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Physics beyond the Standard Model (BSM) can be described in a consistent and general way through the
Higgs effective field theory (HEFT). Measurements of model-independent HEFT coefficients allow one to
constrain the parameter space of BSM models via a matching procedure. In this work, we show that this
procedure is not unique and depends on the scalings of the parameters of the Lagrangian. As examples, we
consider three BSM models: the real singlet extension of the SM with a Z2 symmetry, the complex singlet
extension of the SM and the two Higgs doublet model. We discuss several physical observables, and show
that different scalings of the model parameters with the UV scale in the matching to the HEFT can yield
quite different results. This complicates the interpretation of HEFT measurements in terms of parameters of
BSM models. Additionally, as a byproduct, we report the first matching of the complex singlet extension to
the HEFT.
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I. INTRODUCTION

The discovery of a scalar particle at the Large Hadron
Collider (LHC) in 2012 [1,2]—usually identified as the last
piece of the Standard Model (SM), the Higgs boson—
intensified an old question: is there physics beyond the SM
(BSM)? The absence of any detection of new physics at the
LHC suggests that potential BSM physics should be heavy.
In that case, the general and consistent framework of an
effective field theory (EFT) is ideal to parametrize possible
deviations of the SM at the LHC. The two main EFTs
for physics that could affect the Higgs sector are the
Standard Model EFT (SMEFT) [3–5] and the Higgs
EFT (HEFT) [6–13]; for an introduction to both and to
their comparison, see Refs. [14,15].
Any EFT is constructed on the basis of an expansion; the

set of rules that organizes the order of such expansion—by
determining how the different quantities scale—is known
as power counting (PC). Between the SMEFT and the
HEFT, the former is more widely used given its clear
PC [14]. Indeed, the SMEFT is the default choice in many

LHC analyses and allows for the inclusion of data from
many different processes (Higgs physics, diboson produc-
tion, electroweak precision measurements and top quark
physics, among others) [16–18]. On the other hand, the
HEFT is more general than the SMEFT, and has been the
object of diverse studies in recent years [19–44], extending
previous LHC analyses of leading and subleading HEFT
couplings [13,45–53]. The larger freedom provided by the
HEFT has also recently motivated the ATLAS collabora-
tion at the LHC to perform an analysis utilizing the HEFT,
in the context of double Higgs production [54]. This
suggests that future experimental analyses related to the
exploration of Higgs self-interactions may also find the
HEFT parametrization useful.
However, the HEFT is a weak scale effective description

of some complete ultraviolet (UV) model. Ultimately, then,
one will need to convert the HEFT parametrization to that
of a particular UV model. The procedure that allows one to
relate the EFT to some higher-energy theory is known as
matching. Matching is essential both in the scenario where
nonzero HEFT coefficients are observed (in which case
one would have found BSM physics, and would seek a
UV model that could accommodate it), as well as in the
scenario where all HEFT coefficients are consistent with
the SM (in which case one uses the constraints of the HEFT
coefficients to constrain the parameter space of UV
models). The HEFT has often been matched to composite
Higgs models [29,55–59]. Up to our knowledge, in 2016
Ref. [60] performed for the first time the matching of
the HEFT to a UV complete model, by considering a
Z2-symmetric real singlet extension (Z2RSE) of the SM.
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Very recently, the same exercise has been performed in the
two Higgs doublet model (2HDM) [39,40].
Naively, the matching between the HEFT and a UV

model with heavy particles is done simply by performing
an expansion in inverse powers of the heavy physical
masses. This seems to define an unambiguous expansion,
i.e., a unique PC. In this paper, we question this reasoning.
We show that the existence of a multiplicity of choices for
independent parameters complicates the problem. In fact,
even if one adopts an expansion simply in inverse powers of
the heavy physical masses, very different PCs are obtained
according to the set of parameters taken as independent, as
different sets imply different scalings. More interestingly,
instead of happening that a single PC is always most
adequate for all observables, one should in general use
different PCs to ensure a fast replication of the results in the
UV model for different processes or different regions of
the parameter space. This complicates the interpretation
of HEFT measurements in terms of parameters of UV
models.1 We illustrate these features by considering three
UV models: the Z2RSE, the complex singlet extension
(CSE) of the SM and the 2HDM. For each one, we present
three PCs, and study the quality with which they replicate
the full model in different observables.
The paper is organized as follows: we start by presenting

the models and the PCs in Sec. II. In this section, we also
discuss how to compare the SMEFT and the HEFT
matchings, and we write all matching relations. We then
present our results in Sec. III, and we summarize our
conclusions in Sec. IV. The Appendix provides extra details
about the HEFT approach to the CSE.

II. MODELS, COUNTINGS, AND MATCHINGS

In this section, we describe the models discussed in this
article. For each case, we provide the Lagrangian, discuss
relevant choices of independent parameters and relevant
Feynman rules, describe the restrictions to the parameter
space of the model, and present the PCs to be investigated.
Some introductory notes are in order:
(1) In all the three models considered in this paper, we

assume that all the particles beyond the SM are
heavy, so that the SM can represent an EFT of the
model at stake.

(2) The notion of PC is usually employed in the
literature from a bottom-up perspective, where the
EFT is not bound to any particular UV completion
(for an excellent discussion, see Ref. [14]). Here we
use the term in a broader sense, to describe any set of
rules that fixes the different orders of the EFT
expansion. In particular, the notion of PC in that
sense characterizes a certain matching between a UV
model and the HEFT. Different matchings between

the UV model and the HEFT therefore correspond to
different PCs.

(3) We follow Ref. [39] in organizing the PCs via a
small auxiliary parameter ξ, corresponding to an
inverse heavy scale (see also Ref. [67]). More
specifically, if v ∼ 250 GeV represents the electro-
weak scale and Λ ∼ 800 GeV some heavy scale, we
estimate ξ ∼ ðv=ΛÞ2 ∼ 0.1. The effective Lagran-
gian, being an expansion in inverse powers of the
heavy scale, can thus be written as an expansion in
non-negative powers of ξ. All PCs discussed in this
paper lead to well-defined expansions, in the sense
that the effective Lagrangians do not contain neg-
ative powers of ξ (i.e., positive powers of the large
scale). In a certain model, the different PCs differ in
the way they attribute different scalings in powers of
ξ to the parameters. In general, the different scalings
do not have a specific physical motivation; they are
considered solely with the purpose of illustrating
different possibilities of matching.

