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Neutrons and neutrinos are natural probes for new physics. Since they carry no conserved gauge
quantum numbers, both can easily mix with the fermions from hidden sectors. A particularly interesting
effect is the oscillation of a neutron or a neutrino into a fermion propagating in large extra dimensions. In
fact, such a mixing has been identified as the possible origin of small neutrino mass. In this paper, we study
neutron oscillations into an extradimensional fermion and show that this effect provides a resonance
imaging of the Kaluza-Klein tower. The remarkable feature of this phenomenon is its generic nature:
because of a fine spacing of the Kaluza-Klein tower, neutrons at a variety of energy levels, both free or
within nuclei, find a bulk oscillation partner. In particular, the partner can be a Kaluza-Klein mode of the
same species that gives mass to the neutrino. The existence of bulk states matching the neutron energy
levels of nuclear spectra gives rise to tight constraints as well as to potentially observable effects. For a free
neutron, we predict recurrent resonant oscillations occurring with the values of the magnetic field correlated
with the KK levels. We derive bounds on extra dimensions from ultracold neutron experiments and suggest
signatures for refined measurements, which, in particular, can probe the parameter space motivated by the
hierarchy problem. Ultracold neutron experiments offer a unique way of Kaluza-Klein spectroscopy.
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I. INTRODUCTION

The framework of large extra dimensions [1,2] (hereafter
referred to as ADD model) is motivated by the solution to
the hierarchy problem, the inexplicable smallness of the
weak interaction scale relative to the Planck mass, MP. In
this theory, the fundamental cutoff of gravity, Mf, defined
as the Planck mass of 4þ N-dimensional theory, is lowered
relative to the four-dimensional Planck scale MP.
Correspondingly, all UV-sensitivities, including the one
of the Higgs mass, are cut off at the scale Mf ≪ MP. The
lowering of the cutoff can be understood in different
languages.
First, this phenomenon has a clear geometric meaning. At

separation r smaller than the compactification radius R, the
gravitational flux of pointlike sources spreads according to
high-dimensional Gauss’s law. Correspondingly, it is diluted
in the large volume of extradimensional space, usually
referred to as “bulk.” Because of this dilution, the strength
of four-dimensional gravity that operates at large distances,
r ≫ R, is effectively weakened: four-dimensional Newton’s

constant is suppressed relative to the fundamental one by the
N-dimensional volume of the extra space, VN . The resulting
relation between the high-dimensional and four-dimensional
Planck scales is

Mf ¼ MPffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MN

f VN

q : ð1Þ

For definiteness, we shall assume compactification on an
N-torus of radii R1; R2…RN , with corresponding volume
VN ¼ ð2πÞNR1…RN .
An alternative interpretation of (1) was offered in [3–5],

where it was pointed out that (1) represents a manifestation
of the following general relation,

Mf ¼ MPffiffiffiffiffiffiffiffi
Nsp

p ; ð2Þ

where Nsp is the number of particle species. This expres-
sion tells us that in a 3þ 1-dimensional theory with Nsp

particle species, the fundamental scale of gravity is lowered
to the species scale given by (2). Indeed, noticing that
Nsp ¼ MN

f VN is the number of Kaluza-Klein (KK) species,
it is clear that (2) reproduces relation (1). Thus, the ADD
model can be viewed as a geometric realization of the
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species effect (2), describing it as the suppression by the
volume.
In the ADD framework, all the Standard Model (SM)

species are localized on a brane with a 4-dimensional world
volume. The localization of the gauge fields, such as the
photon [6], imposes the condition that no charged particles
(including the hypothetical ones beyond SM) can freely
propagate in the bulk.
The volume suppression feature is shared by the inter-

actions between the Standard Model particles and any other
hypothetical bulk species, i.e., the species that propagate in
the extra space. This feature has several interesting impli-
cations for the SM particles that carry no conserved gauge
charges. The two prominent low-energy candidates are the
neutron [7] and the neutrino [8–10]. The feature of gauge
neutrality allows both of these particles to serve as sort of
“portals” to hidden dimensions through their mixing with
bulk degrees of freedom.
Such mixing can shed new light on some of the long-

standing puzzles of the Standard Model, e.g., such as the
origin of the neutrino mass. A solution to the latter puzzle
was proposed in [8–10] where it was suggested that a
mixing of the SM (active) neutrino with a bulk sterile
fermion can be the origin of the neutrino’s small mass. Just
as in the case of gravity, the smallness of the neutrino mass
is the result of the volume suppression. This mechanism of
neutrino mass generation is accompanied by new phenom-
enological signatures, such as the possibility of oscillations
of SM active neutrinos into the KK tower of the sterile bulk
fermion [9].
The possibility of a neutron portal into hidden dimen-

sions was first pointed out in [7]. As discussed in this work,
neutron transitions into a hidden state are a generic feature
of the brane-world scenario. This is due to the trans-
portation of neutrons across the bulk by virtual brane
bubbles, so-called “baby branes.” In such a process, a
neutron can tunnel across the bulk to a nearby parallel
brane.
For an observer inhabiting the world-volume of our

brane, the process will effectively be described as a
transition of a neutron into a hidden particle. This process
is nonperturbative in its origin. Its probability is exponen-
tially suppressed but never zero, as it is permitted by all
conservation laws. The suppressed rate makes it naturally
compatible with the phenomenological bounds on neutron
disappearance.
In the present paper, we shall investigate a different

process of neutron transitions into extra dimensions.
Namely, via its mixing with a bulk fermion. This process
is interesting because of the following specifics. First,
again, the mixing between neutrons and bulk sterile
fermions is expected to be rather generic, since none of
them carry any conserved SM gauge quantum numbers.
Second, there is a qualitative novelty with respect to

theories in which the neutron mixes with a partner of a fixed

mass, such as the neutron from a mirror SM [11] or many
hidden copies of the SM [5]. In such theories, due to a
single available partner, the resonance transition requires
coincidences that are difficult to control. This difficulty is
most prominent in the case of a single mirror copy. The
mirror symmetry is inevitably broken by environmental
factors such as the nuclear binding energy of the neutron, or
an ambient magnetic field. As a result, the transition
becomes unobservably suppressed, unless one assumes
certain coincidences and/or cancellations of external fac-
tors, such as, for example, the magnetic field in the hidden
sector [12].
The transition of a neutron into extra dimensions offers a

qualitatively different picture. The reason is a finely spaced
tower of KK states in the ADD model. Because of the high
density of KK states, neutrons in a wide spectrum of energy
levels find a nearly degenerate bulk partner into which they
can oscillate. A variety of bound or free neutrons can
become portals into extra space. This puts severe con-
straints on the parameters of the theory and at the same time
provides new signatures for experimental searches.
A particularly interesting signature comes from the

recurrent resonant oscillations of a free neutron into the
KK modes, taking place for a sequence of special values of
the magnetic field. Unlike the scenarios with a single
oscillation partner with the fixed mass, in the case of extra
dimensions, the resonant transitions take place for the
quantized values of the magnetic field matching the KK
spectrum. In this way, the neutron provides a magnetic
imaging of the KK tower.
Because of such effects, the scenario is subjected to

nontrivial bounds from current experiments with ultracold
neutrons [13,14]. Fitting the data of these experiments, we
derive bounds on the parameters of extra dimensions. These
bounds are already probing the parameter regimes moti-
vated by the hierarchy problem. We also discuss new
signatures for future refined measurements.

II. GENERAL FRAMEWORK

In this section, we review the basics of the ADD model
[1,2], preparing the basis for further analysis. An intrinsic
property of extra dimensions is the existence of KK modes.
Each bulk particle gives rise to a tower of four-dimensional
massive modes. That means that each extra momentum
eigenstate, from a 3þ 1-dimensional perspective, corre-
sponds to an independent massive particle. Because of the
periodicity of extra coordinates, the momenta (and corre-
spondingly the 4-dimensional masses) are quantized. For N
extra dimensions, the masses of the KK modes mk are
labeled by a set of integers that can be represented as
N-component vector k ¼ ðk1;…; kNÞ and are given by

mk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21
R2
1

þ � � � þ k2N
R2
N

s
: ð3Þ
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The counting holds for each bulk field independently. It is
therefore clear that a single bulk field (e.g., the graviton)
gives rise to NKK ¼ MN

f VN four-dimensional species.
Let us review some constraints on ADD parameters.

