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We present a phenomenological extraction of transversity distribution functions and Collins fragmen-
tation functions by simultaneously fitting to semi-inclusive deep inelastic scattering and electron-positron
annihilation data. The analysis is performed within the transverse-momentum-dependent factorization
formalism, and sea quark transversity distributions are taken into account for the first time. We find the ū
quark favors a negative transversity distribution, while that of the d̄ quark is consistent with zero according
to the current accuracy. In addition, based on a combined analysis of world data and simulated data, we
quantitatively demonstrate the impact of the proposed Electron-Ion Collider in China on precise
determinations of the transversity distributions, especially for sea quarks, and the Collins fragmentation
functions.
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I. INTRODUCTION

How the nucleon is built up with quarks and gluons, the
fundamental degrees of freedom of quantum chromody-
namics (QCD), is one of the most important questions in
modern hadronic physics. Although the color confinement
and nonperturbative feature of the strong interaction at
hadronic scales makes it a challenging problem, the QCD
factorization is established to connect quarks and gluons that
participate in high-energy scatterings at subfemtometer
scales and the hadrons observed by advanced detectors in
experiments. In this framework, the cross section is approxi-
mated as a convolution of perturbatively calculable short-
distance scattering off partons and universal long-distance

functions [1,2]. Therefore, it provides an approach to extract
the partonic structures of the nucleon through various
experimental measurements.
The spin as a fundamental quantity of the nucleon plays

an important role in unraveling its internal structures and
then in understanding the properties of the strong inter-
action. For instance, the so-called proton spin crisis arose
from the measurement of longitudinally polarized deep
inelastic scattering (DIS) [3,4] and is still an active frontier
after more than three decades. As an analog to the helicity
distribution, which can be interpreted as the density of
longitudinally polarized quark in a longitudinally polarized
nucleon, the transversity distribution describes the net
density of transversely polarized quark in a transversely
polarized proton. The integral of the transversity distribu-
tion equals to the tensor charge, which characterizes the
coupling to a tensor current. As the matrix element of a
local tensor current operator, it has been calculated in lattice
QCD with high accuracy [5–11] and is often referred to as a
benchmark. In addition, a precise determination of the
nucleon tensor charge will also shed light on the search of
new physics beyond the standard model [12,13].
The transversity distribution has both collinear and

transverse-momentum-dependent (TMD) definitions. As
a chiral-odd quantity [14,15], its contribution to inclusive
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DIS is highly suppressed by powers of m=Q, where m
represents the quark mass and Q is the virtuality of the
exchanged photon between the scattered lepton and the
nucleon. A practical way to access the transversity dis-
tribution is by coupling with another chiral-odd quantity,
either a fragmentation function (FF) in semi-inclusive DIS
(SIDIS) process [16,17] or a distribution function in
hadron-hadron collisions [18–21].
In the past two decades, many efforts have been made by

HERMES [22], COMPASS [23,24], and Jefferson Lab
(JLab) [25,26] via the measurement of SIDIS process on
transversely polarized targets. At low transverse momen-
tum of the produced hadron, a target transverse single spin
asymmetry (SSA), named as the Collins asymmetry, can be
expressed as the convolution of the transversity distribution
and the Collins FF within the TMD factorization. The
Collins FF, which describes a transversely polarized quark
fragmenting to an unpolarized hadron, also leads to an
azimuthal asymmetry in semi-inclusive eþe− annihilation
(SIA) process, and such asymmetry has been measured by
the BELLE [27], BABAR [28,29], and BESIII [30]
Collaborations. Therefore, the transversity distribution as
well as the tensor charge can be determined through a
simultaneous analysis of the Collins asymmetries in SIDIS
and SIA processes. We note that one can alternatively work
in the collinear factorization to extract the transversity
distribution via dihadron productions [31–35].
Restricted in the TMD framework, many global analyses

were performed in recent years to extract the transversity
distribution with or without the TMD evolution effect
[36–43]. Since quark transversity distributions do not mix
with gluons in the evolution, the sea quark transversity
distributions were usually assumed to be zero, though some
exploration to include antiquark contributions was attempted
without TMD evolution [43]. This assumption might be
reasonable in the exploration era, but it should eventually be
tested by experiments, especially when high-precision data
become available at future facilities.
After the COMPASS data taking with a transversely

polarized deuteron target in the 2022–2023 run, the next
generation of high-precision measurements will be the
multihall SIDIS programs at the 12-GeV upgraded JLab
and future electron-ion colliders. The JLab experiments
will mainly cover the large-x region with relatively low Q2.
The Electron-Ion Collider (EIC) to be built at the
Brookhaven National Laboratory (BNL) [44,45] will pro-
vide moderate- and large-x coverage with high Q2.
Meanwhile, it can also reach small-x values down to about
10−4. The Electron-Ion Collider in China (EicC) [46] is
proposed to deliver a 3.5 GeV polarized electron beam
colliding with a 20 GeV polarized proton beam or a 40 GeV
polarized 3He beam, as well as a series of unpolarized ion
beams, with designed instantaneous luminosity at about
2 × 1033 cm−2 s−1. Its kinematic coverage will be comple-
mentary to the experiments at JLab and the EIC at BNL.

In this paper, we perform a global analysis of the Collins
asymmetries in SIDIS and SIA measurement within the
TMD factorization to extract the transversity distribution
functions and the Collins fragmentation functions. As will
be shown, there is a hint of negative ū transversity
distribution with about 2 standard deviations away from
zero, while the d̄ transversity distribution is consistent with
zero according to the current accuracy from existing world
data. Furthermore, we quantitatively study potential
improvement of the EicC, which was claimed to have
significant impact on the measurement of sea quark
distributions. The remaining paper is organized as follows.
In Sec. II, we briefly summarize the theoretical framework
for the extraction of transversity distribution functions and
Collins FFs from SIDIS and SIA data, leaving some
detailed formulas in the appendixes. In Sec. III, we present
the global analysis of world data, followed by an impact
study of the EicC projected pseudodata in Sec. IV. A
summary is provided in Sec. V.

II. THEORETICAL FORMALISM

In this section, the asymmetries originated from trans-
versity TMDs and Collins FFs in SIDIS and SIA processes
will be briefly reviewed, including the TMD evolution
formalism to be adopted in the analysis.

A. Collins asymmetry in SIDIS

The SIDIS process is

eðlÞ þ NðPÞ → eðl0Þ þ hðPhÞ þ X; ð1Þ

where e denotes the incoming and outgoing lepton,N is the
nucleon, and h is the detected final-state hadron. The four-
momenta are given in the parentheses. Some commonly
used kinematic variables are defined as

x ¼ Q2

2P · q
; y ¼ P · q

P · l
; z ¼ P · Ph

P · q
; γ ¼ 2xM

Q
;

ð2Þ

FIG. 1. The Trento convention for the definition of SIDIS
kinematic variables.
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where Q2 ¼ −q2 ¼ −ðl − l0Þ2 is the transferred four-
momentum square and M is the nucleon mass. Taking
the one-photon exchange approximation, we adopt the
virtual photon-nucleon frame, as illustrated in Fig. 1, and
for convenience introduce the transverse metric

gμν⊥ ¼ gμν −
qμPν þ Pμqν

P · qð1þ γ2Þ þ
γ2

1þ γ2

�
qμqν

Q2
−
PμPν

M2

�
ð3Þ

and the transverse antisymmetric tensor

ϵμν⊥ ¼ ϵμνρσ
Pρqσ

P · q
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

p ; ð4Þ

with the convention ϵ0123 ¼ 1. Then the transverse momen-
tum Ph⊥ and l⊥ and azimuthal angles ϕh and the ϕS can be
expressed in Lorentz invariant forms as

Ph⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμν⊥ PhμPhν

q
; ð5Þ

l⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμν⊥ lμlν

q
; ð6Þ

cosϕh ¼ −
lμPhνg

μν
⊥

l⊥Ph⊥
; sinϕh ¼ −

lμPhνϵ
μν
⊥

l⊥Ph⊥
; ð7Þ

cosϕS ¼ −
lμS⊥νg

μν
⊥

l⊥S⊥
; sinϕS ¼ −

lμS⊥νϵ
μν
⊥

l⊥S⊥
; ð8Þ

where are known as the Trento conventions [47].

