a more
realistic and accurate model for high-energy nuclear
collisions and the subsequent evolution of the QGP. As
the focus of the present work is on Gubser flow and its
connection with Carroll hydrodynamics, we now proceed
to give a more mathematical description of the symmetries
and equations governing the flow, which would be perti-
nent for establishing the duality with a conformal Carroll
fluid in the following sections.
Working in Cartesian coordinates, we choose the z-axis

to be the beam axis, whilst x, y denote the axes in the

transverse plane, and t denotes the time. For the sake
of convenience, we can choose t ¼ 0 as the moment of
collision between the two nuclei, and z ¼ 0 being the
location of collision. For the plasma produced after
the collision, demanding invariance of the flow under a
spacetime transformation xμ → xμ þ ξμðxÞ amounts to
imposing £ξuμ ¼ 0, where uμ denotes the four-velocity
of the fluid and £ξ is the Lie derivative with respect to ξμ.
For instance, imposing invariance under translations
and rotations in the x, y plane along with boost invariance
along the z-axis uniquely fixes the fluid velocity to be
uμ ¼ ðγ; 0; 0; γvÞ, with v ¼ z=t and the Lorentz factor
γ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
.1 This is indeed the velocity profile that

underlies Bjorken’s model of spacetime evolution of the
QGP, and expectedly follows from the symmetry assump-
tions we imposed to begin with.
Gubser’s model for the hydrodynamic description of

QGP invokes invariance of the flow under boosts along and
rotations about the beam axis. The salient feature of the
model, however, is to replace translation invariance along
the x, y axes with conformal invariance under a combina-
tion of translations and special conformal transformations.
The generators ξ≡ ξμ∂μ for these transformations have the
form,

ξ1 ¼ ∂x þ q2ð2xxμ∂μ − xμxμ∂xÞ; ð1aÞ

ξ2 ¼ ∂y þ q2ð2yxμ∂μ − xμxμ∂yÞ: ð1bÞ

Clearly, these are combinations of translations generated by
∂x=∂y, with a special conformal transformation generated
by 2bνxνxμ∂μ − xμxμbν∂ν, with bν ¼ δνx=δνy for the two
cases, respectively. Here q is a tunable parameter that
carries the dimensions of inverse length. In particular, in the
limit q → 0, the generators in Eq. (1) reduce to ordinary
translation generators. Interestingly, the generators ξ1, ξ2
along with the generator of rotations in the x-y plane,
ξrot ¼ x∂y − y∂x, form an SOð3Þq subgroup2 of the full
conformal group SOð4; 2Þ. It is indeed straightforward to
check that we have the algebra,

½ξ1;ξ2�¼−4q2ξrot; ½ξ1;ξrot�¼ ξ2; ½ξ2;ξrot�¼−ξ1: ð2Þ

Further, the SOð3Þq group above commutes with the
SOð1; 1Þ subgroup of SOð4; 2Þ corresponding to boosts
along the z-axis, generated by ξboost ¼ z∂t þ t∂z.

A. Gubser flow in Milne coordinates

A more convenient coordinate system for discussing the
Gubser flow is provided by the Milne coordinates, denoted

1The fluid velocity is normalized such that uμuμ ¼ −1.
2The subscript in SOð3Þq is to signify the inherent dependence

of the group generators on the parameter q.
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by ðτ; ρ; r;ϕÞ (see Fig. 1). These are related to the Cartesian
coordinates via

τ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − z2

p
; r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

q
; ϕ ¼ tan−1

�
y
x

�
;

ρ ¼ tanh−1v ¼ tanh−1
�
z
t

�
¼ 1

2
log

�
tþ z
t − z

�
: ð3Þ

Here τ is proper time and ρ is the rapidity parameter, while
r;ϕ are standard polar coordinates on the two-dimensional
x-y plane. The Minkowski metric in terms of the Milne
coordinates has the form

ds2 ¼ −dτ2 þ τ2dρ2 þ dr2 þ r2dϕ2: ð4Þ

The generators Eq. (1) now take the form,

ξ1 ¼ 2q2τr cosϕ∂τ þ ½1þ q2ðτ2 þ r2Þ� cosϕ∂r
−
1þ q2ðτ2 − r2Þ

r
sinϕ∂ϕ; ð5aÞ

ξ2 ¼ 2q2τr sinϕ∂τ þ ½1þ q2ðτ2 þ r2Þ� sinϕ∂r
þ 1þ q2ðτ2 − r2Þ

r
cosϕ∂ϕ; ð5bÞ

while the rotation and boost generators become ξrot ¼ ∂ϕ

and ξboost ¼ ∂ρ.
As mentioned earlier, the fluid velocity profile for

Gubser flow follows by demanding invariance under

rotations ∂ϕ and boosts ∂ρ. One further imposes a Z2

symmetry under ρ ↔ −ρ, reminiscent of the symmetry of
the flow under z ↔ −z. This fixes the velocity profile to be3

uμ ¼ ðcosh κðτ; rÞ; 0; sinh κðτ; rÞ; 0Þ: ð6Þ

It turns out that there does not exist any choice for
κðτ; rÞ such that uμ further respects invariance under the
generators ξ1, ξ2. In [3], Gubser argues that it is apt to
demand invariance of uμ under ξ1, ξ2 only up to a
conformal factor, reflecting the underlying conformal
invariance of the setup.4 Thus, one only puts the require-
ment that £ξ1u

