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The B-mesogenesis framework anticipates decays of B mesons into a dark antibaryon Ψ and various
Standard Model baryons. Here, we focus on the exclusive decay process B → pΨ observed as a proton and
missing energy in the final state and determine the decay width by employing the QCD light-cone sum rule
framework. We include all contributions up to twist six to the nucleon distribution amplitudes in order to
parametrize the nonperturbative effects in the operator product expansion. We obtain the decay width and
branching fraction with respect to the mass mΨ of the dark antibaryon Ψ.
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I. INTRODUCTION

Although the Standard Model of particle physics (SM) is
up to date the best established theoretical framework to
describe particle interactions, it lacks explanations for
many observed phenomena like the baryon asymmetry
or the dark matter abundance of the Universe. Hints on the
matter-antimatter asymmetry of the Universe can, for
instance, be deduced from measurements of the cosmic
microwave background [1,2] or big bang nucleosynthesis
[3,4]. In general, there exist many different theoretical
approaches in the literature which try to address these
problems from a theoretical point of view. However, the
typical scales involved in these scenarios lie around the
Planck scale and are, therefore, hard to verify experimen-
tally. The B-mesogenesis model proposed in [5–8] has
emerged as an elegant solution to these puzzles, as its
features become apparent at measurable energy scales.
Previous studies suggest that the decay B → hadronsþ

Ψ is expected to possess appreciable branching fractions
with an inclusive width of the order of 10−4 [5,6,8,9]. To
explore the feasibility of detecting these modes, a deeper
investigation of separate exclusive decay channels becomes
important. The original work in [6] roughly estimated the
ratios of exclusive to inclusive widths utilizing phase-space
counting of quark states. But as it has been shown in [10] for
the two-particle decay B → pΨ and later for different decay
channels in [11], the QCD light-cone sum rule (LCSR)
approach is well suited to provide estimates for these
exclusive decays.

LCSRs were initially introduced in [12–14] and sub-
sequently applied to various hadronic matrix elements. In
[10], the hadronic B → p transition posed the central
challenge in the computation. In order to address this
problem, the authors have rather investigated the p → B
transition, as it differs only by a global phase to the desired
B → p decay. The advantage of inverting this transition lies
in the fact that they need to employ nucleon distribution
amplitudes to parametrize the nonperturbative contributions
in the LCSR approach, which are studied in greater detail in
[15–19] than B-meson distribution amplitudes. In addition
to that, similar computations have already been carried out
in the calculation of form factors for the Λb → p transition
[20], which are also applicable for the desired B → p
transition. However, only the leading-twist contributions
have been considered in order to obtain a first estimate for
the corresponding branching fractions.
Following the approach from [10], we also focus on the

specific two-body decay Bþ → pþ Ψ but include all
contributions to the nucleon distribution amplitudes up to
twist six. This allows us to perform a dedicated study on the
reliability of the leading-twist contributions and the impact
of higher twist corrections on the decay width and branch-
ing fractions. Moreover, we obtain an estimate on the
convergence of the operator product expansion (OPE) itself.
This works is organized as follows: In Sec. II, we

introduce the formalism including the basic features of
the B-mesogenesis model relevant for the B → p transition.
Therein, we state the input parameters of the model as well
as the effective four-fermion operators with the new dark
matter particle Ψ. Furthermore, Sec. III is devoted to the
derivation of the LCSRs, while Sec. IV illustrates the
computation of the various OPE contributions. This leads to
the expressions for the various form factors, which we
extrapolate to the physical timelike region in Sec. V.
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Section VI introduces the parameters of the nucleon
distribution amplitude and their dependence on the renorm-
alization scale μ and subsequently shows the numerical
evaluation of these form factor expressions in Sec. VI A
and of the branching fractions in Sec. VI B. Finally, we
conclude in Sec. VII. Appendixes A and B provide further
supplemental information.

II. EFFECTIVE OPERATORS

As we have already pointed out, the decay B → pΨ is
one of the simplest decay channels which lead to the
introduction of a dark sector restoring baryon number
conservation by considering the combination of the SM
and the dark sector. In order for the dark matter particleΨ to
be observable and not to decay into SM particles immedi-
ately, it is allowed to only interact gravitationally with the
SM or via a heavy color-triplet scalar field Y with a mass of
the order of a few TeV. However, the hypercharge of the
scalar mediator particle Y is not unique; there exist, in
general, two different possibilities with QY ¼ −1=3 and
QY ¼ 2=3. Throughout this work, we focus on only the
model with QY ¼ −1=3 for simplicity, because these
considerations can be similarly applied to the second case.
The part of the Lagrangian governing the additional

interactions of the Y field with SM quarks and the dark
matter field Ψ is given by

LðQY¼−1=3Þ ¼ −yudϵijkY�iūjRd
ck
R − yubϵijkY�iūjRb

ck
R

− yΨdYiΨ̄dciR − yΨbYiΨ̄bciR þ H:c:; ð1Þ

with cðRÞ denoting charge conjugated (right-handed)
fields, qR ¼ 1

2
ð1þ γ5Þq, while i, j, and k indicate the

color indices of the quarks in fundamental representation.
Notice that we expect a completely antisymmetric combi-
nation of color charged fields in the interaction of Y with
SM quarks in order to preserve gauge invariance [5].
Additionally, the quantities yud; yΨd and yub; yΨb represent
the (antisymmetric) Yukawa couplings between the dark
sector and the SM sector.
Similar to [10], we exploit that the mass of the interaction

particle Y, MY , is much greater compared to the typical
momentum transfers of this decay k ∼mB and, therefore,
integrate out the heavy mediator Y. Effectively, the propa-
gator turns into

i
k2 −M2

Y
¼ −

i
M2

Y
·

�
1þ k2

M2
Y
þ � � �

�
≈ −

i
M2

Y
ð2Þ

such that we obtain the following effective Lagrangian
including four-fermion interactions:

LðQY¼−1=3Þ ¼
yubyΨd
M2

Y
iϵijkðΨ̄dciR ÞðūjRbckR Þ

þ y�uby
�
Ψd

M2
Y

iϵijkðb̄ciR ujRÞðd̄ckR ΨÞþ fd↔ bg: ð3Þ

We depict the corresponding Feynman diagram for the
effective interaction in Fig. 1.
From the expression in Eq. (3), we can immediately read

off the effective Hamiltonian

HðQY¼−1=3Þ ¼−
yubyΨd
M2

Y
iϵijkðΨ̄dciR ÞðūjRbckR Þ

−
y�uby

�
Ψd

M2
Y

iϵijkðb̄ciR ujRÞðd̄ckR ΨÞþfd↔ bg: ð4Þ

For the extraction of the effective three-quark operators
from the four-fermion interaction in Eq. (4), it is useful to
employ the Fierz identity [21]

Ψ̄dcR ¼ d̄RΨc; d̄cRΨ ¼ Ψ̄cdR: ð5Þ

After that, we factorize the field Ψ from the effective four-
fermion interaction and obtain

HðQY¼−1=3Þ ¼ −GðdÞŌðdÞΨc −G�
ðdÞΨ̄

cOðdÞ þ fd↔ bg ð6Þ

with the effective four-fermion coupling GðdÞ ¼ ðyubyΨdÞ=
M2

Y and define the local three-quark operator and its
conjugate

ŌðdÞ ¼ iϵijkðūiRbcjR Þd̄kR; OðdÞ ¼ iϵijkdiRðb̄cjR ukRÞ: ð7Þ

It is also possible for the b quark to couple to the dark matter
particle Ψ, which leads to the following operators:

ŌðbÞ ¼ iϵijkðūiRdcjR Þb̄kR; OðbÞ ¼ iϵijkbiRðd̄cjR ukRÞ: ð8Þ

In the remaining analysis, we consider the operators in
Eqs. (7) and (8) as two individual versions of the
B-mesogenesis model and call them (d) and (b) model,
respectively. This is in analogy to [6], where these operators
are referred to as “type-II” and “type-I” operators. These

FIG. 1. Diagram for the p → B transition taken from [10],
which differs from the B → p transition describing the B → pΨ
decay by an unobservable global phase. The mediator particle Y
has been integrated out such that we obtain an effective four-
fermion interaction containing the new dark matter particle Ψ.
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operators in Eqs. (7) and (8) constitute the central elements
of our framework, since the correlation function includes
these operators for the determination of the B → pΨ decay.
The decay amplitude for this particular decay in the (d)
version of the B-mesogenesis model is given by

AðdÞðBþ → pΨÞ ¼GðdÞhpðPÞΨcjŌðdÞjBþðPþqÞi
¼GðdÞhpðPÞjŌðdÞjBþðPþqÞiucΨðqÞ ð9Þ

and similarly for the (b) model if we replace the operator in
Eq. (9) by the corresponding operator from Eq. (8). We
choose the momentum assignment according to Fig. 1 such
that the on-shell conditions read ðPþ qÞ2 ¼ m2

B, p
2 ¼ m2

p,
and q2 ¼ m2

Ψ. Furthermore, we decompose the B → p
transition into the four different form factors

hpðPÞjŌðdÞjBþðPþ qÞi ¼ FðdÞ
B→pR

ðq2Þūp;RðPÞ
þFðdÞ

B→pL
ðq2Þūp;LðPÞ

þ F̃ðdÞ
B→pR

ðq2Þūp;RðPÞ
=q
mp

þ F̃ðdÞ
B→pL

ðq2Þūp;LðPÞ
=q
mp

: ð10Þ

Note that we introduce the factor 1=mp for the last two Dirac
structures to ensure that the form factors share the samemass
dimension. After replacing ðdÞ → ðbÞ, we obtain the cor-
responding form factors for the (b) model. These set of form
factors will be determined via the light-cone sum rule
approach in the following sections.