These come from various phenomenological, astrophysical,
and cosmological considerations, and have been discussed
already in [2]. More updated versions of these constraints
represent the refinements, in particular, in the light of the
improved experimental data. Among the phenomenological
constraints, the most important ones are the following two
model-independent bounds.
The first is the bound on the fundamental scale,

Mf ≳ 10 TeV; ð4Þ

imposed by the LHC experiments ATLAS [15] and CMS
[16], due to nonobservation of new particle resonances at
the energy scale probed by this collider. ADD predicts the
existence of such resonances since the scattering at
momentum transfer Mf saturates perturbative unitarity.
The unitarization requires the presence of new resonances.
They shall come in the form of the tower of quantum
microscopic black holes and/or string resonances [17].
The second model-independent constraint comes from

the modification of Newton’s inverse square law. An
immediate consequence of ADD theory is that Newton’s
inverse square law is modified at distances shorter than the
radii of the extra dimensions. For example, taking all radii
equal to R, at a separation r ≪ R, Newton’s law changes
into

1

M2
P

1

r
→

1

M2þN
f

1

r1þN : ð5Þ

This modification can be understood as the result of the
exchange of the KK tower of gravitons,

lim
R→∞

1

M2
P

X
k

e−mkr

r
¼ 1

M2þN
f

1

r1þN ; ð6Þ

where masses of KK gravitons mk are given by (3). Each
graviton mediates a Yukawa interaction and the summation
over them gives a power-law high-dimensional Newtonian
potential.
The physical meaning of the above equation is easy to

understand. First notice that, because of the exponential
suppression ofmodeswithmk > 1=r, at each separationonly
the modes with mk < 1=r contribute. For them, the expo-
nential e−mkr=r can be replaced by 1=r. Thus, at any scale,
each light mode increases Newton’s force by one unit. At the
same time, the multiplicity of such modes, for r ≪ R is
≃ð2πR=rÞN and the potential can be approximated as

1

M2
P

X
k

e−mkr

r
≃
ð2πRÞN
M2

P

1

r1þN

¼ 1

M2þN
f

1

r1þN ; ð7Þ

which is simply the 4þ N-dimensional Newtonian potential
with the fundamental scaleMf that is related toMP via (1).
In the continuum limit R → ∞, the equality becomes

exact. Notice that in the continuum limit the summation over
a discrete KK tower becomes an integration over the
continuum of extradimensional momenta p ¼ k

R,

lim
R→∞

X
k

¼ VN

Z
dNp
ð2πÞN : ð8Þ

From here it also follows (see the appendix) that the
multiplicity of the KK modes close to a given mass m ≫
1=R is

Z ∼ ð2πRmÞN−1: ð9Þ

Non-observation of any modification of Newton’s law in the
tabletop experiments puts the following upper bound on the
radius of the largest extra dimension, [18–21],

Rmax ≲ 30 μm: ð10Þ
On top of these constraints there exist others that emerge

based on further assumptions about the parameters. For
instance, as shown in [2], the star-cooling bound can alter
the value of Mf or of the radii, depending on N and
assuming that all radii are equal. However, as shown in [9]
this alteration is avoided if some of the radii are smaller. In
this case, the supernova cooling constraints are weakened
and the bound on the largest extra dimension (10) and on
Mf (4) are unaffected.
Similarly, the decay of relic KK gravitons produced

either cosmologically or via supernovae cooling, can alter
the diffuse gamma ray spectrum. However, as explained in
[2], the diffuse cosmic gamma-ray bound is rather sensitive
to the bulk physics and can easily be avoided, in particular,
in cases in which KK gravitons have other decay channels
into the bulk species (e.g., the ones inhabiting “fat” branes).
The diffuse gamma-ray bound was later reconsidered in

[22] by taking into account an additional contribution
coming from KK gravitons produced in supernova stars
throughout the history of the Universe and was concluded
to be more severe. However, these authors put aside the
loopholes pointed out in the previous analyses of [2] which
significantly weaken the bounds. Thereby, their refine-
ments fall in the category that is strongly sensitive to the
details of the model, such as the shape of the compact
manifold and other unknowns of bulk physics.
There exists an extensive literature with several other

important model-dependent constraints, which we shall not
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discuss here due to lack of space. These must be taken into
account within specific realizations of the ADD framework.
However, the bottom line is that, currently, with no further
assumptions, the universal constraints are (4) and (10).

III. NEUTRINO OSCILLATIONS
INTO LARGE DIMENSIONS

Before we move to the discussion of the neutron, we
wish to review the oscillations of neutrinos into hidden
dimensions studied in [9]. This analysis was done within
the theory of neutrino mass introduced in [8]. In this paper,
it was proposed that the ADD setup provides a natural
framework for generating small neutrino masses via their
mixing with bulk sterile partners. For definiteness, we shall
consider a single active SM neutrino species and corre-
spondingly a single species of a bulk sterile neutrino. We
denote this bulk field by Ψ.
The field Ψðx; yÞ is a function of four space-time

coordinates x andN extra space coordinates y. It transforms
in the spinor representation of the 4þ N-dimensional
Poincare symmetry. For simplicity, we shall choose it as
the smallest representation of this sort. However, at a more
fundamental level, other considerations, e.g., the cancella-
tion of gravitational anomalies, may apply.
From the point of view of the four-dimensional Lorentz

group acting on space-time x, the bulk fermion Ψ contains
both chiralities. Moreover, 4þ N-dimensional chirality is
only defined in even space-time dimensions, which in the
present case implies N ¼ 2n with n an integer. There exists
no chirality for N ¼ 2n − 1. The dimensionalities of the
irreducible massless spinors inN ¼ 2n andN ¼ 2n − 1 are
the same and equal to 22þn−1.
The reduction of a generic 4þ N-dimensional spinor

into the irreducible representations of ð4D-LorentzÞ ×
SOðNÞ symmetry has the following schematic form,

22þn−1 → 2L × 2n−1 þ 2R × 2n−1; ð11Þ

where numbers indicate the dimensionalities of the repre-
sentations and only the 4-dimensional chiralities are labeled
explicitly by L, R. The chiralities with respect to the
internal SOðNÞ-symmetry depend on the type of the initial
spinor, as discussed above.
Thus, a massless bulk fermion Ψ under the 4-dimen-

sional Lorentz symmetry decomposes into 2n−1 left-handed
and 2n−1 right-handed fermions:

Ψ →
X
A

ΨðAÞ
L þ

X
Ā

ΨðĀÞ
R ; ð12Þ

where A; Ā label the basic SOðNÞ-spinors.1

The above decomposition takes place for each KK level
separately,

Ψðx; yÞ→ 1ffiffiffiffiffiffiffi
VN

p
X
k

e
iky
R

�X
A

ΨðAÞ
k;LðxÞ þ

X
Ā

ΨðĀÞ
k;RðxÞ

�
: ð13Þ

Notice that a canonically normalized bulk fermion Ψ has
mass dimension 3þN

2
, whereas the KK modes Ψk have mass

dimension 3
2
.

Upon dimensional reduction from 4þ N to 4-
dimensional space-time, the extradimensional part of the
Dirac operator, Ψ̄γ∂yψ , provides the Dirac mass terms for
the KK modes. In this process, at each KK level, the left
and right chiralities pair up and produce the tower of
massive Dirac fermions:

X
k

mk

X2n−1
A¼Ā¼1

Ψ̄ðAÞ
k;LðxÞΨðĀÞ

k;RðxÞ: ð14Þ

The labeling A ¼ Ā is assumed to be such that the spinors
get filtered through the high-dimensional γ-matrix properly.
That is, each KK level k ≠ 0 gives rise to 2n−1 massive
Dirac fermions.
The fermions corresponding to the KK level k ¼ 0

remain massless. A certain superposition of their right-
handed components plays the role of the right-handed
partner of the SM neutrino, which endows the latter with a
Dirac mass. Let us discuss this effect in more detail.
The mass term for the neutrino arises from a Yukawa-

type interaction involving the left-handed lepton doublet
L ¼ ðνL; eLÞ, the bulk fermion Ψ and the Higgs doublet
field H ¼ ðH0; H−Þ,

Lint ¼
1

MN=2
�

HðxÞL̄ðxÞΨðx; y ¼ 0Þ: ð15Þ

The brane is localized at y ¼ 0. The above expression is
rather schematic and requires further specification. First,
the requirement imposed by the consistency of the four-
dimensional effective field theory is that it must be invariant
under the four-dimensional Poincaré symmetry as well as
the gauge symmetry of the SM.
The invariance of (15) under the SM gauge symmetry

uniquely fixes Ψ to be a gauge-neutral degree of freedom.
At the same time, the four-dimensional Poincare invari-

ance implies that only the right-handed components

ΨðĀÞ
k;RðxÞ (or the charge conjugates of the left-handed ones)

of the bulk fermion Ψ participate in the above Yukawa
coupling. However, this requirement does not fully specify
the form of the coupling because of the following reason.
Since the brane breaks the higher-dimensional Poincare

symmetry, it has no “obligation” to respect its SOðNÞ
subgroup. That is, in general, the brane acts as a spurion