(4) It should be clear that we are not performing an
exhaustive study; that is, we will not consider all
possible PCs that could be considered. Rather, the
goal is to illustrate the multiplicity of possible
matchings between HEFT and a given UV model,
and to discuss relevant features of that multiplicity.

(5) We shall present in all models the decoupling PC.
This is the PC consistent with the decoupling limit of
the model at stake. In other words, the decoupling
PC is such that, on the one hand, the trivial order (ξ0)
of the effective Lagrangian is the SM Lagrangian
and, on the other, the quartic parameters of the
potential do not scale with the heavy masses, in
accordance with perturbative unitarity (for a recent
discussion, see Ref. [39]).2 Then, for the decoupling
PC, the Oðξ1Þ and Oðξ2Þ terms of the effective
Lagrangian correspond to the SMEFT dimension-six
and dimension-eight contributions in that model,
respectively. Such a coincidence of results has been
already observed in the case of the 2HDM in
Ref. [39]. For simplicity, the decoupling PC of each
model will always be represented by the same color
(yellow) in all the plots of this paper.

(6) For each PC in each model, we provide the matching
of the relevant parameters of the HEFT Lagrangian
up to Oðξ2Þ.

We now turn to the HEFT Lagrangian, which contains an
expansion in the number of (covariant) derivatives. At the
leading order in that expansion, the terms of the Lagrangian
which will matter for the processes discussed in this
paper are

1For details on the low-energy HEFT expansion, see
Refs. [61–66].

2In principle, there can be more than one decoupling PC for
each model. The investigation of this possibility is beyond the
scope of this paper.
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LHEFT ⊃
v2

4
F ðhÞTrfDμU†DμUg þ 1

2
ð∂μhÞ2 − VðhÞ; ð1Þ

where v ¼ 246 GeV is the vacuum expectation value
(VEV) of the SM Higgs field, Dμ is the covariant deri-
vative, and F ðhÞ and VðhÞ are analytical functions, each
one consisting of a series in powers of h. In general, one has
DμU ¼ ∂μU þ igWa

μ
σa

2
U − ig0U σ3

2
Bμ, with U ¼ 1 in the

particular case of the unitary gauge. In the HEFT, h is a
gauge singlet, which allows F ðhÞ and VðhÞ to contain
arbitrary powers of h:

F ðhÞ ¼ 1þ 2a
h
v
þ b

h2

v2
þ � � � ;

VðhÞ ¼ 1

2
m2

hh
2

�
1þ κ3

h
v
þ κ4

4

h2

v2
þ � � �

�
; ð2Þ

where mh is the h mass, a, b, κ3, and κ4 are arbitrary HEFT
couplings, and the dots stand for terms with higher powers
of h. These couplings are normalized in such a way that the
SM limit is obtained for a ¼ b ¼ κ3 ¼ κ4 ¼ 1.
In the case of the 2HDM, we shall also consider the

processes h → bb̄ at tree level, as well as h → γγ and
h → γZ at one loop (where the existence of a charged
Higgs boson has interesting consequences for the EFT). For
h → bb̄, we need to consider the following term:

LHEFT ⊃ −GðhÞmbb̄b; ð3Þ

where mb is the b quark mass and GðhÞ is another
polynomial function of h, such that

GðhÞ ¼ 1þ c1
h
v
þ � � � ; ð4Þ

with c1 another HEFT coupling, with c1 ¼ 1 in the SM. As
for h → γγ and h → γZ, in order for these processes to be
matched to the HEFT, it is necessary to consider the next to
leading order terms in the derivative expansion of LHEFT.
We follow Ref. [40] to write those terms as

LHEFT ⊃ −aHBB
h
v
Tr
�
B̂μνB̂

μν
�
− aHWW

h
v
Tr
�
ŴμνŴ

μν
�

þ aH1

h
v
Tr
�
UB̂μνU†Ŵμν

�
; ð5Þ

where aHBB, aHWW , and aH1 are yet other HEFT couplings
(which vanish in the SM limit), and

B̂μ ¼ g0Bμ
σ3

2
; Ŵμ ¼ gWa

μ
σa

2
; B̂μν ¼ ∂μB̂ν − ∂νB̂μ;

Ŵμν ¼ ∂μŴν − ∂νŴμ þ i
�
Ŵμ; Ŵν

�
:ð6Þ

Then, the relevant couplings for h → γγ and h → γZ are,
respectively,

ahγγ ¼ aHBB þ aHWW − aH1;

ahγZ ¼ aHBB þ aHWW − aH1 þ
m2

Z

2m2
W

�
aH1 − 2aHBB

�
: ð7Þ

Once the matching to HEFT has been performed, we will
express some matching results as Δx ¼ x − 1, where x
represents a generic HEFT coupling. The SM limit is
recovered when Δx ¼ 0. The couplings that we consider in
this work are collected in Tables I, II, III, and IV.
Finally, a note on the relation between the HEFT and the

SMEFT. Since the HEFT is more general than SMEFT, it is
always possible to write any SMEFT in HEFT form, but the
opposite path is not always guaranteed. It is thus interesting
to determine when a given HEFT can be written in SMEFT

TABLE I. HEFT couplings for the Z2RSE. All the couplings are shown up to Oðξ2Þ.
PC Δa Δb Δκ3 Δκ4