The differential cross section can be written as

dσ
dxdydzdϕhdϕsdP2

h⊥
¼ α2

xyQ2

y2

2ð1 − ϵÞ
�
1þ γ2

2x

�n
FUU;T þ ϵFUU;L þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ϵð1þ ϵÞ

p
cosðϕhÞFcosϕh

UU

þ ϵ cosð2ϕhÞFcos 2ϕh
UU þ λe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ϵð1 − ϵÞ

p
sinðϕhÞFsinϕh

LU þ Sjj
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ϵð1þ ϵÞ
p

sinðϕhÞFsinϕh
UL

þ ϵ sinð2ϕhÞFsin 2ϕh
UL

i
þ Sjjλe

h ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2

p
FLL þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ϵð1 − ϵÞ

p
cosðϕhÞFcosϕh

LL

i

þ jS⊥j½sinðϕh − ϕsÞðFsinðϕh−ϕsÞ
UT;T þ ϵFsinðϕh−ϕsÞ

UT;L Þ þ ϵ sinðϕh þ ϕsÞFsinðϕhþϕsÞ
UT

þ ϵ sinð3ϕh − ϕsÞFsinð3ϕh−ϕsÞ
UT þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ϵð1þ ϵÞ

p
sinðϕsÞFϕs

UT þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ϵð1þ ϵÞ

p
sinð2ϕh − ϕsÞFsinð2ϕh−ϕsÞ

UT �
þ jS⊥jλe

h ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2

p
cosðϕh − ϕsÞFcosðϕh−ϕsÞ

LT þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ϵð1 − ϵÞ

p
cosðϕsÞFcosϕs

LT

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ϵð1 − ϵÞ

p
cosð2ϕh − ϕsÞFcosð2ϕh−ϕsÞ

LT

io
; ð9Þ

where α is the electromagnetic fine structure constant, λe is
the lepton helicity, Sjjð⊥Þ is the nucleon polarization, and the
structure functions F are corresponded to different azimu-
thal modulations indicated by the superscripts and polari-
zation configurations indicated by the subscripts. The third
subscript appearing in some terms represents the polariza-
tion of the virtual photon, and the ratio of the longitudinal
and the transverse photon flux is given by

ϵ ¼ 1 − y − 1
4
γ2y2

1 − yþ 1
2
y2 þ 1

4
γ2y2

: ð10Þ

For an unpolarized lepton beam scattered from a trans-
versely polarized nucleon, the SSA can be measured by
flipping the transverse polarization of the nucleon as

AUT ¼ 1

jS⊥j
dσðϕh;ϕsÞ − dσðϕh;ϕs þ πÞ
dσðϕh;ϕsÞ þ dσðϕh;ϕs þ πÞ ¼

σ−UT

σþUT
; ð11Þ

where

σþUT ¼ FUU;T þ ϵFUU;L þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ϵð1þ ϵÞ

p
cosðϕhÞFcosϕh

UU

þ ϵ cosð2ϕhÞFcos 2ϕh
UU ; ð12Þ

σ−UT ¼ sinðϕh − ϕsÞðFsinðϕh−ϕsÞ
UT;T þ ϵFsinðϕh−ϕsÞ

UT;L Þ
þ ϵ sinðϕh þ ϕsÞFsinðϕhþϕsÞ

UT

þ ϵ sinð3ϕh − ϕsÞFsinð3ϕh−ϕsÞ
UT

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ϵð1þ ϵÞ

p
sinðϕsÞFϕs

UT

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ϵð1þ ϵÞ

p
sinð2ϕh − ϕsÞFsinð2ϕh−ϕsÞ

UT : ð13Þ
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After separating different azimuthal modulations, one can
extract the Collins asymmetry as

ϵAsinðϕhþϕsÞ
UT ¼ 2

R
dϕSdϕh sinðϕh þ ϕSÞσ−UTR

dϕSdϕhσ
þ
UT

¼ ϵFsinðϕhþϕsÞ
UT

FUU;T þ ϵFUU;L
: ð14Þ

In this work, we neglect the term FUU;L and, thus,

AsinðϕhþϕsÞ
UT ¼ FsinðϕhþϕsÞ

UT

FUU;T
: ð15Þ

To implement the TMD evolution, we perform the
transverse Fourier transform, and the Ph⊥-dependent struc-
ture functions can be expressed in terms of distribution and
fragmentation functions in b space as

FUU;T ¼ C½f1D1�

¼ x
X
q

e2q
2π

Z
∞

0

bJ0ðbPh⊥=zÞf1;q←Nðx; bÞ

×D1;q→hðz; bÞdb; ð16Þ

FsinðϕhþϕSÞ
UT ¼ C

�
ĥ · pT
zMh

h1H⊥
1

�

¼ x
X
q

Mhe2q
2π

Z
∞

0

b2J1ðbPh⊥=zÞh1;q←Nðx; bÞ

×H⊥
1;q→hðz; bÞdb; ð17Þ

where f1 is the unpolarized distribution function, D1 is the
unpolarized FF, h1 is the transversity distribution, and H⊥

1

is the Collins FF, with q running over all active quark
flavors: u, d, s, ū, d̄, and s̄, and eq being the charge. The
transverse momentum convolution, denoted by C½� � ��, is
defined as

C½wfD� ¼ x
X
q

e2q

Z
d2pTd2k⊥δð2ÞðpT þ zk⊥ − Ph⊥Þ

× wðpT; k⊥Þfq←Nðx; k⊥ÞDq→hðz; pTÞ: ð18Þ

Here b is the Fourier conjugate variable to the transverse
momentum of parton, k⊥ is the transverse momentum of
the quark inside the nucleon, pT is the transverse momen-
tum of the final-state hadron with respect to the parent
quark momentum, and ĥ ¼ Ph⊥=jPh⊥j represents the trans-
verse direction of the final-state hadron. More details of
these expressions are given in Appendixes B and C.

B. Collins asymmetries in SIA

Considering the SIA process

eþðleþÞ þ e−ðle−Þ → h1ðPh1Þ þ h2ðPh2Þ þ X; ð19Þ

one can introduce the variables zi ¼ 2Phi · q=Q (i ¼ 1, 2)
with q¼ leþ þ le− andQ2 ¼ q2. With one-photon exchange
approximation, the differential cross section can be
expressed in terms of the structure functions Fh1h2

uu and
Fh1h2
Collins as

d5σ
dz1dz2d2Ph⊥d cos θ

¼ 3πα2

2Q2
z21z

2
2½ð1þ cos2 θÞFh1h2

uu

þ sin2 θ cosð2ϕ0ÞFh1h2
Collins�: ð20Þ

As illustrated in Fig. 2, θ is the polar angle between the
hadron h2 and the beam of eþe−, ϕ0 is the azimuthal angle
from the lepton plane to the hadron plane, and Ph⊥ is the
transverse momentum of hadron h1.
When the two hadrons are nearly back to back, where the

TMD factorization is appropriate, one can express the
structure functionsFh1h2

uu andFh1h2
Collins in terms of TMDFFs as

Fh1h2
uu ¼ C½D1D1� ¼

1

2π

X
q

e2q

Z
J0ðPh⊥b=z1Þ

×D1;q→h1ðz1; bÞD1;q̄→h2ðz2; bÞbdb; ð21Þ

Fh1h2
Collins ¼ C

�
2ðĥ · p1TÞðĥ · p2TÞ − p1T · p2T

z1z2Mh1Mh2

H⊥
1 H

⊥
1

�

¼ Mh1Mh2

2π

X
q

e2q

Z
J2ðPh⊥b=z1Þ

×H⊥
1;q→h1

ðz1; bÞH⊥
1;q̄→h2

ðz2; bÞb3db; ð22Þ

where the transverse momentum convolution C½� � �� is
defined as

FIG. 2. The reference frame for the SIA process.
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C½wDD� ¼
X
q

e2q

Z
d2p1T
z21

d2p2T
z22

δð2Þ
�
−
p1T
z1

−
p2T
z2

þ Ph⊥
z1

�

× wðp1T; p2TÞDq→h1ðz1; p1TÞDq̄→h2ðz2; p2TÞ:
ð23Þ

More details are provided in Appendix C.
In order to extract Collins effect corresponding to the

cos 2ϕ0 azimuthal dependence, one can rewritten the
differential cross section (20) as

d5σ
dz1dz2d2 Ph⊥d cos θ

¼ 3πα2z21z
2
2

2Q2
ð1þ cos2 θÞFh1h2

uu Rh1h2 ;

ð24Þ

where

Rh1h2ðz1; z2; θ; Ph⊥Þ ¼ 1þ cosð2ϕ0Þ
sin2 θ

1þ cos2 θ
Fh1h2
Collins

Fh1h2
uu

:

ð25Þ

The Ph⊥-integrated modulation can be accordingly
defined as

Rh1h2ðz1; z2; θÞ

¼ 1þ cosð2ϕ0Þ
sin2 θ

1þ cos2 θ

R
dPh⊥Ph⊥Fh1h2

CollinsR
dPh⊥Ph⊥Fh1h2

uu
: ð26Þ

To reduce the systematic uncertainty caused by false
asymmetry, the ratio between the hadron pair production
with unlike sign, labeled by “U,” and that with like sign,
labeled by “L,” is usually measured in experiment.
Following the above formalism, it can be written as

RUL ¼ RU

RL ¼
1þ cosð2ϕ0Þ hsin2 θi

h1þcos2 θiPU

1þ cosð2ϕ0Þ hsin2 θi
h1þcos2 θiPL

≃ 1þ cosð2ϕ0Þ
hsin2 θi

h1þ cos2 θi ðPU − PLÞ

¼ 1þ cosð2ϕ0ÞAUL
0 ; ð27Þ

where

PUðz1; z2; Ph⊥Þ ¼
FU
Collins

FU
uu

; ð28Þ

PLðz1; z2; Ph⊥Þ ¼
FL
Collins

FL
uu

; ð29Þ

PUðz1; z2Þ ¼
R
dPh⊥Ph⊥FU

CollinsR
dPh⊥Ph⊥FU

uu
; ð30Þ

PLðz1; z2Þ ¼
R
dPh⊥Ph⊥FL

CollinsR
dPh⊥Ph⊥FL

uu
; ð31Þ

and

AUL
0 ¼ hsin2 θi

h1þ cos2 θi ðPU − PLÞ ð32Þ

is referred to as the Collins asymmetry in the SIA process.
For ππ channels, one has