1That is, indices A; Ā label the types of spinors forming a
proper complete basis in the SOðNÞ spinor space, not to be
confused with a spinor index.
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that absorbs the SOðNÞ-spinor index. The pattern of this
breaking defines to which superposition of the bulk spinors

ΨðĀÞ
R the SM neutrino couples.
Within the effective field theory, this information is not

available. It depends on the origin of the brane and on the
dynamics that localize the 4-dimensional chiral fermions on
it. In our phenomenological study, we shall treat this as an
input. Note that the smallness of the mass of the SM
neutrino is largely insensitive to the precise form of the

ΨðĀÞ
R -superposition to which it mixes since the mass comes

predominantly from the k ¼ 0 mode. However, the mixing
with higher energy states in the KK tower will depend on it.
Upon taking into account the Higgs vacuum expectation

value hHi ¼ ðv; 0Þ, the above coupling reduces to a mass
term that mixes the active left-handed neutrino, with the
tower of KK modes,

Lint ¼ ανν̄LðxÞ
X
k

νk;R; ð16Þ

where

αν ≡ vffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MN� VN

p ; ð17Þ

and

νk;R ≡X
Ā

cĀΨ
ðĀÞ
k;RðxÞ ð18Þ

denotes the superposition of spinors from each KK level to
which νL mixes. In general, the coefficients cA can also
depend on the level k. We shall make a simplified
assumption that the νk;R are the eigenstates of the KK
masses. In this case, the orthogonal superpositions will
effectively decouple from our problem and can be ignored.
Mixing of νL with the tower of νk;R generates the mass of

neutrino, mν ≃ αν
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

Ā jcĀj2
p

∼ αν, which for M� ∼Mf is

mν ∼
vMf

MP
: ð19Þ

For Mf ∼ 10 TeV, this value is in the right phenomeno-
logical ballpark.
The mass of the neutrino is generated predominantly

through the mixing with the right-handed components of
the k ¼ 0 level, which have no masses of their own.
However, mixing with higher members of the KK tower
results in oscillations of the neutrino into these states. This
can have potentially observable effects [8,9].
For simplicity, let us reproduce this effect for one

relevant extra dimension with radius R. In this analysis,
we shall closely follow [9]. In this case, the indices A; Ā are
not required and we can write,

Ψðx; yÞ ¼ 1ffiffiffiffiffiffiffiffiffi
2πR

p
Xk¼∞

k¼−∞
e
iky
R ðΨk;LðxÞ þ Ψk;RðxÞÞ: ð20Þ

Notice that the hierarchy Mf=MP ∼ 10−15 is still main-
tained by assuming the existence of additional N − 1
dimensions of much smaller radii. The corresponding
KK excitations are heavy and effectively decouple from
the neutrino mass problem.
Because of the degeneracy under the reflection k → −k

for each k ≠ 0 level, the active neutrino mixes with the
modes νkR ≡ 1ffiffi

2
p ðψk;R þ ψ−k;RÞ, whereas the orthogonal

superpositions, 1ffiffi
2

p ðψk;R − ψ−k;RÞ, decouple and can be

neglected.
Then, the part of the Lagrangian describing the relevant

mass terms is

Mν ¼ αννL

�
ν0R þ

ffiffiffi
2

p X∞
k¼1

νkR

�
þ
X∞
k¼1

k
R
ν̄kLνkR: ð21Þ

Thus, we have the mass matrix of the following form,

0
BBBBBB@

0 αν
ffiffiffi
2

p
αν

ffiffiffi
2

p
αν …

0 0 0 0 …

0 0 1=R 0 …

0 0 0 2=R …

… … … … …

1
CCCCCCA
: ð22Þ

Each k ≠ 0 mixes with SM neutrino with an angle given by
tanφk ¼ ανR

k . Thus, the modes with higher values of k
quickly decouple and the main effect is concentrated in the
part of the KK tower with k ∼ 1.
The active (left-handed) SM neutrino represents a super-

position of the mass eigenstates of the form

νL ¼ 1

N

�
ν0L þ

X∞
k¼1

ανR
k

ν0k;L

�
; ð23Þ

where N 2 ¼ 1þP
k
ðανRÞ2
k2 ≃ 1 is a normalization factor.

The mixing with the KK tower results in the oscillations
of the active flavor into the KK modes. The survival
probability is

PsurvðtÞ ¼ jhνLjνLðtÞij2 ¼
1

N 4

����1þX∞
k¼1

ðανRÞ2
k2

exp ðiϕkÞ
����2:

ð24Þ

Thus, we obtain an interference of the infinite number of
oscillating modes with growing frequencies ∝ k2 and
decreasing amplitudes ∝ 1=k2. Because of this, in practice,
the higher-frequency modes can be averaged out and only a
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few low-frequency modes are observable. Some implica-
tions of this phenomenon, in particular for solar neutrinos,
were discussed in [9]. More updated experimental con-
straints can be found in [23] and in subsequent papers, with
the latest bounds appearing in [24].
Notice that with the assumption of the alignment of the

interaction (18) and mass (14) eigenstates, the above-
reproduced analysis of [9] can be straightforwardly gen-
eralized to an arbitrary number of relevant dimensions.
We shall now move to a discussion of an analogous story

of neutron oscillations into extra dimensions.

IV. NEUTRON OSCILLATIONS INTO HIDDEN
DIMENSIONS

The main novelty of the present paper is the possibility of
neutron oscillations into extra dimensions. Similarly to the
neutrino, the neutron carries no conserved gauge charge
and can freely mix with the bulk species. We consider the
oscillation of the neutron into KK modes of a bulk fermion.
As in the neutrino case, we shall denote this bulk fermion
by Ψ. To start with, we assume that Ψ is massless.
We shall keep its origin generic. However, a particularly

motivated possibility would be the case in which Ψ is the
bulk partner of one of the SM neutrinos that generates its
mass via the above-discussed mechanism. Consequently,
the neutron would mix with the same KK-tower as the
active neutrino. Notice that such a mixing is totally safe
from the neutrino mass perspective. Because of a very large
splitting between the masses of neutrino and neutron, they
predominantly mix with the highly separated sectors of the
KK spectrum. Correspondingly, they have essentially zero
influence on one another. This is a rather economic
scenario. Nevertheless, we shall keep the discussion max-
imally general.
It is reasonable to assume that the mixing between the

neutron and the bulk fermion originates from a more
fundamental four-fermi interaction of the type,

Sint ¼
Z

dx4
1

M2þN=2
�

uddΨþ H:c:; ð25Þ

whereM� is a scale. We shall not specify its origin and shall
treat it as a phenomenological parameter. In general, it is
reasonable to expect that M� is of order or higher than Mf.
Notice that, since the left- and right-handed quarks

transform differently under the electroweak SUð2Þ ×
Uð1Þ gauge symmetry, at the level of a more fundamental
theory above the electroweak scale, the mixing terms
involving the left- and right-handed components of the
neutron will come from different operators. This is because
the combination involving an odd number of left-handed
quarks must be accompanied by the Higgs doublet, H, in
order to make up an invariant, e.g.,

ðψT
LCqLαÞðqTLβCqLγÞϵβγHα;

where α, β, γ are SUð2Þ indices while color indices are not
shown explicitly. C is the charge conjugation matrix,
whereas qL ≡ ðuL; dLÞ and H ≡ ðH−; H0Þ are left-handed
quark and Higgs doublets respectively.
Of course, the role of H can also be taken up by a QCD

quark condensate, which can (and in general must) be
included in the form of higher-order operators. At the same
time the right-handed quark operator does not require the
involvement of the Higgs doublet,

ðψT
RCdRÞðuTRCdRÞ:

Due to this difference in SUð2Þ ×Uð1Þ quantum num-
bers, in the low-energy effective theory below the Higgs
VEV, the operators mixing left- and right-handed compo-
nents of the neutron with corresponding components of ψ
will be different. Of course, the main effect of the
oscillation will take place via the dominant mixing term.
We shall elaborate more about this difference below.
In the effective low-energy theory below the scale of the

QCD confinement, the coupling (25) translates into an
effective mass term that mixes the neutron with Ψ. The
effective Lagrangian is derived by the following replacement,

udd → Λ3
QCDn; ð26Þ

where n is the neutron field and ΛQCD is of the order of the
QCD scale.
As previously, we expand Ψ into the KK modes (13).