μ ∝ ð∇νξ
ν
1Þuμ, and similarly for ξ2. This

indeed allows for a unique solution for κðτ; rÞ, given by

κðτ; rÞ ¼ tanh−1
�

2q2τr
1þ q2ðτ2 þ r2Þ

�
; ð7Þ

which leads to the fluid velocity Eq. (6) satisfying

£ξ1u
μ ¼ −

1

4
ð∇νξ

ν
1Þuμ; £ξ2u

μ ¼ −
1

4
ð∇νξ

ν
2Þuμ: ð8Þ

To sum up, the fluid four velocity profile for Gubser flow
takes the form of Eq. (6), with κðτ; rÞ given by Eq. (7). This
velocity profile respects rotation and boost invariance along
the beam axis, £ξrotu

μ ¼ £ξboostu
μ ¼ 0, but is only invariant

up to a conformal factor under the generators ξ1, ξ2, as
encapsulated by Eq. (8).5 Interestingly, the fluid velocity
now has a nontrivial dependence on the radial coordinate r,
apart from its dependence upon τ, and thus provides a more
realistic description of the spacetime evolution of the QGP.
The next step is to consider the hydrodynamic equations

themselves, which correspond to the conservation of the
energy-momentum tensor Tμν for the fluid, where

Tμν ¼ ϵuμuν þ ϵ

3
Δμν; ð9Þ

with Δμν ≡ gμν þ uμuν being the projector orthogonal to
uμ. In writing Eq. (9), we have assumed the fluid to be ideal

FIG. 1. A pictorial representation of the ultrarelativistic heavy-
ion collision process. The heavy ions move at almost the speed of
light. For simplicity, we assume that the collision occurs at time
t ¼ 0 at position z ¼ 0. The forward light cone of the collision
event defines the Milne patch of Minkowski spacetime, covered
by the coordinates ðτ; ρÞ [see Eq. (3)].

3Notice that Gubser’s model tacitly assumes the absence of an
angular flow i.e., uϕ ¼ 0. More generally, invariance under ∂ϕ; ∂ρ
and the Z2 symmetry ρ ↔ −ρ allows for a nonvanishing uϕðτ; rÞ.

4The generators ξa; a ¼ 1, 2 are conformal isometries for the
background metric with the conformal factor 1

2
∇αξ

α
a, i.e.,

£ξagμν ¼
1

2
ð∇αξ

α
aÞgμν:

It is thus justified to demand invariance of uμ under ξa only up to
a conformal factor proportional to ∇αξ

α
a.

5The q → 0 limit reduces Eq. (6) and Eq. (7) to Bjorken flow,
where the fluid happens to be at rest in Milne coordinates. Also,
Eq. (8) boils down to the fluid velocity respecting exact trans-
lation invariance.
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(see Sec. V for a discussion of viscous effects), and have
also utilized the equation of state for a conformal fluid,
which relates the pressure of the fluid to its energy density
via P ¼ ϵ=3. The hydrodynamic equations are

∇μTμν ¼ 0: ð10Þ

Of these, the ν ¼ ρ and ν ¼ ϕ components lead to the
independence of the energy density from ρ and ϕ, respec-
tively. This has been built into the system by the choice of
the underlying symmetries and the associated velocity
profile. Thus, the energy density can only depend upon
τ, r. It is the ν ¼ τ and ν ¼ r components of Eq. (10) that
indeed lead to nontrivial dynamical equations for ϵðτ; rÞ,
which can be combined suitably and expressed as

∂τϵ ¼
4ϵ

3

�
cosh 2κ − 2

τ
−
sinh 2κ

r

�
; ð11aÞ

∂rϵ ¼
4ϵ

3

�
cosh 2κ − 1

r
−
sinh 2κ

τ

�
; ð11bÞ

where κðτ; rÞ is given by Eq. (7). These equations can be
solved simultaneously and admit the solution,

ϵðτ; rÞ ¼ ϵ0
τ4=3

ð2qÞ8=3
½1þ 2q2ðτ2 þ r2Þ þ q4ðτ2 − r2Þ2�4=3 ; ð12Þ

where ϵ0 is a constant of integration. As with the velocity
profile for Gubser flow, we now have an interesting
dependence on the radial coordinate r in the energy density
as well. Further, taking the q → 0 limit with ϵ0q8=3 held
fixed in Eq. (12) leads to ϵ ∝ τ−4=3, which is the (radially
independent) energy density for the Bjorken flow.