PCR
1 −ξ s2χ

2

−ξ2 s4χ
8

−2ξs2χ
þξ2s2χ

�
s2χ − 2m2

M2

− vssχ
vs

�
−ξ 3s2χ

2
þ

ξ2
s3χ
8vs

�
3sχvs − 8v

� −ξ 25s2χ
3

− ξ2
s2χ

3M2vs

�
28m2vs

−M2sχð41sχvs − 38vÞ�

PCR
2

cχ − 1 c4χ − s3χcχ
v
vs
− 1

þξ
2m2s2χ
M2vs

�
s2χvs

−vs − cχsχv
�

c3χ −
s3χv
vs

− 1 −1 − 19c2χs2χðcχvsþsχvÞ2
3v2s

þ ðc4χv2sþs4χv2Þ
v2s

−ξ 28c2χm2s2χðcχvsþsχvÞ2
3M2v2s

−ξ2 16c2m4s2χðcχvsþsχvÞ2
3M4v2s

PCR
3

cχ − 1 −s2χ þ ξ
s2χ
M2 ðm2

−μ22Þ þ ξ2
3m2s2χ
M4

×ðm2 − μ22Þ

−1þ cχ

−ξ s2χ
M2cχ

ðm2 − μ22Þ
−ξ2 m2s2χ

M4cχ
ðm2 − μ22Þ

−s2χ þ ξ
2s2χ
M2 ðm2 − μ22Þ

þξ2
s2χ

3cχM4 ðm2 − μ22Þ
�
m2ð13s2χ

−10Þ þ μ22ð16 − 19s2χÞ
�
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coordinates. Recently, new approaches have emerged
where EFTs are formulated from a geometrical point of
view [6,69–72]. This framework allows us to ascertain
whether a certain HEFT can be written in SMEFT
coordinates by studying the curvature of the EFT manifold.

The gist of the idea is to study the existence of an O(4) fixed
point upon which the SMEFT can be formulated. Since the
purpose of this paper is to illustrate different matchings in
HEFT for multiple UV models, we will not further explore
this geometrical interpretation.

TABLE II. HEFT couplings for the CSE. All the couplings are shown up to Oðξ2Þ, except the ones that are too lengthy. The full
expressions can be found in the Supplemental Material [68].

PC Δa Δb Δκ3 Δκ4

PCC
1 −ξ2 s2

1

2
−ξ22s21 ξ2

s2
1

2m2
1

�
v2δ̄23 − 3m2

1

�
ξ2

s2
1

3m2
1

�
9v2δ̄23 − 25m2

1

�
PCC

2 −ξ s2
1

2

−ξ2 s4
1

8

−ξ2s21
þOðξ2Þ

−ξ s2
1

6m2
1

�
9m2

1 − 3v2δ̄23

þ ffiffiffi
2

p
s1ve12R

�
þξ2

s4
1

8m2
1

�
3m2

1 − 2v2δ̄23
�

ξ
s2
1

3m2
1

�
9v2δ̄23 − 3

ffiffiffi
2

p
s1ve12R

−25m2
1

�þOðξ2Þ

PCC
3

c1 − 1 c41 − 1

þOðξÞ
− v

24m2
1

�
3c1v

�
c21 − 3s21 − 1

�
δ̄23

þ ffiffiffi
2

p
s1
�
−3c21 þ s21 þ 3

�
e12R

�
þ c1

4

�
c21 − 3s21 þ 3

�
− 1

s2
1
v

2m2
1

�
s21v
�
−6ðc21 þ 1Þδ̄23 þ d13R

þd2
�þ 6vδ̄23 − 2

ffiffiffi
2

p
c31s1e12R

�
þc41

�
1 − 19s2

1

3

�
− 1þOðξÞ

TABLE III. b, κ3, and κ4 HEFT couplings for the 2HDM. All the couplings are shown up toOðξ2Þ, except the ones that are too lengthy.
The full expressions can be found in the Supplemental Material [68].

PC Δb Δκ3 Δκ4

PCT
1 −ξ23c2β−α −ξ2c2β−α

Y2

m2
h
þ ξ2 1

2
c2β−α −ξ12c2β−α

Y2

m2
h
þ ξ2c2β−α

	
16Δm2

H
m2

h
− 11



PCT

2 −ξ23c2β−α −
2Y2c2β−α

m2
h

þ ξ
c3β−α
m2

htβ

�
t2β − 1

�ðY2 −M2Þ
þξ2

c2β−α
2m2

ht
2
β

�
c2β−α

�
M2
�
t4β − 4t2β þ 1

�þ 2Y2t2β
�

þm2
ht

2
β

�
4Y2c2β−α
m2

hM
2 ðM2 − 4Y2Þ

þξ
2c3β−α

m2
hM

2tβ
ðt2β − 1ÞðM2 − 12Y2ÞðM2 − Y2Þ

þOðξ2Þ
PCT

3 c2β−α
�
1 − 2c2β−α

þ2cβ−αsβ−α cot 2β
�

þOðξÞ

−1þ sβ−α
�
1þ 2c2β−α

�þ c2β−α
�
−2sβ−αm2

12

þ2cβ−α cot 2β
�
1 −m2

12

�� c2β−α
3

�
−7þ 64c2β−α − 76c4β−α þ 12

�
1 − 6c2β−α þ 6c4β−α

�
m̄2

12

þ4cβ−αsβ−α cot 2β
�
−13þ 38c2β−α − 3

�
−5þ 12cβ−α

�
m̄2

12

�
þ4c2β−αcot

22β
�
3c2β−α − 16s2β−α þ 3

�
−1þ 6s2β−α

�
m̄2

12

��
þOðξÞ

TABLE IV. a, ahγγ , and ahγZ HEFT couplings for the 2HDM. All the couplings are shown up to Oðξ2Þ, except the ones that are too
lengthy. The full expressions can be found in the Supplemental Material [68].

