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In this work, we delve into the often overlooked cosmological implications of the spontaneous breaking
of the non-Abelian discrete groups, specifically focusing on the formation of domain walls in the case of S4
flavor symmetry. In particular, we investigate three interesting breaking patterns of the S4 group and study
the structure of the domain walls in the broken phase for three possible residual symmetries. The
presentation of domain walls in the case of multiple vacua is usually complicated, which therefore implies
that most of the analyses only approximate their presentation. Here, we propose a subtle way to represent the
S4 domain wall networks by presenting the vacua in each breaking pattern as vectors with their components
corresponding to their coordinates in the flavon space. Then, through the properties of the obtained vectors,
we find that the domain wall networks can be represented by Platonic or Archimedean solids where the
vertices represent the degenerate vacua while the edges correspond to the domain walls that separate them.
As an illustration, we propose a type-II seesaw model that is based on the S4 flavor symmetry, and study its
phenomenological implications on the neutrino sector. To solve the domain wall problem within this toy
model, we consider an approach based on high-dimensional effective operators induced by gravity that
explicitly break the structure of the induced vacua favoring one vacuum over the others.
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I. INTRODUCTION

In the past two decades, non-Abelian discrete symmetries
have become more prominent in flavor model building. This
interest grew particularly following the observation of large
leptonic mixing angles from various neutrino oscillation
experiments (see Refs. [1–3] for updated global fits). Non-
Abelian discrete groups are increasingly employed to tackle
the flavor problem which is connected to the lack of a
mechanism within the Standard Model (SM) that explains
the mass hierarchies of the different fermions and their
mixing. Nevertheless, in order to achieve realistic predic-
tions for the fermion masses and mixing angles at low
energies, it is imperative to break the non-Abelian group due
to the fact that the charged leptons and the three massive

neutrinos are inherently distinct in the symmetric phase of
the underlying flavor group. This breaking takes place when
scalar fields called flavons, which are singlets under the SM
gauge group, acquire nonzero vacuum expectation values
(VEVs) along specific directions within the flavon space.
On the other hand, the spontaneous symmetry breaking
(SSB) of discrete groups gives rise to multiple degenerate
vacua separated by surfacelike topological defects referred
to as domain walls (DWs) [4,5]. The number of the vacua
and DWs depends on the order of the broken group.
Generally, these multiple vacua can be understood as the
constituents of a topologically nontrivial vacuum manifold,
defined by disconnected points in space with the same
energy [6]. Once the field responsible for SSB stabilizes at
one of these points—no point is preferred over any other—it
cannot transition to any of the remaining points [7]. The
regions between the degenerate ground states represent the
DWs which, if proven to be stable, are disfavored by
cosmological observations. To illustrate why this is an issue,
notice that DWs are expected to enter a regime of dynamical
scaling such that the number of defects is constant per
Hubble horizon [8–10]. In this scaling regime, we have the
propertyH−1 ∼ L ∼ R whereH−1 is the Hubble radius, L is
the distance between two neighboring walls and R is the
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wall curvature radius which is proportional to the cosmo-
logical expansion factor aðtÞ. The energy density of DWs in
this regime scales as a−1, decreasing more slowly than
radiation and matter which scales as a−4 and a−3 respec-
tively [4–6]. As a result, DWs could eventually dominate the
Universe at small redshift which is disfavored by the current
cosmological observations; this is known as the domain
wall problem [4]. Indeed, Zel’dovich, Kobzarev and Okun
pointed out that stable DWs would cause a fast expansion of
the Universe dramatically affecting the formation of gal-
axies and reducing the production rates of light elements
during primordial nucleosynthesis [4]. Moreover, the pres-
ence of the walls in the current Universe would create
unacceptable distortions in the cosmic microwave back-
ground (CMB) radiation that would violate the present
limits on its homogeneity and isotropy [7].
Many approaches have been suggested to deal with the

creation of DWs where the main idea is that they should
either be unstable or remain subdominant until the present
time. In particular, the energy scale associated with the SSB
of the discrete groups should be low enough so that the
energy density of the walls is a subdominant contribution to
the total energy density of the Universe [11,12]. This scale
is also restrained to be smaller that 1 MeV to prevent
creating undesirable large anisotropies in the CMB [4].
Besides, the walls may exhibit instability if they manifest
prior to the inflation era. However, below the inflationary
scale, the most known solution to the DW problem was
suggested by Zel’dovich et al. [4] where the DWs are
unstable by assuming that the discrete symmetry is not
exact. In other words, the introduction of explicit symmetry
breaking terms create energy gaps between true and false
vacua and in which case false vacua will fade before the
walls dominate the energy density of the Universe (see also
Refs. [5,6,13] for more details). The connection between
the DW problem and flavor models that lead to it is usually
overlooked in the literature. For instance, only the mecha-
nism of DW creation and some of the solutions have been
discussed in Refs. [14–21]. For instance, in Ref. [14] brief
discussions exploring the explicit symmetry breaking
solutions as well as a possibility that flat directions in
the scalar potential acquire very large VEVs during
inflation so that the DWs do not cause any problem is
applied in the framework of the minimal supersymmetric
standard model (MSSM) with an A4 flavor group. Another
example employing the A4 group is proposed in Ref. [15]
using a mechanism to stabilize the flavon potential with the
desired alignment structure solves the DW problem inde-
pendently of the scale of inflation. A similar approach is
applied in the context of a supersymmetric S4 flavor
symmetry model in Ref. [16]. A different scenario is that
the discrete flavor group is considered as an exact sym-
metry at the classical level and only broken at the quantum
level by the QCD anomaly [22]. However, as demonstrated
in [18] using A4 and D4 groups, QCD anomaly effects are

not enough to completely solve the DW problem since they
cannot remove all the vacuum degeneracy. One more
example with the alternating A4 group is proposed in
Ref. [20] in the context of the next-to-MSSM where the
problem is solved by considering the explicit breaking of
the discrete symmetry through the insertion of Planck-
suppressed operators induced by supergravity.
In this work, we investigate for the first time the

formation of DWs from the SSB of the flavor group S4
within a nonsupersymmetric framework. Here, we empha-
size on three S4 breaking patterns that have been established
as phenomenologically plausible, i.e., S4 → Z2 × Z2,
S4 → Z3, and S4 → Z2. Since for each of these patterns
S4 is only partially broken, the number of degenerate vacua
is contingent upon the order of the broken subgroup of S4.

1

For the above S4 breaking patterns, the broken subgroups
are given by the non-Abelian groups S3, Σð8Þ, and A4,
respectively. Therefore, the transformations among the
vacua are characterized by non-Abelian structures making
the representation of the vacuum manifold even more
complicated. Here, we propose a subtle way to represent
the S4 DW networks by using the properties of the flavon
space which is defined as a vector space that can accom-
modate all the dimensions of the S4 irreducible representa-
tions.2 After the SSB of S4, the flavon field responsible for
the breaking, sayΩ, can be represented by a vector where its
components correspond to its coordinates in the vector
space. The remaining vectors (vacua) are obtained easily by
applying the various elements of the broken subgroups of S4
on hΩi. Then, through the properties of the obtained
vectors, we find that the DW networks can be represented
by the Platonic or Archimedean solids where the vertices
represent the degenerate vacua while the edges represent the
domain walls. To address the DW problem and its possible
solution in the case of the S4 flavor group, we propose a toy
model based on type-II seesaw mechanism which we
confront to the recent neutrino data. The problem of
DWs in this toy model is solved by introducing effective
operators generated by gravity and suppressed by powers of
the Planck mass which simply means that the S4 symmetry
is not exact after all.
The rest of this paper is organized as follows. In Sec. II,

we start by identifying the S4 breaking patterns consistent
with the neutrino oscillation data. Then, we determine the
breaking parts for each pattern, detailing properties crucial
for DW formation. Finally, we offer a geometric description
of DWs for each S4 breaking pattern. In Sec. III, after

1In the context of Zn Abelian groups, the vacuum manifold is
composed of n degenerate vacua. The higher the order of the
group, the greater the number of vacuum becomes leading to
nontrivial DW networks.

2This is a vector space of dimension six where the first three
components are reserved for S4 triplets, the next two for S4
doublets and the last for S4 singlets.
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exploring some well-known solutions to the DW problem,
we build a toy model with S4 flavor symmetry and examine
neutrino phenomenology as well as propose a possible
solution to the DW problem. We also qualitatively discuss
the gravitational waves (GWs) arising from DWs in this toy
model. We conclude in Sec. IV.

II. BREAKING OF S4 SYMMETRY
AND DOMAIN WALLS

In this section, we first specify the different S4 symmetry
breaking patterns that are known to be phenomenologically
consistent with the neutrino oscillation data, and we define
some notations for the irreducible representations of S4 as
well as its subgroups. Afterwards, we focus on identifying
the broken parts for each breaking pattern and describe
their properties relevant for the creation of domain walls.
Finally, we provide a geometric description of the DWs
generated for each S4 breaking pattern.