III. DERIVATION OF THE LIGHT-CONE
SUM RULES

The correlation function plays the key role in the
derivation of the light-cone sum rules, since it directly
connects the physical timelike region with the perturba-
tively calculable spacelike region via the quark-hadron
duality (QHD). Therefore, we begin this discussion by
stating the form of the correlation function which corre-
sponds to the effective framework introduced in the last
section:

ΠðdÞðP; qÞ ¼ i
Z

d4xeiðPþqÞ·xh0jTfjBðxÞ;OðdÞð0ÞgjpðPÞi;

ð11Þ

where jBðxÞ ¼ imbb̄ðxÞγ5uðxÞ is the B-meson current. For
the second version of the B-mesogenesis model, the
operator OðdÞ needs to be replaced by OðbÞ from Eq. (8).
Contrary to the discussion above, we investigate the p → B
transition rather than the necessary B → p transition for the
decay B → pΨ. These transitions differ at most by a global

phase which does not alter physical observables like decay
widths or branching fractions. One advantage is that we can
parametrize the long-distance contributions in terms of
nucleon light-cone distribution amplitudes (DAs), which
are better known than the B-meson DAs [15–19,22].
Especially the parameters of the nucleon DAs have been
determined to better accuracy by advanced lattice compu-
tations and sum rule analyses such that we can perform our
analysis to twist-six accuracy. In this context, the second
advantage is that we can closely follow the analysis for
Λb → p form factors from [20]. Although the currents
inside the correlation function differ for this problem, the
computation of the form factors requires one to use the same
distribution amplitudes. We state the decomposition of the
nucleon matrix element, its transformation into distribution
amplitudes of definite twist, and the relevant shape param-
eters in Appendix A.
The next step is to make use of the unitarity condition

and the Schwarz reflection principle. While the former
corresponds to the insertion of a complete set of states
inside Eq. (11), the latter expresses this correlation
function in terms of a dispersion relation in ðPþ qÞ2.
As is usually the case for transitions involving B mesons,
we can easily separate the ground state contribution in the
form of a B-meson pole. Beyond the threshold cutoff
sh ¼ ðmB þ 2mπÞ2, we observe hadronic contributions like
excited states and continuum contributions, which we
incorporate into the hadronic spectral density ρhðdÞ.
Employing the hadronic dispersion relation in ðPþ qÞ2,
we can access the form factors via

ΠðdÞðP; qÞ ¼ h0jjBjBþðPþ qÞihBþðPþ qÞjOðdÞjpðPÞi
m2

B − ðPþ qÞ2

þ
Z∞

sh

ds
ρhðdÞðs; P; qÞ
s − ðPþ qÞ2 : ð12Þ

Notice that we ignore possible subtraction terms in this
context, as they vanish during a Borel transformation,
which additionally suppresses the continuum contributions
and leads to a better convergence of the sum rules. The
correlation function in Eq. (11) consists of different
kinematical contributions, which are given by all possible
Lorentz-invariant amplitudes:

ΠðdÞðP; qÞ ¼ ΠðdÞ
R ððPþ qÞ2; q2Þup;RðPÞ

þ ΠðdÞ
L ððPþ qÞ2; q2Þup;LðPÞ

þ Π̃ðdÞ
R ððPþ qÞ2; q2Þ=qup;RðPÞ

þ Π̃ðdÞ
L ððPþ qÞ2; q2Þ=qup;LðPÞ: ð13Þ

Here, we use that the Dirac spinors up;fR;LgðPÞ are
the right-handed and left-handed components of the
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Dirac spinor upðPÞ, i.e., up;fR;LgðPÞ ¼ PfR;LgupðPÞ ¼
1
2
ð1� γ5ÞupðPÞ. Furthermore, contributions involving

structures like =Pup;fR;Lg can be included in the first two
lines of Eq. (13) due to the Dirac equation.
Based on the decomposition into different kinematical

contributions, we can derive individual dispersion relations
for the various form factors in Eq. (10). For this, we insert
(13) into Eq. (12) and group contributions according to
their different Dirac structures such that we can directly
access the individual form factors. For example, the
dispersion relation for the form factor FðdÞ

B→pR
ðq2Þ reads

ΠðdÞ
R ððPþqÞ2;q2Þ¼m2

BfBF
ðdÞ
B→pR

ðq2Þ
m2

B− ðPþqÞ2 þ
Z∞

sh

ds
ρhðdÞR ðs;q2Þ
s− ðPþqÞ2 ;

ð14Þ

where we exploit that h0jjBjBþi ¼ m2
BfB. In addition to

that, we decompose the hadronic spectral density ρhðdÞ
in terms of the decomposition in Eq. (13). The other
form factors can be obtained similarly by the following
replacements:

ΠðdÞ
R → ΠðdÞ

L ; Π̃ðdÞ
R ; Π̃ðdÞ

L ;

FðdÞ
B→pR

→ FðdÞ
B→pL

; m−1
p F̃ðdÞ

B→pR
; m−1

p F̃ðdÞ
B→pL

;

ρhðdÞR → ρhðdÞL ; ρ̃hðdÞR ; ρ̃hðdÞL : ð15Þ

Note that we introduce a factor of 1=mp in front of the form

factors FðdÞ
B→pR;L

ðq2Þ to obtain the correct mass dimensions.
Before heading to the calculation of the correlation func-
tion, which will be covered in the next section, we need to
find a proper expression for the hadronic spectral density.
All results from the next section can be expressed via a
dispersion relation of the OPE contributions, which we
compute in the deep spacelike region by employing

perturbative methods. For the amplitude ΠðdÞ
R , it takes

the form

ΠðdÞ;OPE
R ððPþ qÞ2; q2Þ ¼ 1

π

Z∞

m2
b

ds
ImΠðdÞ;OPE

R ðs; q2Þ
s − ðPþ qÞ2 ; ð16Þ

where we write ρðdÞ;OPER ¼ 1
π ImΠðdÞ;OPE

R . In order to remove
the hadronic spectral density, which is hard to describe
from a theoretical point of view due to its complicated
structure, we replace the integral over the hadronic spectral
density ρhðdÞ by an integral over the spectral density
obtained from the OPE 1

π ImΠðdÞ;OPE using the (semilocal)
quark-hadron duality

Z∞

sh

ds
ρhðdÞR ðs; q2Þ
s − ðPþ qÞ2 ¼

1

π

Z∞

sB
0

ds
ImΠðdÞ;OPE

R ðs; q2Þ
s − ðPþ qÞ2 : ð17Þ

This step introduces the effective threshold sB0 , which needs
to be determined in the numerical analysis, as it is an input
parameter in the sum rule framework.
Finally, we substitute Eq. (16) into Eq. (14) and perform

a Borel transformation in the variable ðPþ qÞ2 to arrive at
the desired form of the sum rules:

m2
BfBF

ðdÞ
B→pR

ðq2Þe−m2
B=M

2 ¼1

π

ZsB0

m2
b

dse−s=M
2

ImΠðdÞ;OPE
R ðs;q2Þ:

ð18Þ

As we have previously discussed, we obtain the other form
factors with the replacements from Eq. (15).