The difference from the neutrino case is that the neutron is a
Dirac fermion. Therefore, both chiralities, nL, and nR, are
available for mixing with the respective components of the
KK tower:

Ψk;RðxÞ≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ĀjcĀj2

p X
Ā

cĀΨ
ðĀÞ
k;RðxÞ;

Ψk;LðxÞ≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
AjcAj2

p X
A

cAΨ
ðAÞ
k;LðxÞ: ð27Þ

We again make a simplified assumption that the combi-
nations (27) with A ¼ Ā are KK mass eigenstates. That is,
modulo mixing with the neutron, at each KK level k they
form a four-dimensional Dirac fermion Ψk ≡Ψk;LðxÞ þ
Ψk;RðxÞ with mass mk. In such a case, the orthogonal
combinations decouple and we get the following effective
4-dimensional Lagrangian describing the Dirac neutron,
the KK tower of Dirac fermions Ψk and their mixing,

L ¼ n̄i∂n −mnn̄nþ
X
k

ðΨ̄ki∂Ψk −mkΨ̄kΨkÞ

þ αL
X
k

n̄LΨR;k þ αR
X
k

n̄RΨL;k þ H:c:; ð28Þ
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where mn is the SM mass of the neutron and αL and αR are
the mixing mass terms for left-handed and right-handed
components of the fermions respectively.
As explained above, in general, these terms are different

as they come from different operators at the fundamental
level. Since we are working in an effective theory, we have
no knowledge about them and must treat them as input
parameters constraining their values with some simplifying
assumptions. The oscillation picture is not very sensitive to
the difference between αL and αR since the transition takes
place via a dominant term. In what follows, for definiteness
we shall set αL ¼ αR ¼ α. Then the Lagrangian becomes:

L ¼ n̄i∂n −mnn̄nþ
X
k

ðΨ̄ki∂Ψk −mkΨ̄kΨkÞ

þ α
X
k

n̄Ψk þ H:c:; ð29Þ

The mixing term α is then related to the parameters of the
operator (25) as,

α≡ Λ3
QCD

M2þN=2
�

ffiffiffiffiffiffiffi
VN

p : ð30Þ

We have absorbed the normalization factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

A jcAj2
p

into
the rescaling of parameters.
Notice that α is an extremely small mass scale. In

particular, taking into account that M� ≥ Mf and the
current experimental bound (4), we get the following upper
bound on α,

α≲ 10−24 GeV: ð31Þ

This quantity is much below any other scale in the problem.
This allows us to study the oscillation picture perturbatively
in α.
The masses and mixings between the neutron and the

bulk states are described by the following mass matrix,

0
BBB@

mn α α α

α 0 0 0

α 0 mk 0

α 0 0 mk0

1
CCCA: ð32Þ

Notice that because of the bound (31), we have
α=mn ≲ 10−24. In the leading approximation, each KK
mixes with the neutron with an angle given by
tanφk ¼ α

Δmk
, where Δmk ¼ jmn −mkj. Putting aside

miraculous coincidences, the smallest value of Δmk is
set by the level splitting between the KK modes.
The picture is very similar to what we encountered in the

neutrino case but with two differences. First, the mass
matrix is symmetric. Secondly, Δmk reaches the minimum

not at the bottom of the KK spectrum but in the region
closest to the energy of the neutron.
Because of the mixing with the KK tower, the ordinary

neutron, which is a SM interaction eigenstate, is not an
exact mass eigenstate. Labeling the mass eigenstates by
primes, the SM neutron represents a superposition of the
mass eigenstates of the following form,

n ¼ 1

N

�
n0 þ

X
k

α

Δmk
Ψ0

k

�
; ð33Þ

where N 2 ¼ 1þP
k

α2

Δm2
k
¼ 1þOðα2Þ is a normalization

factor. This state evolves in time as,

nðtÞ ¼ 1

N

�
n0 þ

X
k

α

Δmk
eiϕkΨ0

k

�
; ð34Þ

where ϕk ¼ jmn −mkjt. The corresponding survival prob-
ability of the neutron is,

PsurvðtÞ ¼ jhnjnðtÞij2 ¼ 1

N 4

����1þX
k

α2

Δm2
k

exp ðiϕkÞ
����2:

ð35Þ

Similarly to the neutrino case, the oscillation takes place
in a collection of modes. The “resonant”modes correspond
to KK levels that are closest to the SM energy of the
neutron, mn. The more distant levels oscillate in increasing
frequencies and suppressed amplitudes. Averaging over all
modes except the level which is closest to mn, we get the
following expression for the probability of the neutron
oscillating into Ψ,

Pn→ΨðtÞ ¼
Z
N 4

4α2

Δm2
sin2

�
Δm
2

t

�
: ð36Þ

where Δm≡ jmn −mkj denotes the smallest mass splitting
and the factor Z accounts for the corresponding degeneracy.
For visualization, see Fig. 1.
For a single extra dimension of radius R, we have Z ¼ 2

because the mass is degenerate for k and −k. Equivalently,
the neutron mixes with the states Ψk ≡ 1ffiffi

2
p ðψk þ ψ−kÞ,

whereas the orthogonal superpositions decouple. The
corresponding survival probability is

Pn→ΨðtÞ ¼
1

N 4

8α2

Δm2
sin2

�
Δm
2

t

�
; ð37Þ

where Δm ≤ 1=R. Although “accidentally” Δm may
appear arbitrarily below this upper bound, a natural value
would be Δm ∼ 1=R.
For a higher number of relevant extra dimensions,

the level-splitting is as small as Δm ∼ 1=mnR2 (see the
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Appendix). The degeneracy count is the following. For NR
relevant dimensions of equal radii R (again, NR must not be
confused with the total number N of large extra dimensions,
NR ≤ N), in general, the numberZ of KK states within a gap
Δm satisfies,

Z
Δm

∼
1

mn
ðmnRÞNR: ð38Þ

Taking this into account, the survival probability for NR
relevant dimensions of radius R can be presented in the
following form

Pn→ΨðtÞ ∼
mn

Δm
ðmnRÞNR

�
α

mn

�
2

sin2
�
Δm
2

t

�
: ð39Þ

The oscillation amplitude is the largest for the states with
the smallest Δm. Equipped with these equations, we shall
next discuss the effect of neutron disappearance.

V. PHENOMENOLOGICAL BOUNDS FROM
NEUTRON DISAPPEARANCE IN NUCLEI

In the previous section, we discussed how in the ADD
framework a neutron can oscillate into particles propagat-
ing in extra dimensions. We shall now find phenomeno-
logical constraints on such a process. We first study the case

of a massless bulk partner. In this case, the most severe
constraints come from the nonobservation of the disap-
pearance of neutrons from the nuclei.
Let us consider an atomic nucleus with several neutrons in

it. The above-derived formulas can be directly applied to
such neutrons. The mass mn must be understood as the
energy level of a neutron in the given bound state. The
neutron has a finite probability of transitioning into the bulk
KK modes. From the point of view of the SM observer, this
process is viewed as the disappearance of the neutron. The
vacated nucleus will get deexcited. Namely, a neutron from a
higher level will occupy the state freed by the disappearing
neutron. The process of deexcitation is accompanied by the
emission of a hard photon, i.e., a photon of nuclear energy.
For large extra dimensions, the typical oscillation time,

set by the KK level splitting ∼1=Δm, is much longer than
the nuclear transition time. In such a case, after the
deexcitation, the process of coming back is no longer
possible, since the place of the original neutron is occupied.
Therefore, such a process would lead to a decay of atoms
into isotopes with fewer neutrons. This is not observed in
nature and the experimental bound on the lifetime of
neutrons within nuclei is [25]

τn > 1030 y ∼ 1062 GeV−1: ð40Þ

This bound translates to a bound on the neutron
disappearance rate in our scenario. The rate can be derived
from (37) as the average transition probability per unit time,

λn ¼
2Zα2

Δm
¼ 2ZΛ6

QCD

ΔmM4þN� VN
; ð41Þ

where we plugged-in the parameter α from Eq. (30). Using
the expression (39), it is also useful to present the rate as

λn ∼mn

�
α2

m2
n

�
ðmnRÞNR: ð42Þ

Now, we demand that τn ¼ 1=λn > 1030 y. This leads to
the following constraint,

M4þN� > 1021 ðGeVRÞNRM2þN
f GeV2; ð43Þ

where we have expressed VN through MP ∼ 1019 GeV and
Mf and used the fact that mn ≃ GeV and ΛQCD ≃ 0.3 GeV.
We also used the neutron lifetime bound (40) in GeV units.
We now wish to apply this bound to different cases

distinguished by the number and size of relevant dimen-
sions. For this, let us first make the concept of relevance
more quantitative. We have NR relevant dimensions of size
R and N − NR subdominant ones of radii R̃. Both of these
categories contribute to (1). The distinction is that the
contribution of the subdominant dimensions to the rate (42)
is less. That is,