A. Lepton residual symmetries from S4
The breaking of non-Abelian discrete groups Gf is an

essential part in the construction of flavor models to provide
realistic predictions for lepton mixing angles. This breaking
occurs when flavon fields acquire VEVs along specific
directions in flavon space. Typically, the breaking of the
flavor symmetry allows for the survival of different Abelian
residual symmetriesGres, which are subgroups ofGf. These
residual symmetries give rise to distinct mixing patterns that
can be explicitly derived by calculating the fermion mass
matrices. Hence, the phenomenological viability of the
fermion flavor structure is often assessed based on these
surviving residual symmetries after the breaking of the
underlying flavor group Gf. In this study, we examine the
formation of DWs assuming S4 as our flavor group, which
breaks down into Ge and Gν associated to the charged
lepton and the neutrino sectors, respectively, and assuming
that neutrinos are Majorana particles.
Depending on the flavon VEV alignment, the residual

symmetry group corresponding to any one of the S4
subgroups is illustrated in Fig. 1 where the residual
symmetry group could be non-Abelian fA4; D4; S3g or
Abelian fZ4; Z2 × Z2; Z3; Z2g. The breaking of S4 down
to one of its non-Abelian subgroups is excluded by current
data since it leads to two degenerate neutrino mass states.
For the case of Abelian subgroups, it is convenient to use the
fact that S4 is isomorphic to G0

f ¼ ðZ2 × Z2Þ⋊ðZ3⋊ Z2Þ,
where ðZ2 × Z2Þ refers to the Klein four-group denoted by
K4 in what follows, while ðZ3⋊ Z2Þ is isomorphic to the
smallest non-Abelian group; the symmetric group S3.
Consequently, we can perceive S4 as the semi-direct product
of K4 and S3, denoted as S4 ≅ K4⋊ S3. This group contains
24 elements generated by three generators denoted by S, T ,
and U. It is noteworthy, though, that only two generators are
required to define S4 [23]. However, in order to highlight the

relationship between the alternating group A4 and S4, it is
advantageous to choose the set of generators as S, T , and U.
By doing so, it becomes evident that S and T alone can
generate the group A4 [24]. Similarly, the two generators T
and U alone can generate the group S3 [25]. The S4 group
consists of five conjugacy classes and therefore contains five
irreducible representations. These representations include
two singlets 1ð1;1;1Þ (trivial) and 10ð1;1;−1Þ, one doublet

2ð2;−1;0Þ, and two triplets 3ð−1;0;−1Þ and 30ð−1;0;1Þ with the

indices referring to the characters of the generators S, T ,
and U respectively; see the Table II. In addition, S4 has 20
Abelian subgroups, which consist of nine Z2 subgroups,
four Z3 subgroups, three Z4 subgroups, and four Klein-four
subgroups (K4). These symmetries can be expressed in
terms of the S4 generators as provided in Eq. (A3) of the
Appendix.
Before going through the details of the S4 breaking

schemes, we would like to make the following comments
relevant to the analysis of DWs formed under various S4
breaking patterns:

(i) In this study, we adopt the representation matrices
for the S4 generators in the basis where T is
diagonal [see Eq. (A2) in the Appendix]. This
particular basis is commonly used in the literature
since it leads to a diagonal charged-lepton mass
matrix which remains invariant under Ge ¼ ZT

3

generated by T . Moreover, Ge ¼ Z4 is ruled out
since it leads to values of the solar mixing angle
outside 3σ range reported on by the authors of
Ref. [26] while Gν is either K4 or Z2 [27]. Con-
sequently, Z4 is discarded as a phenomenologically
viable residual group.

(ii) One of our main interests is to search, for the first
time, for graphical representations of the DW net-
works created during SSB of the S4 group. Thus, we
discuss the number of degenerate vacua extracted
from the broken subgroups within each S4 breaking
pattern. In order to clarify this point from the
beginning, consider the scenario of SSB of S4 into
one of its four Z3 subgroups. In this case, the broken
part corresponds to K4⋊ Z2, which is an order-8

S4

D4 A4 S3

Z4 Z2 × Z2
Z3

Z2

id

FIG. 1. Symmetry breaking patterns of S4 discrete symmetry.
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structure that also represents the number of degen-
erate vacua, regardless of the specific Z3’s, K4’s and
Z2’s subgroups of S4 involved in this breaking
pattern. For this reason, choosing one of the four
Z3’s as the residual symmetry makes no difference
for the study of the DWs. The same reasoning
applies if the breaking pattern is into one of the
nine Z2 subgroups and/or the four K4 subgroups
of S4.

(iii) The SSB of S4 symmetry breaking can occur via a
nontrivial S4-singlet, an S4-doublet, or an S4-triplet
whose VEVs preserve one of the subgroups of S4.
To simplify our discussion, we focus solely on the
scenario where a flavon field is designated to
transform as an S4-triplet. However, we will provide
additional comments whenever is necessary for the
other cases.

(iv) The basis mentioned in the first comment is par-
ticularly interesting and useful for model building.
However, in order to graphically represent the
components that have undergone SSB, and thus to
investigate the properties of DWs, we need to
express the obtained degenerate vacua in a three-
dimensional real basis. In this picture, T can be
represented by a diagonal 3 × 3 matrix with eigen-
values 1;ω, and ω2 and its typical eigenvectors x0q
are respectively given by

x01 ¼ x1 þ x2 þ x3;

x02 ¼ x1 þ ω2x2 þ ωx3;

x03 ¼ x1 þ ωx2 þ ω2x3; ð2:1Þ

with x1, x2, and x3 being the components of a
complex vector space that defines the system basis
for the triplet representation of S4.

B. Symmetry breaking patterns of S4
In view of the above, we will examine three breaking

patterns of S4 that are phenomenologically viable. Our
study does not require the identification of the residual
group between Ge and Gν. Therefore, we do not specify
here the sector within which S4 breaking takes place but
only later when we introduce the toy model that requires
the definition of the scale at which S4 is broken.
References [26,28] explore all the possible combinations
of the pairsGe andGν. Let us now establish the S4 breaking
patterns within the basis provided in Eq. (A2):
(a) S4 → K4: Assuming that the residual K4 symmetry is

generated by fS;Ug, this breaking can be realized by
the S4 triplet Φ0 ≡ 30ð−1;0;1Þ acquiring a VEValong the

direction hΦ0i ¼ υΦð1; 1; 1ÞT . Here, we should be
careful about the generator of the third Z2 group
in G0

f—besides K4 ≅ ðZS
2 × ZU

2 Þ—given that its

generator should be broken in order for K4 to be
the only residual group.3 For this reason, we consider
that the third cyclic group Z2 ⊂ G0

f is generated by
T 2ST which is the generator of one of the nine Z2

subgroups of S4 [see Eq. (A3)]. By exhibiting this
breaking using the matrix representations of the
generators of S4 shown in Eq. (A2), we find

ShΦ0i ¼ hΦ0i; UhΦ0i ¼ hΦ0i;
T hΦ0i ≠ hΦ0i; T 2ST hΦ0i ≠ hΦ0i: ð2:2Þ

It is clear from this equation that the only preserved
symmetry is K4 ≅ ðZS

2 × ZU
2 Þ while the broken part is

given by the symmetric group S3 ≅ ZT
3 ⋊ ZT 2ST

2 . In
the case of the S4 doublet 2ð2;−1;0Þ, it is not possible to

exclusively decompose S4 into KfS;Ug
4 . This is due to

the fact that ZT 2ST
2 is always conserved, as T 2ST

essentially represents a two-dimensional identity
matrix. Consequently, regardless of the direction of
any VEV, its application will yield an identical VEV
direction. On the other hand, it is not possible to use
the nontrivial singlet 10ð1;1;−1Þ for this breaking be-
cause it transforms oppositely under the S and U
generators [see Eq. (A2) in the Appendix for more
details]. It is important to emphasize that all the
details regarding the VEV alignments described
above depend on the choice of generators for all
the groups involved in G0

f. For example, if we take a
different Z3 group in the breaking pattern S4 → Z3

than ZT
3 we may need a different VEV structure for

the flavon triplet than the one chosen above to realize
this breaking.4 Therefore, for different choices of the
S4 subgroups we may end up with different scalar
sectors. However, this is completely model indepen-
dent when it comes to the geometrical interpretation
of the DWs created during each breaking pattern as
we mentioned in the second comment above.

(b) S4 → Z3: Let us take the isomorphic group to be
G0

f ≃ ðZS
2 × ZU

2 Þ⋊ðZT
3 ⋊ ZTST 2

2 Þ, which means that the

residual symmetry in this case is given by ZT
3 . As a

result, this breaking can be realized by the S4 triplet
Φ≡ 3ð−1;0;−1Þ acquiring a VEV along the direction
hΦi ¼ υΦð1; 0; 0ÞT [29]. By exhibiting this breaking
using the matrix representations of the generators of S4
in Eq. (A2), we obtain

ShΦi ≠ hΦi; UhΦi ≠ hΦi;
T hΦi ¼ hΦi; T ST 2hΦi ≠ hΦi: ð2:3Þ

3The superscripts denote the generators for each Z2 cyclic
group.

4The other choices for the breaking pattern S4 → Z3 are ZST
3 ,

ZTS
3 , and ZSTS

3 .
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It is clear from this equation that the only preserved
symmetry is ZT

3 while the broken part is given by
Σð8Þ≡ ðZS

2 × ZU
2 Þ⋊ ZTST 2

2 which is isomorphic to the
dihedral D4 group [30]. Notice by the way that if we
use the other S4 triplet 30ð−1;0;1Þ with the same VEV

structure, the S4 group will break down to ZU
2 ⋊ ZT

3

which is isomorphic to the symmetric S3 group.
Consequently, the breaking pattern S4 ⟶ ZT

3 is not
achieved with the triplet 30ð−1;0;1Þ unless a different
VEV structure is chosen.We must stress out that the S4
triplet Φ≡ 3ð−1;0;−1Þ have to acquire a VEV along the
direction hΦi ¼ υΦð−1; 2; 2ÞT if we need to realize
the breaking pattern S4 → Z3 in the case where the
residual group is represented by ZSTS

3 . For the S4
doublet 2ð2;−1;0Þ, there are no trivial VEV structures
that allows the preservation of the T or STS gen-
erators, while the concluding remark for the S4 singlet
10ð1;1;−1Þ in the previous breaking scheme holds as well
for the S4 breaking down to Z3.

(c) S4 ⟶ Z2: let us denote the three Z2 replicas in the
isomorphic group G0

f ≃ ðZ2 × Z2Þ⋊ðZ3⋊ Z2Þ by ZU
2 ,

ZS
2 , and ZSU

2 where we take the latter as the residual
symmetry associated with the semidirect product
ðZ3⋊ Z2Þ. Assuming that this breaking is induced
by the S4 triplet Φ≡ 3ð−1;0;−1Þ, the VEV alignment in
this case is given by hΦi ¼ υΦð2;−1;−1ÞT as shown
in Ref. [29]. This can be easily exhibited using the
matrix representations of the generators of S4, given in
Eq. (A2), as follows:

ShΦi ≠ hΦi; UhΦi ≠ hΦi;
T hΦi ≠ hΦi; SUhΦi ¼ hΦi: ð2:4Þ

It is clear from this equation that the only preserved
symmetry is ZSU

2 while the broken part is given by
ZU
2 × ZS

2 ⋊ ZT
3 which is isomorphic to the alternating

A4 group. It is worth noticing that the use of the other
S4 triplet 30ð−1;0;1Þ while maintaining the same VEV
structure leads to the breakdown of the S4 group into
its Z2 subgroup generated by U where it is straight-
forward to verify that UhΦi ¼ hΦi. On the other hand,
thinking of ZSU

2 as one of the Z2 groups in the Klein
four group leads to the broken part ZU

2 ⋊ ZS
2 ⋊ ZT

3

which is a different group compared to ZU
2 × ZS

2 ⋊ ZT
3 .