IV. CORRELATION FUNCTION

Now that we derived the form factors in terms of the sum
rules corresponding to Eq. (18), we can evaluate the OPE to
the desired twist accuracy and to leading order in αs:

ΠðdÞðP; qÞ ¼ −iεijkmb

Z
d4xeiðPþqÞ·x

× h0jTf½b̄ðxÞγ5uðxÞ�;
diRð0Þ½ðujRð0ÞÞTCbkRð0Þ�gjpðPÞi: ð19Þ

In order to apply light-cone sum rules, we need to work in
the phase-space region where ðPþ qÞ2 ≪ m2

b and q
2 ≪ m2

b
are valid, which means that the momenta of the involved
particles are far off shell. According to Fig. 1, the b quarks
inside the correlation function in Eq. (19) are connected to
form a b-quark propagator. This leaves us with a proton-
to-vacuum matrix element containing two uncontracted
u-quark fields as well as a d quark, which encodes the
nonperturbative information in the p → B transition.
Following the usual procedure of the light-cone sum rule
approach, we replace this matrix element by nucleon DAs by
decomposing the matrix element in terms of different
Lorentz structures based on Lorentz invariance and parity
invariance. We obtain in total 24 structures if we consider all
contributions up to twist-six accuracy, which can be sub-
sequently related to distribution amplitudes of definite twist.
We provide all details regarding this procedure and the
further parametrization of the shape of the distribution
amplitudes in the conformal expansion in Appendix A.
Contrary to previous investigations [10] (see also [11]),

we consider all contributions up to twist-six accuracy
including the Oðx2Þ corrections to the leading-twist con-
tributions. Oðx2Þ corrections to twist-four contributions,
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which correspond to a twist-six effect, are numerically negligible [16] and not considered in this work. By including this set
of contributions, we are able to estimate the reliability of the leading-twist analyses from [10], since we can study the
convergence of the OPE and observe the impact of higher twist corrections on the branching fraction of the B → pΨ decay
itself. We start the computation by reproducing the known leading-twist results from [10]:

ΠðdÞðP; qÞ ¼
�
−
mb

2

Z1

0

dα
ðð1 − αÞm2

p þ P · qÞðV1 þ A1ÞðαÞ
ðð1 − αÞPþ qÞ2 −m2

b

�
up;RðPÞ; ð20Þ

ΠðbÞðP; qÞ ¼
�
−
mbmp

4

Z1

0

dα
ð1 − αÞmpðV1 þ A1ÞðαÞ − 3mbT1ðαÞ

ðð1 − αÞPþ qÞ2 −m2
b

�
up;RðPÞ

−
�
mbmp

4

Z1

0

dα
ðV1 þ A1ÞðαÞ

ðð1 − αÞPþ qÞ2 −m2
b

�
=qup;LðPÞ: ð21Þ

In general, the nucleon DAs introduce three different
variables α1;2;3 representing the momentum fractions of
the individual quarks inside the proton. In Eqs. (20)
and (21), we have integrated over α2 and α3 and renamed
α ¼ α1. Moreover, we observe that for the (d) model only
one form factor contributes, while there is an additional
contribution for the (b) model from the Lorentz structure
=qup;LðPÞ. We state the leading-twist distribution ampli-
tudes V1, A1, and T1 in Appendix A, where we also
elaborate on the other higher twist distribution amplitudes
in more detail.
Scalar products of the form P · q are not suitable for

Borel transformations; hence, we replace them by

2P · q ¼ ðPþ qÞ2 −m2
p − q2: ð22Þ

This allows us to cancel the ðPþ qÞ2 dependence in the
denominators of Eqs. (20) and (21) after rewriting

ðð1 − αÞPþ qÞ2 ¼ ð1 − αÞðPþ qÞ2 þ αq2 − αð1 − αÞm2
p:

ð23Þ

Constant terms independent of ðPþ qÞ2 vanish under
the subsequent Borel transformation.
Higher twist corrections become more involved, because

they explicitly show x dependencies in the expressions. First

of all, they occur as explicit factors xμ in our calculation,
which we rewrite according to Table I as derivatives acting
on the momentum-conserving δ distribution. Besides that,
we deal with scalar products of the formP · x, which need to
be introduced in order to relate the 24 invariant functions Si,
Pi, Ai, Vi, and T i in the decomposition in Eq. (A1) to
distribution amplitudes of definite twist; see Appendix A
and, for instance, [15,16] for more details. An additional
partial integration with respect to the variable α removes
these factors, and we additionally notice that the occurring
surface terms vanish.
With these steps in mind, we can perform a similar

derivation of the form factors as in [10]. We intend to bring
the contributions from Eqs. (20) and (21), including now all
contributions up to twist six, into the form of an dispersion
integral. For this, we perform the following substitution
after using Eq. (23):

s ≔
m2

b − αq2 þ αð1 − αÞm2
p

1 − α
: ð24Þ

Finally, we need to perform the Borel transformation to
obtain the final form of the LCSRs for the form factors

BM2

1

ðsþQ2Þk ¼
1

ðk − 1Þ!
�

1

M2

�
k−1

e−s=M
2

; ð25Þ

TABLE I. Integration over the position variable x with additional factors of xμ starting at twist-four
accuracy. For brevity, we introduce the notation ᾱ ¼ 1 − α.

Twist 3
R
ddxeikxeiðPþqÞxe−iPαx ¼ ð2πÞdδðdÞðkþ qþ PᾱÞ

Twist 4, 5, 6
R
ddxeikxeiðPþqÞxe−iPαxxν ¼ −ið2πÞd ∂

∂kν δ
ðdÞðkþ qþ PᾱÞR

ddxeikxeiðPþqÞxe−iPαxxμxν ¼ ð−iÞ2ð2πÞd ∂

∂kμ
∂

∂kν δ
ðdÞðkþ qþ PᾱÞR

ddxeikxeiðPþqÞxe−iPαxxμxμ ¼ ð−iÞ2ð2πÞd ∂

∂kμ
∂

∂kμ
δðdÞðkþ qþ PᾱÞ
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where BM2 denotes the Borel transformation. In our case, we identifyQ2¼−ðPþqÞ2 and we encounter the cases k¼1, 2, 3.
This is related to the fact that the denominators in Eqs. (20) and (21) occur to higher powers if we consider the higher twist
corrections. Ultimately, this leads to a suppression of these factors in powers of 1=M2. Performing all these steps, for

instance for the FðdÞ
B→pR

ðq2Þ form factor, results into

FðdÞ
B→pR

ðq2Þ ¼ 1

m2
BfB

ZαB0
0

dαe
m2
B
−sðαÞ
M2

�
m3

b

4

�
1þ ᾱ2m2

p − q2

m2
b

� ðV1 þ A1ÞðαÞ
ᾱ2

−
m2

bmp

2

P1ðαÞ þ S1ðαÞ
ᾱ

þmbm2
p

4
ðV3ðαÞ − A3ðαÞÞ þ

m3
bm

2
p

4M2

Ṽ123ðαÞ − Ã123ðαÞ
ᾱ2

�
1þm2

pᾱ
2 − q2

m2
b

�
þm2

bm
3
p

2

S̃12ðαÞ − P̃21ðαÞ
ᾱM2

−
mbm2

p

4

Ṽ1345ðαÞ þ Ã1345ðαÞ
ᾱ

�
1þ m2

b

ᾱM2

�
þmbm2

p

4ᾱ2
ðÃM

1 − ṼM
1 Þ

�
1þ q2 −m2

pᾱ
2 þm2

b

ᾱM2

þ m2
b

ᾱ2M4
ðq2 −m2

pᾱ
2 −m2

bÞ
�
þmbm4

p

2

˜̃V123456ðαÞ − ˜̃A123456ðαÞ
ᾱM2

�
1þ m2

b

ᾱM2

��
: ð26Þ

We state the relevant notation and various functions in
Appendix A. Notice that we introduce the notation

ṼðαÞ ¼
Zα

0

dα0Vðα0Þ; ð27Þ

˜̃VðαÞ ¼
Zα

0

dα0
Zα0

0

dα00Vðα00Þ ð28Þ

to denote the distribution amplitudes which we integrate in
α once or twice in order to remove the scalar product P · x.
With the replacements from Eq. (15), we can derive similar
expressions for the other form factors. It turns out that
the (d) model receives additional contributions for the

F̃ðdÞ
B→pL

ðq2Þ form factor such that we end up with two
different form factors in each model. However, we note that
the T structures in the proton matrix element in the
decomposition (A1) result into sizable effects for the (b)
model, while they vanish in the (d) model. We provide the
remaining form factor in the (d) model and the form factors
for the (b) model in Appendix B.

V. EXTRAPOLATION TO THE
LARGE mΨ REGION

In the last section, we have obtained the form factors for
both the (d) and (b) models, which ultimately enter the
decay width for the process B → pΨ. These form factors
are valid in the limit q2 ≪ m2

b since we have used the light-
cone sum rule approach, meaning that we are still working
on the light cone with small distances. However, the
kinematics of this two-particle decay shows that the
upper bound of the particle mass mΨ is given by
mB −mp ≈ 4.34 GeV, while the lower bound lies around

mp in order to prevent proton decays [5,6,8]. Hence, the
mass of the dark matter particle Ψ is theoretically allowed
to be in the range mΨ ∼mb.
In order to extract reliable results from the form factors

expressions derived in the last section, we perform an
extrapolation of Eqs. (26) and (B1)–(B3) using the
Bourrely-Caprini-Lellouch version [23] of the z expansion
[24]. For this, we perform a conformal mapping of the
variable q2 onto the complex variable z:

zðq2Þ ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tþ −q2
q

−
ffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ− t0

p �
=
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tþ −q2
q

þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ− t0

p �

ð29Þ

with t0¼ðmBþmpÞ ·ð ffiffiffiffiffiffiffi
mB

p − ffiffiffiffiffiffiffimp
p Þ2 and t� ¼ mB �mp.