FU
uu ¼ Fπþπ−

uu þ Fπ−πþ
uu ; ð33Þ

FL
uu ¼ Fπþπþ

uu þ Fπ−π−
uu ; ð34Þ

FU
Collins ¼ Fπþπ−

Collins þ Fπ−πþ
Collins; ð35Þ

FL
Collins ¼ Fπþπþ

Collins þ Fπ−π−
Collins; ð36Þ

for KK channels, one has

FU
uu ¼ FKþK−

uu þ FK−Kþ
uu ; ð37Þ

FL
uu ¼ FKþKþ

uu þ FK−K−
uu ; ð38Þ

FU
Collins ¼ FKþK−

Collins þ FK−Kþ
Collins; ð39Þ

FL
Collins ¼ FKþKþ

Collins þ FK−K−

Collins; ð40Þ

and for Kπ channels, one has

FU
uu ¼ FπþK−

uu þ Fπ−Kþ
uu þ FKþπ−

uu þ FK−πþ
uu ; ð41Þ

FL
uu ¼ FπþKþ

uu þ Fπ−K−
uu þ FKþπþ

uu þ FK−π−
uu ; ð42Þ

FU
Collins ¼ FπþK−

Collins þ Fπ−Kþ
Collins þ FKþπ−

Collins þ FK−πþ
Collins; ð43Þ

FL
Collins ¼ FπþKþ

Collins þ Fπ−K−

Collins þ FKþπþ
Collins þ FK−π−

Collins: ð44Þ

C. TMD evolution formalism

The TMD evolution is implemented in the b space. There
are two types of energy dependence in TMDs, namely,
(μ,ζ), where μ is the renormalization scale related to the
corresponding collinear parton distribution functions
(PDFs) and FFs, and ζ serves as a cutoff scale to regularize
the light-cone singularity in the operator definition of
TMDs. In order to minimize the uncertainty from the scale
dependence, the scales are usually set as μ2 ¼ ζ ¼ Q2.
Besides, for a fixed order perturbative expansion, one will
find terms containing ½αs ln2ðQbÞ�n and ½αs lnðQbÞ�n at the
nth order in powers of the strong coupling constant αs. To
ensure accurate predictions in perturbation theory, we have
to resum these large logarithms of all orders into an
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evolution factor R½b; ðμi; ζiÞ → ðQ;Q2Þ�, which is deter-
mined by the equations

μ2
dFðx; b; μ; ζÞ

dμ2
¼ γFðμ; ζÞ

2
Fðx; b; μ; ζÞ; ð45Þ

ζ
dFðx; b; μ; ζÞ

dζ
¼ −Dðb; μÞFðx; b; μ; ζÞ; ð46Þ

where γFðμ; ζÞ and Dðb; μÞ are, respectively, the TMD
anomalous dimension and the rapidity anomalous dimen-
sion, and F stands for some TMD function, i.e., f1ðx; b;

μ; ζÞ, h1ðx; b; μ; ζÞ, D1ðz; b; μ; ζÞ, or H⊥
1Tðz; b; μ; ζÞ in this

work. By solving the equations above, the TMD evolution
can be expressed as a path integral from ðμi; ζiÞ to ðQ;Q2Þ as

R½b; ðμi; ζiÞ → ðQ;Q2Þ�

¼ exp

�Z
P

�
γFðμ; ζÞ

μ
dμ −

Dðμ; bÞ
ζ

dζ

��
: ð47Þ

Then one can formally relate the TMD functions between
(Q;Q2) and (μi, ζi) via

f1ðx; b;Q;Q2ÞD1ðz; b;Q;Q2Þ ¼ R2½b; ðμi; ζiÞ → ðQ;Q2Þ�f1ðx; b; μi; ζiÞD1ðz; b; μi; ζiÞ;
h1ðx; b;Q;Q2ÞH⊥

1Tðz; b;Q;Q2Þ ¼ R2½b; ðμi; ζiÞ → ðQ;Q2Þ�h1ðx; b; μi; ζiÞH⊥
1Tðz; b; μi; ζiÞ;

D1ðz; b;Q;Q2ÞD1ðz; b;Q;Q2Þ ¼ R2½b; ðμi; ζiÞ → ðQ;Q2Þ�D1ðz; b; μi; ζiÞD1ðz; b; μi; ζiÞ;
H⊥

1Tðz; b;Q;Q2ÞH⊥
1Tðz; b;Q;Q2Þ ¼ R2½b; ðμi; ζiÞ → ðQ;Q2Þ�H⊥

1Tðz; b; μi; ζiÞH⊥
1Tðz; b; μi; ζiÞ: ð48Þ

The evolution factor R is path independent if the
complete perturbative expansion is taken into account,
and then one can, in principle, arbitrarily choose the path
P in Eq. (47). However, this property is compromised when
the perturbative expansion is truncated, while it is evident
that the discrepancies from path to path diminish as more
terms are incorporated in the perturbative expansions. The
precision for the perturbative calculation of the factors in
powers of αs in evolution of this work is summarized in
Table I.
In the ζ prescription [48], a special path P is suggested,

so that Eq. (47) has a simple form:

R½b; ðμi; ζiÞ → ðQ;Q2Þ� ¼
�

Q2

ζμðQ; bÞ
�

−DðQ;bÞ
; ð49Þ

where ζμðQ; bÞ is determined by solving the equation

d ln ζμðμ; bÞ
d ln μ2

¼ γFðμ; ζμðμ; bÞÞ
2Dðμ; bÞ ð50Þ

with the boundary conditions

Dðμ0; bÞ ¼ 0; γFðμ0; ζμðμ0; bÞÞ ¼ 0; ð51Þ

where Dðμ; bÞ is expressed as

Dðμ; bÞ ¼ Dresumðμ; b�Þ þ dNPðbÞ; ð52Þ

with dNPðbÞ ¼ c0bb�, and ζμðμ; bÞ is expressed as

ζμðμ; bÞ ¼ ζpertμ ðμ; bÞe−b2=B2
NP

þ ζexactμ ðμ; bÞð1 − e−b
2=B2

NPÞ: ð53Þ

The free parameters are set as BNP ¼ 1.93 GeV−1 and c0 ¼
0.0391 GeV2 as determined in [48] by fitting unpolarized
SIDIS and Drell-Yan data. More details on Dðμ; bÞ and
ζμðμ; bÞ can be found in Appendix A.

D. Unpolarized TMD PDFs and FFs

According to the phenomenological Ansätze in Ref. [48],
the unpolarized TMDs and FFs can be written as

f1;f←hðx; b; μi; ζiÞ ¼
X
f0

Z
1

x

dy
y
Cf←f0 ðy; b; μPDFOPEÞ

× f1;f0←h

�
x
y
; μPDFOPE

�
fNPðx; bÞ;

D1;f→hðz; b; μi; ζiÞ ¼
1

z2
X
f0

Z
1

z

dy
y
y2Cf→f0 ðy; b; μFFOPEÞ

× d1;f0→h

�
z
y
; μFFOPE

�
DNPðz; bÞ; ð54Þ

where fNPðx; bÞ and DNPðz; bÞ are nonperturbative func-
tions, f1;f0←hðx; μÞ and d1;f0→hðz; μÞ are collinear PDFs and
FFs, and Cf←f0 ðy; b; μÞ and Cf→f0 ðy; b; μÞ are matching
coefficients calculated via the operator product expansion
methods [49].

TABLE I. The precision of various factors in powers of αs for
the evolution.

Evolution Γcusp γV Dresum ζpertμ ζexactμ

NNLO α3s α2s α2s α1s α1s
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The CðCÞ functions are taken into account up to the one-
loop order, with explicit expressions given in Appendix D.
The evolution scales μPDFOPE and μFFOPE within the ζ prescrip-
tion can be written as [48]

μPDFOPE ¼ 2e−γE

b
þ 2 GeV; ð55Þ

μFFOPE ¼ 2e−γEz
b

þ 2 GeV; ð56Þ

and the 2 GeV is a large-b offset of μOPE which is a typical
reference scale for PDFs and FFs. The parametrized form
of the nonperturbative functions fNPðx; bÞ and DNPðz; bÞ
can be adopted as [48]

fNPðx; bÞ ¼ exp

�
−
λ1ð1 − xÞ þ λ2xþ xð1 − xÞλ5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ λ3xλ4b2
p b2

�
;

ð57Þ

DNPðz; bÞ ¼ exp

�
−
η1zþ η2ð1 − zÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ η3ðb=zÞ2

p b2

z2

��
1þ η4

b2

z2

�
;

ð58Þ

where the parameters λ and η are extracted from the fit of
unpolarized SIDIS and Drell-Yan data, specifically at low
transverse momentum. Their values are listed in Table II.