However, both of these groups have the same order,
thereby resulting in an equal number of degenerate
vacua, as mentioned in the second comment provided
above. We will now take a brief look at alternative
representations of flavons. If we examine the breaking
pattern S4 ⟶ Z2 via an S4 doublet 2ð2;−1;0Þ, the
residual Z2 symmetry generated by SU is no longer
a viable choice. This is because SU and U transform

in the same manner, leading to the same outcome
when applied to hΦi. However, if we designate the
residual symmetry as ZS

2 , we can achieve this break-
ing pattern by adopting a VEV configuration as
hΦi ¼ υΦð1; 0ÞT . Another possibility is to opt for
different Z2 ∈G0

f subgroups among the nine available
in S4. On the other hand, it is not possible to use the
nontrivial singlet 10ð1;1;−1Þ for this breaking because it
transforms in the same manner under S and T
generators and thus the T generator will be always
preserved together with S. As a result, the nontrivial
singlet will inevitably cause the breakdown of S4 to a
subgroup other than Z2.

C. DWs configuration

1. Introduction

To understand how DWs are positioned in flavon space,
it is advantageous to look for concrete visual representa-
tions. These representations aid in illustrating the outcomes
of symmetry breaking, ultimately facilitating the under-
standing of the connections among distinct regions that
interpolate between the various Φa-vacua. In particular, we
are going to show that the use of networks or graphical
representations to present DWs arising from the SSB of the
S4 group can be useful to capture the properties of these
topological defect, such as their boundaries, intersections,
and connectivity. Moreover, these graphical representations
may also be interpreted as quiver diagrams in the flavon
space; denoted in what follows by ζ.
To establish a comprehensive framework for the S4

group’s flavon space, our approach involves envisioning
a six-dimensional vector space V capable of accommodat-
ing the various dimensions associated with S4 irreducible
representations. Specifically, we represent this vector as
V ¼ ðx1; x2; x3; x4; x5; x6Þ∈C6. As mentioned in the pre-
vious section, our primary focus lies on S4 triplets, leading
us to conceive the flavon triplet Φ in terms of the vector
space V components as5

Φ ∼Φjxj; j ¼ 1; 2; 3: ð2:5Þ

On the other hand, in order to use real graphical repre-
sentation for DWs, we need to find a real representation for
the flavon fields which are in general complex fields. We
can approach this by considering the splitting of the flavon

5A more general scenario would be to consider a collective
flavon field F ∼ F ixi, where F ¼ ðΦ;φ; σÞ with φ ¼ φkxk;
k ¼ 4, 5 being a flavon doublet while σ ¼ σx6 is a flavon singlet.
As a result, we can think of these x0is as the foundation of a vector
basis system in a flavon space ζ where the first three directions (x1,
x2, x3) correspond to the S4-triplets, the subsequent two directions
(x4, x5) correspond to S4-doublets and the last direction x6
corresponds to S4-singlets.
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fields as well as the vector space V into real and imaginary
parts,

Φj ¼ RðΦjÞ þ iIðΦjÞ;
Vj ¼ RðUjÞ þ iIðRjÞ; j ¼ 1; 2; 3; ð2:6Þ

whereUj and Rj are real 3D vectors that can be understood
as the constituents of xj as x1 ¼ ðU1; R1ÞT;…; x3 ¼
ðU3; R3ÞT . With this real representation, we can think
of the complex 3D expansion Φ ∼Φjxj as a real six-
dimensional vector like,

Φ ∼
X
j

½ℜðΦjÞUj þℑðΦjÞRj�∈R: ð2:7Þ

For illustration, we demonstrated in the previous section that
the S4 → K4 symmetry breaking pattern can be achieved
through a flavon triplet Φ0 which attains a VEV along the
direction hΦ0i ¼ υΦ0 ð1; 1; 1ÞT . This particular VEV can be
expressed in the real six-dimensional basis as

hΦ0i ¼ υΦð1; 0; 1; 0; 1; 0ÞT: ð2:8Þ

Expanding upon this, there exists another VEV direction
involving complex entries that corresponds to the S4 → K4

breaking pattern. We label this direction as hΦ00i ¼
υΦ00 ð1;ω;ω2ÞT where ω ¼ −1=2þ i

ffiffiffi
3

p
=2 [29]. In this

case, hΦ00i is represented in the real basis as

hΦ00i ¼ υΦ00 ð1; 0;−1=2;
ffiffiffi
3

p
=2;−1=2;−

ffiffiffi
3

p
=2ÞT: ð2:9Þ

From a geometric perspective, the VEV hΦ0i responsible for
the breaking can be represented by a vector situated in one
of the real directions within the vector space ðUk; RkÞ. The
components of this vector correspond to its coordinates
within that space. Then, the transformations applied to hΦ0i
by the various elements of the S4 group create a polygon in
the space defined by ðUk; RkÞ. The number of vertices in the
polygon is equal to the number of degenerate vacua
resulting from the SSB of the S4 group. For example, when
the S4 group is completely broken, the VEV responsible for
this breaking, say hΩi, splits into 24 vacua with the same
energy hΩii ≡ ϵi with i ¼ 1;…; 24. Among these vacua,
one is just the VEV used to break S4; say ϵ1 ¼ hΩi. The
remaining 23 vacua emerge through the application of the
S4 group elements upon ϵ1. These transformations generate
a polygon with the following 24 vertices

ϵ1 ¼ hΩi; ϵ2 ¼ Sϵ1; ϵ3 ¼ TST 2ϵ1; ϵ4 ¼ T 2ST ϵ1; ϵ5 ¼ Uϵ1; ϵ6 ¼ TUϵ1

ϵ7 ¼ SUϵ1; ϵ8 ¼ T 2Uϵ1; ϵ9 ¼ STSUϵ1; ϵ10 ¼ ST 2SUϵ1; ϵ11 ¼ T ϵ1; ϵ12 ¼ ST ϵ1

ϵ13 ¼ TSϵ1; ϵ14 ¼ STSϵ1; ϵ15 ¼ T 2ϵ1; ϵ16 ¼ ST 2ϵ1; ϵ17 ¼ T 2Sϵ1; ϵ18 ¼ ST 2Sϵ1

ϵ19 ¼ STUϵ1; ϵ20 ¼ TSUϵ1; ϵ21 ¼ T 2SUϵ1; ϵ22 ¼ ST 2Uϵ1; ϵ23 ¼ TST 2Uϵ1; ϵ24 ¼ T 2STUϵ1; ð2:10Þ

where the elements of S4 are provided in the Appendix. The
obtained polygonal graph can be interpreted as a DW quiver
observed from the flavon space ζ, where S4 is completely
broken. On the other hand, we mentioned in the previous
section that the models that are phenomenologically viable
for explaining the observed flavor structure correspond to
partial breaking of S4 down to one of its subgroups; Z2, Z3,
or K4. Therefore, the broken parts in each of these breaking
scenarios will yield a reduced number of vertices compared
to the scenario where S4 is completely broken. In what
follows, we will examine each case independently, with the
aim of describing the DW properties by identifying the
polygonal graphs associated with each breaking pattern.

2. DWs for S4 → K4 breaking

As outlined above, the breaking pattern S4 → K4 can be
realized by the flavon tripletΦ0 ≡ 30ð−1;0;1Þ acquiring a VEV
along the direction hΦ0i ¼ υΦð1; 1; 1ÞT . The Klein four

group we have chosen for this study is K4 ≅ ZS
2 × ZU

2 and
thus, this breaking can be expressed using G0

f as follows:

ZS
2 × ZU

2 ⋊ ZT
3 ⋊ ZT 2ST

2 !hΦ
0i
K4; ð2:11Þ

where the broken part is given by ZT
3 ⋊ZT 2ST

2 which is
isomorphic to the symmetric group S3. The order of S3 is
six which means that the initial S4 invariant vacuum gets
now split into six vacua with the same energy hΦ0ii ≡ φ0

i
with i ¼ 1;…; 6. These six vacua are positioned within the
flavon space ζ and collectively establish the vertices of a
Platonic solid known as a regular octahedron as depicted in
Fig. 2. One of the vertices defining the octahedron is the
K4- invariant vacuum used for the S4 → K4 breaking;
φ0
1 ¼ hΦ0i. To derive the remaining five φ0

i vacua, we act
upon φ0

1 with the generators of ZT
3 ⋊ ZT 2ST

2 as follows:
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φ0
1 ¼ hΦ0i; φ0

2 ¼ T φ0
1;

φ0
3 ¼ T 2φ0

1; φ0
4 ¼ T 2ST φ0

1;

φ0
5 ¼ T ðT 2ST Þφ0

1; φ0
6 ¼ T 2ðT 2ST Þφ0

1: ð2:12Þ

In the complex three-dimensional space C3, these trans-
formations lead to

φ0
1;4 ¼ �υΦ0

0
B@

1

1

1

1
CA; φ0

2;5 ¼ �υΦ0

0
B@

1

ω2

ω

1
CA;

φ0
3;6 ¼ �υΦ0

0
B@

1

ω

ω2

1
CA: ð2:13Þ

In the real vector basis, we have to use real variables, so
the dimensions of the above vectors has to be doubled
C3 ∼ R6. Applying the same procedure outlined in
Eqs. (2.8) and (2.9), we find

φ0
1;4 ¼ �υΦ0

�
1 0 1 0 1 0

�
T
;