B. Gubser flow on de Sitter background

Before we move on to the next section, it is useful to
recast Gubser flow on another background, as originally
proposed in [40]. The new background corresponds to a
product manifold comprising three-dimensional de Sitter
(dS) spacetime times the real line R. Starting from the flat
background in Milne coordinates, one performs a Weyl
rescaling of the metric Eq. (4) via ds2 → ds2=τ2. This is
followed by performing a coordinate transformation from
ðτ; rÞ to ðς;ψÞ, where

sinh ς ¼ −
1 − q2ðτ2 − r2Þ

2qτ
;

tanψ ¼ 2qr
1þ q2ðτ2 − r2Þ : ð13Þ

The metric after these transformations becomes

ds2 ¼ −dς2 þ cosh2 ςðdψ2 þ sin2 ψdϕ2Þ þ dρ2: ð14Þ

This is the metric on dS3 × R, where ðς;ψ ;ϕÞ are coor-
dinates on the three-dimensional global de Sitter spacetime.
The advantage of working on the dS3 × R background is
that the SOð3Þq conformal symmetry of flat spacetime
now becomes an exact symmetry, as is evidenced by the
presence of the two-sphere parametrized by ðψ ;ϕÞ in the
metric Eq. (14). Algebraically, it is straightforward to
check that the generators of SOð3Þq conformal symmetry
for the flat background, Eq. (5), after the Weyl rescaling
ds2 → ds2=τ2 and the coordinate transformation Eq. (13)
become

ξ1 ¼ 2q cosϕ∂ψ − 2q cotψ sinϕ∂ϕ; ð15aÞ

ξ2 ¼ 2q sinϕ∂ψ þ 2q cotψ cosϕ∂ϕ; ð15bÞ

which along with ξrot ¼ ∂ϕ are indeed the SOð3Þq isometry
generators for the two-sphere parametrized by ðψ ;ϕÞ.
Further, the dS3 × R background also has the SOð1; 1Þ
boost invariance i.e., ∂ρ is trivially an isometry for Eq. (14).
One can now construct a four-velocity profile for the fluid
which respects the SOð3Þq × SOð1; 1Þ × Z2 symmetry of
the dS3 ×R background. This is simply uμ ¼ ð1; 0; 0; 0Þ
i.e., the fluid is at rest on this background.
Interestingly, the ν ¼ ψ ;ϕ; ρ components of the hydro-

dynamic equations Eq. (10) with the energy-momentum
tensor Eq. (9) imply that the energy density is independent
of ψ ;ϕ and ρ, as expected from the underlying symmetries.
The only nontrivial component of the hydrodynamic
equations is the ν ¼ ς component, given by

∂ςϵ ¼ −
8ϵ

3
tanh ς; ð16Þ

which has the solution

ϵðςÞ ¼ ϵ0
ðcosh ςÞ8=3 : ð17Þ

By undoing the coordinate transformation Eq. (13) along
with the Weyl rescaling, it is straightforward to check that
the energy density profile in Eq. (17) maps onto the profile
in Eq. (12). Therefore, in general, one may choose to
perform the analysis for Gubser flow on the dS3 ×R
background Eq. (14), where the velocity profile is elemen-
tary since the fluid is at rest, followed by undoing the Weyl
rescaling and the coordinate transformation Eq. (13) to get
back to flat background where the actual spacetime
dynamics takes place. In what follows, we will establish
a duality between the Gubser flow and conformal Carroll
hydrodynamics, both for the plasma on the flat background,
Eq. (11), as well as on the dS3 ×R background, Eq. (16).
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III. CARROLL HYDRODYNAMICS

We now move on to provide an overview of Carroll
hydrodynamics, setting up the notation and the key ideas
that would then help us establish the duality with Gubser
flow. As discussed in the Introduction, Carroll hydro-
dynamics arises in the vanishing speed of light c → 0
limit of relativistic hydrodynamics [6–9].6 Following [6–8],
it is convenient to work in the Papapetrou-Randers (PR)
coordinates for imposing the c → 0 limit, which makes
manifest the Carroll covariance properties of various
entities in a straight forward manner. A pseudo-Riemannian
manifold in the PR parametrization [7,42] has the form,

ds2¼gμνdxμdxν¼−c2ðΩdt−bidxiÞ2þaijdxidxj;

g00¼−1þc2b2

Ω2
; g0i¼ gi0¼ c

Ω
bi; gij¼aij: ð18Þ

Here, Ω; bi and aij are functions of ðt;xÞ. Also, b2 ≡ bibi,
where the index on bi can be raised using aij. On imposing
the Carroll limit c → 0 on Eq. (18), one arrives at a
Carrollian manifold C described in terms of the degenerate
metric hμν on C along with its kernel kμ, expressed in
coordinates ðt;xÞ as

dl2¼hμνdxμdxν¼aijðt;xÞdxidxj; k¼ 1

Ωðt;xÞ∂t; ð19Þ

satisfying hμνkν ¼ 0. In fact, the Carrollian manifold C is a
fibre bundle, with time fibred over a base spatial manifold.
Further, biðt;xÞ serves as the Ehresmann connection on C,
appearing naturally in the dual form to the kernel, ϑ, via
ϑ ¼ Ωdt − bidxi, such that kμϑμ ¼ 1. In particular, in this
description, a flat Carroll manifold corresponds to