PC Δa Δc1 ahγγ ahγZ

PCT
1 −ξ2

c2β−α
2

ξ
cβ−α
tan β − ξ2

c2β−α
2

−ξ Δm2
H

48π2Y2
þOðξ2Þ ξ

Δm2

Hþ ðm2
Z−2m

2
WÞ

96π2m2
WY2

þOðξ2Þ

PCT
2 −ξ2

c2β−α
2

ξ
cβ−α
tan β − ξ2

c2β−α
2

1
48π2Y2

ðY2 −M2Þ
þξ

cβ−α cot 2β
48π2M2 ðY2 −M2Þ þOðξ2Þ

− ðM2−Y2Þð2m2
W−m2

ZÞ
96π2M2m2

W
−

ξ
cotð2βÞðM2−Y2Þcβ−αð2m2

W−m2
ZÞ

96π2M2m2
W

þOðξ2Þ

PCT
3

sβ−α − 1 1
tan β

�
cβ−α

þ tan βsβ−α
�
− 1

− sβ−α
48π2

þ ξ
m2

12

48π2M2 cscðβÞ secðβÞ�cotð2βÞcβ−αþ
sβ−α

�
− ξ

m2
h

1440π2M2

�
30 cotð2βÞcβ−αþ

19sβ−α
�þOðξ2Þ

sβ−α
96m2

Wπ2

�
m2

Z − 2m2
W

�
−

ξ
ð2m2

W−m2
ZÞ

2880π2M2m2
W

�
30 cotð2βÞcβ−α

�
m2

h −m2
12 cscðβÞ secðβÞ�þ

sβ−α
�
19m2

h − 30m2
12 cscðβÞ secðβÞ þ 2m2

Z

��þOðξ2Þ
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A. Z2RSE

1. The model

We start with the simplest extension, Z2RSE. We present
here a short review of the model, following Ref. [60] (for
details, cf., e.g., Refs. [73,74]). The model is obtained by
taking the SM (whose Higgs doublet we identify as ϕ) and
adding a real singlet S to it, which transforms as S → −S
under Z2. The potential reads

V ¼−
μ21
2
ϕ†ϕ−

μ22
2
S2þ λ1

4
ðϕ†ϕÞ2þ λ2

4
S4þ λ3

2
ϕ†ϕS2; ð8Þ

where all the parameters are real. The fields ϕ and Smay be
parametrized as

ϕ ¼
 

Gþ

1ffiffi
2

p ðvþ h1 þ iG0Þ

!
; S ¼ vs þ h2ffiffiffi

2
p ; ð9Þ

where Gþ and G0 are, respectively, the charged and neutral
wouldbe Goldstone bosons, h1 and h2 are neutral scalar
fields (not yet mass states), and v ¼ 246 GeV and vs are
VEVs, which we assume to be real without loss of
generality. The minimization equations read

μ21 ¼
λ1v2 þ λ3v2s

2
; μ22 ¼

λ3v2 þ λ2v2s
2

: ð10Þ

The mass states h and H—with masses m ¼ 125 GeV and
M, respectively—are obtained from h1 and h2 by consid-
ering a mixing angle χ, such that

�
h

H

�
¼
�
cχ −sχ
sχ cχ

��
h1
h2

�
; ð11Þ

where we introduced the notation sx ≡ sin x; cx ≡ cos x.
The model thus contains, besides the SM particles, a heavy
real scalarH. One possible set of independent parameters is

v; m; vs; M; sχ : ð12Þ

The relations between λ1, λ2, and λ3 of Eq. (8) and the
parameters of Eq. (12) read

λ1 ¼
2

v2
�
M2s2χ −m2

�
s2χ − 1

��
; ð13aÞ

λ2 ¼
2

v2s

�
m2s2χ −M2

�
s2χ − 1

��
; ð13bÞ

λ3 ¼
2cχsχ
vvs

ðM2 −m2Þ: ð13cÞ

Another relevant choice uses Eq. (10) to replace vs with μ22:

v; m; μ22; M; sχ : ð14Þ

2. Restrictions

The parameter space of the Z2RSE is restricted by many
constraints, both purely theoretical and experimental.
Theoretical consistency requires that the scattering ampli-
tudes satisfy perturbative unitarity, that the couplings in the
Lagrangian are perturbative, and that the parameters corres-
pond to a minimum of the potential [75,76]. On the
experimental side, the limits come from precision electro-
weak measurements, including the W boson mass [75,77],
measurements of the Higgs coupling strengths [78], and
direct searches for the heavy Higgs boson of the model.
Higgs coupling measurements require jsχ j ≲ 0.3 for
m≲ 2M. For M ≲ 850 GeV, the most stringent limit
comes from the measurement of the W boson mass, while
for M ≳ 850 GeV the strongest limit is from the require-
ment that the quartic couplings remain perturbative
(λ1;2;3 < 8π) [79]. The limit from the W boson mass is
independent of vs. Direct searches for the heavy Higgs
boson in single H production, as well as searches for the
resonant process pp → H → hh, do not significantly
change the bounds for M between 600–800 GeV [79],
which are the typical scales chosen in our plots. We will
only consider jsχ j≲ 0.2, which is allowed by all the limits
listed here.

3. Power countings

We consider the following EFT PCs for the Z2RSE:
(1) PCR

1 takes Eq. (12) as the set of independent
parameters, and imposes the decoupling scaling

M2 ∼Oðξ−1Þ; v2s ∼Oðξ−1Þ; s2χ ∼OðξÞ:
ð15Þ

(2) PCR
2 takes Eq. (12) as the set of independent

parameters, and imposes

M2 ∼Oðξ−1Þ: ð16Þ

(3) PCR
3 takes Eq. (14) as the set of independent

parameters, and imposes

M2 ∼Oðξ−1Þ: ð17Þ

Here and in what follows, any parameter of the chosen set
that is not explicitly mentioned is assumed to scale asOðξ0Þ
in that PC. As mentioned above, it is reasonable to use
all the three PCs of Eqs. (15)–(17) in the matching, as
they do not lead to positive powers of M in the effective
Lagrangian. PCR

1 was put forward at the end of Ref. [39]
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and is the decoupling PC. In fact, and as discussed in
Ref. [39], Eqs. (13a)–(13c) show that the quartic param-
eters in the UV model do not scale as heavy parameters
(i.e., with negative powers of ξ) if the scaling (15) is
obeyed. We stress that both the scaling of vs as a heavy
parameter and the scaling of sχ as a small quantity are
crucial to this end. In contrast, by restricting themselves to
scaling only M, both PCR

2 and PCR
3 do lead to negative

powers of ξ in the scaling of the quartic parameters. Note
that PCR

2 is the PC used in Ref. [60] in the context of the
HEFT. PCR

3 is identical to PCR
2 , except that it takes μ22

instead of vs as an independent Oðξ0Þ parameter. We will
show that this change has significant consequences. Finally,
we checked that, in PCR

1 , and for the processes discussed
here, the existence of odd powers of vs or sχ does not
introduce nonintegers powers of ξ in the expansion, as odd
powers of vs always multiply odd powers of sχ .
The matching results for the different PCs are shown in

Table I up to Oðξ2Þ, such that the powers of ξ are explicitly
included. It is straightforward to see that all Δx deviations
vanish in the alignment limit, sχ ¼ 0, where the SM
couplings are recovered. At leading order in ξ, PCR

2 yields
the results given in Ref. [60].