FIG. 1. A schematic description of the matching of the energy
levels of free and nuclear-bound neutrons with the KK spectrum
of Ψ.
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ðmnR̃ÞN−NR ≪ ðmnRÞNR: ð44Þ

Then taking into account the relation (1) and the fact that
VN ¼ ðRNRR̃N−NRÞ, we get

ðmnR̃ÞN−NR ≪
MP

Mf

�
mn

Mf

�
N=2

: ð45Þ

We can now apply the above to the following cases. The
first is the case NR ¼ 1 with just one relevant extra
dimension of radius R. The radius R and Mf are free
parameters. Therefore, we set both to their current exper-
imental bounds, given by equations (10) and (4). The
results for different total numbersN of extra dimensions are
shown in Table I.
Notice that condition (45) implies that for NR ¼ 1 and

the above choice of R and Mf, we must have N > 2. In
other words, with only two extra dimensions and
Mf ∼ 10 TeV, it is not possible to have one much shorter
than the other without conflicting with observations.
The second example we study is the case with N equal

size extra dimensions. That is, in this case, NR ¼ N.
Correspondingly, using (1), the right-hand side (rhs) of
(43) can be expressed via MP ∼ 1019 GeV, and the bound
acquires a simple numerical form,

M4þN� > 1059 GeV4þN: ð46Þ

The resulting bounds onM� and corresponding values of
R are listed in Table II.
Another instructive choice isM� ∼Mf. In this case, (43)

becomes

M2
f > 1021 ðGeVRÞNR GeV2: ð47Þ

Since NR ≤ N, from (1) we have Mf ≤ ðM2
P=

ð2πRÞNRÞ1=ðNRþ2Þ. Together with this inequality, Eq. (47)
becomes a bound on R. For example, for NR ¼ 1 we get

R≲ 102 GeV−1 ∼ 10−8 μm: ð48Þ

Equivalently, the bound on Mf is

Mf ≳ 1012 GeV: ð49Þ

VI. PROTON DECAY

The possibility of neutron oscillations into a bulk
fermion opens the door to proton decay. If the high-
dimensional mass of Ψ is less than the mass difference
between the proton and the sum of electron and neutrino
masses, the tree-level decay process is possible. Via a
virtual neutron exchange, the proton can decay into a
positron, the SM neutrino, and Ψ,

p → eþ þ νþ Ψ: ð50Þ

The process is depicted in Fig. 2. The rate of the process
is given by

λp ∼mp

�
mn

v

�
4
�

α

mn

�
2

ðmpRÞNR: ð51Þ

TABLE I. Bound on M� for one dominant R with Mf ¼
10 TeV and R ¼ 30 μm.

N M� [GeV]

3 >3 × 107

4 >1 × 107

5 >5 × 106

6 >3 × 106

TABLE II. Bound on M� for equal size extra dimensions.

N R ½μm� M� [GeV]

2 1.1 >7 × 109

3 1.6 × 10−5 >3 × 108

4 5.5 × 10−8 >2 × 107

5 2 × 10−9 >4 × 106

6 2.2 × 10−10 >8 × 105

FIG. 2. Proton decay via virtual neutron exchange. The SM
particles are confined to the brane, whereas the extradimensional
particle, Ψ, propagates in the bulk.
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It is useful to compare this rate to the neutron disappearance
rate (42). Taking into account that mn ≃mp, we obtain that
the proton decay rate is suppressed relative to the neutron
rate by an additional factor ðmn

v Þ4 ∼ 10−9 coming from the
W-boson exchange:

λp ∼ λn

�
mn

v

�
4

∼ λn10
−9: ð52Þ

At the same time, the current bound on the proton lifetime
for this channel, τp > 1030 y [26], is the same as for the
bound on neutron disappearance (40). Correspondingly, the
bound on the proton lifetime is automatically satisfied, as
long as the neutron bound is fulfilled.
Because of this, in terms ofM� the proton gives a milder

bound. E.g., assuming Mf ∼ 10 TeV, the bound is

M4þN� > 1012ðmpRÞNRM2þN
f GeV2: ð53Þ

Therefore, the improved accuracy of neutron disappearance
experiments would appear more promising for testing the
discussed scenario.

VII. KALUZA-KLEIN SPECTROSCOPY FROM
FREE NEUTRON OSCILLATIONS

Wenowwish to discuss another experimentally-motivated
domain of our framework. In this domain, the dominant
effect is the oscillation of a free neutron into hidden
dimensions. In this regime, the bulk partner of the neutron,
Ψ, has a high-dimensional mass, μ. If the mass is above the
energy levels of the nuclear neutron, the stability of nuclei is
unaffected. Similarly, if μ is above the proton mass, there is
no bound from proton decay. Thus, if μ is within a window,
∼MeVbelow themass of a free neutron, only the free neutron
is experiencing oscillations into extra dimensions. The
transition amplitude can correspondingly be much larger.
Notice that for dimensions that satisfy 1=R ≪ jmn − μj,

the number and the level-splitting of the available KK
modes to which the neutron can oscillate is essentially the
same as for μ ¼ 0.
For NR ¼ 2 this level-splitting is sufficiently small to be

scanned by an external magnetic field available in current
laboratory setups. This allows for potentially-observable
resonant n −Ψ oscillations in correlation with the features
of the KK spectrum. Let us discuss this effect.
The amplitude of the oscillation of the neutron into the

bulk particle is suppressed by the minimal mass splitting
between the neutron and the nearest KK mode Δm. At the
same time, the amplitude is enhanced by the KK multi-
plicity factor Z.
The oscillation of a free neutron is effectively mapped

onto a 2 × 2 problem, in which the neutron mixes with a
single state with the nearest mass,

�
mn

ffiffiffiffi
Z

p
αffiffiffiffi

Z
p

α mn þ Δm

�
: ð54Þ

In the absence of a parameter that could scan the neutron
energy with a precision of Δm, the oscillation amplitude is
suppressed as given by (39). However, an external mag-
netic field can serve as a scanner. A neutron placed in a
magnetic field B, because of its magnetic moment μn,
experiences an additional shift in the energy level equal to
ϵ ¼ μnB. Correspondingly, the mixing matrix becomes�

mn þ ϵ
ffiffiffiffi
Z

p
αffiffiffiffi

Z
p

α mn þ Δm

�
: ð55Þ

Notice that, regardless of the value of the magnetic field, in
the above mixing matrix we must always assume ϵ≲ Δm.
If we increase the magnetic field in the way that ϵ > Δm,
the whole problem will be shifted to the KK level which is
closest to the shifted energy of the neutron mn þ ϵ. Thus,
an increase in the magnetic field above the resonance value,

Br ≡ Δm=μn; ð56Þ

results in the effective shift mn → mn þ ϵ.
Because of this, for the array of magnetic field values, the

neutron energy comes in resonance with some of the KK
levels, and an enhanced oscillation amplitude is achieved.
For NR ¼ 2 the levels are not exactly equally spaced.

Because of this, the effect is not strictly periodic but has a
clear repetitive pattern fully reflecting the KK spectrum.
This feature is very different from the theories in which

the neutron has a single oscillation partner, e.g., such as the
dark neutrons from the hidden standard model copies. We
shall make a more explicit comparison with such scenar-
ios later.
For currently available experimental setups, ϵ is a very

small quantity. For example, for Earth’s magnetic field,
jBej ≃ 0.5 G, we have ϵe ∼ 10−12 eV. With the presently
available most powerful artificial magnets, it can be
increased by a few orders of magnitude.
This is sufficient for scanning the KK spectrum for

NR ¼ 2 in an interesting range of radii. For example, for
the largest possible value of extra dimensions R ¼ Rmax,
given by experimental bound (10), the splitting of closely
spaced KK modes is Δm≡ 1=ð2mnR2

maxÞ ≃ 2 × 10−14 eV.
This value falls within the territory testable by currently
available experimental setups.
For α < jϵ − Δmj < Δm, the oscillation amplitude is

A ≃
α2

jϵ − Δmj2 ; ð57Þ

and the oscillation frequency is given by ω ¼ jϵ − Δmj.
For the resonance regime, α ≤ jϵ − Δmj, the amplitude
becomes order one, and the frequency is set by ω ∼ α.