While t0 is a default parameter, usually chosen as above, in
order to minimize the truncation error of the z expansion, t�
are set by the physics of the decay. The parameter t− ¼
mB −mp is precisely the upper bound on mΨ dictated by
the two-particle decay of the B meson at rest, and tþ ¼
mB þmp constitutes the threshold for multiparticle states
and higher resonances. Starting from this threshold, the
timelike form factors become imaginary, which is also
represented by the variable z developing an imaginary part.
However, the choice of tþ introduces another subtlety,
namely, an isolated pole due to the Λb baryon at q2 ¼ m2

Λb
.

The treatment of these particular issues is further described
in [23] such that we finally end up with

FðdÞ
B→pR

ðq2Þ ¼ FðdÞ
B→pR

ð0Þ
1 − q2=m2

Λb

�
1þ bðdÞB→pR

�
zðq2Þ − zð0Þ

þ 1

2
½zðq2Þ2 − zð0Þ2�

��
: ð30Þ
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Here, it is sufficient to truncate the z expansion toOðz2Þ,
because the allowed range for the mass mΨ results in small
values of z in the interval 0.077 > z > −0.083. This leaves
us with two free parameters which we need to determine
further. These two parameters are given by the form factor
evaluated at q2 ¼ 0, which we can determine directly from

Eqs. (26) and (B1)–(B3), and the slope parameter bðdÞB→pR
,

which we get from the fitting procedure in the next section.
For the other form factors, one just has to perform the
replacement rule in Eq. (15) and additionally ðdÞ → ðbÞ.

VI. NUMERICAL ANALYSIS

The input parameters for the LCSRs are given in Table II.
We perform our analysis at a renormalization scale of
μ ¼ 3 GeV. This particular choice is in accordance with
recent studies on the B → π transition or B�Bπ strong
couplings [25,26], because these analyses indicate that this
scale and its uncertainty are optimally suited for B-meson
interpolating currents. Additionally, we adopt the b-quark
mass in the MS scheme and use the B-meson decay
constant obtained from recent lattice QCD computations
with nf ¼ 2þ 1þ 1 [27].
As Table II shows, the input parameters for the nucleon

distribution amplitude are extracted from different sources.
For example, a recent lattice calculation [22] determines
some input parameters at the scale μ0 ¼ 2 GeV, whereas a
LCSR computation [19] works at μ0 ¼

ffiffiffi
2

p
GeV. There-

fore, we make use of the following Renormalization Group
Equation (RGE) to run these parameters to required scale
μ ¼ 3 GeV:

d
d ln μ

φðμÞ ¼ −γφφðμÞ; ð31Þ

with γφ being the noncusp anomalous dimension for the
DA parameter φ. Its solution to one-loop order is given by

φðμÞ ¼ φðμ0Þ
�
lnðμ0=ΛQCDÞ
lnðμ=ΛQCDÞ

� γ0φ
2β0 ; ð32Þ

where γ0φ denotes the one-loop anomalous dimension. The
value for ΛQCD ¼ 0.288 GeV is taken from [29] for
nf ¼ 4. Analogously, Eq. (32) can be used in order to
run the remaining nucleon DA parameters to the desired
scale μ ¼ 3 GeV. This requires the one-loop noncusp
anomalous dimensions γ0φ for all parameters, which we
give in Table III following [19].
These parameters can be related to the parameters of the

conformal expansion via [19]

Au
1 ¼ φ10 þ φ11;

Vd
1 ¼

1

3
− φ10 þ

1

3
φ11;

fd1 ¼
3

10
−
1

6

fN
λ1

þ 1

5
η10 −

1

3
η11;

fu1 ¼
1

10
−
1

6

fN
λ1

−
3

5
η10 −

1

3
η11;

fd2 ¼
4

15
þ 2

5
ξ10:

TABLE II. Input parameters in the LCSRs from the references in this table.

Parameter Interval References

b-quark MS mass m̄bð3 GeVÞ ¼ 4.47þ0.04
−0.03 GeV [28]

Renormalization scale μ ¼ 3.0þ1.5
−0.5 GeV

[25,26]Borel parameter squared M2 ¼ 16.0� 4.0 GeV2

Duality threshold sB0 ¼ 39.0−1.0þ1.5 GeV2

B-meson decay constant fB ¼ 190.0� 1.3 MeV [27]

Nucleon decay constant fNðμ ¼ 2 GeVÞ ¼ ð3.54þ0.06
−0.04 Þ × 10−3 GeV2 [22]

Parameters of nucleon DAs φ10ðμ ¼ 2 GeVÞ ¼ 0.182þ0.021
−0.015 [22]

φ11ðμ ¼ 2 GeVÞ ¼ 0.118þ0.024
−0.023

λ1ðμ ¼ 2 GeVÞ ¼ ð−44.9þ4.2
−4.1 Þ × 10−3 GeV2

λ2ðμ ¼ 2 GeVÞ ¼ ð93.4þ4.8
−4.8 Þ × 10−3 GeV2

η10ðμ ¼ ffiffiffi
2

p
GeVÞ ¼ −0.039þ0.005

−0.005
[19]

η11ðμ ¼ ffiffiffi
2

p
GeVÞ ¼ 0.14þ0.016

−0.016
ξ10ðμ ¼ 2 GeVÞ ¼ −0.042þ0.313

−0.312 [17]

TABLE III. One-loop noncusp anomalous dimensions for
different parameters of the nucleon DA in Table II.

Parameter φ fN φ10 φ11 η10 η11 λ1 λ2 ξ10

γ0φ
4
3

40
9

16
3

40
9

8 4 4 20
3
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For the effective threshold range and for the Borel window,
we follow the choice from [10], which is based on the latest
analyses of other LCSRs with B-meson interpolating
currents (e.g., [25,26]). Note that sB0 is an effective thresh-
old which is correlated with the Borel parameter and fitted
to reproduce the B-meson mass mB in Table II. For the
B-meson decay constant, we use a lattice average which is
in agreement with two-point QCD sum rules determined in
[30–32]. In the following, we determine the Borel window
and the range of sB0 for each sum rule individually and
verify that the values in Table II are indeed proper choices.

A. Form factors

Next, we determine the uncertainties around the central
values of the form factors. This requires one to consider the
form factors before their z expansion, and we individually
introduce variations to each input parameter within its
predefined range of uncertainty. Subsequently, we perform
a z expansion for each parameter variation, yielding two

sets of parameters for the slope parameter bðdÞB→pR
and the

normalization FðdÞ
B→pR

ð0Þ, namely, the upper and lower
bound on these parameters with respect to the input
parameter variation. The values in each set are then added
in quadrature to obtain the possible parameter range for

both fitting parameters. Apart from the usual correlation
between the threshold parameter sB0 and the Borel param-
eter M2 and the impact of the μ variation on the renorm-
alization-scale-dependent parameters, we assume that the
remaining parameters are completely uncorrelated. We
state the slope parameters and the form factor at q2 ¼ 0
within their uncertainties in Table IV for the (d) model and
in Table V for the (b) model.
Now one can use these input parameters to extrapolate

the four different form factors and obtain these for the two
models.
Figures 2–5 show the form factors with respect to the

Borel parameter M2. The right panel depicts the individual
twist contributions to the different form factors such that a
direct comparison between the higher twist corrections and
the leading-twist-three contribution becomes possible.
These leading contributions have been previously exam-
ined in [10] and can also be found in [11]. In this context, it
is notable that the leading contribution to the form factor

F̃ðdÞ
B→pL

ðq2Þ starts at twist-four accuracy, contrary to the
other three form factors. Nevertheless, the OPE shows, in
general, good convergence for all form factors, which is
in accordance with other sum rule analyses including
B-meson interpolating currents.

TABLE IV. Parameters of the z expansion in the case the (d)
model form factors (in GeV2 units) including all contributions to
the nucleon DA up to twist six.

FðdÞ
B→pR

ð0Þ bðdÞB→pR
F̃ðdÞ
B→pL

ð0Þ bðdÞB→pL

0.022þ0.013
−0.013 4.46þ0.97

−1.72 0.005þ0.002
−0.001 −2.27þ0.10

−0.08

TABLE V. Parameters of the z expansion for the (b) model form
factors (in GeV2 units) including all contributions to the nucleon
DA up to twist six.