φ0
2;5 ¼ �υΦ0

�
1 0 −1=2 −

ffiffiffi
3

p
=2 −1=2

ffiffiffi
3

p
=2

�
T
;

φ0
3;6 ¼ �υΦ0

�
1 0 −1=2

ffiffiffi
3

p
=2 −1=2 −

ffiffiffi
3

p
=2

�
T
;

ð2:14Þ

where the modulus of each vector is given by
ffiffiffi
3

p
υΦ0. These

vectors satisfy a constraint such that
P

i¼6 φ
0
i ¼ 0, defining

a regular octahedron with six vertices, twelve edges, and
eight faces. We need to emphasize that each vertex
(vacuum state) of an octahedron has exactly four adjacent

vertices (connected by edges), and thus the DWs form
between these adjacent vertices. For example, in Fig. 2, the
vertex corresponding to the state φ0

1 has four adjacent
vertices denoted by φ0

2, φ
0
3, φ

0
5, and φ0

6. Whereas the vertex
corresponding to the vacuum state φ0

4 positioned along the
diagonal is not adjacent. Moreover, moving along the
diagonal φ0

1φ
0
4 involves passing through the octahedron’s

center, where the S4 group remains unbroken (υΦ0 → 0),
and thus no DWs are present. Notably, the broken part in
this pattern corresponds to the non-Abelian group S3.
Therefore, we need to consider transformations of the
entire S3 group. Since the transition along the diagonal
covers a larger distance in the flavon space compared to
transitions between adjacent vertices [see Eq. (II.15)], the
shift between φ0

1 and φ0
4 can be achieved in four different

ways, for example, through all the adjacent vertices to φ0
1.

For instance, we can have a transition through φ0
6. This can

be realized using transformations such as φ0
6 ¼ TST φ0

1

and then φ0
4 ¼ T φ0

6 ¼ T 2ST φ0
1. Proving the properties of

the octahedron using the six vacua in Eq. (2.14) is a
straightforward task. To illustrate this, let us consider the
fact that all the edges of an octahedron possess equal
lengths. By examining the right triangular face defined by
vertices φ0

1, φ
0
2, and φ

0
3 as depicted in Fig. 2, we can deduce

that d012 ¼ d013 ¼ d023 ¼
ffiffiffi
6

p
υΦ0 , where d012 ¼ kφ0

2 − φ0
1k,

d013 ¼ kφ0
3 − φ0

1k and d023 ¼ kφ0
3 − φ0

2k. Furthermore, all
the diagonals within an octahedron share the same length.
This fact becomes evident when we calculate the lengths of
the three diagonals converging at the center of the
octahedron. Thus, following the notations in Fig. 2, we
find that

d014 ¼ d025 ¼ d036 ¼ 2
ffiffiffi
3

p
υΦ0 ; ð2:15Þ

where d014 ¼ kφ0
4 − φ0

1k, d025 ¼ kφ0
5 − φ0

2k and d036 ¼
kφ0

6 − φ0
3k.

3. DWs for S4 → Z3 breaking

As mentioned in the previous subsection, the breaking
pattern S4 → Z3 is realized by the flavon tripletΦ acquiring
its VEV along the direction hΦi ¼ υΦð1; 0; 0ÞT and can be
expressed using G0

f ¼ ZS
2 × ZU

2 ⋊ZT
3 ⋊ZTST 2

2 as follows:

ZS
2 × ZU

2 ⋊ ZT
3 ⋊ ZTST 2

2 !hΦ i
ZT
3 ; ð2:16Þ

where the broken part is given by Σ8 ¼ ðZS
2 × ZU

2 Þ⋊ ZTST 2

2 .
The order of Σ8 is eight which means that the initial S4
invariant vacuum gets now split into eight vacua with the
same energy hΦii ≡ φi with i ¼ 1;…; 8. These vacua are
situated within the flavon space ζ and collectively establish
the vertices of a regular cube, as depicted in Fig. 3. The
process of determining the coordinates of these eight vacua
is straightforward. We know that one of them is just the

FIG. 2. A regular octahedron viewed from the flavon space ζ.
The six vertices represent the six degenerate vacua, while the
edges that connect them stand for domain walls.

COSMOLOGICAL DOMAIN WALLS FROM THE BREAKING OF … PHYS. REV. D 109, 055048 (2024)

055048-7



ZT
3 -invariant vacuum used for the breaking of S4 down to

ZT
3 denoted by φ1 ¼ hΦi. To derive the remaining seven φi

vacua, we act upon φ1 with the generators of Σ8 by using
the representation matrices of the S4 generators provided in
Eq. (A2) as follows:

φ1 ¼ hΦi; φ2 ¼ Sφ1;

φ3 ¼ SUðTST 2Þφ1; φ4 ¼ SðTST 2Þφ1;

φ5 ¼ Uφ1; φ6 ¼ SUφ1;

φ7 ¼ TST 2φ1; φ8 ¼ UðTST 2Þφ1: ð2:17Þ

This is expressed explicitly in the complex three-dimen-
sional space C3 as follows:

φ1;5 ¼�υΦ

0
B@

1

0

0

1
CA; φ2;6 ¼�υΦ

3

0
B@

−1
2

2

1
CA;

φ3;7 ¼�υΦ
3

0
B@

1

−2ω2

−2ω

1
CA; φ4;8 ¼�υΦ

3

0
B@

−1
2ω

2ω2

1
CA: ð2:18Þ

Being associated with Σ8, these vacua are related to each
other by ðZS

2 × ZU
2 Þ⋊ZTST 2

2 transformations. Applying the
same procedure outlined in Eqs. (2.8) and (2.9), we find the
following expressions for the direction in R6:

φ1;5 ¼�υΦ
�
1 0 0 0 0 0

�
T
;

φ2;6 ¼�υΦ
3

�
−1 0 2 0 2 0

�
T
;

φ3;7 ¼�υΦ
3

�
1 0 1

ffiffiffi
3

p
1 −

ffiffiffi
3

p �
T
;

φ4;8 ¼�υΦ
3

�
−1 0 −1

ffiffiffi
3

p
−1 −

ffiffiffi
3

p �
T
; ð2:19Þ

where the modulus of each vector is given by RυΦ. These
vectors satisfy a constraint such that

P
i¼8 φi ¼ 0, defining

a cube with eight vertices, 12 edges, and six faces. The
diagonals of this cube converge at a unique point known as
the center of symmetry, also referred to as the barycenter (or
the core of the cube) of its eight vertices where the complete
S4 symmetry is manifest. Notably, it is straightforward to
prove that connecting these eight vertices creates a cube, as
confirmed by verifying that the 12 edges interconnecting the
eight vertices in Fig. 3 are all of equal length. This equality
can be easily calculated by fixing one vertex at a time. Given
that we know that each vertex in a cube is connected to
three edges, consider φ1 in Fig. 3; it is connected via
three edges to φ3, φ6, and φ8. As a result, we find that

d13 ¼ d16 ¼ d18 ¼
ffiffi
4
3

q
υΦ, where d13 ¼ kφ3 − φ1k, d16 ¼

kφ6 − φ1k and d18 ¼ kφ8 − φ1k.

4. DWs for S4 → Z2 breaking

As described previously, the breaking pattern S4 → Z2

can be realized by the flavon tripletΦ≡ 3ð−1;0;−1Þ acquiring
a VEV along the direction hΦi ¼ υΦð2;−1;−1ÞT . This
breaking can be expressed using G0

f as follows:

ZS
2 × ZU

2 ⋊ ZT
3 ⋊ ZSU

2 !hΦi
ZSU
2 ; ð2:20Þ

where the broken part is given by ZS
2 × ZU

2⋊ZT
3 which is

isomorphic to the alternating A4 group of order 12.
Therefore, the initial S4 invariant vacuum gets now split
into twelve vacua with same energy hΦii ≡ ϕi with
i ¼ 1;…; 12. These vacua are located within the flavon
space ζ and collectively establish the vertices of an
Archimedean solid known as cuboctahedron as depicted
in Fig. 4. One of the vertices defining this solid is the ZSU

2 -
invariant vacuum which we denote as ϕ1 ¼ hΦi. As in the
previous cases, we act upon ϕ1 with the generators of
ZS
2 × ZU

2 ⋊ ZT
3 to derive the remaining twelve ϕi vacua,

ϕ1 ¼ hΦi; ϕ2 ¼ T ϕ1; ϕ3 ¼ T 2ϕ1;

ϕ4 ¼ TST 2ϕ1; ϕ5 ¼ ST 2Sϕ1; ϕ6 ¼ STSϕ1;

ϕ7 ¼ Uϕ1; ϕ8 ¼ TUϕ1; ϕ9 ¼ T 2Uϕ1;

ϕ10 ¼ TST 2Uϕ1; ϕ11 ¼ ST 2SUϕ1; ϕ12 ¼ STSUϕ1:

ð2:21Þ

FIG. 3. A regular cube viewed from the flavon space ζ. The
eight vertices represent the eight degenerate vacua, while the
edges that connect them stand for domain walls.
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In the complex three-dimensional space C3, these transformations lead to

ϕ1;7 ¼ �υΦ

0
B@

2

−1
−1

1
CA; ϕ2;8 ¼ �υΦ

0
B@

2

−ω2

−ω

1
CA; ϕ3;9 ¼ �υΦ

0
B@

2

−ω
−ω2

1
CA;

ϕ4;10 ¼ �υΦ

0
B@

0

ω2 − ω

−ω2 þ ω

1
CA; ϕ5;11 ¼ �υΦ

0
B@

0

ω2 − 1

ω − 1

1
CA; ϕ6;12 ¼ �υΦ

0
B@

0

ω − 1

ω2 − 1

1
CA: ð2:22Þ

Applying the same procedure outlined in Eqs. (2.8) and (2.9), we find

ϕ1;7 ¼�υΦ
�
2 0 −1 0 −1 0

�
T
; ϕ2;8 ¼�υΦ

�
2 0 1=2

ffiffiffi
3

p
=2 1=2 −

ffiffiffi
3

p
=2

�
T
;