B. CSE

1. The model

We now turn to the CSE [80–82]. We follow Ref. [83],
and thus include neither a Z2, nor a Uð1Þ symmetry. The
starting point is again the SM, and we add to it a complex
scalar singlet, Sc. We write the potential as

V ¼ −
μ2

2
ϕ†ϕþ λ

4
ðϕ†ϕÞ2 þ 1

2
b2jScj2 þ

δ2
2
ϕ†ϕjScj2

þ 1

4
d2ðjScj2Þ2 þ

�
a1Sc þ

1

4
b1S2c þ

1

6
e1S3c

þ 1

6
e2ScjScj2 þ

1

8
d1S4c þ

1

8
d3S2cjScj2 þ

1

4
δ1ϕ

†ϕSc

þ 1

4
δ3ϕ

†ϕS2c þ H:c:

�
; ð18Þ

where μ2, λ, d2, δ2, and b2 are real, while the other
parameters are complex. The fields are written as3

ϕ ¼
 

Gþ

1ffiffi
2

p ðvþ hþ iG0Þ

!
; Sc ¼

Sþ iAffiffiffi
2

p ; ð19Þ

where v, G0, and Gþ have the same meaning as for the
Z2RSC, and h, S, and A are real neutral fields not yet mass

states. Requiring them to be free from tadpoles leads to the
minimization equations:

μ2 ¼ λ

2
v2; a1 ¼ −

δ1
8
v2: ð20Þ

Then, h, S, and A can be diagonalized introducing the
mixing angles θ1 and θ2, obeying

4

0
B@

h1
h2
h3

1
CA ¼

0
B@

cθ1 −sθ1 0

sθ1cθ2 cθ1cθ2 sθ2
sθ1sθ2 cθ1sθ2 −cθ2

1
CA
0
B@

h

S

A

1
CA; ð21Þ

where the fields hi (i ¼ 1, 2, 3) are mass states with mass
mi, such that m1 ≡m ¼ 125 GeV. The model thus con-
tains, besides the SM particles, two heavy real scalars h2
and h3. Taking λ; δ1; b1, and b2 as dependent parameters,
their expressions in terms of the independent para-
meters read

λ ¼ 2

v2
�
m2

1c
2
1 þ s21

�
m2

2c
2
2 þm2

3s
2
2

��
; ð22aÞ

δ1R ¼
ffiffiffi
2

p
s1c1
v

�
m2

2 þm2
3 − 2m2

1 þ
�
m2

2 −m2
3

��
c22 − s22

��
;

ð22bÞ

δ1I ¼
2
ffiffiffi
2

p
s1s2c2
v

�
m2

3 −m2
2

�
; ð22cÞ

b1R ¼ −
δ3Rv2

2
þm2

1s
2
1 þ c22

�
m2

2c
2
1 −m2

3

�þ s22
�
m2

3c
2
1 −m2

2

�
;

ð22dÞ

b1I ¼ 2c1s2c2
�
m2

3 −m2
2

�
−
δ3Iv2

2
; ð22eÞ

b2 ¼ m2
1s

2
1 þ c22

�
m2

2c
2
1 þm2

3

�þ s22
�
m2

3c
2
1 þm2

2

�
−
δ2v2

2
;

ð22fÞ

where we used the notation xR ¼ ReðxÞ and xI ¼ ImðxÞ,
for any x. In the following, we take h2 and h3 to be
degenerate, and define M ¼ m2 ¼ m3. The set of indepen-
dent parameters of the scalar sector then is

v; m; M; θ1; θ2; δ2; δ3; d1; d2; d3; e1; e2:

ð23Þ

3Sc could have a (complex) VEV, but this can be set to zero
without loss of generality [83].

4The diagonalization matrix could have a third mixing angle,
which can be removed without loss of generality [83].
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2. Restrictions

Similarly to the Z2RSE, we restrict the parameter space
of the CSE by taking into account electroweak precision
measurements, perturbative unitarity, the perturbativity of
the quartic couplings, boundedness of the potential from
below, Higgs coupling measurements, and searches for
heavy scalars [84]. We follow Ref. [85] in using the con-
straint js1j ≲ 0.2 and consider M ∼ 800 GeV. The param-
eter points chosen for our numerical results satisfy all of
these constraints. We do not make the assumption that
one of the scalars is a dark matter candidate as is fre-
quently done [86].

3. Power countings

All the PCs that we consider for the CSE take Eq. (23) as
the set of independent parameters, such that
(1) PCC

1 imposes the decoupling scaling

M2 ∼Oðξ−1Þ; s1 ∼OðξÞ: ð24Þ

(2) PCC
2 imposes

M2 ∼Oðξ−1Þ; s21 ∼OðξÞ; e21 ∼Oðξ−1Þ;
e22 ∼Oðξ−1Þ: ð25Þ

(3) PCC
3 imposes

M2 ∼Oðξ−1Þ: ð26Þ

As before, all these PCs represent consistent approaches
to an EFT. The cubic terms, e1, e2, and δ1, all have the
dimensions of mass in this case. As a consequence, they
can potentially scale in different ways in the limit of large
M. This ambiguity is intrinsically present in the matching
of the model to the HEFT. Concerning the three PCs chosen
in Eqs. (24)–(26), PCC

1 is the decoupling PC. From
Eq. (22a), indeed, the scaling (24) implies that λ does
not scale with negative powers of ξ. This does not happen
in PCC