FðbÞ
B→pR

ð0Þ bðbÞB→pR
F̃ðbÞ
B→pL

ð0Þ bðbÞB→pL

−0.041þ0.019
−0.018 −2.00þ1.58

−3.62 −0.007þ0.003
−0.002 −2.85þ0.17

−0.15

FIG. 2. Analysis for the form factor FðdÞ
B→pR

ðq2Þ in the (d) model for different Borel parameters M2. The left plot shows all twist
contributions combined for various choices of the threshold parameter sB0 , while the right plot illustrates each twist individually. The
mass of the dark matter particle mΨ is set to the benchmark value mΨ ¼ 2 GeV [6].
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Although the OPE shows good convergence for all form
factors, we observe at the benchmark value mΨ ¼ 2 GeV
that the (b) model exhibits a substantial twist-four correc-
tion, violating the typical hierarchy of the OPE since the
twist-four contribution is larger compared to the leading-
twist contribution. This has its origin in the significant T 2;4

contributions in the (b) model, which vanish in the
(d)-model computation. Nevertheless, the convergence of
the OPE is still well established beyond twist four.
In the left panel, we investigate the complete form factor

expressions including all contributions up to twist six at the
benchmark value mΨ ¼ 2 GeV. At this stage, it is interest-
ing to compare these expressions for different choices of

the threshold parameter sB0 based on the upper and lower
bounds specified in Table II. Given the small fluctuations of
the form factors with respect to different Borel parameters
across varying thresholds, we see that the sum rules for the
four form factors remain stable at the reference value
mΨ ¼ 2 GeV, thus ensuring their reliability.
The choice of the Borel parameter range M2 aligns with

the specifications from Table II and is in agreement with the
findings in [10]. Furthermore, an alternative validation of
this Borel window can be performed by considering the
form factors over a broader range of the Borel parameterM2

and determining the Borel window based on the stability of
the sum rule with respect to M2. As illustrated in Figs. 2–5,

FIG. 3. Similar analysis as in Fig. 2 for the form factor F̃ðdÞ
B→pL

ðq2Þ.

FIG. 4. Analysis for the form factor FðbÞ
B→pR

ðq2Þ in the (b) model for different Borel parameters M2. The left plot shows all twist
contributions combined for various choices of the threshold parameter sB0 , while the right plot illustrates each twist contribution
individually. The mass of the dark matter particle mΨ is set to the benchmark value mΨ ¼ 2 GeV [6].
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it is evident that the sum rules remain stable within the
specific Borel window defined in Table II. Additionally, this
choice of the Borel parameter window ensures that con-
tinuum and excited states are reasonably suppressed and
contribute approximately around 20%–30%. Consequently,
our findings are not excessively influenced by the QHD
approximation.
Moreover, the determination of the threshold parameter

sB0 is accomplished by calculating the derivative of the sum
rules presented in Eq. (18) with respect to −1=M2. By
taking the ratio between the derivative outcome with
Eq. (18), we obtain an approximation for the B-meson
mass mB, which is subsequently adjusted by choosing the
value of sB0 such that mB fits existing literature data [4].

The stability of the sum rules in Figs. 2–5 shows again the
validity of this approach.
So far, our discussion has been centered around the

chosen value mΨ ¼ 2 GeV. Since the LCSR approach
works in the limit q2 ¼ m2

Ψ ≪ m2
b, we naturally assume

that the OPE also converges when mΨ remains below
2 GeV. It is important to understand the applicability of the
OPE across higher values of mΨ, especially at which point
the OPE starts to break down. This analysis is shown for the

(d) model in Fig. 6, focusing on the form factor FðdÞ
B→pR

ðq2Þ
in the left panel and on the form factor F̃ðdÞ

B→pL
ðq2Þ in the

right panel. For this investigation, it is useful to introduce
the ratios

FIG. 5. Similar analysis as in Fig. 2 for the form factor F̃ðbÞ
B→pL

ðq2Þ.

FIG. 6. Plot for the ratios RðdÞ
B→pR;i

and R̃ðdÞ
B→pL;i

defined in Eqs. (33) and (34) with respect to the dark fermion massmΨ. The right panel

contains the ratios for the form factor F̃ðdÞ
B→pL

, while the left panel shows the contributions from the form factor FðdÞ
B→pR

.
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RðdÞ
B→pR;i

¼ FðdÞ
B→pR;iP

i∈ f3;4;5;6gF
ðdÞ
B→pR;i

;

R̃ðdÞ
B→pL;i

¼ F̃ðdÞ
B→pL;iP

i∈ f4;5;6gF̃
ðdÞ
B→pL;i

; ð33Þ

RðbÞ
B→pR;i

¼ FðbÞ
B→pR;iP

i∈ f3;4;5;6gF
ðbÞ
B→pR;i

;

R̃ðbÞ
B→pL;i

¼ F̃ðbÞ
B→pL;iP

i∈ f3;4;5;6gF̃
ðbÞ
B→pL;i

; ð34Þ

where FðdÞ
B→pR;i

and F̃ðdÞ
B→pL;i

belong to the twist i contribu-

tion of the form factors FðdÞ
B→pR

and F̃ðdÞ
B→pL

.
Using (33) and (34), we derive an approximation for mΨ

where the OPE diverges. The underlying notion here is that
when the higher twist contributions grow, which is indicated

by increased ratios RðdÞ
B→pR;i

and R̃ðdÞ
B→pL;i

, these contributions
become dominant and spoil the convergence of the OPE, in
general. Our observations reveal that, for the form factor

FðdÞ
B→pR

ðq2Þ in the left panel in Fig. 6, the convergence is
spoiled aroundmΨ ≈ 3 GeV. In comparison to that, the form

factor F̃ðdÞ
B→pL

ðq2Þ turns out to be insensitive to this inves-
tigation. Nonetheless, for the earlier considered benchmark
value of 2 GeV, the convergence of the OPE remains robust.
It is important to note that probing mΨ beyond 6.2 GeV is
unfeasible, since we cross the multihadron threshold at tþ,
which results into complex z-parameter values.
A similar examination can be carried out for the (b)

operator, and this is shown in Fig. 7. This underlines that

the hierarchy in the twist expansion remains intact for both
form factors, confirming that the expansion retains its
convergence throughout the entire kinematical range
of mΨ.

B. Branching fractions

Before calculating the branching fraction, we need to
obtain the decay amplitude of the considered Bþ → pΨ
decay. Following [10], we start with the amplitude
AðdÞðBþ → pΨÞ from Eq. (9) and insert the decomposition
into form factors for the B → p transition from Eq. (10):

AðdÞðBþ →pΨÞ¼GðdÞūp;RðPÞ½AðdÞ þBðdÞγ5�ucΨðqÞ; ð35Þ

with

AðdÞ ≡ 1

2

�
FðdÞ
B→pR

ðq2Þ þmΨ

mp
F̃ðdÞ
B→pR

ðq2Þ
�

þ 1

2

�
FðdÞ
B→pL

ðq2Þ þmΨ

mp
F̃ðdÞ
B→pL

ðq2Þ
�
; ð36Þ

BðdÞ ≡ −
1

2

�
FðdÞ
B→pR

ðq2Þ þmΨ

mp
F̃ðdÞ
B→pR

ðq2Þ
�

þ 1

2

�
FðdÞ
B→pL

ðq2Þ þmΨ

mp
F̃ðdÞ
B→pL

ðq2Þ
�
: ð37Þ

We have expressed the decay amplitude through the four
different form factors and the ratios of the proton mass mp

as well as the dark matter particle mass mΨ. In order to
obtain the two-body decay width, one has to square the
amplitude from Eq. (35) and multiply this expression with
normalization factors

FIG. 7. Plot for the ratios RðbÞ
B→pR;i

and R̃ðbÞ
B→pL;i

defined in Eqs. (33) and (34) after replacing ðdÞ → ðbÞ with respect to the

dark fermion mass mΨ. The right panel contains the ratios for the form factor F̃ðbÞ
B→pL

, while the left panel shows the contributions from

the form factor FðbÞ
B→pR

.
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ΓðdÞðBþ → pΨÞ ¼ 1

2mB

Z
dΠjAðdÞðBþ → pΨÞj2: ð38Þ

The phase-space integration for a two-body decay can be
carried out analytically, yielding the Källen function