III. EXTRACTION OF TRANSVERSITY
DISTRIBUTIONS AND COLLINS FFs

In this section, we present the global analysis of the SIDIS
and SIA data using the above theoretical formalism. The
transversity distribution functions and the Collins FFs are
parametrized at an initial energy scale. A χ2 minimization is
then performed to simultaneously determine the parameters
for the transversity distributions and Collins FFs. For the
uncertainty estimation, we use the replica method.
According to Eq. (15) and the evolution equation (48),

the Collins asymmetry in SIDIS process can be written as

AsinðϕhþϕsÞ
UT ¼ Mh

P
qe

2
q

R∞
0

bdb
2π bJ1

�
bjPh⊥j

z

�
R2ðb;QÞh1;q←h1ðx; bÞH⊥

1;q→h2
ðz; bÞ

P
qe

2
q

R∞
0

bdb
2π J0

�
bjPh⊥j

z

�
R2ðb;QÞf1;q←h1ðx; bÞD1;q→h2ðz; bÞ

; ð59Þ

where μi and ζi dependencies are suppressed for concise expressions. The same convention is used in the following

discussions. The world SIDIS Collins asymmetry data AsinðϕhþϕsÞ
UT in the analysis are summarized in Table III.

Similarly, according to Eqs. (21), (22), (23), and (48), the Collins asymmetry in the SIA process is written as

AUL
0 ¼ hsin2 θi

h1þ cos2 θi ðPU − PLÞ; ð60Þ

where

Pαðz1; z2; Ph⊥Þ ¼
P

α
h1;h2

P
qe

2
q

R∞
0 dbb3Mh1Mh2J2ðPh⊥b=z1ÞR2ðb;QÞH⊥

q→h1
ðz1; bÞH⊥̄

q→h2
ðz2; bÞP

α
h1;h2

P
qe

2
q

R∞
0 dbbJ0ðPh⊥b=z1ÞR2ðb;QÞD1;q→h1ðz1; bÞD1;q̄→h2ðz2; bÞ

; ð61Þ

where α ¼ UðLÞ represents the final-state hadron h1 and h2 in unlike sign (like sign). The world SIA Collins asymmetry
data AUL

0 in the analysis are summarized in Table IV.
The transversity distribution functions and the Collins FFs in Eqs. (59) and (61) can be expressed into a similar form to

the unpolarized ones in Eq. (54) as

TABLE II. The values of the parameters for nonperturbative
functions in Eqs. (57) and (58). Their units are in GeV2 except for
λ4, which is dimensionless.

λ1 λ2 λ3 λ4 λ5

0.198 9.30 431 2.12 −4.44

η1 η2 η3 η4

0.260 0.476 0.478 0.483

ROLE OF SEA QUARKS IN THE NUCLEON TRANSVERSE SPIN PHYS. REV. D 109, 056002 (2024)

056002-7



h1;q←hðx; bÞ ¼
X
q0

Z
1

x

dy
y
Cq←q0 ðy; b; μ0Þ

× h1;q0←h

�
x
y
; μ0

�
hNPðx; bÞ; ð62Þ

H⊥
1;q→hðz; bÞ ¼

1

z2
X
q0

Z
1

z

dy
y
y2Cq→q0 ðy; b; μ0Þ

× Ĥð3Þ
1;q0→h

�
z
y
; μ0

�
HNPðz; bÞ; ð63Þ

where hNPðx; bÞ and HNPðz; bÞ are nonperturbative func-

tions, h1;q0←hðx; μ0Þ and Ĥð3Þ
1;q0→hðz; μ0Þ are collinear trans-

versity distribution functions and twist-3 FFs, and μ0 is
chosen as 2 GeV. The coefficients CðCÞ are considered at
the leading order [50]:

CðCÞq←q0 ¼ δqq0δð1 − yÞ: ð64Þ

Then we have

h1;q←pðx; bÞ ¼ h1;q←pðx; μ0ÞhNPðx; bÞ; ð65Þ

H⊥
1;q→hðz; bÞ ¼

1

z2
Ĥð3Þ

1;q→hðz; μ0ÞHNPðz; bÞ; ð66Þ

where h1;q←pðx; bÞ are the transversity distributions of the
proton,while the transversity distributions of the neutron, the
deuteron, and the 3He are approximated by h1;q←pðx; bÞ
assuming the isospin symmetry and neglecting the nuclear
modification, with explicit relations provided inAppendixE.
Then we parametrize h1;q←pðx; μ0Þ and Ĥð3Þ

1;q→hðz; μ0Þ as

h1;u←pðx; μ0Þ ¼ Nu
ð1 − xÞαuxβuð1þ ϵuxÞ

nðβu; ϵu; αuÞ
× f1;u←pðx; μ0Þ; ð67Þ

h1;d←pðx; μ0Þ ¼ Nd
ð1 − xÞαdxβdð1þ ϵdxÞ

nðβd; ϵd; αdÞ
× f1;d←pðx; μ0Þ; ð68Þ

h1;ū←pðx; μ0Þ ¼ Nū
ð1 − xÞαū xβūð1þ ϵūxÞ

nðβū; ϵū; αūÞ
× ðf1;u←pðx; μ0Þ − f1;ū←pðx; μ0ÞÞ; ð69Þ

TABLE III. The world SIDIS data used in our analysis.

Dataset Target Beam Data points Reaction Measurement

COMPASS [23] 6LiD 160 GeV μþ 92 μþd → μþπþX Asinðϕhþϕs−πÞ
UT

μþd → μþπ−X
μþd → μþKþX
μþd → μþK−X

COMPASS [24] NH3 160 GeV μþ 92 μþp → μþπþX Asinðϕhþϕs−πÞ
UT

μþp → μþπ−X
μþp → μþKþX
μþp → μþK−X

HERMES [22] H2 27.6 GeV e� 80 e�p → e�πþX AsinðϕhþϕsÞ
UT

e�p → e�π−X
e�p → e�KþX
e�p → e�K−X

JLab [25] 3He 5.9 GeV e− 8 e−n → e−πþX ϵAsinðϕhþϕsÞ
UT

e−n → e−π−X
JLab [26] 3He 5.9 GeV e− 5 e−3He → e−KþX ϵAsinðϕhþϕsÞ

UT
e−3He → e−K−X

TABLE IV. The world SIA data used in our analysis.

Dataset Energy Dependence Data points Reaction

BELLE [27] 10.58 GeV z 16 eþe− → ππX
BABAR [28] 10.6 GeV z 36 eþe− → ππX

Ph⊥ 9 eþe− → ππX
BABAR [29] 10.6 GeV z 48 eþe− → ππX

z eþe− → πKX
z eþe− → KKX

BESIII [30] 3.68 GeV z 6 eþe− → ππX
Ph⊥ 5 eþe− → ππX

TABLE V. Free parameters for the transversity parametrizations.

Transversity r β ϵ α N

u ru βu ϵu αu Nu
d rd βd ϵd αd Nd
ū rsea 0 0 0 Nū

d̄ rsea 0 0 0 Nd̄
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h1;d̄←pðx; μ0Þ ¼ Nd̄
ð1 − xÞαd̄ xβd̄ð1þ ϵd̄xÞ

nðβd̄; ϵd̄; αd̄Þ
× ðf1;d←pðx; μ0Þ − f1;d̄←pðx; μ0ÞÞ; ð70Þ

Ĥð3Þ
1;q→hðz; μ0Þ ¼ Nh

q
ð1 − zÞαhqzβhqð1þ ϵhqzÞ

nðβhq; ϵhq;αhqÞ
; ð71Þ

where f1;q←pðx; μ0Þ are collinear unpolarized PDFs. We
did not impose the Soffer bound [51] while parametrizing
the transversity functions, leaving space to test it by
experimental data. The nonperturbative functions hNP
and HNP for each flavor take the same form as fNP and
DNP in Eqs. (57) and (58). However, since the existing
world data with limited amount are not precise enough to
determine so many parameters, we simplify the paramet-
rization form by setting η2 ¼ η1 for the each Collins FF,

TABLE VI. Free parameters for the parametrizations of Collins
FFs. The label “f” and “u” stand for favored and unfavored,
respectively.

Collins η1 η3 η4 β ϵ α N

πfav ηπ1f ηπ3f ηπ4f βπf 0 απf Nπ
f

πunf ηπ1u ηπ3u ηπ4u βπu 0 απu Nπ
u

Kfav ηK1f 0 ηK4f βKf 0 αKf NK
f

Kunf ηK1u 0 ηK4u βKu 0 αKu NK
u

TABLE VII. The values of free parameters out of the fit to the
world SIDIS and SIA data. The central values are the averaged
result from 1000 replicas, and the uncertainties are the standard
deviation from 1000 replicas. The values of r and η are provided
in unit of GeV2 and the others are unitless.

Transversity Value Collins Value Collins Value

ru 0.12þ0.04
−0.04 ηπ1f 0.06þ0.02

−0.01 βKu 9.18þ15.5
−7.59

rd 0.14þ0.85
−0.11 ηπ3f 0.09þ0.12

−0.03 απf 1.83þ0.45
−0.31

rsea 0.70þ1.43
−0.38 ηπ4f 3.27þ2.60

−0.77 απu 6.11þ0.85
−1.22

βu 1.13þ0.38
−0.32 ηπ1u 0.03þ0.01

−0.01 αKf 0.70þ1.68
−0.51

βd 3.43þ8.58
−1.74 ηπ3u 0.04þ0.02

−0.02 αKu 28.21þ44.14
−22.15

ϵu 0.17þ4.44
−1.42 ηπ4u 0.005þ0.013

−0.002 Nπ
f 0.007þ0.003

−0.002

ϵd 1.17þ4.47
−2.72 ηK1f 0.03þ0.03

−0.02 Nπ
u −3.83þ1.06

−4.00

αu 0.28þ1.04
−0.40 ηK4f 1.15þ5.71

−0.94 NK
f 0.06þ0.10

−0.04

αd 5.77þ28.18
−4.91 ηK1u 0.02þ0.08

−0.02 NK
u −0.02þ0.01

−0.05

Nu 0.34þ0.69
−0.36 ηK4u 0.71þ3.80

−0.61
Nd −1.37þ1.23

−3.60 βπf 2.82þ1.17
−0.64

Nū −0.12þ0.06
−0.46 βπu −0.23þ0.24

−0.34
Nd̄ 0.10þ0.47

−0.16 βKf −0.38þ1.31
−0.37

TABLE VIII. The χ2 values for different datasets. N is the number of data points for each experimental dataset.