Ω ¼ 1; aij ¼ δij; bi ¼ constant; ð20Þ

and its isometries generate the Carroll algebra, obtained in
the c → 0 limit of Poincaré algebra.
On the Carroll manifold Eq. (19), one can construct

several Carroll covariant quantities. For instance, the
Carroll covariant temporal and spatial derivatives are

b∂t ≡ 1

Ω
∂t; b∂i ≡ ∂i þ

bi
Ω
∂t: ð21Þ

Further, one can define temporal and spatial Levi-Civita-
Carroll connections, respectively via

γ̂ij ≡ 1

2Ω
∂taij; γ̂ijk ≡ ail

2
ðb∂jakl þ b∂kajl − b∂lajkÞ: ð22Þ

Note that γ̂ij is also a Carrollian tensor, and therefore its
indices can be raised by using aij. The above definitions
lead to temporal and spatial Levi-Civita-Carroll covariant

derivatives, b∇t and b∇i, respectively, which act on Carrollian
objects via

b∇tVj ¼ b∂tVj þ γ̂jkV
k; b∇tVj ¼ b∂tVj − γ̂kjVk;b∇iVj ¼ b∂iVj þ γ̂jikV
k; b∇iVj ¼ b∂iVj − γ̂kijVk: ð23Þ

Note that the connections above are metric compatible,

i.e., b∇tajk ¼ 0; b∇iajk ¼ 0. Further, one can also define a
Carrollian expansion θ and a Carrollian acceleration φi via

θ≡ 1

Ω
∂t log

ffiffiffi
a

p ¼ γ̂ii; φi ≡ 1

Ω
ð∂tbi þ ∂iΩÞ; ð24Þ

where a ¼ det aij.
With the basics of Carrollian geometry at hand, let us

now proceed to summarize the construction of Carroll
hydrodynamics as the c → 0 limit of relativistic hydro-
dynamics. To begin with, wewill consider a perfect fluid on
the pseudo-Riemannian background Eq. (18), with the
energy-momentum tensor

Tμν ¼ ðϵþ PÞ u
μuν

c2
þ Pgμν: ð25Þ

Here ϵ, P are the energy density and pressure of the fluid,
respectively, while uμ is the fluid four-velocity, normalized
such that uμuμ ¼ −c2. A convenient parametrization for the
fluid velocity turns out to be u ¼ γ∂t þ γvi∂i, where

γ ¼ 1þ c2b⃗ · β⃗

Ω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − c2β2

p ; vi ¼ c2Ωβi

1þ c2b⃗ · β⃗
; ð26Þ

with βiðt;xÞ being a Carrollian vector field, whose index
can therefore be lowered using aij, and β2 ≡ βiβi,

b⃗ · β⃗≡ biβi ¼ biβi. To be explicit, the components of
the fluid velocity in this parametrization take the form

u0 ¼ c
Ω
1þ c2b⃗ · β⃗ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − c2β2

p ; ui ¼ c2βiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − c2β2

p ;

u0 ¼ −
cΩffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − c2β2
p ; ui ¼

c2ðbi þ βiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − c2β2

p : ð27Þ

Consider now the c → 0 limit of the energy-momentum
tensor Eq. (25). With the ansatz [6],

ϵ ¼ εþOðc2Þ; P ¼ pþOðc2Þ; ð28Þ

6A more general class of Carroll fluids can be constructed by
carefully accounting for the dynamics of the Goldstone mode
associated with the spontaneous breaking of Carroll boost-
invariance [41]. For our purposes, however, the c → 0 subclass
suffices to establish the duality with Gubser flow.
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for the leading behavior of the energy density and pressure
in the limit c → 0, the components of the perfect fluid stress
tensor become

T0
0 ¼ −εþOðc2Þ; Ti

j ¼ pδij þOðc2Þ;
T0

i ¼
c
Ω
ðεþ pÞðbi þ βiÞ þOðc3Þ;