ΓðdÞðBþ → pΨÞ ¼ jGðdÞj2½jAðdÞj2ðm2
B − ðmp −mΨÞ2Þ

þ jBðdÞj2ðm2
B − ðmp þmΨÞ2Þ�·

×
λ1=2ðm2

B;m
2
p;m2

ΨÞ
8πm3

B
: ð39Þ

The final expression for the decay width in terms of form
factors is given by

ΓðdÞðBþ → pΨÞ ¼ jGðdÞj2
��

ðFðdÞ
B→pR

ðm2
ΨÞÞ2

þm2
ψ

m2
p
ðF̃ðdÞ

B→pL
ðm2

ΨÞÞ2
�
ðm2

B −m2
p −m2

ΨÞ

þ 2m2
ΨF

ðdÞ
B→pR

ðm2
ΨÞF̃ðdÞ

B→pL
ðm2

ΨÞ
�

×
λ1=2ðm2

B;m
2
p;m2

ΨÞ
16πm3

B
: ð40Þ

In comparison to the corresponding expression in [10,11],

the form factor F̃ðdÞ
B→pL

ðq2Þ contributes here due to higher
twist contributions. Since this form factor already appears
in the (b) model at the leading-twist approximation, a
simple exchange of (d) with (b) allows us to derive
corresponding relations for the second model.
The observable of interest is the branching fraction for

this decay. This parameter can be derived by dividing
Eq. (40) by the total width of the B meson. Alternatively,
we can also multiply Eq. (40) by the B-meson lifetime
τB� ¼ 1.638� 0.004 ps from [28]:

BrðdÞðBþ → pΨÞ ¼ ΓðdÞðBþ → pΨÞ · τB� : ð41Þ

As shown in Fig. 8, we present the branching fraction for
the (d) model incorporating contributions to the nucleon
distribution amplitudes up to twist six and compare them to
the leading-twist contribution from [10,11]. Within mΨ
values up to 3 GeV, we identify that both computations
agree very well within their uncertainties. This observation
aligns with our earlier observation in Fig. 6 that at
mΨ ¼ 3 GeV the higher twist corrections become domi-
nant and ultimately affect the convergence of the OPE.
Generally, the uncertainties on our twist-six calculation

turn out to be larger compared to the previous leading-twist
evaluation. This disparity arises due to the larger error
estimates on input parameters of the distribution ampli-
tudes in the conformal and next-to-conformal expansion.

In particular, the parameter ξ10 introduces large uncertain-
ties, as we assume a conservative error of 50% based on the
value from [17]. Nonetheless, we affirm, in general, that
the leading-twist outcome constitutes a reliable approxi-
mation for the branching fractions within the mΨ range up
to 3 GeV.
However, a significant discrepancy between the twist-

three calculation from [10,11] and our computation arises
for the (b) model, as we show in Fig. 9. In this case, the
branching fraction increases by roughly a factor of 20, and
the two computations do not agree within their uncertain-
ties. This deviation can be attributed to the substantial T 2;4

contributions at the twist-four level which we observe for
both form factors, as is evident from Figs. 4 and 5. Different
works like the analysis of B → light meson form factors
[33] indicate that it has already been observed that higher
twist contributions might constitute the dominant contribu-
tion, but it turns out that the different hierarchy in the OPE
does not spoil the twist expansion.
Similar to the (d) model, the uncertainties on the twist-

six computation are notable and share the same origin as for
the (d) model. Particularly, the upper bound uncertainty
becomes enhanced once mΨ > 3 GeV. This behavior
illustrates that the branching fraction loses its reliability
as m2

Ψ ∼m2
b, thereby violating a crucial requirement for the

light-cone expansion.
Consequently, we conclude that the leading-twist analy-

sis from [10] for this specific model falls short, as higher
twist corrections shift the value of the branching fractions

FIG. 8. Branching fraction for the decay B → pΨ in the (d)
model with respect to the dark matter particle mass mΨ. In our
analysis, we set the effective four-fermion couplings to
jGðdÞj2 ¼ jGðbÞj2 ¼ 10−13 GeV−4. The blue line with the blue
dashed error band illustrates the original twist-three computation
from [10], while the black curve shows the computation including
contributions up to twist six. The dashed red curves represents the
uncertainty on this calculation.
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considerably and spoil the hierarchy of the OPE. However,
the branching fraction now lies with these additional
contributions in the sensitivity range of Belle-II, estimated
to be around 3 × 10−6 [6].

VII. CONCLUSION

The SM plays a crucial role in modern particle physics,
although there are effects like dark matter or the baryon
asymmetry of the Universe which are not incorporated
into this theory. As there are strong experimental hints
for the existence of dark matter, several models are
proposed of which we have studied the recently proposed
B-mesogenesis model [5,6,8]. It is particularly interesting
for experimental facilities like Belle-II, since it predicts
new dark matter particles at energy scales which are, in
principle, within its sensitivity range.
We have focused here on one allowed decay mode within

this model, namely, the decay B → pΨ. For this, we have
used the light-cone sum rule approach to determine the
branching fraction of the decayB → pΨ. While the leading-
twist contributions have been obtained in previous works
[10,11], we include higher twist corrections up to twist six
into our analysis in order to check the reliability of the
leading-twist analysis and the convergence of the operator
product expansion, in general. Thus, we have followed the
procedure from [10] and computed the branching fractions
of the two considered versions [the (d) and the (b) model] in
the B-mesogenesis scenario, where we set the effective four-
fermion couplings jGðdÞj2 and jGðbÞj2 to 10−13 GeV−4.
We observe for the two form factors of the (d) model,

which contribute to the respective branching fraction, that

higher twist contributions become increasingly smaller in
the parameter range 0.94 GeV ≤ mΨ ≤ 3 GeV, indicating
that the OPE converges and that the leading-twist contri-
bution is dominant. This shows that the higher twist
corrections have a minimal impact on the branching ratio
in this parameter range and that the behavior mostly
follows [10].
Beyond 3 GeV, we see that the higher twist corrections

start to dominate and, therefore, that the OPE breaks down.
This behavior is expected, since the light-cone approach
requires that m2

Ψ ≪ m2
b, which starts to get violated beyond

3 GeV. Hence, we conclude that the branching fraction
estimate from [10] is reliable in the regime mΨ ≤ 3 GeV
and in agreement with the results from this work.
In contrast to that, the twist-four contributions tend to be

the dominant contribution in the (b) model, albeit the OPE
converges beyond this twist correction. This has the
consequence that the branching fraction for this model is
significantly increased, namely by a factor of 20. This
observation has a direct impact on experimental searches,
since both versions of the B-mesogenesis model are now in
the sensitivity range of Belle-II.
From an experimental point of view, the decays B →

ΛΨ → pπΨ or B → ΛΨ → pπΨ are, however, more easily
accessible, as they see two SM particles in the final state
combined with the new-physics particle Ψ in the form of
missing energy in the detector. But the necessary distri-
bution amplitudes for the Δ and Λ baryons are less known,
and only a leading-twist analysis is available in the
literature. Nevertheless, ratios of these decays with the
computed branching fraction B → pΨ in this work would
be independent of the couplings GðdÞ and GðbÞ and, hence,
reduce the number of input parameters.
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APPENDIX A: NUCLEON DISTRIBUTION
AMPLITUDE

Generally, the hadronic matrix element from the previous
discussion can be decomposed into different Lorentz
structures based on symmetry considerations like
Lorentz covariance, spin, and parity of the proton [15]:

FIG. 9. We show the same as in Fig. 8 but for the (b) model.
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4h0jϵijkuiαða1xÞujβða2xÞdkγða3xÞjpðPÞi ¼ S1mpCαβðγ5upðPÞÞγ þ S2m2
pCαβð=xγ5upðPÞÞγ þ P1mpðγ5CÞαβðupðPÞÞγ

þ P2m2
pðγ5CÞαβð=xupðPÞÞγ þ

�
V1 þ

x2m2
p

4
VM
1

�
ð=PCÞαβðγ5upðPÞÞγ

þ V2mpð=PCÞαβð=xγ5upðPÞÞγ þ V3mpðγμCÞαβðγμγ5upðPÞÞγ
þ V4m2

pð=xCÞαβðγ5upðPÞÞγ þ V5m2
pðγμCÞαβðiσμνxνγ5upðPÞÞγ

þ V6m3
pð=xCÞαβð=xγ5upðPÞÞγ þ

�
A1 þ

x2m2
p

4
AM

1

�
ð=Pγ5CÞαβðupðPÞÞγ

þA2mpð=Pγ5CÞαβð=xupðPÞÞγ þA3mpðγμγ5CÞαβðγμupðPÞÞγ
þA4m2

pð=xγ5CÞαβðupðPÞÞγ þA5m2
pðγμγ5CÞαβðiσμνxνupðPÞÞγ

þA6m3
pð=xγ5CÞαβð=xupðPÞÞγ þ

�
T 1 þ

x2m2
p

4
T M

1

�
ðPνiσμνCÞαβ

× ðγμγ5upðPÞÞγ þ T 2mpðxμPνiσμνCÞαβðγ5upðPÞÞγ þ T 3mpðσμνCÞαβ
× ðσμνγ5upðPÞÞγ þ T 4mpðPνσμνCÞαβðσμρxργ5upðPÞÞγ
þ T 5m2

pðxνiσμνCÞαβðγμγ5upðPÞÞγ þ T 6m2
pðxμPνiσμνCÞαβð=xγ5upðPÞÞγ

þ T 7m2
pðσμνCÞαβðσμν=xγ5upðPÞÞγ þ T 8m3

pðxνσμνCÞαβðσμρxργ5upðPÞÞγ: ðA1Þ

On the left side of Eq. (A1), we investigate a proton to
vacuum matrix element with an on-shell proton of P2 ¼
m2

p in the initial state. The quark fields uðxÞ, uð0Þ, and dð0Þ
correspond to the valence quarks inside the proton. The
Greek letters α, β, and γ denote spinor indices, while Latin
letters i, j, and k are color indices. Gauge link factors
between each valence quark are suppressed rendering the
expression in Eq. (A1) gauge invariant. According to the
previous discussion in [10], we can set a1 ¼ 1 and a2 ¼
a3 ¼ 0 in our case and note that the matrix C is the charge
conjugation matrix defined as C ¼ γ2γ0 and upðPÞ is the
proton spinor. The tensor σμν is defined in terms of
σμν ¼ i