ϕ3;9 ¼�υΦ
�
2 0 1=2 −

ffiffiffi
3

p
=2 1=2

ffiffiffi
3

p
=2

�
T
; ϕ4;10 ¼�υΦ

�
0 0 0 −

ffiffiffi
3

p
0

ffiffiffi
3

p �
T
;

ϕ5;11 ¼�υΦ
�
0 0 −3=2 −

ffiffiffi
3

p
=2 −3=2

ffiffiffi
3

p
=2

�
T
; ϕ6;12 ¼�υΦ

�
0 0 −3=2

ffiffiffi
3

p
=2 −3=2 −

ffiffiffi
3

p
=2

�
T
; ð2:23Þ

where the modulus of each vector is given by
ffiffiffi
6

p
υΦ. These

vectors satisfy a constraint such that
P

i¼12 ϕi ¼ 0, defin-
ing a regular cuboctahedron with 12 vertices, 24 edges, and
14 faces (six square faces and eight triangular faces). The
properties of the regular cuboctahedron are easily verified
through the real vectors in Eq. (2.23). For example, we
know that all the edges in this Fig. (4) are of equal length
which we can verify by calculating, for instance, the
distances between the edges of the square face
ϕ1ϕ3ϕ4ϕ5 where we find that d13 ¼ d34 ¼ d45 ¼ d51 ¼ffiffiffi
6

p
υΦ where dij ¼ kϕi − ϕjk.
To summarize, our strategy for representing DW net-

works in a real Euclidean space has led to the derivation of
Platonic and Archimedean solids. In this visual framework,
the vertices represent the degenerate vacua corresponding
to each S4 breaking pattern, while the edges represent

the DWs. Consequently, these graphical depictions not only
enhance our intuitive comprehension of the vacuum struc-
ture but also facilitate the accurate determination of the
number of DWs associated with each S4 breaking pattern.
Notably, examining transformations among the degenerate
vacua for each S4 breaking pattern reveals that no DWs
emerge between the diagonals of the provided Platonic and
Archimedean solids. On the other hand, to investigate the
characteristics of these DWs, an examination of the scalar
potential associated with the scalars responsible for S4
breaking is necessary. An essential component of this
involves estimating the dimensions, including both the
width and the surface area, of these DWs using a spacetime
framework; see Sec. VA of Ref. [20] for the case of
A4 group.

III. A RESOLUTION FOR THE DW PROBLEM
WITHIN A NEUTRINO TOY MODEL

In this section, we begin by reviewing some viable
solutions to the DW problem and we use one of these
solutions within a toy model that incorporates the S4 flavor
symmetry. Then, we analyze the neutrino phenomenology
in this model, comment on the solution using high-
dimensional operators and at the end we qualitatively
discuss the GWs arising from DWs in this case.

A. Neutrino phenomenology

We illustrate the DW problem and its solution using a toy
model that is based on the type-II seesawmechanism with an
S4 flavor symmetry. In this study, we will focus solely on the
neutrino sector and ignore the charged lepton sector. This is
due to the fact that in minimal flavor models, the flavon
fields cannot be used simultaneously in the neutrino and

FIG. 4. A regular cuboctahedron viewed from the flavon space
ζ. The twelve vertices represent the twelve degenerate vacua,
while the edges that connect them stand for domain walls.
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charged lepton sectors while preserving the correct vacuum
alignment [31,32]. Consequently, these two sectors are
decoupled from each other, including the scalar potentials
of the flavons used in both sectors. Usually, this is achieved
by acquiring additional ZN symmetries to control the model
Lagrangian and prevent unwanted couplings. The particle
content in this toy model consists of LiL ¼ ðνiL;liLÞT ,
H ¼ ðϕþ;ϕ0ÞT , and Δ ¼ ðΔþþ;Δþ;Δ0ÞT with LiL;H, and
Δ being the lepton doublet, Higgs doublet and scalar triplet
with hypercharges −1, 1, and 2, respectively. The scalar
triplet is responsible for the generation of small neutrino
masses through the type-II seesaw mechanism. In addition,
we extend the particle content of the SM with three gauge
singlet flavon fields (Φ, σ, ρ) to achieve the SSB of the S4
symmetry and ensure a trimaximal mixing for the neutrino
mass matrix. The transformations of these fields under
SUð2ÞL × S4 are summarized in Table I. By using these
field transformations, the most general Lagrangian invariant
under SUð2ÞL ×Uð1ÞY × S4 is given by

L≡ λΦ
Λ

�
L̄c
iLiσ2ΔLjL

�
Φþ λσ

Λ

�
L̄c
iLiσ2ΔLjL

�
σ

þ λρ
Λ

�
L̄c
iLiσ2ΔLjL

�
ρþ H:c:; ð3:1Þ

where Λ is a cutoff scale, i, j are generation indices, and
λΦ; λσ , and λρ are independent parameters associated with
the flavon fieldsΦ, σ, and ρ, respectively. The S4 breaking to
one of its Z2 subgroups is realized when the flavon fields
acquire VEVs along the directions

hΦi ¼ υΦð1; 1; 1ÞT;
hσi ¼ υσð1; 0ÞT;
hρi ¼ υρ: ð3:2Þ

Using the S4 tensor product rules given in the Appendix, we
obtain the following neutrino mass matrix:

mν ¼ υΔ

0
B@

2aþ b −a − c −a
−a − c 2a −aþ b

−a −aþ b 2a − c

1
CA; ð3:3Þ

where a, b, c are parameters that can be expressed in terms
of the flavon VEVs and λi,

a ¼ λΦυΦ
Λ

; b ¼ λρυρ
Λ

; c ¼ λσυσ
Λ

: ð3:4Þ

In order to account for CP violation in the neutrino sector, it
is necessary for the parameter c to be a complex valued
parameter, i.e., c → jcjeiϕc , where ϕc is a CP violating
phase. In the case where c ¼ 0, mν exhibits the μ − τ
symmetry [33–37] which yields to a tribimaximal mixing
matrix (TBM) [38], known for its conservation of CP
symmetry. Therefore, the presence of the parameter c breaks
this μ − τ symmetry giving rise to a neutrino mass matrix
characterized by the magic symmetry [39]. This term alludes
to the intriguing property that the sum of elements within
any row or column of mν remains constant and that mν is
diagonalized by the well-known trimaximal mixing matrix
(UTM2

) which is expressed in terms of an arbitrary angle θ
and a phase ηwhich will be related to the neutrino oscillation
parameters. Since the parameter c is responsible for small
deviations from the TBM texture, the modulus of c must
satisfy: jcj < a, b. Accordingly, by diagonalizing mν we
find the following eigenvalues valid up to corrections of
order Oðjcj2Þ

jm1j ¼ vΔ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3aþ bÞð3aþ bþ jcj cosϕcÞ

p
;

jm2j ¼ vΔ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − 2bjcj cosϕc

q
;

jm3j ¼ vΔ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3a − bÞð3a − b − jcj cosϕcÞ

p
: ð3:5Þ

The diagonalization of mν by UTM2
induces relations

between the model parameters fa; b; jcj;ϕcg and the tri-
maximal mixing parameters θ and η which are found to be

tan 2θ ¼ −
jcj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9a2cos2ϕc þ b2sin2ϕc

p
ffiffiffi
3

p
aðbþ jcj cosϕcÞ

;

tan η ¼ b
3a

tanϕc: ð3:6Þ

From Eq. (3.5), we derive the expressions for the solar and
atmospheric mass-squared differences,

Δm2
21 ¼ −3υ2Δðjcj cosϕcðaþ bÞ þ að3aþ 2bÞÞ;

Δm2
31 ¼ −6υ2Δaðjcj cosϕc þ 2bÞ: ð3:7Þ

The neutrino mixing angles are expressed in the case of TM2

with respect to θ and η as follows:

sin2 θ12 ¼
1

3 − 2 sin2 θ
;

sin2 θ13 ¼
2

3 sin2 θ
;

sin2 θ23 ¼
1

2
−

ffiffiffi
3

p
sin 2θ

2ð3 − sin2 θÞ cos η: ð3:8Þ

TABLE I. SUð2ÞL and S4 transformations of the particle
content of the model.

Fields LiL H Δ Φ σ ρ

SUð2ÞL 2 2 3 1 1 1
S4 3 1 10 3 2 10
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Moreover, by matching the expression of the Jarlskog
parameter from the PDG standard parametrization [40],
and its expression derived from the trimaximal mixing
matrix JCP ¼ ð1=6 ffiffiffi

3
p Þ sin 2θ sin η, we can establish a

relationship between η, the Dirac CP phase and the
atmospheric angle that will be used as a constraint in our
numerical calculations

sin 2θ23 sin δCP ¼ sin η: ð3:9Þ

There are three different sources that can be used to probe
the absolute values of neutrino-mass eigenvalues: (1) the
sum of the three active neutrino masses from cosmological
observations

P
i mi ¼ m1 þm2 þm3; (2) direct determi-

nation of the neutrino mass by measuring the energy
spectrum of the electrons produced in the β-decay of nuclei
which allows to get information on the effective electron
antineutrino mass defined by mβ ¼ ðPi m

2
i jUeij2Þ1=2,

where Uei are the elements of the first row of the neutrino
mixing matrix (the current limit from tritium beta decay is
given by the KATRIN project, which aims at a detection of
mβ with a sensitivity of 0.2 eV [41]); (3) the search for
neutrinoless double beta decay ð0νββÞ processes whose
decay amplitude is proportional to the effective Majorana

neutrino mass defined as jmββj ¼ jPi U
2
eimij. There are

many ongoing and upcoming experiments which aim to
achieve a sensitivity up to 0.01 eV for jmββj. In the context
of the trimaximal mixing, Uei in mβ and jmββj are replaced
by the elements of the first row ofUTM2

while the massesmi

are as given in Eq. (3.5). For mββ, two additional phases are
introduced and the full mixing matrix can be written as
UTM2

UP where UP ¼ diagð1; eiα21=2; eiα31=2Þ with α21 and
α31 being two extra Majorana phases. Since the recent
results from NuFiT Collaboration show a mild preference
for the normal neutrino mass hierarchy [1], we will perform
a brief numerical analysis of neutrino masses in the case
where m1 < m2 ≲m3. By taking into account the 3σ C.L.
of the oscillation parameters from Ref. [1], and the upper
bound on the sum of neutrino masses from the latest Planck
data