Ti
0 ¼ −cΩðεþ pÞβi þOðc3Þ: ð29Þ

In obtaining Eq. (29), we have made use of the c → 0
behaviour of the fluid-velocity components which follows
from Eq. (27), given by

u0 ¼ c
Ω
þOðc3Þ; ui ¼ c2βi þOðc4Þ;

u0 ¼ −cΩþOðc3Þ; ui ¼ c2ðbi þ βiÞ þOðc4Þ: ð30Þ

Next, imposing the c → 0 limit on the relativistic hydro-
dynamic equation ∇μTμ

ν ¼ 0 gives the hydrodynamic
equations for a perfect Carroll fluid,

b∂tε ¼ −θðεþ pÞ; ð31aÞ

b∂ip ¼ −φiðεþ pÞ − ðb∂t þ θÞ½ðεþ pÞβi�; ð31bÞ

where the Carrollian expansion θ and acceleration φi have
been defined in Eq. (24), and the Carroll covariant temporal
and spatial derivatives b∂t;b∂i are defined in Eq. (21).

A. Conformal Carroll fluid

For a conformal fluid, conformal invariance demands the
vanishing of the trace of the energy-momentum tensor,
which using Eq. (25) furnishes an equation of state for the
conformal fluid relating the energy density and pressure via
ϵ ¼ 3P. Using the ansatz Eq. (28), this leads to the relation
ε ¼ 3p at the leading order in c → 0. Using this in the
Carroll fluid equations (31), the hydrodynamic equations
for a perfect conformal Carroll fluid become

b∂tε ¼ −
4

3
θε; ð32aÞ

b∂iε ¼ −4φiε − 4ðb∂t þ θÞðεβiÞ: ð32bÞ

IV. FROM CONFORMAL CARROLL
HYDRODYNAMICS TO GUBSER FLOW

Equipped with an understanding of Gubser flow, Sec. II,
and Carroll hydrodynamics, Sec. III, we now move on to
establish a duality between the two, which forms the main
result of the paper. To begin with, we present the duality
when the fluid is ideal. In the next section, we will argue
that the duality continues to hold true after including
derivative corrections as well.

A. Carroll fluid dual to Gubser flow in Milne

We will begin by formulating our map in the coordinates
we have introduced at the beginning, the Milne coordinates.
We will show later that the mapping between Gubser flow
and Carroll fluids continues to hold for other coordinate
systems albeit with some different identifications.
Given that Gubser flow assumes conformal invariance,

we consider the conformal Carroll fluid equations (32) and
adapt the coordinate chart on the Carroll manifold to Milne
coordinates, i.e., ðt;xÞ ¼ ðτ; ρ; r;ϕÞ. Then, by choosing the
geometric data on this Carroll manifold such that

Ω ¼ cosh κ; ð33aÞ

br¼−βrþsinhκ; bρ¼−βρ; bϕ¼−βϕ; ð33bÞ

aijdxidxj ¼ τ2dρ2 þ ½1þ 2q2ðτ2 þ r2Þ
þ q4ðτ2 − r2Þ2�ðdr2 þ r2dϕ2Þ; ð33cÞ

with κ defined in Eq. (7), the hydrodynamic equations (32)
for the conformal Carroll fluid become

∂τε ¼
4ε

3

�
cosh 2κ − 2

τ
−
sinh 2κ

r

�
; ð34aÞ

∂rε ¼
4ε

3

�
cosh 2κ − 1

r
−
sinh 2κ

τ

�
; ð34bÞ

∂ρε ¼ 0; ∂ϕε ¼ 0: ð34cÞ

Equations (34a) and (34b) reproduce the dynamical equa-
tions (11) for Gubser flow. Further, Eq. (34c) states that the
energy density is independent of the rapidity and the
angular coordinate ϕ, implying boost invariance along
the beam axis and rotational invariance in the transverse
plane. Thus, we have derived the dynamical equations for
Gubser flow along with the phenomenological assumptions
of boost and rotation invariance from conformal Carroll
hydrodynamics on a specific Carrollian manifold, estab-
lishing the duality between the two.

B. Carroll fluid dual to Gubser flow on dS3 ×R

The duality between Gubser flow and conformal Carroll
hydrodynamics is not specific to the choice of Milne
coordinates and holds more generally. We show this by
establishing the duality in dS3 ×R coordinates as well. To
do so, we now take the coordinate chart on the Carroll
manifold adapted to the dS3 ×R coordinates, i.e., ðt;xÞ ¼
ðς; ρ;ψ ;ϕÞ and make the following choice for the geo-
metric data on this manifold:

Ω ¼ 1; bi ¼ −βi; ð35aÞ

aijdxidxj ¼ cosh2 ςðdψ2 þ sin2 ψdϕ2Þ þ dρ2: ð35bÞ
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On this background, the conformal Carroll hydrodynamic
equations (32) reduce to

∂ςε ¼ −
8ε

3
tanh ς; ∂iε ¼ 0: ð36Þ

The first equation reproduces the dynamical equation (16)
for Gubser flow on dS3 × R background. The second
equation implies that the energy density is independent
of the rapidity and the coordinates ψ ;ϕ on the two-sphere,
exhibiting invariance under the SOð3Þq × SOð1; 1Þ × Z2

symmetries of the underlying dS3 ×R background.