2
½γμ; γν�.

As Eq. (A1) indicates, there are in total 24 invariant
functions Si, Pi, Ai, Vi, and T i, which we cannot assign a
definite twist.
These calligraphic quantities can be related to the twist

amplitudes in the following way:

F ða1; a2; a3; ðP · xÞÞ ¼
Z

dα1dα2dα3δð1 − α1 − α2 − α3Þ

× e−iðP·xÞ
P

i
αiaiFðαiÞ: ðA2Þ

The variables α1;2;3 denote the momentum fractions of the
different quarks inside the proton. We start with twist-three
contributions and relate the calligraphic quantities appear-
ing in Eq. (A1) with Eq. (A2) to the definite twist
amplitudes:

F Integrand on rhs of (A2)

V1 V1

A1 A1

T 1 T1

In the above table, the definite twist distribution ampli-
tudes are given by

V1ðαiÞ ¼ 120α1α2α3½ϕ0
3 þ ϕþ

3 ð1 − 3α3Þ�;
A1ðαiÞ ¼ 120α1α2α3ðα2 − α1Þϕ−

3 ;

T1ðαiÞ ¼ 120α1α2α3

�
ϕ0
3 −

1

2
ðϕþ

3 − ϕ−
3 Þð1 − 3α3Þ

�
: ðA3Þ

At leading twist, there are in total three coefficients ϕð0;�Þ
3 ,

which can be parametrized through the parameters fN , the
normalization factor in leading conformal spin, and Au

1 as
well as Vd

1 , which belong both to the next-to-leading
conformal spin:

ϕ0
3 ¼ fN ; ϕþ

3 ¼ 7

2
fNð1 − 3Vd

1Þ; ϕ−
3 ¼ 21

2
fNAu

1:

ðA4Þ

The remaining contributions can be classified according to
their twist and specify their tensor structure [15]:
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Twist 3 Twist 4 Twist 5 Twist 6

Vector V1 V2, V3 V4, V5 V6

Pseudovector A1 A2, A3 A4, A5 A6

Tensor T1 T2, T3, T7 T4, T5, T8 T6

Scalar S1 S2
Pseudoscalar P1 P2

Based on these considerations, we can order the calli-
graphic quantities in Eq. (A1) into the different twist
contributions.
Thus, the calligraphic quantities contributing to twist

four are

F Integrand on rhs of (A2) Abbreviation

S1 S1
P1 P1

2V3 V3

2A3 A3

2T 3 T7

2ðP · xÞV2 V1 − V2 − V3 V123

2ðP · xÞA2 −A1 þ A2 − A3 A123

2ðP · xÞT 2 T1 þ T2 − 2T3 T123

2ðP · xÞT 4 T1 − T2 − 2T7 T127

For brevity, the renormalization scale dependence is
dropped in the following discussion. Moreover, we follow
the notation from [15–17,20]. The twist-four DAs in the
conformal expansion are given by

V2ðαiÞ ¼ 24α1α2½ϕ0
4 þ ϕþ

4 ð1 − 5α3Þ�; A2ðαiÞ ¼ 24α1α2ðα2 − α1Þϕ−
4 ;

T2ðαiÞ ¼ 24α1α2½ξ04 þ ξþ4 ð1 − 5α3Þ�;
A3ðαiÞ ¼ 12α3ðα2 − α1Þ½ðψ0

4 þ ψþ
4 Þ þ ψ−

4 ð1 − 2α3Þ�;
V3ðαiÞ ¼ 12α3½ψ0

4ð1 − α3Þ þ ψþ
4 ð1 − α3 − 10α1α2Þ þ ψ−

4 ðα21 þ α22 − α3ð1 − α3ÞÞ�;
T3ðαiÞ ¼ 6α3½ðϕ0

4 þ ψ0
4 þ ξ04Þð1 − α3Þ þ ðϕþ

4 þ ψþ
4 þ ξþ4 Þð1 − α3 − 10α1α2Þ

þ ðϕ−
4 − ψ−

4 þ ξ−4 Þðα21 þ α22 − α3ð1 − α3ÞÞ�;
T7ðαiÞ ¼ 6α3½ðϕ0

4 þ ψ0
4 − ξ04Þð1 − α3Þ þ ðϕþ

4 þ ψþ
4 − ξþ4 Þð1 − α3 − 10α1α2Þ�

þ ðϕ−
4 − ψ−

4 − ξ−4 Þðα21 þ α22 − α3ð1 − α3ÞÞ�;
S1ðαiÞ ¼ 6α3ðα2 − α1Þ½ðϕ0

4 þ ψ0
4 þ ξ04 þ ϕþ

4 þ ψþ
4 þ ξþ4 Þ þ ðϕ−

4 − ψ−
4 þ ξ−4 Þð1 − 2α3Þ�

P1ðαiÞ ¼ 6α3ðα1 − α2Þ½ðϕ0
4 þ ψ0

4 − ξ04 þ ϕþ
4 þ ψþ

4 − ξþ4 Þ þ ðϕ−
4 − ψ−

4 − ξ−4 Þð1 − 2α3Þ�; ðA5Þ

where we introduce additional parameters:

ϕ0
4 ¼

1

2
ðfN þ λ1Þ; ϕþ

4 ¼ 1

4
ðfNð3 − 10Vd

1Þ þ λ1ð3 − 10fd1ÞÞ;

ϕ−
4 ¼ −

5

4
ðfNð1 − 2Au

1Þ − λ1ð1 − 2fd1 − 4fu1ÞÞ; ðA6Þ

ψ0
4 ¼

1

2
ðfN − λ1Þ; ψþ

4 ¼ −
1

4
ðfNð2þ 5Au

1 − 5Vd
1Þ − λ1ð2 − 5fd1 − 5fu1ÞÞ;

ψ−
4 ¼ 5

4
ðfNð2 − Au

1 − 3Vd
1Þ − λ1ð2 − 7fd1 þ fu1ÞÞ; ðA7Þ

ξ04 ¼
1

6
λ2; ξþ4 ¼ 1

16
λ2ð4 − 15fd2Þ;

ξ−4 ¼ 5

16
λ2ð4 − 15fd2Þ: ðA8Þ

For the purpose of a coherent discussion, we group them based on whether they belong to the leading or next-to-leading
conformal spin [18]:
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Leading twist Higher twist

Leading conformal spin fN λ1, λ2
Next-to-leading conformal spin Au

1; V
d
1 fu1 ; f

d
1 ; f

d
2

For twist five, we have

F Integrand on rhs of (A2) Abbreviation

4ðP · xÞV5 V4 − V3 V43

4ðP · xÞA5 A3 − A4 A34

2ðP · xÞT 5 −T1 þ T5 þ 2T8 T158

4ðP · xÞT 7 T7 − T8 T78

2ðP · xÞS2 S1 − S2 S12
2ðP · xÞP2 P2 − P1 P21

4ðP · xÞV4 −2V1 þ V3 þ V4 þ 2V5 V1345

4ðP · xÞA4 −2A1 − A3 − A4 þ 2A5 A1345

4ðP · xÞ2T 6 2T2 − 2T3 − 2T4 þ 2T5 þ 2T7 þ 2T8 T234578

VM
1 VM

1

AM
1 AM

1

T M
1 TM

1

V4ðαiÞ ¼ 3½ψ0
5ð1 − α3Þ þ ψþ

5 ð1 − α3 − 2ðα21 þ α22ÞÞ þ ψ−
5 ð2α1α2 − α3ð1 − α3ÞÞ�;