SIDIS Dependence N χ2=N SIA Channel Dependence N χ2=N

COMPASS [23] x 36 1.2 BELLE [27] ππ z 16 0.9
COMPASS [23] z 32 0.7 BABAR [28] ππ z 36 0.7
COMPASS [23] Ph⊥ 24 1.3 BABAR [28] ππ Ph⊥ 9 1.8
COMPASS [24] x 36 1.3 BABAR [29] ππ z 16 0.7
COMPASS [24] z 32 0.9 BABAR [29] πK z 16 0.7
COMPASS [24] Ph⊥ 24 0.7 BABAR [29] KK z 16 0.6
HERMES [22] x 28 0.8 BESIII [30] ππ z 6 3.3
HERMES [22] z 28 1.0 BESIII [30] ππ Ph⊥ 5 0.9
HERMES [22] Ph⊥ 24 0.9
JLab [25,26] x 13 1.1

Total 277 0.99 120 0.95

FIG. 3. Comparison of HERMES Collins asymmetry data [22]
to theoretical calculations for πþ, π−, Kþ, and K− productions
from a proton target. The green lines are the central value
calculated from the fit, and the bands represent the one standard
deviation of the calculated asymmetries by using 1000 replicas.
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λ1 ¼ λ2 ¼ r and λ3 ¼ λ4 ¼ λ5 ¼ 0 for the transversity
distribution of each flavor. Furthermore, we use the same
rū ¼ rd̄ ¼ rsea for ū and d̄ transversity distributions and set
the s and s̄ transversity distributions to zero. The factor

nðβ; ϵ;αÞ ¼ Γðαþ 1Þð2þ αþ βþ ϵþ ϵβÞΓðβþ 1Þ
Γðβþ αþ 3Þ ð72Þ

is introduced to reduce the correlation between the param-
eters controlling the shape and the normalization.
Because of the limited number of independent observ-

ables, the Collins functions are assumed to be favored and
unfavored cases for pion and kaon, as follows:

H⊥
1;u→πþ ¼H⊥

1;d̄→πþ ¼H⊥
1;d→π− ¼H⊥

1;ū→π− ≡Hπ
fav;

H⊥
1;d→πþ ¼H⊥

1;ū→πþ ¼H⊥
1;u→π− ¼H⊥

1;d̄→π−
¼H⊥

1;s→πþ

¼H⊥
1;s̄→πþ ¼H⊥

1;s→π− ¼H⊥
1;s̄→π− ≡Hπ

unf;

H⊥
1;u→Kþ ¼H⊥

1;ū→K− ¼H⊥
1;s̄→Kþ ¼H⊥

1;s→K− ≡HK
fav;

H⊥
1;d→Kþ ¼H⊥

1;d̄→Kþ ¼H⊥
1;d→K− ¼H⊥

1;d̄→K− ¼H⊥
1;ū→Kþ

¼H⊥
1;u→K− ¼H⊥

1;s→Kþ ¼H⊥
1;s̄→K− ≡HK

unf: ð73Þ

As listed in Tables V and VI, there are in total 35 free
parameters in this fit.
Because of limited statistics and phase space coverage,

many experimental data were analyzed in one-dimensional
binning in variables of x, z, and/or Ph⊥, respectively.

FIG. 4. Comparison of COMPASS Collins asymmetry data
[24] to theoretical calculations for πþ, π−, Kþ, and K− produc-
tions from a proton target. The markers and bands have the same
meaning as in Fig. 3.

FIG. 5. Comparison of COMPASS Collins asymmetry data
[23] to theoretical calculations for πþ, π−, Kþ and K− produc-
tions from a deuteron target. The markers and bands have the
same meaning as in Fig. 3.

FIG. 6. Comparison of JLab Collins asymmetry data [25,26] to theoretical calculations for πþ, π−, Kþ and K− productions from a 3He
target. The asymmetries for πþ and π− productions in the left panel have been extracted at the neutron level, while the kaon results are at
3He level due to limited statistics. The markers and bands have the same meaning as in Fig. 3.

FIG. 7. Comparison of BELLE ππ channel Collins asymmetry
data [27] to theoretical calculations in the SIA process. The
markers and bands have the same meaning as in Fig. 3.
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In order to maximally use the data information from
binning in different kinematic variables and meanwhile
to avoid a duplicate usage of the same dataset, we assign a
weight factor when calculating the χ2 from each dataset.
The COMPASS and HERMES datasets are given the
weight of 1=3, since the binnings in x, z, and Ph⊥ are
provided, respectively, from the same collected events. The
BABAR [28] and BESIII data are given the weight of 1=2,
since the binnings in z and Ph⊥ are provided, respectively,
from the same events.
To estimate the uncertainty, we randomly shift the central

values of the data points by Gaussian distributions with the
Gaussian widths given by the experimental uncertainties
and then perform a fit to the smeared data. By repeating this
procedure, we create 1000 replicas. The central values of
the parameters together with their uncertainties out of the fit

are listed in Table VII. The total χ2=N of the fit and its value
for various experimental datasets are listed in Table VIII.
Here, N denotes the number of experimental data points.
The comparisons between experimental data and the
theoretical calculations using the 1000 replicas are shown
in Figs. 3–10.
The first transverse moment of Collins FF H⊥ð1Þ

1 ðzÞ and
that of the transversity distribution h1ðxÞ are defined,
respectively, as

H⊥ð1Þ
1 ðzÞ ¼

Z
d2pT

p2
T

2z2M2
h

H⊥
1 ðz; pTÞ; ð74Þ

h1ðxÞ ¼
Z

d2k⊥h1ðx; k⊥Þ: ð75Þ

FIG. 8. Comparison of BABAR ππ channel Collins asymmetry data [28] to theoretical calculations in the SIA process as a function of z
(left) and Ph⊥ (right). The markers and bands have the same meaning as in Fig. 3.

FIG. 9. Comparison of BABAR ππ, Kπ, and KK channels
Collins asymmetry data [29] to theoretical calculations in the SIA
process. The markers and bands have the same meaning
as in Fig. 3.

FIG. 10. Comparison of BESIII ππ channel Collins asymmetry
data [30] to theoretical calculations in the SIA process as a
function of z (left) and Ph⊥ (right). The markers and bands have
the same meaning as in Fig. 3.
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Their results are shown in Figs. 11 and 12. Considering the
uncertainty band, the fitting results out of the world data do
cross the Soffer bound at large x. However, one cannot
make a conclusion with current uncertainties. It needs to be
tested with precise data in the future. One can observe that

the ū transversity distribution favors a negative value about
2σ away from zero, while the d̄ transversity distribution is
consistent with zero in the 1σ band. The u and d trans-
versity distributions are consistent with previous global
analyses within the uncertainties.

FIG. 11. Collins functions as defined in Eq. (74) with the pT integral truncated at 1 GeVand Q ¼ 2 GeV. The green bands represent
the uncertainties of the fit to the world SIDIS and SIA data, the red bands represent the EicC projections with only statistical
uncertainties, and the blue bands represent the EicC projections including systematic uncertainties as described in the text.

FIG. 12. Transversity functions as defined in Eq. (75) with the k⊥ integral truncated at 1 GeV and Q ¼ 2 GeV. The green bands
represent the uncertainties of the fit to the world SIDIS and SIA data, the red bands represent the EicC projections with only statistical
uncertainties, and the blue bands represent the EicC projections including systematic uncertainties as described in the text. The Soffer
bound [51] which is calculated by using CT18NLO [53] unpolarized PDFs and D. de Florian, R. Sassot, M. Stratmann, and W.
Vogelsang (DSSV) [54] helicity PDFs is shown as black dashed curves.
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The tensor charge can be evaluated from the integral of
the transversity distributions as

δu ¼
Z

1

0

dxðhu1ðxÞ − hū1ðxÞÞ; ð76Þ

δd ¼
Z

1

0

dxðhd1ðxÞ − hd̄1ðxÞÞ; ð77Þ

and the isovector combination is given by

gT ¼ δu − δd: ð78Þ

The extracted tensor charges from our analysis are com-
pared with the results from previous phenomenological

studies, lattice calculations, and Dyson-Schwinger equa-
tions are shown in Figs. 13 and 14. It is not a surprise that
the uncertainties of our result are larger than those from
previous phenomenological studies of SIDIS and SIA data,
because we include more flavors, ū and d̄, and, thus, the
functions are less constrained. We note that the negative ū
transversity distribution shift δu as well as gT to a greater
value, though with large uncertainties. The tension between
lattice QCD calculations and TMD phenomenological
extractions disappears when the antiquark transversity
distributions are taken into account. In previous works,
such tension was found to be resolved by imposing the
lattice data in the fit [35,40,42].