C. The q → 0 limit and Bjorken flow

As was mentioned in Sec. II, Bjorken flow can be
obtained as a limiting case from Gubser flow. In particular,
the nontrivial radial evolution of the plasma in Gubser flow
is parametrized by a nonzero value for q. Taking the limit
q → 0 leads to Bjorken flow, with exact translation
invariance in the transverse plane. The dynamical equa-
tions (11) reduce in the q → 0 limit to

∂τϵ ¼ −
4ϵ

3τ
; ∂rϵ ¼ 0: ð37Þ

The first equation is the conformal limit of the dynamical
equation for Bjorken flow [2], obtained by using the
equation of state ϵ ¼ 3P. The second equation, combined
with the independence of energy density from the coor-
dinate ϕ, reflects exact translation and rotation invariance
of the flow in the transverse plane.
From the perspective of the dual conformal Carroll

hydrodynamic description, on taking q → 0 the geometric
data of the dual Carroll manifold Eq. (33) becomes

Ω¼ 1; bi ¼ −βi; aijdxidxj ¼ τ2dρ2 þ dr2 þ r2dϕ2:

ð38Þ

On this Carroll manifold, the conformal Carroll hydro-
dynamic equations (34) become

∂τε ¼ −
4ε

3τ
; ∂iε ¼ 0: ð39Þ

The first equation reproduces the dynamical equation for
conformal Bjorken flow while the second equation repro-
duces the symmetries of Bjorken flow, i.e., the boost
invariance along the beam axis and the translational and
rotational invariance in the transverse plane.
As a matter of fact, the Carroll manifold Eq. (38)

obtained in the q → 0 limit is exactly the dual found in [10]
which originally established equivalence between Bjorken
flow and Carroll hydrodynamics.

V. BEYOND PERFECT FLUIDS

We now extend the duality between Gubser flow and
conformal Carroll hydrodynamics discussed in the previous
section to include derivative corrections beyond the perfect
fluid form of the energy-momentum tensor. Including
derivative corrections, one has

Tμν ¼ Tμν
perf þ Tμν

ð1Þ þ Tμν
ð2Þ þ � � � : ð40Þ

Here Tμν
perf is the perfect fluid energy-momentum tensor,

Eq. (25), while the Tμν
ðiÞ contain terms at the ith order in

derivatives of hydrodynamic variables, with i ¼ 1; 2;….
Thus Tμν

ð1Þ is the first order in derivatives correction to the

perfect fluid energy-momentum tensor, Tμν
ð2Þ is the second

order in derivatives correction, and so on. Our interest will
be limited to considering terms only up to the first order in
derivatives, while second order derivative corrections will
be the subject of study in a future work.
To unambiguously write the derivative corrections, one

needs to make the choice for a hydrodynamic frame,
which essentially fixes the ambiguity that arises in the
definition for hydrodynamic variables ones derivative
corrections become non-negligible. For our discussion,
we employ the Landau frame, which demands that the
derivative corrections satisfy Tμν

ðiÞuμ ¼ 0. We also want
the fluid to be conformal, i.e., along with ϵ ¼ 3P, the
derivative corrections must be traceless, Tμ

μðiÞ ¼ 0.
These transverse and traceless conditions severely restrict
the form of the derivative corrections, as we discuss
below.

A. First-order derivative corrections

At the first order in derivatives in the Landau frame,
one has

Tμν
ð1Þ ¼ −ησμν − ζΘΔμν; ð41Þ

where η, ζ are the shear and bulk viscosities respectively,
Θ≡∇ · u is the divergence of fluid velocity, and σμν is the
shear tensor, given by

σμν ¼ ΔμαΔνβ

�∇αuβ þ∇βuα
2

�
−
1

3
ΔμνΘ: ð42Þ

For the conformal case, the condition Tμ
μð1Þ ¼ 0 leads to the

vanishing of bulk viscosity, ζ ¼ 0. One therefore has

Tμν ¼ ϵuμuν þ ϵ

3
Δμν − ησμν: ð43Þ

For a conformal fluid, the shear viscosity scales as
η ¼ ηoϵ

3=4, where ηo is a dimensionless constant. Then,
with the velocity profile Eq. (6), the ν ¼ τ, r components of
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the hydrodynamic equations ∇μTμν ¼ 0 for the stress
tensor Eq. (43) give7

∂τϵ ¼
4ϵ

3

�
cosh 2κ − 2

τ
−
sinh 2κ

r

�

þ 2ηoϵ
3=4

3sech3κ

�
1

τ
−
tanh κ
r

�
2

; ð44aÞ

∂rϵ ¼
4ϵ

3

�
cosh 2κ − 1

r
−
sinh 2κ

τ

�

−
2ηoϵ

3=4 sinh κ
3sech2κ

�
1

τ
−
tanh κ
r

�
2

: ð44bÞ

These are the viscous hydrodynamic equations governing
the evolution of the QGP undergoing Gubser flow.8