DVALI, ETTENGRUBER, and STUHLFAUTH PHYS. REV. D 109, 055046 (2024)

055046-10



Notice again that for the regime ϵ ≫ Δm, we are shifting
to a new KK level which is closest to mn þ ϵ, and the
excess of ϵ gets effectively reabsorbed in the shift of mn.
We shall now confront the above dynamics with some

experimental data. In order to establish a dictionary, we
shall recast the expression for the amplitude (57) into a
more user-friendly form. For this, we take into account that
ϵ ≃ 6 × 10−14B eV

μT [27] and that for R ¼ Rmax, we have

Δm ≃ 2 × 10−14 eV. We can then write

A ∼
1027α2 eV−2

j3 B
μT −

R2
max
R2 j2

: ð58Þ

Since for resonant values of B, the defining factor is the
difference of the two terms in the denominator, we pay
more precise attention to them, while examining the order-
one overall numerical coefficients less closely. We shall use
this formula for interpreting the two experimental results.
The first one [13], the ultracold neutron storage experi-

ment, constrains the disappearance of a neutron for two
separate values of the magnetic field: B ≃ 10.20� 0.02 μT
and B ≃ 20.39� 0.04 μT.
If we assume R ¼ Rmax, then for the above values of the

magnetic field, the first entry in the denominator (58) is
larger than the second one by factors of 30 and 60,
respectively. This implies that the system will shift to a
higher KK level, absorbing the extra contribution from the
magnetic energy into the mass of a new KK partner.
Excluding miraculous coincidences of finer cancellation,
the optimal KK level will satisfy

jϵ − Δmj ∼ Δm: ð59Þ

Notice that the error in δϵ ¼ ϵδB=B, due to an inaccur-
acy of the magnetic field, which in both cases is
jδB=Bj ≃ 2 × 10−3, is not sufficient for further reducing
the difference jϵ − Δmj significantly.
Now, it is clear that the relation (59) will persist for

R < Rmax. Indeed, for
R2
max
R2 ≪ 3 B

μT the level will always get
shifted to the one that satisfies (59). At the same time, for
R2
max
R2 > 3 B

μT, the same condition is satisfied without any shift.
Correspondingly, the relation (59) is satisfied for the entire
parameter space probed by the experiment of [13]. Thus, for
fitting the data, the equation (58) can be approximated as,

A ∼ 1027α2
R4

R4
max

eV−2: ð60Þ

Putting everything together, we get the following con-
straint on our parameters,

α
R2

R2
max

≲ 10−16 eV: ð61Þ

Expressing α in terms of M� and Mf, we can write,

10 TeV
Mf

�
Mf

M�

�
2þN=2 R2

R2
max

≲ 1

3
: ð62Þ

Interestingly, by taking Mf at its current experimental
bound (4) of Mf ∼ 10 TeV, while at the same time taking
M� at its theoretical one,M� ∼Mf, equation (62) translates
as the current experimental bound on R (10) imposed by the
checks of Newtonian gravity. Having a rigorous bound on
the extradimensional setup from the cold neutron experi-
ments is rather remarkable.
We shall now move to the second experiment [14], with

an ultracold neutron beam. The important insight from this
measurement is that the authors scanned a wide range of the
magnetic field within the interval in between Bmin ≃ 50 μT
and Bmax ≃ 1100 μT, with a step of ΔB ¼ 3 μT. In order to
translate the results of this experiment into bounds on our
parameters, we must distinguish the following cases.
In the regime

R2
max

R2
≫ 3

jBmax − Bminj
μT

≃ 3150; ð63Þ

or equivalently Δm ≫ ϵmax − ϵmin, our transition amplitude
is essentially the same as without the magnetic field, (60),
and the bound is

α
R2

R2
max

≲ 10−15 eV: ð64Þ

It has the same form as (61) but subject to (63).
In the opposite case,

R2
max

R2
< 3

jBmax − Bminj
μT

; ð65Þ

the bound depends on the ratio betweenΔm and the scanning
stepΔϵ. In the denominator of expression (57) the smallest of
the two will enter. Because of this, for R2

max=R2 < 9, the
bound is again given by the expression (64).
For R2

max=R2 > 9, the situation is different since the Δm
term in (57) can be compensated by the accuracy of Δϵ.
The magnetic term ϵ can be gradually cranked up in

small increments Δϵ all the way to Δm, sooner or later the
resonant transition will take place with jϵ − Δmj ≃ Δϵ. In
this case, the absolute value of Δm (and thus dependence
on R) drops out from the transition amplitude and we have

A ∼
α2

jΔϵj2 ∼ α21025 eV−2: ð66Þ

This imposes the following R-independent constraint on α
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α≲ 10−14 eV: ð67Þ

In summary, the characteristic signature of neutron
oscillations into extra dimensions, which makes it very
different from other proposals, is the recurrence of the
resonance amplitude for multiple values of the magnetic
field with steps ΔB ¼ Δm

μn
, where Δm is the mass splitting

between the nearest KK levels. Such recurrent resonance
transitions are the prediction of the extra dimensional
scenario, see Figs. 3 and 4.

The experiment [14] is effectively probing the interval

0.8 μm < R < 10 μm ð68Þ

and correspondingly impose the bound (67) on α.
Extensions of the upper and lower bounds of this interval

can be achieved by an increase of the magnetic field-range
and the decrease of the step size, respectively. For example,
a decrease of the step size to 1=3 μT would bring the upper
bound to the level of (10) imposed by the measurements of
Newton’s law. An increase of the range of the scanned
magnetic field would correspondingly allow to probe
smaller sizes of extra dimensions.
The above analysis makes the general tendency clear.

The experiments with finer scanning of wider ranges of the
magnetic field can provide deeper probes of physics of
extra dimensions. Strikingly, the bounds (61), (64) and (67)
indicate that these experiments already probe the domain
motivated by the hierarchy problem.

VIII. COMPARING WITH OSCILLATIONS INTO
HIDDEN COPIES OF THE NEUTRON

In this section, wewish to confront the presented scenario
with the previous proposal [5] in which the neutron also
mixes with multiple partners ni; i ¼ 1; 2;…; N from N
hidden sectors (N not to be confused with the same notation
of number of dimensions in ADD). These partners represent
neutronlike particles belonging to N copies of the SM. The
copies are related by an exact permutation symmetry.
Similarly to the ADD model, such a scenario was originally
motivated by the hierarchy problem, since the existence of
many SM copies lowers the cutoff of the theory [3,4].
In a sense, this scenario is a “Fourier transform” of the

ADD solution meaning that the dilution of gravity takes
place in the space of species. Correspondingly, solutions to
certain puzzles offered by ADD, also find counterparts in
this framework. For example, a “dilution” of the neutrino
mass in the space of species can be achieved [5,28]. Also,
the particles in the hidden copies of SM can be dark
matter [5,29].2

As discussed in [5], one of the phenomenological
consequences of the scenario with N SM copies can be
the oscillation of a neutron into the hidden partners, since
the mixing α

P
i≠j n̄inj is permitted by the gauge sym-

metries of all sectors. The only constraint, α < mn=N,
comes from unitarity.
This scenario exhibits some crucial differences from the

present case. Because of the exact permutation symmetry,
the mass matrix has the form,

FIG. 3. A qualitative sketch of the transition amplitude as a
function of the magnetic field. The resonance transitions take
place with steps ΔB ¼ Δm=μn. The differences in the heights are
due to different degeneracy factors of different KK levels. The
repetitive but not strictly periodic behavior is due to the
nonuniform population of KK levels.

FIG. 4. Scanning with the magnetic field between two KK-
levels. A resonance occurs when the shifted energy level of the
neutron comes close to a KK state with a precision of μnΔB.

2In fact, this idea was originally proposed within the ADD
framework, with the role of exact copies of SM played by the
parallel folds of our brane [30].
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0
BBB@

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1
CCCAðmn − αÞ þ

0
BBB@

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1
CCCAα: ð69Þ

Due to this structure, the oscillation dynamics can be
reduced to a 2 × 2 problem in which the neutron from our
copy, n1, mixes with the state nh ≡ 1ffiffiffiffiffiffiffi

N−1
p

P
j≠1 nj, via the

following mass matrix,

�
mn α

ffiffiffiffiffiffiffiffiffiffiffiffi
N − 1

p

α
ffiffiffiffiffiffiffiffiffiffiffiffi
N − 1

p
mn þ α

ffiffiffiffiffiffiffiffiffiffiffiffi
N − 2

p
�
: ð70Þ

The rest of the orthogonal N − 2 states decouple.
The resulting disappearance probability is