P
mi < 0.12 eV at 95% C.L. [42], we show in Fig. 5

the three neutrino masses and their sum (left panel), mβ

(middle panel), and jmββj (right panel) as a function of the
lightest neutrino mass m1. Here, we assume that the angle θ
is allowed to vary in the range ½0; π=2�, and the phases η, ϕc,
α21, and α31 are randomly varied in the range ½0; 2π� while
the parameters a, b, and c are varied in the range ½−1; 1�.
From Fig. 5, the predicted regions for mi¼1;2;3,

P
i mi, mβ

and jmββj are as follows:

0.00049≲m1 ½eV�≲ 0.02866; 0.00834≲m2 ½eV�≲ 0.02986; 0.04941≲m3 ½eV�≲ 0.05754;

0.05884≲X
mi ½eV�≲ 0.11607; 0.00889≲mβ ½eV�≲ 0.03001; 0.00099≲ jmββj ½eV�≲ 0.02438: ð3:10Þ

The predicted upper bound value of
P

mi is close to the
result of the Planck Collaboration [42], while the lower
bound (∼0.06 eV) requires further studies in future cosmo-
logical data and may be tested in the future by experiments
such as COREþ BAO aiming to reach a 0.062 eV sensi-
tivity [43]. For mβ, the obtained values are far from the

forthcoming β-decay experiment sensitivities [44–47], and
thus require experiments with improved sensitivities around
0.02 eV. For jmββj, the horizontal dashed lines in Fig. 5
show that the model values are below the current sensitivities
for some of the ongoing 0νββ decay experiments while the
anticipated sensitivities of the next-generation experiments

FIG. 5. Left: prediction for the absolute neutrino masses and their sum Σmi as a function of m1. Middle: mβ as a function ofm1 where
the vertical and horizontal gray regions are disfavored by Planck and KATRIN Collaborations, respectively, while the horizontal dashed
lines represent the future sensitivities on mβ from HOLMES and Project 8 Collaborations. Right: jmββj as a function of m1 where the
horizontal dashed lines represent the limits on jmββj from current and future 0νββ decay experiments.
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such as GERDA Phase II [48] and nEXO [49] will cover our
model predictions on jmββj. Moreover, it is clear from the
mass expressions in Eq. (3.5) that the tiny neutrino masses
constraint the parameter υΔ, which has been determined to
fall within the range of 0.01803≲ υΔ ½eV�≲ 0.04997.

B. Solution to the DW problem

1. Exploring the DW problem and potential remedies

As outlined above, DWs are sheetlike topological
defects that emerge as a result of the SSB of discrete
groups. These two-dimensional structures remain stable
when the vacuum manifold, defined by the scalar potential
of the theory, is topologically nontrivial. This nontriviality
manifests as isolated points corresponding to distinct
degenerate ground states within the theory. In the classic
example of SSB of the discrete Z2 symmetry driven by a
real scalar field transforming as φ → −φ, the potential has
two degenerate vacua at φ ¼ �υ. Thus, the associated
manifold is restricted to only two points. In our toy model
where S4 breaks down to Z2, the manifold is made of
twelve disconnected vacua given by the quotient group
S4=Z2 which corresponds to the broken part V4⋊ Z3 as
discussed in Sec. II. Once the scalar field settle into one of
these possible ground states representing a point within the
vacuum manifold, depicted graphically as the cuboctahe-
dron in Fig. 4, it becomes impossible to transition to
another point within the manifold. The transitional regions
between these degenerate ground states are what we refer
to as DWs.
In order to understand why stable DWs are problematic,

it is essential to comprehend the cosmological implications
of the SSB of a discrete group. According to the standard
cosmological model, the initial state of the Universe is a
state of local thermal equilibrium at extremely high
temperature. Typically, spontaneously broken symmetries
are restored at this high temperature. However, as the
Universe goes through cosmic expansion and gradually
cools over time, a crucial phase transition takes place when
the temperature falls below a critical threshold leading to
the SSB of the discrete symmetry. The issue arises from the
fact that distinct regions with a characteristic size of
approximately the Hubble radius H−1 become causally
disconnected. After the symmetry is broken, these regions
will be situated in different vacua, separated by DWs. A
comprehensive study of the cosmological evolution of a
Universe containing these DWs was first performed by
Zel’dovich, Kobzarev, and Okun [4], where they con-
cluded that the contribution of stable DWs to the energy
density of the Universe would rapidly surpass the con-
tribution from radiation, causing a rapid expansion of the
Universe that would leave less time for the formation of
galaxies and subsequently impact the production rates
during big bang nucleosynthesis. Indeed, the energy
density of DWs can be expressed as

ρDW ¼ σDW=R; ð3:11Þ

where R represents the typical size of the DWs, and σDW
denotes the surface energy density of the walls. The
parameter R is directly proportional to the scale factor a,
and thus the energy density of domain walls scales as a−1,
which is significantly lower than the scaling of radiation a−4

or matter a−3. This means that as time progresses, the energy
density of DWs decreases at a slower rate than that of matter
or radiation. Eventually, regardless of their initial abun-
dance, their presence at late times would make them the
dominant contributors to the total energy density of the
Universe. This has profound cosmological implications that
conflicts observational data, notably leaving significant
imprints in the CMB radiation. To elaborate this point,
recall that the CMB exhibits an incredibly precise black-
body radiation [50], and any deviation from this spectrum,
referred to as CMB spectral distortions, holds invaluable
information about the physics of the early Universe.
Specifically, the primordial fluctuations of matter density,
that will later form large-scale structures we observe today,
leave imprints in the form of temperature anisotropies in the
CMB. Nevertheless, these temperature fluctuations are very
small, with the CMB spectrum maintaining remarkable
uniformity up to about 1 part in 105, usually expressed as

δT
T

≲ 10−5; ð3:12Þ

where δT denotes the temperature deviation in a given
region of the sky, and T denotes the mean temperature of the
CMB. With these cosmic evolution facts in mind, a notable
challenge that arises with the existence of stable DWswithin
the observable Universe is that they would introduce addi-
tional distortions, or excessive anisotropies, in contrast to
the CMB anisotropies that we observe today. This issue
emerges particularly in cases where the symmetry breaking
scale is around υφ ≳ 1 MeV as shown in Ref. [4]. This
bound is estimated by equating the density fluctuation
δρDW=ρDW of a DW to the temperature fluctuation in the
CMB, δT=T, which are approximately equal at the surface
of the last scattering (postrecombination) when the DW
spans across the present observable horizon [6]. The density
fluctuation for a DW located between two degenerate vacua
is estimated to be

δρDW
ρDW

∼ 1060 ×

�
υφ

MPlanck

�
3

; ð3:13Þ

where MPlanck ¼ 1.2 × 1019 GeV is the Planck mass.
Consequently, the constraint δρDW=ρDW ∼ δT=T ≲ 10−5

establishes a lower limit on υφ; υφ ≳ 1 MeV under which
stable DWs pose significant cosmological challenges.
Conversely, these DWs do not present any issues if the
gravitational redshift of the walls remain well below the
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detectable threshold for anisotropy constraints, δT=T≲10−5.
This implies that the energy scale of the phase transition that
generates these DWs must be limited to values smaller
than 1 MeV.
Considering the strict constraint imposed on the scale of

the SSB mentioned above, different approaches have been
proposed in the literature to address the DW issue. These
approaches revolve around the concept of unstable DWs
that experience early decay, implying their existence for
only a brief period of time [7]. The most famous approach is
inflation [51], which is a valid solution provided that the
DWs formed prior to the end of inflation, causing them to
expand beyond our current observable horizon. In simpler
terms, this implies that the discrete symmetry must have
already broken before the onset of inflation (the phase
transition must occur before the inflation). Consequently,
inflation will cause these DWs to expand and disappear
from our observable Universe, eliminating the associated
problem. A second approach for addressing the DW
problem assumes that the discrete symmetry connecting
the vacuum states as approximate symmetry. This suggests
the existence of an explicit symmetry breaking term, which
would result in the eventual collapse of the DWs during
early cosmic times [6]. It was shown in Refs. [4,5] that this
can be achieved by introducing a biased potential that can
effectively lift the degeneracy among the vacua. This allows
one of the vacuum states to attain a slightly lower energy
density than the others, ultimately establishing its domi-
nance in the Universe as the true vacuum. Typically, this
symmetry breaking term is introduced by hand, although in
principle, the soundness of this solution depends on whether
explicit breaking naturally arises from some underlying
physics [52]. Indeed, it was shown in Refs. [12,53] that this
explicit breaking term can be achieved by taking into
account Planck scale gravitational effects. This is realized
via the introduction of higher-dimensional operators,
denoted as

1

Mn
Planck

Onþ4 þ H:c:; ð3:14Þ

which are suppressed by powers of the Planck massMPlanck
in the scalar potential leading to a preference for one of the
vacua over the others. In fact, it is widely believed that all
global symmetries are expected to be explicitly broken by
quantum gravitational effects, and yet may play an impor-
tant role in particle physics and cosmology. These general
expectations are supported by theoretical calculations illus-
trating the explicit breaking of global symmetries by sources
such as black holes [54]. In addition, it has been shown that
certain concrete theories of quantum gravity do not admit
exact global symmetries, including holography [55] and
string theory [56]. The same concept is applicable to our S4
toy model, which features twelve degenerate vacua. By

introducing a slight bias in favor of one vacuum state over
the others, we effectively resolve the DW problem.