1. Carroll limit and the dual viscous
conformal Carroll fluid

Let us now work out the hydrodynamic equations
for a conformal Carroll fluid with viscous corrections.
Reinstating the factors of c, the energy-momentum tensor
for a relativistic viscous conformal fluid is given by

Tμν ¼ ðϵþ PÞ u
μuν

c2
þ Pgμν − ησμν: ð45Þ

The new element here is the presence of the shear tensor.
Making use of the generic velocity parametrization of
Eq. (26), and taking the c → 0 limit gives

σ00 ¼ Oðc2Þ; σ0i ¼
c
Ω
ðbj þ βjÞξij þOðc3Þ;

σi0 ¼ −cΩβjξij þOðc3Þ; σij ¼ ξij þOðc2Þ; ð46Þ

where ξij is the symmetric traceless Carrollian shear tensor,
defined via

ξij ≡ 1

2Ω
∂taij −

θ

3
aij: ð47Þ

Finally, to compute the Carroll hydrodynamic equations
with viscous effects, i.e., the c → 0 limit of∇μTμ

ν ¼ 0with
the energy-momentum tensor Eq. (45), along with
Eqs. (28), (29), and (46), we make use of the ansatz

η ¼ η̃þOðc2Þ: ð48Þ

Then, the hydrodynamic equations for a viscous conformal
Carroll fluid turn out to be

b∂tε ¼ −
4

3
θεþ η̃ξijξij; ð49aÞ

b∂iε ¼ −4φiεþ 3ðb∇j þ φjÞ½η̃ξji�
− ðb∂t þ θÞ½4εβi − 3η̃βjξ

j
i�: ð49bÞ

Wewould now like to check whether the duality between
Gubser flow and conformal Carroll hydrodynamics pre-
sented in Sec. IV continues to hold after the inclusion of
first-order derivative corrections. Specializing to Milne
coordinates on the Carroll manifold, ðt;xÞ ¼ ðτ; ρ; r;ϕÞ,
and choosing the geometric data to be Eq. (33), we find that
the hydrodynamic equations (49) for the viscous conformal
Carroll fluid become

∂τε ¼
4ε

3

�
cosh 2κ − 2

τ
−
sinh 2κ

r

�

þ 2ηoε
3=4

3sech3κ

�
1

τ
−
tanh κ
r

�
2

; ð50aÞ

∂rε ¼
4ε

3

�
cosh 2κ − 1

r
−
sinh 2κ

τ

�

−
2ηoε

3=4 sinh κ
3sech2κ

�
1

τ
−
tanh κ
r

�
2

; ð50bÞ

∂ρε ¼ 0; ∂ϕε ¼ 0; ð50cÞ

where we have used η̃ ¼ ηoε
3=4, which follows from the

c → 0 limit of η ¼ ηoε
3=4 combined with the scaling

assumptions Eqs. (28) and (48).
The first two equations reproduce the dynamical equa-

tions (44) of the viscous Gubser flow, while the third
equation implies its boost and rotation invariance. Thus the
duality between Gubser flow and conformal Carroll hydro-
dynamics continues to hold in the presence of first order
hydrodynamic derivative corrections as well.

2. On dS3 ×R background

As argued earlier as well, the proposed duality between
Gubser flow and conformal Carroll hydrodynamics is not
limited to any specific choice of coordinates. We observed
this for the case of perfect fluids in Sec. IV, where the
duality was shown to work for Gubser flow in both the
Milne as well as the dS3 ×R coordinates. We would now
like to verify the same with the inclusion of first-order
derivative corrections as well.
On the dS3 ×R background, the hydrodynamic equation

governing viscous Gubser flow is given by

7The ν ¼ ρ;ϕ components of the hydrodynamic equations still
imply invariance of the flow under boosts and rotations, as
encoded in the choice of the velocity profile.

8For large values of ηo, Eqs. (44) may not admit a physically
sensible solution; see [3,40] for discussions on this issue. This
will not play an important role for us, as our motive is to establish
the duality with Carroll hydrodynamics at the level of the
dynamical equations themselves.
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∂ςϵ ¼ −
8ϵ

3
tanh ςþ 2ηoϵ

3=4

3
tanh2 ς: ð51Þ

From the dual Carrollian perspective, the conformal
Carroll hydrodynamic equations Eq. (49) on the back-
ground Eq. (35) become

∂ςε ¼ −
8ε

3
tanh ςþ 2ηoε

3=4

3
tanh2 ς; ð52aÞ

∂iε ¼ 0; ð52bÞ

thus, reproducing the dynamical equation and symmetries
of viscous Gubser flow on the dS3 ×R background.