2 or PCC
3 . The latter performs an expansion only in

inverse powers of M. The former not only imposes a
stronger scaling for s1 than PCC

1 , but also exploits the fact
that e1 and e2 are dimensionful parameters to scale them as
heavy. We checked that, in the processes discussed here, the
trivial order (ξ0) of PCC

2 corresponds to the SM, and the
existence of odd powers of sχ , e1, and e2 does not introduce
nonintegers powers of ξ in the expansion (as odd powers
of ei always multiply odd powers of s1).
The matching results for the different PCs are shown

in Table II, where we define δ̄23 ≡ δ2 þ δ3R and e12R ≡
e1R þ e2R. As before, we present the results up to Oðξ2Þ
(writing explicitly the powers of ξ), except in the cases for
which the expressions are too lengthy. In those cases, we
indicate the order of the terms not included. The complete
matching results up to Oðξ2Þ can be found in the

Supplemental Material [68] accompanying this paper. As
in the Z2RSE, all Δx vanish in the alignment limit, s1 ¼ 0.

C. 2HDM

1. The model

As a final example, we consider the 2HDM [87] (for
reviews, see, e.g., Refs. [88,89]); we follow Ref. [90]
closely. The 2HDM is built starting again with the SM
(whose Higgs doublet we now identify as Φ1) and adding
a second Higgs doublet, Φ2. We take their VEVs to be
v1=

ffiffiffi
2

p
and v2=

ffiffiffi
2

p
, respectively, both of which are assumed

to be real. A Z2 symmetry is imposed, according to which
Φ1 → Φ1;Φ2 → −Φ2. If the Z2 symmetry is exact, then the
model does not have a decoupling limit. The symmetry is
assumed to be softly broken, which means that bilinear
terms that violate the symmetry are allowed. The potential
of the theory thus reads

V2HDM ¼ m2
11Φ

†
1Φ1 þm2

22Φ
†
2Φ2 −m2

12

�
Φ†

1Φ2 þΦ†
2Φ1

�
þ λ1

2
ðΦ†

1Φ1Þ2 þ
λ2
2
ðΦ†

2Φ2Þ2 þ λ3ðΦ†
1Φ1ÞðΦ†

2Φ2Þ

þ λ4ðΦ†
1Φ2ÞðΦ†

2Φ1Þ þ
λ5
2

�ðΦ†
1Φ2Þ2 þ ðΦ†

2Φ1Þ2
�
;

ð27Þ
with all parameters real.5 It is convenient to consider a
different basis—the Higgs basis [92–95]—with doublets
H1 and H2 defined by�

H1

H2

�
¼
�

cβ sβ
−sβ cβ

��Φ1

Φ2

�
; ð28Þ

with β defined such that tβ ¼ v2=v1. In the Higgs basis, the
potential reads

V2HDM ¼ Y1H
†
1H1 þ Y2H

†
2H2 þ Y3

�
H†

1H2 þH:c:
�

þZ1

2

�
H†

1H1

�
2 þZ2

2

�
H†

2H2

�
2 þZ3

�
H†

1H1

�
×
�
H†

2H2

�þZ4

�
H†

1H2

��
H†

2H1

�þ
Z5

2

�
H†

1H2

�
2

þZ6

�
H†

1H1

��
H†

1H2

�þZ7

�
H†

2H2

��
H†

1H2

�
þH:c:

�
; ð29Þ

where all parameters are again real. The Higgs doublets are
parametrized as

5m2
12 and λ5 can in general be complex. Taking them to be real

implies that CP is conserved in the scalar sector of the theory at
tree level. It should be clear, however, that this is but a particular
solution of the model with CP violation in the scalar sector, and
not a model in itself [91].
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H1 ¼
 

Gþ

1ffiffi
2

p ðvþ hH1 þ iG0Þ

!
; H2 ¼

 
Hþ

1ffiffi
2

p ðhH2 þ iAÞ

!
;

ð30Þ

where v≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 þ v22

p
¼ 246 GeV, Hþ and A are, respec-

tively, the charged and CP-odd neutral scalars with masses
mH� and mA, respectively. hH1 and hH2 do not have well-
defined masses; the physical states h and H—with masses
m ¼ 125 GeV and mH, respectively—can be obtained
from those two states via the introduction of a new mixing
angle, α, so that

�
h

H

�
¼
�
sβ−α cβ−α
cβ−α −sβ−α

��
hH1
hH2

�
: ð31Þ

We assume 0 ≤ β − α ≤ π, so that sβ−α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − c2β−α

q
> 0.

In the following, we take all heavy masses to be degenerate

and define M ≡mH ¼ mA ¼ mH� .6 One possible choice
of independent parameters of the scalar sector is the
following:

cβ−α; β; v; m; Y2; M: ð32Þ

Another choice is the set which replaces Y2 by m2
12 as an

independent parameter:

cβ−α; β; v; m; m2
12; M: ð33Þ

The Z2 symmetry is extended to the fermionic sector to
avoid flavor-changing neutral currents at tree level. This
extension can be applied in four different ways, each one
leading to a different type of 2HDM (for details, see, e.g.,
Ref. [90]). In this paper, we consider only the type I, as it is
the most interesting type from an EFT perspective [90].
Two Feynman rules that are relevant in the discussion of
Sec. III C are

ð34Þ

Finally, the expressions for h → γγ and h → γZ are can be
found, e.g., in Refs. [88,96].

2. Restrictions

The 2HDM is experimentally constrained by many
results, including LHC data for the 125 GeV scalar,
searches for heavy scalars, Higgs coupling measurements
and B meson decays [97]. Constraints resulting from the
contribution of Hþ to b → sγ force tan β ≥ 1.2 [98]. On
the theoretical side, we restrict ourselves to regions
of the parameter space complying with boundedness of
the potential from below, perturbative unitarity [99–101]
and precision electroweak measurements. We use the
analysis of Ref. [39] to determine the maximum value
of jcβ−αj allowed for the different values of tan β, Y2,
and M.