2. Solving the DW problem within our toy model

In the toy model outlined above, the S4 flavor symmetry
is broken into one of the Z2 subgroups of S4 with the
broken part denoted as K4⋊ Z3 ⊂ S4. This breaking is
realized by one of the flavons listed in Table I. As a result,
DWs form, and expand between the boundaries of twelve
degenerate vacua ϕi¼1;…;12 which are distinguished by the
transformation of the broken part K4⋊ Z3 as detailed in
Sec. II C 4. These DWs pose a challenge when the scale of
the symmetry breaking associated with their formation falls
below the inflationary scale which is approximately
1016 GeV [57–59]. In our toy model, there is no inherent
constraint preventing the VEVs of the flavons fΦ; σ; ρg to
fall below the inflationary scale threshold. Let us verify this
by getting an estimate on the S4 breaking scale using, as an
example, the expression of jm2j given in Eq. (3.5). The
upper bound of this mass, jm2j ≈ 0.0298 eV, is given in
Eq. (3.10) and is obtained for

υΔ ≈ 0.047 eV; b ≈ 0.827;

jcj ≈ 0.198; cosϕc ¼ 0.875: ð3:15Þ

From the expressions of jcj ¼ λσυσ
Λ and b ¼ λρυρ

Λ , and
assuming for simplicity that the Yukawa couplings are
of order Oð1Þ, it is clear that when considering the VEVof
flavons ρ and σ around the TeV scale, Λ will always remain
below the inflationary scale. Therefore, we assert that the
DWs created during S4 symmetry breaking are inconsistent
with the standard cosmology [60], and must be prevented.
For this purpose, we adopt the second approach men-

tioned above and we break explicitly the K4⋊Z3 subgroup
of S4 at a high energy scale by using one of the possible
Planck-suppressed operators within our toy model. The
leading higher-dimensional terms induced by gravity and
respecting gauge invariance are of dimension five, thus they
are suppressed by one power of MPlanck. It is worth noting
that due to the substantial suppression of these operators,
the model remains unchanged at lower energy scales.
There exist several five-dimensional operators capable of

explicitly breaking the S4 flavor group. However, it is not
necessary to enumerate or employ all of them. As stated in
Ref. [60], even the tiny higher-dimensional symmetry-
breaking terms, constrained by powers of the Planck mass,
may suffice to address the DW problem. Given our primary
focus on S4 flavon triplets, we shall employ the flavon
triplet Φ ∼ 3. During the SSB of the S4 group, this triplet
creates DWs that are located on the boundaries of the
twelve degenerate vacua as described in Eq. (2.22) and
depicted in Fig. 4. Therefore, the leading contribution of Φ
in the effective scalar potential may be expressed as
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ΔVeff ¼
ε5

MPlanck
½½ðΦ†ΦÞ3ðΦ†ΦÞ3�30 ðΦ†Þ3j10 þH:c:�; ð3:16Þ

where ε5 is a positive dimensionless parameter that char-
acterizes the effective bias. Since this term transforms as a
nontrivial S4 singlet it breaks explicitly the S4 group. When
the flavon triplet obtains its VEV, hΦi ¼ ðυΦ; υΦ; υΦÞT , the
resulting contribution from ΔVeff becomes sufficient to lift
the degeneracy among the twelve degenerate vacua
ϕi¼1;…;12. In such a scenario, the energy-density difference
between these vacua can be approximated as

Vbias ≈
ε5υ

5
Φ

MPlanck
; ð3:17Þ

where υΦ represents the scale of spontaneous symmetry
breaking of the S4 group. Therefore, to estimate the amount
of symmetry breaking, it is necessary to determine the
values of the bias coefficient ε5. Assuming that this
coefficient is real, the general condition for the elimination
of DWs, taking into account the operator mentioned in
Eq. (3.16) can be expressed as follows [60]:

ε5 >

�
υΦ

MPlanck

�
: ð3:18Þ

As previously discussed, there is no inherent constraint
preventing SSB of S4 from occurring at scales lower than
that of inflation. In fact, as the scale of symmetry breaking
decreases, the possibility of creating an energy gap among
the degenerate vacua becomes increasingly plausible [61].
The minimum size of symmetry breaking depends on both
ε5 and υΦ. For instance, if we consider υΦ to be around the
TeV scale, it is sufficient to require that ε5 > 10−17 in order
to favor one of the vacuum states over the others. Moreover,
by using Eq. (III.39) and assuming that υΦ ≈Oð1Þ TeV, a
quantitative estimate of the minimum symmetry breaking
size required to solve the DW problem can be written as

Vbias > 10−17 ðGeVÞ3 υ2Φ
MPlanck

≈ 10−21 ðGeVÞ4:

Therefore, the nonrenormalizable operator given in
Eq. (3.15) gives rise to an extremely small contribution
in the low-energy regime and hence will have negligible
effect on e.g., the neutrino sector.

3. Gravitational waves from DWs

The dimension-five operator in Eq. (3.16) induces a slight
bias among degenerate minima, ultimately favoring one true
vacuum state. Over time, this bias becomes dynamically
significant, accelerating each wall towards its adjacent
higher-energy vacuum and driving the evolution of the
DWs towards their eventual annihilation. The dynamics of
these walls can be fully understood if two underlying forces

are determined. The first one is the surface tension (pT)
caused by the curvature and is proportional to the energy
per unit area; pT ∼ σDW=R. This force acts as a surface
pressure that straightens the curved walls up to the horizon
scale. The second force is the volume pressure which
shrinks the false vacuum domains leading to the collapse
of DWs and is approximately scaling as pV ∼ vT4 [62],
where v is the velocity of the DWs. This force is equal to
the differences in energy density of the vacua and thus may
be expressed also as pV ∼ Vbias ¼ ðε5υ5ΦÞ=MPlanck. These
two forces compete, and the dynamics of the walls is
profoundly influenced by the magnitude of the bias [7].
DWs annihilate when the pressure pV becomes compa-
rable to the tension force pT . This annihilation process is
remarkably energetic, resulting in the emission of stochas-
tic GWs which retain various information on the physics of
the early Universe [61,63–67]. The time of annihilation
tann and the corresponding temperature Tann are given by

tann ≃
σDW
Vbias

;

Tann ¼ 3× 107
�

10

g�ðTannÞ
�

1=4
�
Vbiasσ

−1
DW

1 TeV

�
1=2

TeV; ð3:19Þ

where g�ðTannÞ is the effective number of degrees of
freedom at tann. In most realistic cases, ð10=g�Þ1=4 is of
order one. Using the expression of Vbias in Eq. (3.17), we
have

tann ≃
σDWMPlanck

ε5υ
5
Φ

;

Tann ≃ 3 × 107
�
ε5υ

5
Φσ

−1
DWM

−1
Planck

1 TeV

�
1=2

TeV: ð3:20Þ

Once the tension force becomes dominant, DWs will enter
the scaling regime in which the typical length scales are
given by the Hubble radius H−1 as mentioned previously.
This is the so-called scaling solution, for which the energy
density of the DWs evolves as ρDW ¼ AσDW=t where A is
a dimensionless numerical factor called the area parameter
which takes an almost constant value [67].6 In this scaling
regime, the peak amplitude of the stochastic GWs spec-
trum at the present time t0 can be expressed as [67,71]

6The scaling properties of DWs have been verified through
several numerical [67] and analytical [68] techniques. For
instance, using numerical simulations in a model with two
degenerate vacua (Z2-invariant scalar potential), it has been
found that the parameter A approximates to A ≃ 0.8� 0.1. In
models with N > 2 degenerate vacua, this parameter is usually
estimated based on the Z2 example and its value increases
proportionally with N [69,70]. In Ref. [71], the value of A
was estimated as A ≃ 0.8 × ð3=2Þ in a model with three degen-
erate vacua (i.e., Z3 invariant NMSSM).
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ΩGWh2ðt0Þjpeak ≃ 5.2 × 10−20ϵ̃gwA4

�
10.75

g�ðTannÞ
�

1=3

×

�
σDW

1 TeV3

�
4
�
1 MeV4

Vbias

�
2

; ð3:21Þ

where ϵ̃gw is an efficiency parameter determined in
numerical simulations to be equal to ϵ̃gw ≃ 0.7 [67].
Beyond the peak, the amplitude of GWs spectrum induced
by collapsing DWs is given by

ΩGWh2 ≃ΩGWh2jpeak ×

8><
>:

�
f

fpeak

�
3
; f < fpeak

f
fpeak

; f > fpeak;
ð3:22Þ

where the peak frequency is found to be

fðt0Þpeak ≃ 3.99 × 10−19 ×A−1=2 ×

�
1 TeV3

σDW

�
1=2

×

�
Vbias

1 MeV4

�
1=2

Hz: ð3:23Þ

It is clear from Eqs. (3.21) and (3.23) that both the
amplitude and the peak frequency of the GWs depend on
two parameters; σDW and Vbias. Since both σDW and Vbias
depend on the scale of the SSB of S4 symmetry (υΦ), the
spectrum of ΩGWh2 can be used to constrain the SSB of S4
within this model. It is worth noting that the same scale (υΦ)
controls some of the neutrino predictions. Therefore,
detailed analyses will shed some lights on the connections
between flavor symmetries, neutrino mass and the DW
problem through GWs.
Our primary goal in this paper is to discuss the theoretical

and geometric aspects of the DW problem arising from the
spontaneous breaking of the S4 flavor symmetry into its
potential residual symmetries. While we have outlined the
subtleties of GWs using parameters from our toy model,
more involved analyzes of GW probes of DWs within
models based on non-Abelian discrete groups necessitate
further investigations of the wall network that relies in part
on dedicated Monte Carlo simulations which we leave for a
future work.