IV. EicC PROJECTIONS ON TRANSVERSITY
DISTRIBUTIONS AND COLLINS FFs

The EicC SIDIS pseudodata are produced by the
Monte Carlo event generator SIDIS-RC EvGen [52], in which
the unpolarized SIDIS differential cross section used in the
generator is derived from a global fit to the multiplicity data
from HERMES and COMPASS experiments. Based on the
EicC conceptual design, the electron beam energy is
3.5 GeV, the proton beam energy is 20 GeV, and the
3He beam energy is 40 GeV. Physical cuts Q2 > 1 GeV2,
0.3 < z < 0.7, W > 5 GeV, and W0 > 2 GeV are adopted
to select events in the deep inelastic region. We estimate the
statistics by assuming 50 fb−1 for ep collisions and 50 fb−1
for e3He collisions. Based on the designed instantaneous

FIG. 13. Tensor charge for u quark and d quark from our study
at 68% C.L. along with the results from Dyson-Schwinger
equation calculations [55–57], lattice QCD calculations [6–11],
and phenomenological extractions from data [33–35,37–
41,58,59].

FIG. 14. Tensor charge gT from our study at 68% C.L. along
with the results from Dyson-Schwinger equation calculations
[55–57], lattice QCD calculations [5–9,60–63], and phenomeno-
logical extractions from data [33–35,37–41,58,59].

FIG. 15. Kinematic distributions of the EicC pseudodata in x −
Q2 (left) and z − Ph⊥ (right) planes. Each bin is plotted as a point
at the bin center kinematic values. The blue points are the proton
data with δ < 0.3, the red points are the neutron data with
δ < 0.3, and the gray points are the data with δ > 0.3.

TABLE IX. Free parameters for the transversity parametriza-
tion for the fit to EicC pseudodata.

Transversity r β ϵ α N

u ru βu ϵu αu Nu
d rd βd ϵd αd Nd
ū rsea 0 0 0 Nū

d̄ rsea 0 0 0 Nd̄

s rsea 0 0 0 Ns
s̄ rsea 0 0 0 Ns̄
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luminosity of 2 × 1033 cm−2 s−1, it is estimated that
50 fb−1 of accumulated luminosity can be attained in
approximately one year of operation. Keeping the statistical
uncertainty at 10−3 level, we obtain 4627 data points in
four-dimensional bins in x, Q2, z, and Ph⊥. The EicC
pseudodata provide significantly more data points with
higher precision, enabling us to impose more rigorous
kinematic cuts for a more precise selection of data in the
TMD region. In this study, only small transverse momen-
tum data with δ ¼ jPh⊥j=ðzQÞ < 0.3 are selected. After
applying this data selection cut, there are 1347 EicC
pseudodata points left. The distributions of all 4627 EicC
pseudodata points are shown in Fig. 15, where the colored
points are selected in the fit while the gray ones are not.
The Collins asymmetry values of the EicC pseudodata are
calculated using the central value of the 1000 replicas
from the fit to the world data. For systematic uncertainties,
we assign 3% relative uncertainty for the proton data
mainly due to the precision from beam polarimetry and
5% relative uncertainty for the neutron data mainly due to
the precision from beam polarimetry and nuclear effects.
Total uncertainties are evaluated via the quadrature
combination of statistical uncertainties and systematic
uncertainties.
The precise EicC data with wide kinematics coverage

allow us to adopt a more flexible parametrization of the
transversity functions. Therefore, we open the channels of s
and s̄ transversity functions in the fit with the following
parametrizations:

h1;s←pðx; bÞ ¼ Ns
ð1 − xÞαsxβsð1þ ϵsxÞ

nðβs; ϵs; αsÞ
expð−rseab2Þ

× ðf1;u←pðx; μ0Þ − f1;ū←pðx; μ0ÞÞ; ð79Þ

h1;s̄←pðx; bÞ ¼ Ns̄
ð1 − xÞαs̄ xβs̄ð1þ ϵs̄xÞ

nðβs̄; ϵs̄; αs̄Þ
expð−rseab2Þ

× ðf1;u←pðx; μ0Þ − f1;ū←pðx; μ0ÞÞ: ð80Þ

Then, we have 37 free parameters for the EicC pseudodata
fit, as listed in Tables IX and VI. To estimate the impact of
the EicC on the extraction of the transversity distribution
functions and Collins FFs, we perform a simultaneous fit to
the world data and the EicC pseudodata as described above.
Following the same procedure, 300 replicas are created by
randomly shifting the values according to the simulated
statistical uncertainty and total uncertainty, respectively.

The EicC projections for H⊥ð1Þ
1 ðzÞ, h1ðxÞ, and tensor

charges are shown in Figs. 11–14, respectively. The trans-
verse momentum distribution of the Collins and trans-
versity functions are shown in Figs. 16 and 17 via slices at
various x and z values. While considering the dominant
systematic sources, the statistical uncertainty still domi-
nates the results, so the blue band (obtained including
systematic uncertainty) and red band (obtained with only
statistical uncertainty) almost coincide. The mean value of
transversity functions for u and d quark with different Q is
shown in Fig. 18, where one can observe that the

FIG. 16. The transverse momentum distribution of the Collins functions at different z values and Q ¼ 2 GeV. The green bands
represent the uncertainties of the fit to the world SIDIS and SIA data, the red bands represent the EicC projections with only statistical
uncertainties, and the blue bands represent the EicC projections including systematic uncertainties as described in the text.
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transversity functions are expected to have stronger signals
in the kinematics region covered by the EicC.

V. SUMMARY

In this paper, we present a global analysis of transversity
distribution functions and Collins FFs by simultaneously
fitting to SIDIS and SIA data within the TMD factorization.
Nonzero ū and d̄ transversity distributions are taken into
account. The result favors a negative ū transversity dis-
tribution with a significance of 2 standard deviations, while
no hint is found for nonvanishing d̄ transversity distribution
with the current accuracy. The results of u and d trans-
versity distributions and the results of Collins FFs are
consistent with previous phenomenological analyses by
other groups. The tensor charges evaluated from the
moment of transversity distributions out of the global data
fit are consistent with lattice QCD calculations as well as
other global fits within the uncertainties, and, thus, no

FIG. 18. The mean value of transversity functions for u and d
quark as defined in Eq. (75) with different Q2.

FIG. 17. The transverse momentum distribution of the transversity functions at different x values and Q ¼ 2 GeV. The green bands
represent the uncertainties of the fit to the world SIDIS and SIA data, the red bands represent the EicC projections with only statistical
uncertainties, and the blue bands represent the EicC projections including systematic uncertainties as described in the text.

ROLE OF SEA QUARKS IN THE NUCLEON TRANSVERSE SPIN PHYS. REV. D 109, 056002 (2024)

056002-15



tension exists between lattice calculation and TMD extrac-
tions once antiquark contributions are taken into account.
We note that these findings are based on the exploratory
measurements worldwide. To make decisive conclusions,
data with high precision in a wide phase space coverage are
desired, which can be achieved at the future JLab programs
and the EICs.
Based on the fit of existing world data, we investigated

the impact of the proposed EicC on the extraction of
transversity TMDs and the Collins FFs. With the EicC
pseudodata, one can extract the transversity functions at
high precision for various quark flavors and, thus, deter-
mine the proton tensor charge with precision comparable to
the lattice calculations.
Moreover, the precise and wide kinematics coverage of

the EicC pseudodata allows us to use much more flexible
parametrizations, which can minimize the bias on the
transversity function, and have a cleaner selection of data
for TMDs study by applying a more strict requirement on
δ≡ jPh⊥j=ðzQÞ to restrict data in the low transverse
momentum region, suitable for the application of TMD
factorization. The proposed EicC SIDIS program will fill
the kinematics gap between the coverage by the JLab 12-
GeV program and by the EIC at BNL. Combining all these
measurements, we will be able to have a complete physical
picture of the three-dimensional structures of the nucleon.
On the other hand, in the x −Q2 region covered by the
EicC, the transverse single spin asymmetries caused by
transversity distributions are expected to have significant
signals based on our current knowledge. This would be an
advantage for the study of nucleon structures at a collider
with a moderate center-of-mass energy [64].
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APPENDIX A: EVOLUTION AND
RESUMMATION

Through the integrability condition (also known as the
Collins-Soper equation [65])

ζ
d
dζ

γFðμ; ζÞ ¼ −μ
d
dμ

Dðμ; bÞ ¼ −ΓcuspðμÞ; ðA1Þ

the anomalous dimension γFðμ; ζÞ can be written as

γFðμ; ζÞ ¼ ΓcuspðμÞ ln
�
μ2

ζ

�
− γVðμÞ; ðA2Þ

where ΓcuspðμÞ is the cusp anomalous dimension and γVðμÞ
is the finite part of the renormalization of the vector form
factor. These factors can be expanded using a series
expansion in terms of the strong coupling constant αs:

ΓcuspðμÞ ¼
X∞
n¼0

anþ1
s Γn; ðA3Þ

γVðμÞ ¼
X∞
n¼1

ansγn; ðA4Þ

where as ¼ αs=ð4πÞ. When μ ≫ ΛQCD, the coefficients Γn

and γn can be calculated via perturbative QCD order by
order, and up to two-loop order, they are