3. Power countings

We consider the following possible PCs for an EFT
matched to the 2HDM:
(1) PCT

1 takes Eq. (32) as the set of independent
parameters and imposes the decoupling scaling

Y2 ∼Oðξ−1Þ; M2 ¼ Y2 þOðξ0Þ ∼Oðξ−1Þ;
cβ−α ∼OðξÞ: ð35Þ

(2) PCT
2 takes Eq. (32) as the set of independent

parameters, and imposes

Y2 ∼Oðξ−2Þ; M2 ∼Oðξ−2Þ; cβ−α ∼OðξÞ:
ð36Þ

(3) PCT
3 takes Eq. (33) as the set of independent

parameters, and imposes

M2 ∼Oðξ−1Þ: ð37Þ

As before, all PCs are theoretically consistent, as they do
not induce negative powers of ξ in the effective Lagrangian.
PCT

1 is the PC used in Ref. [39] and is the decoupling
PC [102,103]; for details, see Ref. [39]. Given that Y2 is the
parameter that ensures decoupling when taken to be very
large, its choice as an independent parameter is reasonable

6For details on the general case of nondegenerate heavy
masses, see Ref. [39].
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in the decoupling scenario. This choice requires cβ−α to be
small, or else the h3 coupling would scale with negative
powers of ξ [39]. This means, in particular, that the choice
of Eq. (32) as the set of independent parameters does not
allow a consistent expansion solely in terms ofM [39]. PCT

2

is similar to PCT
1 , except that Y2 and the physical heavy

masses squared are required to be enhanced by an extra
inverse power of the expansion parameter ξ. Finally, PCT

3 is
the PC put forward in Ref. [40]; it takes advantage of the set
of independent parameters (33) to avoid scaling cβ−α. With
Eq. (33), indeed, the h3 coupling is well behaved, as it does
not depend on positive powers of M. This allows an EFT
expansion solely in terms ofM. In particular, cβ−α does not
scale with ξ in PCT

3 . Note also that, in the HEFT Lagrangian
with PCT

3 , the hb̄b coupling is identical to that of the full
2HDM model (as a consequence not only of the Feynman
rule for that interaction in Eq. (34), but also of the fact that
PCT

3 does not scale cβ−α).
The matching of the 2HDM to HEFT for the PCs of

Eqs. (35)–(37) is given in Tables III and IV, where we
define m̄2

12 ≡m2
12=ðm2

hsβcβÞ and tβ ≡ tan β. In PCT
1 , we

write the expressions in the general case where the heavy
masses are not necessarily degenerate. More specifically,
we follow Ref. [39] and introduce the real quantities Δm2

H,
Δm2

A, and ΔmHþ , such that m2
H ¼ Y2 þ Δm2

H;m
2
A ¼

Y2 þ Δm2
A;m

2
Hþ ¼ Y2 þ Δm2

Hþ . The results for PCT
3 agree

with those of Ref. [40].

III. NUMERICAL RESULTS

The results that follow were obtained via FEYNMASTER

[104,105] (and its accompanying software [106–111]), as
well as FEYNARTS [112] and FORMCALC [113]. The results
will be shown in the range allowed by the theoretical
constraints of the model being considered. For each model,

we compare the results of the full UV model with those of
the PCs introduced in the previous section. Unless men-
tioned otherwise, all results coincide in the alignment limit
(sχ ¼ 0 in the Z2RSE, s1 ¼ 0 in the CSE, and cβ−α ¼ 0 in
the 2HDM), which is also the SM result.7

A. Z2RSE

In Fig. 1, we present the differential cross section
hh → hh, for two different values of the center-of-mass
energy:

ffiffiffi
s

p ¼ 300 GeV (left panel) and
ffiffiffi
s

p ¼ 600 GeV
(right panel). Let us start by discussing the left panel. We
find two very relevant features. The first one concerns the
difference between PCR

2 and PCR
3 . Recall that these PCs

both perform an expansion simply in terms of the heavy
mass M, and differ only in the choice of independent
parameters. Still, the left panel of Fig. 1 shows that they
lead to radically different results. Indeed, whereas PCR

2

clearly converges to the UVmodel result as higher orders in
ξ are considered [such that the Oðξ1Þ result is a very good
replication], PCR

3 is utterly unable to properly describe the
full model away from the alignment limit, sχ ¼ 0, for
the both orders shown.8 This demonstrates not only that
the HEFT matching is not unique but also that making
different choices of independent parameters may be cru-
cially important.
Also very interesting on the left panel of Fig. 1 is the

comparison between PCR
1 and PCR

2 . As discussed above,
the latter is the PC introduced in Ref. [60] to describe the
HEFT approach to the Z2RSE, whereas the former is the

FIG. 1. Comparison between the complete Z2RSE and the HEFT approaches to it in the differential cross section of hh → hh, for a
center-of-mass energy

ffiffiffi
s

p
and a scattering angle θ0.

7The only exceptions will be the loop processes h → γγ and
h → γZ in the 2HDM.

8We checked that the results eventually improve when
PCR

3Oðξ2Þ is considered.
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decoupling PC [to recap, Oðξ1Þ and Oðξ2Þ of PCR
1

correspond to SMEFT dimension-six and dimension-eight,
respectively]. The panel shows that, in the region of sχ < 0,
PCR

1 outperforms PCR
2 . This holds for both orders shown:

the SMEFT dimension-six (-eight) result is closer to the
Z2RSE one than the Oðξ0Þ ½Oðξ1Þ� result of PCR

2 . One
should keep in mind, however, that in terms of the ξ
expansion, the first nontrivial order in the PCR

1 expansion is
one order higher than the first nontrivial order in the PCR

2

expansion [since Oðξ0Þ in PCR
1 corresponds to the SM

case]. Nevertheless, this plot provides an example where a
SMEFT approach might be more convenient to reproduce
the full model than a (HEFT) approach which only scales
the physical heavy masses.
The right panel of Fig. 1 illustrates a scenario where the

EFT expansion starts to break down, as the energies of
the problem are very close to those of the UV theory.9

Accordingly, whereas the differences between PCR
2 at

Oðξ1Þ and the Z2RSE were around 1% on the left plot,
the differences are larger than 50% on the right plot. It is
also clear that, for sχ < 0, PCR

1 still constitutes a more rapid
approach to the full model than PCR

2 , which also shows that
such a conclusion does not depend on the energy of the
problem. Finally, the results for PCR

3 are closer to those of
the other PCs than on the left panel.
In Fig. 2, we present similar plots, but now for the

scattering WW → hh. Both panels show essentially the
same features as those of the corresponding plot of Fig. 1
[except that, in the left plot of Fig. 2, PCR

3 at Oðξ1Þ now
provides a much more faithful description of the full

model]. This illustrates that the conclusions derived above
are not restricted to the process hh → hh. Note also that
we investigated different regions of the allowed para-
meter space, and did not find substantially different
conclusions.