IV. SUMMARY AND CONCLUSIONS

In this work, we have studied the formation of cosmic
DWs from the SSB of the S4 discrete group. This breaking
occurs when gauge singlet flavon fields acquire VEVs
giving rise to multiple distinct degenerate vacua separated
by energy barriers which establish a network of DWs. These
non-Abelian discrete groups are widely used in flavor model
building, primarily because of their ability to give predic-
tions that are in good agreement with neutrino oscillation
data. In these models, a crucial point is that there are distinct
preserved residual symmetries in the neutrino and charged

lepton sectors after the SSB. This distinction arises from the
fact that the flavon configurations that predict specific
fermion mass structures exhibit different VEV directions
in both sectors. Consequently, the number of vacua is
contingent upon both the order of the residual symmetry and
the order of the underlying flavor group. In the case of the S4
flavor symmetry, we have investigated three possible break-
ing patterns that are phenomenologically viable: S4 → K4,
S4 → Z3, and S4 → Z2. The associated broken subgroups
are given by the non-Abelian groups S3 ≃ S4=K4,
Σð8Þ ≃ S4=Z3, and A4 ≃ S4=Z2, respectively. Therefore,
the number of vacua for each breaking pattern is given
by the order of S3, Σð8Þ, and A4, namely 6, 8, and 12
respectively. The challenges associated with presenting
DWs in cases of multiple vacua have been addressed
through a novel approach where we have depicted the S4
DW networks by representing each breaking pattern’s
multiple vacua as vertices. Each vertex is expressed through
vector coordinates in flavon space. The resulting outcome
consists of Archimedean or Platonic solids, created by
connecting vertices that represent degenerate vacua with
edges that symbolize DWs. This provides a clear visuali-
zation of the intricate network structure.
On the other hand, we addressed the challenge of stable

DWs by introducing an S4 toy model wherein neutrino
masses are generated through the type-II seesaw mecha-
nism. After the SSB of gauge and flavor symmetries, the
resulting neutrino mass matrix exhibits a magic symmetry,
and it is diagonalized by the trimaximal mixing matrix
known to align with neutrino oscillation data. Moreover, we
find that the obtained predictions concerning the sum of the
three active neutrino masses

P
mi, and the effective

Majorana mass mββ can be probed by future experiments.
The breaking pattern in this toy model is given by S4 → Z2,
which gives rise to twelve degenerate vacua, and to resolve
the DW problem, we have adopted the approach of explicit
symmetry breaking through the introduction of a Planck-
suppressed operator induced by gravity into the scalar
potential. This explicit breaking induces a bias among
the twelve degenerate vacua, parameterized as ε5υ5Φ, where
υΦ is the scale of the SSB of the S4 group. Lifting the
degeneracy of the multiple minima of the scalar potential
while favoring one true vacuum state is obtained by putting
constraints on the dimensionless coefficient ε5 that charac-
terized the bias where we find that for υΦ ∼Oð1Þ TeV, it is
sufficient to require ε5 > 10−17 in order to drive the
evolution of the walls towards their annihilation.
An interesting outcome of the annihilation of DWs is the

production of GWs, offering a potential avenue for probing
these models through ongoing and planned GW experi-
ments. However, accurately describing gravitational wave
emission in models based on non-Abelian discrete groups
necessitates a thorough examination of the parameters
influencing the evolution of the formed walls. This involves
undertaking dedicated numerical simulations, presenting a
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complex scenario in contrast to the well-established
examples found in literature with Z2 symmetry. A thoro-
ugh examination of this topic is reserved for future
investigations.
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APPENDIX: THE S4 GROUP

The flavor group S4 is the permutation group of
four distinct objects. It contains 24 elements which can
be generated by three generators T , S, and U satisfying
S2 ¼ T 3 ¼ U2 ¼ ðST Þ3 ¼ ðSUÞ2 ¼ ðTUÞ2 ¼ ðSTUÞ4 ¼ I.
Through the standard relation connecting the number of
elements with the dimension of the irreducible represen-
tations of S4—24 ¼ 12þ12þ22þ32þ32—we deduce that
S4 contains five real irreducible representations where we
have two singlets 1 (trivial) and 10, one doublet 2, and two
triplets 3 and 30. The character table of S4 is shown in

Table II where the index in Ci indicates the number of
elements in each conjugacy class which are given explic-
itly as follows:

C1 ¼ f1g; C3 ¼ fS; TST 2; T 2ST g;
C6 ¼ fU; TU;SU; T 2U;STSU;ST 2SUg;
C8 ¼ fT ;ST ; TS;STS; T 2;ST 2; T 2S;ST 2Sg;
C06 ¼ fSTU; TSU; T 2SU;ST 2U; TST 2U; T 2STUg: ðA1Þ

The representation matrices for the S4 generators T , S,
and U in the basis where T is diagonal are of the following
form for the five different representations:

1ð1;1;1Þ∶ S ¼ 1 T ¼ 1 U ¼ 1;

10ð1;1;−1Þ∶ S ¼ 1 T ¼ 1 U ¼ −1;

2ð2;−1;0Þ∶ S ¼
�
1 0

0 1

�
T ¼

�
ω 0

0 ω2

�
U ¼

�
0 1

1 0

�
;

3ð−1;0;−1Þ∶ S ¼ 1

3

0
B@

−1 2 2

2 −1 2

2 2 −1

1
CA T ¼

0
B@

1 0 0

0 ω2 0

0 0 ω

1
CA U ¼ −

0
B@

1 0 0

0 0 1

0 1 0

1
CA;

30ð−1;0;1Þ∶ S ¼ 1

3

0
B@

−1 2 2

2 −1 2

2 2 −1

1
CA T ¼

0
B@

1 0 0

0 ω2 0

0 0 ω

1
CA U ¼

0
B@

1 0 0

0 0 1

0 1 0

1
CA; ðA2Þ

where ω is the cube root of unity: ω ¼ e2πi=3. There are 30 subgroups of S4, twenty of which are Abelian groups. These
are nine Z2, four Z3, three Z4, and four Klein four group K4 ≃ Z2 × Z2 generated by

Z2∶ S; TST 2;T 2ST ;U;SU; TU; T 2U;STSU;ST 2SU;

Z3∶T ;ST ; TS;STS;

Z4∶ST 2U; TSU; TST 2U;

K4∶fS;TST 2g; fS;Ug; fTST 2; T 2Ug; fT 2ST ; TUg: ðA3Þ

Let us now provide the Kronecker products among the irreducible representations of the S4 group. The products between
two representations are presented as follows:

TABLE II. Characters of the irreducible representations of the
S4 group.

Classes χ1 χ10 χ2 χ3 χ30

C1 1 1 2 3 3
C3 1 1 2 −1 −1
C6 1 −1 0 −1 1
C8 1 1 −1 0 0
C06 1 −1 0 1 −1
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1 ⊗ R ¼ R; 10 ⊗ 10 ¼ 1; 10 ⊗ 2 ¼ 2; 10 ⊗ 3 ¼ 30; 10 ⊗ 30 ¼ 3;

2 ⊗ 2 ¼ 1 ⊕ 10 ⊕ 2; 2 ⊗ 3 ¼ 2 ⊗ 30 ¼ 3 ⊕ 30;

3 ⊗ 3 ¼ 30⊗ 30 ¼ 1 ⊕ 2 ⊕ 3 ⊕ 30; 3 ⊗ 30 ¼ 10⊕ 2 ⊕ 3 ⊕ 30; ðA4Þ

whereR stands for any irreducible representation of S4. In the following we list the Clebsch-Gordan coefficients using the
notations α ∼ 1, α0 ∼ 10, ðβ1; β2ÞT; ðγ1; γ2ÞT ∼ 2, ða1; a2; a3ÞT; ðb1; b2; b3ÞT ∼ 3, ðc1; c2; c3ÞT; ðd1; d2; d3ÞT ∼ 30. For a
singlet multiplied with a doublet or a triplet we have

1 ⊗ 2 ¼ ðαβ1; αβ2ÞT; 10 ⊗ 2 ¼ ðα0β1;−α0β2ÞT; 1 ⊗ 3 ¼ ðαa1; αa2; αa3ÞT;
10 ⊗ 3 ¼ ðα0a1; α0a2;α0a3ÞT; 1 ⊗ 30 ¼ ðαc1; αc2;αc3ÞT; 10 ⊗ 30 ¼ ðα0c1; α0c2; α0c3ÞT: ðA5Þ

For a doublet coupled to a doublet we have

2 ⊗ 2 ¼
�
β1

β2

�
⊗

�
γ1

γ2

�
¼ ðβ1γ2 þ β2γ1Þ1 þ ðβ1γ2 − β2γ1Þ10 þ

�
β2γ2

β1γ1

�
2

ðA6Þ

and for a doublet multiplied with a triplet

2 ⊗ 3 ¼
�
β1

β2

�
⊗

0
B@

a1
a2
a3

1
CA ¼

0
B@

β1a2 þ β2a3
β1a3 þ β2a1
β1a1 þ β2a2

1
CA

3

þ

0
B@

β1a2 − β2a3
β1a3 − β2a1
β1a1 − β2a2

1
CA

30

;

2 ⊗ 30 ¼
�
β1

β2

�
⊗

0
B@

c1
c2
c3

1
CA ¼

0
B@

β1c2 − β2c3
β1c3 − β2c1
β1c1 − β2c2

1
CA

3

þ

0
B@

β1c2 þ β2c3
β1c3 þ β2c1
β1c1 þ β2c2

1
CA

30

: ðA7Þ

For the products 3 ⊗ 3 and 30⊗ 30 (with ai, bi to be replaced by ci, di) we get

3 ⊗ 3¼

0
B@

a1
a2
a3

1
CA ⊗

0
B@

b1
b2
b3

1
CA ¼ ða1b1 þ a2b3 þ a3b2Þ1 þ

�
a1b3 þ a2b2 þ a3b1
a1b2 þ a2b1 þ a3b3

�
2

þ

0
B@

a2b3 − a3b2
a1b2 − a2b1
a3b1 − a1b3

1
CA

3

þ

0
B@

2a1b1 − a2b3 − a3b2
2a3b3 − a1b2 − a2b1
2a2b2 − a1b3 − a3b1

1
CA

30

; ðA8Þ

while the Clebsch-Gordan coefficients for the product 3 ⊗ 30 read

3 ⊗ 30 ¼

0
B@

a1
a2
a3

1
CA ⊗

0
B@

c1
c2
c3

1
CA ¼ ða1c1 þ a2c3 þ a3c2Þ10 þ

�
a1c3 þ a2c2 þ a3c1
−a1c2 − a2c1 − a3c3

�
2

þ

0
B@

2a1c1 − a2c3 − a3c2
2a3c3 − a1c2 − a2c1
2a2c2 − a1c3 − a3c1

1
CA

3

þ

0
B@

a2c3 − a3c2
a1c2 − a2c1
a3c1 − a1c3

1
CA

30

: ðA9Þ
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