PðtÞ ≃ 4

N
sin2

�
Nαt
2

�
: ð71Þ

This picture is very different from the case of a neutron
mixing with the KK tower. The main difference is that the
neutron possesses a single oscillation partner in the form of
a state nh. For neutrons in all possible energy states, this
partner is unique and is fixed by the theory.
The phenomenology of free neutron oscillations is

correspondingly very different from the KK case, in
particular, in the magnetic field dependence of the resonant
amplitude. In case of an oscillation into a single hidden
partner, the amplitude peaks around the resonant value of
the magnetic field Br ¼ α

ffiffiffiffiffiffiffiffiffiffiffiffi
N − 2

p
=μn, and diminishes in

both directions as a function of jB − Brj.
This behavior goes in sharp contrast with the present

scenario in which a neutron oscillates into the KK tower. As
already discussed, in this case, a neutron of arbitrary energy
mn þ ϵ finds its oscillation partner among the KK states
that are closest to it. Because of this effect, the amplitude is
recurrent in B with the steps Δm=μn.
This difference applies to a picture with an arbitrary

number of SM copies including the special case of N ¼ 2.
This case is usually referred to as the mirror SM. The
oscillation between the neutrons of the two copies was
studied earlier in [11]. The additional difficulty that arises
in this case is the exact degeneracy of the diagonal masses
between n and its mirror partner n0. Because of this, the
oscillations are suppressed by potentials arising in our
sector due to the environment, such as the earth’s magnetic
field which gives a large level splitting. Therefore, the
transition can take place only if one assumes the presence
of an analogous magnetic field in the hidden sector, which
is outside of any experimental or theoretical control, as it
fully depends on the nature of the hidden sector. Regardless
of this issue, assuming the proper conditions, the resonance
can only occur for one specific value of the magnetic field
which happens to match the hidden one. This is different

from the extradimensional oscillations of neutrons for
which the resonances happen for discrete values of the
magnetic field that are synchronized with the KK spectrum.

IX. NEUTRON LIFETIME MEASUREMENTS

The possibility of free neutron oscillations into extra
dimensions also creates an urgency for more precise
measurements of its lifetime. In fact, some authors have
argued that already existing measurements may indicate a
discrepancy that supports the existence of new channels of
neutron disappearance.
On the one hand, we possess the data coming from so-

called ultracold neutron lifetime measurements. They
account for the missing neutrons from a given number
of free neutrons. The reported lifetime of the neutron is
τ1 ¼ 878s [18,31,32]. On the other hand, we have the data
from beam experiments that look for the protons resulting
from ordinary decay of neutrons caused by the weak
interaction. These experiments report a lifetime of τ2 ¼
888s [18,33,34].
This difference between the reported neutron lifetimes

prompted some attempts to address it in the context of
oscillations to mirror neutrons [11,12,35,36], or decays of
neutrons into other hypothetical particles [37] (for some
cosmological implications, see, [38]). However, doubts
about the rigor of the discrepancy have also been raised [39].
Scrutinizing the validity of the puzzle is beyond the goal

of the present paper. Regardless, the neutron oscillations
into extra dimensions provide an additional motivation for
improved precision measurements of the neutron lifetime.

X. BARYON AND LEPTON NUMBERS

Notice that the mixing of the SM neutrino with a bulk
fermion (15) preserves lepton number symmetry since Ψ
can be assigned one unit of lepton number. Likewise, the
mixing of the neutron with the bulk fermion Ψ (25), fixes
the baryonic charge of Ψ as equal to one. In the case where
neutrino and neutron mix with the same Ψ, one combina-
tion of the baryon and lepton number is preserved depend-
ing on whether both mix withΨ or with relative conjugates.
Mixing with the same Ψ leaves Bþ L symmetry unbroken
and breaks B − L. Mixing with the conjugates Ψ and Ψ�
has the opposite effect. Notice, as it was discussed in [2],
the B − L symmetry can be gauged in the bulk, resulting in
gravity competing forces from the exchange of a B − L
gauge boson. If B − L is gauged, one of the mixing
operators must be suppressed by the vacuum expectation
value of the field that Higgses it.
We would also like to comment on the case when the

bulk particle Ψ that mixes with neutron possesses a
Majorana mass of the form μMΨCΨ. This term breaks
the baryon number by two units. Due to this, the exchange
of Ψ can result in neutron-anti-neutron oscillations. In this
case, the neutron disappearance rate becomes correlated
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with the n − n̄ oscillation. This case will not be discussed
here further.

XI. COSMOLOGY AND OTHER CONSTRAINTS

We would like to briefly comment on some straightfor-
ward cosmological implications and constraints on the
present scenario.
In the large extradimensional theory, there exists a

standard list of constraints shared by the bulk species
[2]. In particular, an important bound is coming from big
bang nucleosynthesis (BBN). In this consideration, the key
control parameter is the “normalcy temperature.” The point
is that at BBN temperatures the production of bulk species
must be sufficiently suppressed in order not to interfere
with the standard evolution of the Universe. The bulk
species must neither enter in thermal equilibrium with the
SM particles nor be overproduced.
In the case of a massless bulk fermion Ψmixing with the

neutrino, such constraints were discussed in [7]. The bound
in the present case is milder since the neutron mixes with
the sector of the KK tower which is much heavier than the
BBN temperature.
In particular, in the parameter regime relevant for free

neutron oscillations into the bulk fermion, the thermal
production of Ψ due to the rescattering of quarks via the
four-fermi operator (25) is effectively shut off below the
temperature of its mass μ ∼ GeV.
Besides the constraints, cosmology can provide some

strong motivations for the existence of a neutron portal into
extra dimensions in the form of its bulk partner Ψ. The first
one is baryogenesis via the mechanism introduced in [7].
The idea is that the excess of baryonic change in our sector
(i.e., particles inhabiting the SM brane) is generated by its
loss into extra dimensions.
Even though a transition of a neutron into an extra

dimension does not violate baryon number, baryogenesis
can still take place, provided the other two Sakharov’s
conditions (CP-violation and an out-of-equilibrium state)
are satisfied. This is because the bulk species can transport
baryon number away from our SM sector and “hide” it in
the KK states.
In our case, such a process can be realized as an out-of-

equilibrium conversion of our baryons into the fermions Ψ.
Since Ψ is extremely weakly interacting, the inverse decays
are highly suppressed. The overall effect can be a gen-
eration of net baryon number in our sector. Of course, the
exact amount of the missing baryonic charge is carried by
the bulk species. However, this charge is effectively
inaccessible for our measurements. Hence, the Universe
appears to be asymmetric in baryon number.
The second natural implication of the bulk particle Ψ is

that its KK states can play the role of dark matter. The
generic feature of bulk modes is that they interact with SM
species with gravitational strength and, correspondingly, are
extremely long-lived. This makes them viable candidates for

dark matter. The possibility that KK gravitons of large
extra dimensions can be darkmatter, was originally proposed
in [2] (a more recent discussion of this idea can be found
in [40]).
Similarly, in our scenario, Ψ can be a dark matter

candidate. Clearly, for the candidacy into dark matter, it
is important for ψ-s to be long-lived. In order to get a
feeling for the timescales, let us make some rough
estimates. For example, the decay, ψ → nþ π0 can be
estimated using the following effective operator, ψnπ0g,
where g ¼ Λ2=MfMP and we took M� ¼ Mf. Assuming,
Mf ∼ 10 TeV, takingmψ ≳mnþmπ , and setting Λ ∼ GeV,
we get the following decay rate, Γ ∼mψ10

−46. The corre-
sponding life-time is τψ ¼ Γ−1 ∼ 1046=mψ . The estimates
of other channels do not affect the result significantly.
Thus, concerning their stability, the KK modes of ψ with

masses mψ ≲ 105 GeV can be dark matter. Of course, in
any case within the validity of QFTwe must havemψ < Mf

and thus, with our choice of Mf ∼ 10 TeV, KK-s of ψ in a
large interval of masses can serve as dark matter, provided
they are somehow produced in the early Universe in the
right abundance.
The production mechanism is model dependent and can

be either thermal (via rescattering of SM quanta into ψ-s) or
nonthermal, such as via direct decay of the inflaton field
into ψ -s.
The construction of a fully viable and predictive scenario

requires a more detailed cosmological investigation of the
parameter space of our setup. This is beyond the goals of
the present paper.
We would also like to comment on possible collider

implications. The ψ-particles can certainly be produced in
the high energy collisions of the SM particles, e.g., via the
process, pþ e− → ψ þ ν. However, the collider con-
straints on ψ are milder than for ADD bulk gravitons,
since the “dressing” by gravitons is universally possible for
all SM particles, whereas in the minimal model ψ couples
selectively to the neutron. In this sense, the expectation
would be that with increasing center of mass energy, the
gravitational signatures should be detected easier than the
energy loss due to production of ψ . However, the precise
phenomenological signatures are certainly worth studying.