A4ðαiÞ ¼ 3ðα2 − α1Þ½−ψ0
5 þ ψþ

5 ð1 − 2α3Þ þ ψ−
5 α3�;

T4ðαiÞ ¼
3

2
½ðϕ0

5 þ ψ0
5 þ ξ05Þð1 − α3Þ þ ðϕþ

5 þ ψþ
5 þ ξþ5 Þð1 − α3 − 2ðα21 þ α22ÞÞ�

þ ðϕ−
5 − ψ−

5 þ ξ−5 Þð2α1α2 − α3ð1 − α3ÞÞ;

T8ðαiÞ ¼
3

2
½ðϕ0

5 þ ψ0
5 − ξ05Þð1 − α3Þ þ ðϕþ

5 þ ψþ
5 − ξþ5 Þð1 − α3 − 2ðα21 þ α22ÞÞ

þ ðϕ−
5 − ψ−

5 þ ξ−5 Þð2α1α2 − α3ð1 − α3ÞÞ�;
V5ðαiÞ ¼ 6α3½ϕ0

5 þ ϕþ
5 ð1 − 2α3Þ�; A5ðαiÞ ¼ 6α3ðα2 − α1Þϕ−

5 ;

T5ðαiÞ ¼ 6α3½ξ05 þ ξþ5 ð1 − 2α3Þ�;

S2ðαiÞ ¼
3

2
ðα2 − α1Þ½−ðϕ0

5 þ ψ0
5 þ ξ05Þ þ ðϕþ

5 þ ψþ
5 þ ξþ5 Þð1 − 2α3Þ þ ðϕ−

5 − ψ−
5 þ ξ−5 Þα3�;

P2ðαiÞ ¼
3

2
ðα1 − α2Þ½−ðϕ0

5 þ ψ0
5 − ξ05Þ þ ðϕþ

5 þ ψþ
5 − ξþ5 Þð1 − 2α3Þ þ ðϕ−

5 − ψ−
5 − ξ−5 Þα3�:

The new parameters in the twist-five DAs can be expressed in the conformal expansion:

ϕ0
5 ¼

1

2
ðfN þ λ1Þ; ϕþ

5 ¼ −
5

6
½fNð3þ 4Vd

1Þ − λ1ð1 − 4fd1Þ�;

ϕ−
5 ¼ −

5

3
½fNð1 − 2Au

1Þ − λ1ðfd1 − fu1Þ�; ðA9Þ

ψ0
5 ¼

1

2
ðfN − λ1Þ; ψþ

5 ¼ −
5

6
½fNð5þ 2Au

1 − 2Vd
1Þ − λ1ð1 − 2fd1 − 2fu1Þ�;

ψ−
5 ¼ 5

3
½fNð2 − Au

1 − 3Vd
1Þ þ λ1ðfd1 − fu1Þ�; ðA10Þ
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ξ05 ¼
1

6
λ2; ξþ5 ¼ 5

36
λ2ð2 − 9fd2Þ; ξ−5 ¼ −

5

4
λ2fd2:

ðA11Þ

Finally, for twist six we obtain the following contributions:

F Integrand on rhs of (A2) Abbreviations

4ðP · xÞ2V6 −V1 þ V2 þ V3 þ V4 þ V5 − V6 V123456

4ðP · xÞ2A6 A1 − A2 þ A3 þ A4 − A5 þ A6 A123456

4ðP · xÞ2T 8 −T1 þ T2 þ T5 − T6 þ 2T7 þ 2T8 T125678

V6ðαiÞ ¼ 2½ϕ0
6þϕþ

6 ð1− 3α3Þ�; A6ðαiÞ ¼ 2ðα2 − α1Þϕ−
6 ;

T6ðαiÞ ¼ 2½ϕ0
6 −

1

2
ðϕþ

6 −ϕ−
6 Þð1− 3α3Þ�: ðA12Þ

The corresponding parameters read

ϕþ
6 ¼ 1

2
½fNð1 − 4Vd

1Þ − λ1ð1 − 2fd1Þ�;

ϕ−
6 ¼ 1

2
½fNð1þ 4Au

1Þ þ λ1ð1 − 4fd1 − 2fu1Þ�: ðA13Þ

APPENDIX B: FORM FACTORS

In this section, we state the remaining expressions for the form factors before the z expansion.

F̃ðdÞ
B→pL

ðq2Þ ¼ 1

m2
BfB

Z
αB
0

0

dαe
m2
B
−sðαÞ
M2

�
mbmp

4ᾱ
ðV3ðαÞ − A3ðαÞÞ þ

m2
bm

2
p

2

S̃12ðαÞ − P̃21ðαÞ
ᾱ2M2

þmbmp

4

Ã123ðαÞ − Ṽ123ðαÞ
ᾱ2

�
1 −

m2
pᾱ

2 − q2 þm2
b

ᾱM2

�
þmbm3

p

2

�
1þ m2

b

ᾱM2

�

×
˜̃V123456ðαÞ − ˜̃A123456ðαÞ

ᾱ2M2

�
; ðB1Þ

FðbÞ
B→pR

ðq2Þ ¼ 1

m2
BfB

Z
αB
0

0

dαe
m2
B
−sðαÞ
M2

�
m2

bmp

4

�
mp

mb
ðV1ðαÞ þ A1ðαÞÞ −

3

ᾱ
T1ðαÞ

�

þm2
bmp

4

P1ðαÞ þ S1ðαÞ þ 6 · T7ðαÞ
ᾱ

þmbm2
p

2
ðA3ðαÞ − V3ðαÞÞ

þmbm2
p

4

Ṽ123ðαÞ − Ã123ðαÞ
ᾱ

�
1þ q2 −m2

pᾱ
2

ᾱM2

�
−
m2

bmp

8

T̃123ðαÞ
ᾱ2

×

�
1 −

m2
b − q2 −m2

pᾱ
2

ᾱM2

�
−
3mbm2

p

8

Ã34ðαÞ þ Ṽ43ðαÞ
ᾱ

�
1þ m2

b

ᾱM2

�

þm2
bm

3
p

4

P̃21ðαÞ − S̃12ðαÞ
ᾱM2

−
3m2

bm
3
p

4

2 · T̃78ðαÞ þ T̃158ðαÞ
ᾱM2

þmbm2
p

8

Ṽ1345ðαÞ þ Ã1345ðαÞ
ᾱ

�
1þ m2

b

ᾱM2

�
þmbm4

p

4ᾱM2

�
1þ m2

b

ᾱM2

�
ðÃM

1 − ṼM
1 ÞðαÞ

þ 3m4
bm

3
p

4

T̃M
1

ᾱ3M4
−
m2

bmp

4

T̃127ðαÞ
ᾱ

�
5

2ᾱ

�
1 −

m2
b − q2

ᾱM2

�
−

m2
p

2M2

�

þ 3m4
bm

3
p

4

˜̃T125678ðαÞ
ᾱ3M4

þmbm4
p

4

˜̃A123456ðαÞ − ˜̃V123456ðαÞ
ᾱM2

�
1þ m2

b

ᾱM2

�

−
m2

bm
3
p

8

˜̃T234578ðαÞ
ᾱ2M2

�
1 −

m2
pᾱ

2 − q2 −m2
b

ᾱM2

��
; ðB2Þ
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F̃ðbÞ
B→pL

ðq2Þ ¼ 1

m2
BfB

Z
αB
0

0

dαe
m2
B
−sðαÞ
M2

�
mbm2

p

4ᾱ
ðV1ðαÞ þ A1ðαÞÞ þ

mbmp

2ᾱ
ðA3ðαÞ − V3ðαÞÞ

þm2
bm

2
p

4

P̃21ðαÞ − S̃12ðαÞ
ᾱ2M2

þmbmp

4ᾱ2

�
1þ q2 −m2

pᾱ
2 −m2

b

ᾱM2

�
ðṼ123ðαÞ − Ã123ðαÞÞ

−
3m2

bm
2
p

4

2 · T̃78ðαÞ þ T̃158ðαÞ
ᾱ2M2

þ mbm3
p

4ᾱ2M2

�
1þ m2

b

ᾱM2

�
ðÃM

1 ðαÞ − ṼM
1 ðαÞÞ

−
m2

bm
2
p

2

T̃127ðαÞ
ᾱ2M2

þmbm3
p

4

˜̃A123456ðαÞ − ˜̃V123456ðαÞ
ᾱ2M2

�
1þ m2

b

ᾱM2

�

−
m2

bm
2
p

4

˜̃T234578ðαÞ
ᾱ3M2

�
1 −

m2
pᾱ

2 − q2 þm2
b

2ᾱM2

�
−
m2

bm
2
p

4M2

T̃123ðαÞ
ᾱ2

�
: ðB3Þ
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