Γ0 ¼ 4CF; ðA5Þ

Γ1 ¼ 4CF

��
67

9
−
π2

3

�
CA −

20

9
TRNf

�
; ðA6Þ

γ1 ¼ −6CF; ðA7Þ

γ2 ¼ C2
Fð−3þ 4π2 − 48ζ3Þ

þ CFCA

�
−
961

27
−
11π2

3
þ 52ζ3

�

þ CFTRNf

�
260

27
þ 4π2

3

�
; ðA8Þ

where CF ¼ 4=3, CA ¼ 3, and TR ¼ 1=2 are color factors
of the SU(3) and ζ3 ≈ 1.202 is the Apéry constant. The
number of active quark flavors is set as Nf ¼ 4 in this work
ignoring heavy quark contributions.
Meanwhile, the integrability condition Eq. (A1) is

satisfied with the renormalization group equation

μ2
dDðμ; bÞ

dμ2
¼ ΓcuspðμÞ

2
; ðA9Þ

and consequently the rapidity anomalous dimension
Dðμ; bÞ can be calculated at small b perturbatively with
a similar expression in power of as:

Dpertðμ; bÞ ¼
X∞
n¼0

ansdnðLμÞ; ðA10Þ
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where

Lμ ¼ ln

�
μ2b2

4e−2γE

�
; ðA11Þ

with the Euler-Mascheroni constant γE. The function
dnðLμÞ can be expressed up to two-loop order as

d0ðLμÞ ¼ 0; ðA12Þ

d1ðLμÞ ¼
Γ0

2
Lμ; ðA13Þ

d2ðLμÞ ¼
Γ0

4
β0L2

μ þ
Γ1

2
Lμ þ d2ð0Þ; ðA14Þ

where

d2ð0Þ ¼ CFCA

�
404

27
− 14ζ3

�
112

27
TRNfCF: ðA15Þ

To improve the convergence properties ofDpertðμ; bÞ, we
employ the resummed expression. The resummed expres-
sion Dresum can be obtained by adopting the approach
outlined in [66]:

Dresumðμ; bÞ ¼ −
Γ0

2β0
lnð1 − XÞ þ as

2β0ð1 − XÞ
�
−
β1Γ0

β0
ðlnð1 − XÞ þ XÞ þ Γ1X

�

þ a2s
ð1 − XÞ2

�
Γ0β

2
1

4β30
ðln2ð1 − XÞ − X2Þ þ β1Γ1

4β20
ðX2 − 2X − 2 lnð1 − XÞÞ

þ Γ0β2
4β20

X2 −
Γ2

4β0
XðX − 2Þ þ CFCA

�
404

27
− 14ζ3

�
−
112

27
TRNfCF

�
; ðA16Þ

where X ¼ β0asLμ and the QCD β function can be
expressed as

βðαsÞ ¼ −2αs
X∞
n¼1

βn−1

�
αs
4π

�
n
; ðA17Þ

β0 ¼
11

3
CA −

4

3
TRNf;

β1 ¼
34

3
C2
A −

20

3
CATRNf − 4CFTRNf;

β2 ¼
2857

54
C3
A þ

�
2C2

F −
205

9
CFCA −

1415

27
C2
A

�
TRNf

þ
�
44

9
CF þ 158

27
CA

�
T2
RN

2
f: ðA18Þ

Dresum is valid only in the small-b region. Therefore, a
nonperturbative function is required to model the large-b
contribution, which is adopted as dNP with the form of a
linear function according to Refs. [67–71]:

dNPðbÞ ¼ c0bb�; ðA19Þ

where

b� ¼ bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2=B2

NP

p : ðA20Þ

For arbitrary large b, one has b� < BNP and b� ≈ b for
small b. Finally, Dðμ; bÞ can be expanded as

Dðμ; bÞ ¼ Dresumðμ; b�Þ þ dNPðbÞ: ðA21Þ

According to the ζ prescription [48], the TMD evolution
can be written as the following simple form:

R½b; ðμi; ζiÞ → ðQ;Q2Þ� ¼
�

Q2

ζμðQ; bÞ
�

−DðQ;bÞ
; ðA22Þ

where ζμðQ; bÞ is obtained by solving the equation

d ln ζμðμ; bÞ
d ln μ2

¼ γFðμ; ζμðμ; bÞÞ
2Dðμ; bÞ ; ðA23Þ

with using Eq. (A21) as an input and the boundary
conditions

Dðμ0; bÞ ¼ 0; γFðμ0; ζμðμ0; bÞÞ ¼ 0: ðA24Þ

In order to utilize the perturbative solution in the small-b
region for ζμðμ; bÞ, we apply the formulas as in Ref. [72]:

ζμðμ; bÞ ¼ ζpertμ ðμ; bÞe−b2=B2
NP

þ ζexactμ ðμ; bÞð1 − e−b
2=B2

NPÞ: ðA25Þ

The perturbative solution of Eq. (A23) can be written as

ζpertμ ðμ; bÞ ¼ 2μe−γE

b
e−vðμ;bÞ; ðA26Þ

which is consistent with the pQCD result by construction
[73]. Up to two-loop order, vðμ; bÞ can be written as
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vðμ; bÞ ¼ γ1
Γ0

þ as

�
β0
12

L2
μ þ

γ2 þ d2ð0Þ
Γ0

−
γ1Γ1

Γ2
0

�
: ðA27Þ

And, according to the approach in Ref. [72], ζexactμ ðμ; bÞ can be written as

ζexactμ ðμ; bÞ ¼ μ2e−gðμ;bÞ=Dðμ;bÞ: ðA28Þ

Up to two-loop order, gðμ; bÞ can be written as

gðμ; bÞ ¼ 1

as

Γ0

2β20

	
e−p − 1þ pþ as

�
β1
β0

�
e−p − 1þ p −

p2

2

�
−
Γ1

Γ0

ðe−p − 1þ pÞ þ β0γ1
Γ0

p

�

þ a2s

��
Γ2
1

Γ2
0

−
Γ2

Γ0

�
ðcoshp − 1Þ þ

�
β1Γ1

β0Γ0

−
β2
β0

�
ðsinhp − pÞ þ

�
β0γ2
Γ0

−
β0γ1Γ1

Γ2
0

�
ðep − 1Þ

�

; ðA29Þ

where

p ¼ 2β0Dðμ; bÞ
Γ0

: ðA30Þ

APPENDIX B: FOURIER TRANSFORMS
FOR PDFs AND FFs

The Fourier transforms for PDFs and FFs are

f1ðx; k⊥Þ ¼
1

4π2

Z
eib·k⊥f1ðx; bÞd2b

¼ 1

2π

Z þ∞

0

J0ðbk⊥Þf1ðx; bÞbdb; ðB1Þ

f1ðx; bÞ ¼
Z

e−ib·k⊥f1ðx; k⊥Þd2k⊥

¼ 2π

Z þ∞

0

J0ðbk⊥Þf1ðx; k⊥Þk⊥dk⊥; ðB2Þ

h1ðx; k⊥Þ ¼
1

4π2

Z
eib·k⊥h1ðx; bÞd2b

¼ 1

2π

Z þ∞

0

J0ðbk⊥Þh1ðx; bÞbdb; ðB3Þ

h1ðx; bÞ ¼
Z

e−ib·k⊥h1ðx; k⊥Þd2k⊥

¼ 2π

Z þ∞

0

J0ðbk⊥Þh1ðx; k⊥Þk⊥dk⊥; ðB4Þ

D1ðz; zp⊥Þ ¼
1

4π2

Z
e−ib·p⊥D1ðz; bÞd2b

¼ 1

2π

Z þ∞

0

J0ðbp⊥ÞD1ðz; bÞbdb; ðB5Þ

D1ðz; bÞ ¼
Z

eib·p⊥D1ðz; zp⊥Þd2p⊥

¼ 2π

Z þ∞

0

J0ðbp⊥ÞD1ðx; zp⊥Þp⊥dp⊥; ðB6Þ

p⊥
Mh

H⊥
1 ðz;zp⊥Þ¼

1

4π2

Z
e−ib·p⊥ibMhH⊥

1 ðz;bÞd2b;

H⊥
1 ðz;zp⊥Þ¼

M2
h

2πp⊥

Z
∞

0

J1ðbp⊥Þb2H⊥
1 ðz;bÞdb; ðB7Þ

iMhbH⊥
1 ðz; bÞ ¼

Z
eib·p⊥

p⊥
Mh

H⊥
1 ðz; zp⊥Þd2p⊥;

H⊥
1 ðz; bÞ ¼

2π

M2
hb

Z
∞

0

J1ðbp⊥Þp2⊥H⊥
1 ðz; zp⊥Þdp⊥;

ðB8Þ

where hadron h and flavor q dependencies in TMDs are
omitted for convenience in Appendix B and p⊥ is the
transverse momentum of the final-state quark.
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APPENDIX C: EXPRESSION OF STRUCTURE FUNCTIONS