XII. CONCLUSIONS AND OUTLOOK

In this paper, we pointed out that neutron experiments
can provide a unique spectroscopy of extra dimensions.
Neutrons can play a crucial role in exploring new particle

species that interact with the SM ultrafeebly: with a
strength comparable to that of gravity. Especially motivated
are the frameworks in which the number of ultrafeebly
interacting species is large. This is because such frame-
works address the hierarchy problem by lowering the cutoff
of the theory according to (2). The two extreme represent-
atives of such theories are the ADD model of large extra
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dimensions [1,2] and the framework with multiple exact
copies of the SM [3–5]. In the latter framework, oscillations
of a neutron into hidden copies of the SM have been studied
in [5]. However, oscillations of a neutron into large extra
dimensions have not been studied previously. In the present
paper, we attempted to fill this gap.
Within the ADD framework, we studied the oscillations

of a neutron into a fermion Ψ propagating in large extra
dimensions. In particular, Ψ can be the same bulk fermion
that endows the SM neutrino with a naturally small mass
via the mechanism of [8,9]. The consequence of this
mechanism is an oscillation of the neutrino into the KK
tower of the bulk sterile fermion [7].
In the present setup, a similar oscillation into the KK

species of bulk fermion is experienced by the neutron.
However, neutron oscillations exhibit certain features that
make them subject to special interest for a wide range of
experiments and phenomenological constraints. A unique
feature of a neutronmixingwith a bulk species is that because
of the high density and degeneracy of the KK spectrum,
neutrons in various energy states, both free or within nuclei,
find their oscillation partners. The threshold is set by themass
of the bulk fermion Ψ which is a theory parameter.
For the mass below the energy of a nuclear neutron, the

main effect is neutron disappearance from nuclei resulting
in its de-excitation and the emission of a hard photon. This
imposes a variety of bounds on the parameters of the
theory. The associated proton decay rate is suppressed by
another nine orders of magnitude and is a subdominant
effect. Therefore, the avenue for tightening the constraints
is via improving the precision of neutron disappearance
experiments as well as in scanning a larger diversity of
samples since the resonant energy levels depend on the
features of the Kaluza-Klein spectrum.
For the mass of the bulk partner in a window between the

energies of a bound and a free neutron, the nuclei are stable.
However, the resonant transition can be observed for a free
neutron. This gives an exciting possibility of mapping the
Kaluza-Klein spectrum by using a magnetic field as a
scanner. Unlike the scenarios in which the neutron has a
single oscillation partner, in the extradimensional case, the
resonance takes place recurrently as a function of a magnetic
field. That is, the resonant values of the magnetic field are
quantized in one-to-one correspondence with the KK
spectrum.
We analyzed our findings in the light of two recent

experiments: the ultracold neutron storage experiment [13]
and the experiment with an ultracold neutron beam [14].
We found that both experiments impose bounds on the
parameters of extra dimensions. In fact, the bounds, such as
(61), (64), and (67), are already within the domain
motivated by the hierarchy problem.
Future experiments with improved accuracy and a wider

range of the scanned magnetic field will give a unique
possibility of performing precision Kaluza-Klein spectros-
copy in neutron labs.
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APPENDIX

1. Mass splitting in KK tower for equal size
extra dimensions

We show that for N ≥ 2 with all radii equal to R, the
mass splitting of the KK tower (around the neutron mass) is
proportional to

δm ∼
1

R2mn
: ðA1Þ

This is correct for both the KK tower originating from a
massless or a massive extradimensional fermion.
We estimate δm by calculating the mass difference

between two special states ðkþ 1;…; kþ 1Þ and
ðk;…; kÞ with masses mkþ1 ≡

ffiffiffiffi
N

p ðkþ 1Þ=R and
mk ≡

ffiffiffiffi
N

p
k=R, respectively and then dividing their mass

difference by the number of states in between the two.
The mass difference between the two special states is

mkþ1 −mk ¼
ffiffiffiffi
N

p

R
: ðA2Þ

Now, we estimate the number of different levels in
between them (i.e., ignoring the level degeneracies). That
is, we want to find the number of levels that fulfill

mk < mk1;…;kN < mkþ1: ðA3Þ
Using the expression (3) for the mass levels in the KK
tower, this reduces to

Nk2 < k21 þ � � � þ k2N < Nðkþ 1Þ2: ðA4Þ

For N > 3, we can express every integer as a sum of integer
squares (This is actually a theorem: Lagrange theorem, see,
e.g., [41].) This is also very accurate for N ¼ 3, where we
can express almost every integer as a sum of squares, as
well as for N ¼ 2 up to a log-factor [42]. Therefore, in all
cases of our interest, the number of levels is essentially
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given by the number of integers in between the mass states

#mass − levels ¼ Nðkþ 1Þ2 − Nk2 ≈ 2Nk: ðA5Þ

Thus, the mass splitting of the KK tower is

δm ¼ mkþ1 −mk

#mass − levels
≈

1

2
ffiffiffiffi
N

p
Rk

¼ 1

2R2mk
: ðA6Þ

Now set mk ≈mn and we get

δm ≈
1

2R2mn
: ðA7Þ

For N ≤ 3, the above is essentially exact. For N ¼ 2 the
level spacing is less uniform but is an excellent approxi-
mation for averaged splitting.
Indeed, for N ¼ 2, the number of states in betweenmkþ1

andmk is lower, because we cannot express every integer as
a sum of two integer squares. The number of integers
between 0 and x that can be expressed as a sum of two
integer squares goes as x=

ffiffiffiffiffiffiffiffiffiffi
log x

p
[42]. Hence, the number

of integers we are looking for between x1 and x2 is
proportional to

x1ffiffiffiffiffiffiffiffiffiffiffiffi
log x1

p −
x2ffiffiffiffiffiffiffiffiffiffiffiffi
log x2

p : ðA8Þ

For x1 ¼ Nk2 and x2 ¼ Nðkþ 1Þ2 and k ∼ 1011 (remember
k ∼mnR=

ffiffiffi
2

p
), this number is 0.42k ≈ k=2.

Thus, for N ¼ 2, the mass splitting of the tower around
mk ≈mn is

δm ≈
4

R2mn
: ðA9Þ

For a massive bulk fermion with mass μ, we repeat the
calculation with,

m2
k ¼ μ2 þ k21

R2
1

þ � � � þ k2N
R2
N
: ðA10Þ

The mass-splitting between the two special states is

mkþ1 −mk ≈
Nk
R2mk

: ðA11Þ

For N ≥ 3, the number of states in between the two
special states is the same as in the massless case,
#states ≈ 2Nk. Correspondingly, so is the level-splitting,

δm ≈
1

2R2mn
: ðA12Þ

ForN ¼ 2, the number of states is slightly different due to a
smaller gap k2 ∼ ðm2

n − μ2ÞR2=2 ≈MeVGeVR2=2, which
limits the maximal k, approximately by k ∼ 109 instead of

k ∼ 1011 of the massless case. This however is a small
difference. Using again Eq. (A8), #mass − levels ≈ 0.46k≈
k=2, we also get approximately the same result as in the
massless case, (A9).

2. Degeneracy of states

Using the expression of KK masses Eq. (3),

ðmRÞ2 ¼ k21 þ � � � þ k2N; ðA13Þ

we map the degeneracy count onto a problem in number
theory of counting the number of different possibilities,
rNðnÞ, of integers k1;…; kN that satisfy n ¼ k21 þ � � � þ k2N,
with n ¼ ðmRÞ2. The averaged number of possibilities
rNðnÞ, will give us the degeneracy of states Z.
There is a “cheap” way of getting the answer by making

a continuum approximation. That is, for R → ∞, the
number of states nðmÞ with mass ≤ m is

nðmÞ ¼ vNðmRÞN; ðA14Þ

where vN is a volume of an unit N-ball. The number of
states within the interval of masses betweenmþ Δm andm
then is

ZðmÞ ¼ NvNΔmmN−1RN; ðA15Þ

which for Δm ¼ 1=ð2mR2Þ taken from (A7) gives,

ZðmÞ ≈ N
2
vNðmRÞN−2: ðA16Þ

For an alternative count, we start by estimating all
possibilities to solve the equation k21 þ � � � þ k2N ≤ x.
This can be solved geometrically, as it is just the volume
of a ball,

Xx
n¼0

rNðnÞ ¼ vNx
N
2 : ðA17Þ

To estimate the average of rN at some number x, we average
the a nearest values of rN

Z ¼ 1

a
ðrNðx − aþ 1Þ þ � � � þ rNðxÞÞ ðA18Þ

¼ vN
a
ðxN

2 − ðx − aÞN2Þ ðA19Þ

≈
N
2
vNx

N
2
−1: ðA20Þ

In our case, we replace x ¼ ðmRÞ2 and find for the
degeneracy of states given by (A16).
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