VI. DISCUSSION AND OUTLOOK

Heavy-ion collisions provide a complex laboratory for
studying the properties of the strong force, which binds the
quarks and gluons into nucleons, and the nucleons into
nuclei. Thanks to the universality of hydrodynamics, we
can understand the spacetime evolution of the QGP
produced in such collisions in terms of analytically trac-
table models for ultrarelativistic fluids to a very good
extent. The resulting picture that emerges is that of an
almost perfect fluid with a very low shear viscosity to
entropy density η=s ratio, which undergoes rapid expan-
sion, thermalization and hadronization into mesons and
baryons that are eventually observed by the particle
detectors.
In this paper, we have provided a dual geometric

description for a prominent analytic model for heavy-ion
collisions, namely Gubser flow. Assuming boost invariance
along and rotation invariance about the beam axis, along
with conformal invariance in the transverse plane, the
model fixes a unique four-velocity profile for the QGP
based purely on symmetries. Given an initial energy density
profile ϵðτo; rÞ, equations (44) fix the spacetime evolution
of the QGP, which can then be used to compare with the
experimentally observed behaviour and extract the physical
parameters of the plasma, such as its shear viscosity. In the
dual description, the hydrodynamic equations governing
Gubser flow arise naturally from the equations of Carroll
hydrodynamics on a specific Carroll manifold. In particu-
lar, the key phenomenological assumption of boost invari-
ance follows automatically from the geometric properties of
this Carroll manifold. Put simply, the duality we propose
geometrizes the otherwise phenomenological assumptions
of Gubser flow in terms of Carrollian symmetries. This
builds upon a similar dual description for another important
model for the evolution of QGP, the Bjorken flow model,
whose Carrollian dual was discussed in [10].
The discovery of these dualities has now paved the way

to systematically depart from the assumed symmetries and
compute corrections to various analytic models for heavy-
ion collisions. For instance, going beyond the leading order

discussed in the present work, one can compute subleading
terms arising in the c → 0 limit in the hydrodynamic
equations for a conformal Carroll fluid, and subsequently
specialize to the Carroll manifold dual to Gubser flow. The
subleading terms would then provide corrections to the
Gubser flow equations that will encapsulate departures
from exact boost invariance, as well as as other assumed
symmetries. This, we expect, should then be able to provide
a better analytic understanding as well as matching with the
observed experimental data for heavy-ion collisions.
Apart from its relevance for the evolution of QGP, the

duality between ultrarelativistic fluids and Carrollian
dynamics raises many interesting questions and opens up
a plethora of new directions for exploration. One such
possibility is related to Carrollian dynamics arising on
black hole horizons. As per the membrane paradigm for
black holes, the event horizon of a black hole behaves
like a fluid [43,44]. It was argued in [34] that the resulting
hydrodynamic equations for this fluid are actually
Carrollian in nature, something one would expect naturally
given that event horizons are null hypersurfaces. With the
advent of the duality between Carroll hydrodynamics and
ultrarelativistic fluids, it now becomes an important ques-
tion to understand how the dynamics of Bjorken/Gubser
flow is related to the Damour and Raychaudhuri equations
that govern the membrane paradigm. Another direction
worth exploring is to understand the connection between
generic null fluids and Carroll fluids. The concrete reali-
zation of Carroll fluids via the duality map in terms of
Bjorken/Gubser flow models will provide a guiding light in
exploring connections with generic null fluids.
Finally, a word about holography. The fluid/gravity

correspondence [45,46] has been extremely insightful in
the context of AdS spacetimes and associated conformal
fluids living on the boundary of AdS. The formulation of
Carrollian fluids was initiated with the hope of constructing
a version of the original fluid/gravity correspondence
which would be of use for asymptotically flat spacetimes
and offer hints into flat holography. Flat spacetimes can be
thought of as a very high energy sector of AdS, where one
is deep inside the AdS bulk and probing very small length
scales compared to the radius of AdS, so that the curvature
of AdS becomes imperceptible. Our construction of explicit
examples of a duality between Carroll hydrodynamics and
highly boosted ultrarelativistic fluids goes to show that the
Carrollian sector of a relativistic fluid is indeed the very
high energy sector and in keeping with the intuition from
holography. The message is that fluid-gravity in the very
highly boosted regime would become a duality between
gravitational dynamics in asymptotically flat spacetimes
and Carrollian fluids living on the null boundary.
There have been studies of boost-invariant flows in the

context of AdS=CFT, see [47–56] for early works. Our
analysis in [10] and in the current paper seems to suggest
that these holographic studies are better suited to
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asymptotically flat spacetimes, given that there is an
explicit map to Carrollian fluids. We wish to understand
this rather intriguing point, as well as the several other
questions mentioned above, in more detail in future work.
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