For the SIDIS process, we have

FUU;T ¼ C½f1D1�

¼ x
X
q

e2q

Z
d2pTd2k⊥δð2ÞðpT þ zk⊥ − Ph⊥Þf1;q←h1ðx; k⊥ÞD1;q→h2ðz; pTÞ

¼ x
X
q

e2q
4π2

Z
d2p⊥d2k⊥d2beib·ðp⊥−k⊥þPh⊥=zÞf1;q←h1ðx; k⊥ÞD1;q→h2ðz; zp⊥Þ

¼ x
X
q

e2q
2π

Z
∞

0

bJ0ðbPh⊥=zÞf1;q←h1ðx; bÞD1;q→h2ðz; bÞdb; ðC1Þ

FsinðϕhþϕSÞ
UT ¼ C

�
ĥ · pT
zMh

h1H⊥
1

�

¼ x
X
q

e2q

Z
d2pTd2k⊥δð2ÞðpT þ zk⊥ − Ph⊥Þ

ĥ · pT
zMh

h1;q←h1ðx; k⊥ÞH⊥
1;q→h2

ðz; pTÞ

¼ −x
X
q

e2q
4π2

Z
d2bd2p⊥d2k⊥eib·p⊥e−ib·k⊥eib·Ph⊥=z ĥ · p⊥

Mh
h1;q←h1ðx; k⊥ÞH⊥

1;q→h2
ðz; zp⊥Þ

¼ x
X
q

e2q

Z
∞

0

Mh

2π
J1ðbPh⊥=zÞb2h1;q←h1ðx; bÞH⊥

1;q→h2
ðz; bÞdb; ðC2Þ

where one uses the following equation:

−p⊥ ¼ pT=z; Ph⊥ ¼ pT þ zk⊥: ðC3Þ

For the SIA process, we have

Fh1h2
uu ¼ C½D1D1�

¼
X
q

e2q

Z
d2p1T
z21

d2p2T
z22

δð2Þ
�
−
p1T
z1

−
p2T
z2

þ Ph⊥
z1

�
D1;q→h1ðz1; p1TÞD1;q̄→h2ðz2; p2TÞ

¼ 1

4π2
X
q

e2q

Z
d2p1⊥d2p2⊥eib·ðp1⊥þp2⊥þPh⊥=z1ÞD1;q→h1ðz1; z1p1⊥ÞD1;q̄→h2ðz2; z2p2⊥Þd2b

¼ 1

2π

X
q

e2q

Z
J0ðPh⊥b=z1ÞD1;q→h1ðz1; bÞD1;q̄→h2ðz2; bÞbdb; ðC4Þ

Fh1h2
Collins ¼ C

�
2ðĥ · p1TÞðĥ · p2TÞ − p1T · p2T

z1z2Mh1Mh2

H⊥
1 H

⊥
1

�

¼ 2Fh1h2
col1 − Fh1h2

col2

¼ Mh1Mh2

2π

X
q

e2q

Z
J2ðPh⊥b=z1ÞH⊥

1;q→h1
ðz1; bÞH⊥

1;q̄→h2
ðz2; bÞb3db; ðC5Þ

where
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Fh1h2
col1 ¼

X
q

e2q

Z
d2p1T
z21

d2p2T
z22

δð2Þ
�
−
p1T
z1

−
p2T
z2

þ Ph⊥
z1

�
ĥ · p1T
z1Mh1

H⊥
1;q→h1

ðz1; p1TÞ
ĥ · p2T
z2Mh2

H⊥
1;q̄→h2

ðz2; p2TÞ

¼
X
q

e2q

Z
d2p1⊥d2p2⊥δð2Þ

�
p1⊥ þ p2⊥ þ Ph⊥

z1

�
ĥ · p1⊥
Mh1

H⊥
1;q→h1

ðz1; z1p1⊥Þ
ĥ · p2⊥
Mh2

H⊥
1;q̄→h2

ðz2; z2p2⊥Þ

¼ Mh1Mh2

2π

X
q

e2q

Z
∞

0

db b3ðJ2ðbPh⊥=z1Þ − J1ðbPh⊥=z1Þ=ðbPh⊥=z1ÞÞH⊥
1;q→h1

ðz1; bÞH⊥
1;q̄→h2

ðz2; bÞ; ðC6Þ

Fh1h2
col2 ¼

X
q

e2q

Z
d2p1T
z21

d2p2T
z22

δð2Þ
�
−
p1T
z1

−
p2T
z2

þ Ph⊥
z1

�
p1T · p2T

z1z2Mh1Mh2

H⊥
1;q→h1

ðz1; p1TÞH⊥
1;q̄→h2

ðz2; p2TÞ

¼
X
q

e2q

Z
d2p1⊥d2p2⊥δð2Þ

�
p1⊥ þ p2⊥ þ Ph⊥

z1

�
p1⊥ · p2⊥
Mh1Mh2

H⊥
1;q→h1

ðz1; z1p1⊥ÞH⊥
1;q̄→h2

ðz2; z2p2⊥Þ

¼ −
Mh1Mh2

2π

X
a

e2q

Z
dbb3J0ðbPh⊥=z1ÞH⊥

1;q→h1
ðz1; bÞH⊥

1;q̄→h2
ðz2; bÞ; ðC7Þ

where JnðXÞ is Bessel functions and we use the following relation:

2
J1ðXÞ
X

¼ J2ðXÞ þ J0ðXÞ; ðC8Þ

and similar to Eq. (C3) one can have the following equation:

−p1⊥ ¼ p1T=z1; −p2⊥ ¼ p2T=z2;

Ph⊥=z1 ¼ p1T=z1 þ p2T=z2: ðC9Þ

APPENDIX D: EXPRESSION OF MATCHING
FUNCTIONS

For TMD PDFs, the coefficient function C up to NLO
is [48]

Cf←f0 ðx; b; μÞ ¼ δð1 − xÞδff0
þ asðμÞð−LμP

ð1Þ
f←f0 þ Cð1;0Þ

f←f0 Þ; ðD1Þ

where

Cð1;0Þ
q←q0 ðxÞ ¼ CF

�
2ð1 − xÞ − δð1 − xÞ π

2

6

�
δqq0 ; ðD2Þ

Cð1;0Þ
q←g ðxÞ ¼ 2xð1 − xÞ; ðD3Þ

Pð1Þ
q←q0 ðxÞ ¼ 2CF

�
2

ð1 − xÞþ
− 1 − xþ 3

2
δð1 − xÞ

�
δqq0 ;

ðD4Þ

Pð1Þ
q←gðxÞ ¼ 1 − 2xþ 2x2: ðD5Þ

For TMD FFs, the matching coefficient C up to NLO
follows the same pattern as in Eq. (D1) with the

replacement of the PDF Dokshitzer-Gribov-Lipatov-

Altarelli-Parisi (DGLAP) kernels Pð1Þ
f←f0 ðxÞ by the FF

DGLAP kernels [74]:

Pð1Þ
q→q0 ðzÞ ¼

2CF

z2

�
1þ z2

1 − z

�
þ
δqq0 ; ðD6Þ

Pð1Þ
q→gðzÞ ¼ 2CF

z2
1þ ð1 − zÞ2

z
; ðD7Þ

and the replacement of Cð1;0Þ
f←f0 ðxÞ by [48]

Cð1;0Þ
q→q0 ðzÞ ¼

CF

z2

�
2ð1 − zÞ þ 4ð1þ z2Þ ln z

1 − z

− δð1 − zÞ π
2

6

�
δqq0 ; ðD8Þ

Cð1;0Þ
q→g ðzÞ ¼ 2CF

z2

�
zþ 2ð1þ ð1 − zÞ2Þ ln z

z

�
: ðD9Þ

The “þ” prescription is defined as

Z
1

x0

dx½gðxÞ�þfðxÞ ¼
Z

1

0

dxgðxÞ½fðxÞΘðx − x0Þ − fð1Þ�;

ðD10Þ

where Θðx − x0Þ is the Heaviside step function.
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APPENDIX E: TRANSVERSITY FUNCTION
WITH DIFFERENT TARGET

The isospin symmetry is also assumed to relate the
transversity function of the neutron and the transversity
function of the proton as (μi and ζi dependencies in TMDs
are omitted for convenience)

h1;u←nðx; bÞ ¼ h1;d←pðx; bÞ;
h1;ū←nðx; bÞ ¼ h1;d̄←pðx; bÞ;
h1;d←nðx; bÞ ¼ h1;u←pðx; bÞ;
h1;d̄←nðx; bÞ ¼ h1;ū←pðx; bÞ;
h1;s←nðx; bÞ ¼ h1;s←pðx; bÞ;
h1;s̄←nðx; bÞ ¼ h1;s̄←pðx; bÞ: ðE1Þ

Since a free neutron target is not available for SIDIS
experiments, the polarized deuteron and polarized 3He are
commonly used to obtain parton distributions in the
neutron. As an approximation, the transversity functions

of the deuteron and the 3He are set via the weighted
combination of the proton transversity function and the
neutron transversity function. For a deuteron, the trans-
versity function is expressed as

h1;q←dðx; bÞ ¼
Pn
dh1;q←nðx; bÞ þ Pp

dh1;q←pðx; bÞ
2

; ðE2Þ

where Pn
d ¼ Pp

d ¼ 0.925 are effective polarizations of the
neutron and the proton in a polarized deuteron [75].
Similarly, the transversity function of a 3He is

h1;q←3Heðx;bÞ¼
Pn
Heh1;q←nðx;bÞþ2Pp

Heh1;q←pðx;bÞ
3

; ðE3Þ

where Pn
He ¼ 0.86 and Pp

He ¼ −0.028 are effective polar-
izations of the neutron and the proton in a polarized
3He [76].
This parametrization setup is applied for both the fit to

world SIDIS data and the fit to EicC pseudodata.
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