B. CSE

We now discuss the same two scattering processes, but in
the context of the CSE. In Fig. 3, we show hh → hh; the
two panels consider different points of the parameter space
and different scattering conditions. Both plots show the
same general features. In particular, the results of the full
model are essentially constant in a broad region around the
alignment limit, −0.1 < s1 < 0.1. All the three PCs thus
easily replicate those results. Away from that region,
however, PCC

1 (the decoupling PC) displays a very slow
convergence to the full model, with both the Oðξ2Þ and
Oðξ3Þ yielding a very poor replication of the full model.
PCC

2 shows a faster convergence, although still with large
deviations from the results in shown in red. It is only PCC

3

that is able to provide satisfactory results away from the
alignment limit, immediately at Oðξ1Þ.
Similar conclusions hold also for WW → hh scattering,

which we illustrate in Fig. 4 for two different points of the
parameter space. Indeed, PCC

1 shows again a very slow
convergence away from the alignment limit. For both
hh → hh and WW → hh scattering, therefore, the SMEFT
dimension-eight results [corresponding to PCC

1 at Oðξ2Þ]
are unable to present an accurate description of the full
model. Figure 4 demonstrates that PCC

2 has the same pattern
in WW → hh as in hh → hh scattering, with the Oðξ2Þ
results having small deviations from the full UV results.
Finally, PCC

3 is again undisputedly the most adequate PC in
both panels of Fig. 4, with Oðξ0Þ representing already an
excellent description of the CSE results.

FIG. 2. Comparison between the Z2RSE and HEFTapproaches to it in the differential cross section ofWW → hh, for a center-of-mass
energy

ffiffiffi
s

p
and a scattering angle θ0.

9The scattering angle also changes, for illustrative purposes.
The conclusions do not change if θ0 ¼ π=4 is used on the right
panel.
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C. 2HDM

In Fig. 5, we show the decay width of h → bb̄ (left
panel) and the differential cross section of hh → hh (right
panel). In both panels, we compare the result in the 2HDM
with those of the three PCs introduced in Sec. II C. In the
case of h → bb̄, the PCT

3 result is obviously preferred over
the remaining ones; in fact, as discussed in Sec. II C, it
exactly replicates the 2HDM result already at Oðξ0Þ. PCT

1

and PCT
2 are identical in this process, since only the scaling

of cβ−α determines the result (and that scaling is the same in
PCT

1 and PCT
2 ). For these two PCs, the Oðξ0Þ result is very

poor, as it has no dependence on cβ−α, and is thus a constant
equal to the 2HDM result for cβ−α ¼ 0. In other words, the

Oðξ0Þ result of PCT
1 and PCT

2 for h → bb̄ only reproduces
the 2HDM in the alignment limit. TheOðξ1Þ result contains
a linear dependence on cβ−α, so it already provides a good
reproduction of the 2HDM result within the range of cβ−α
showed.
These results represent a sharp contrast with those of

hh → hh scattering. In this case, indeed, PCT
2 is by far the

most adequate PC. Even though it does not capture the
slight asymmetry in cβ−α of the 2HDM result, it is an
excellent approximation to the latter in the entire range of
cβ−α allowed by the theoretical constraints, and immedi-
ately at Oðξ0Þ. By contrast, PCT

3 represents a poor repli-
cation of the 2HDM result away from the alignment limit.

FIG. 3. Comparison between the CSE and HEFT approaches to it in the differential cross section of hh → hh, for a center-of-mass
energy

ffiffiffi
s

p
and a scattering angle θ0. On both panels, we use α2 ¼ 0; δ2 ¼ 0765; δ3 ¼ 0.695þ i0.145; d1 ¼ 0.695 − i7.63;

d2 ¼ 10.6; d3 ¼ 1.74 − i4.77; e1 ¼ −ð28.3þ i20.4Þv; e2 ¼ −ð36.7 − i68.7Þv. This point is derived from a benchmark point provided
in Ref. [85].

FIG. 4. Comparison between the CSE and HEFT approaches to it in the differential cross section of WW → hh, for a center-of-
mass energy

ffiffiffi
s

p
and a scattering angle θ0. The left panel assumes the point of parameter space of Fig. 3, whereas the right plot

uses α2 ¼ 0; d2 ¼ 0.611; δ2 ¼ 24.6; δ3 ¼ 23.5 þ i0.00901; d1 ¼ −0.0806 þ i0.368; d3 ¼ −0.128 − i0.0143; e1 ¼ −ð33 − i28.5Þv;
e2 ¼ −ð99.4 þ i91.9Þv. As before, this point is derived from a benchmark point provided in Ref. [85].
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This holds not only at Oðξ0Þ but also at Oðξ1Þ; the latter
improves the quality of the replication of the 2HDM result
in the range −0.05 < cβ−α < 0.05, but it fails to do so in the
remaining range. It is only when the Oðξ2Þ truncation is
considered that the PCT

3 result properly approaches the
2HDM result away from the alignment limit—albeit still
being worse than PCT

2 at Oðξ0Þ. Finally, the yellow curve
represents PCT

1 at Oðξ2Þ; this result was first shown in
Ref. [39], and shows a relative difference from the 2HDM
larger than 40% for cβ−α ≃ 0.08. The right panel of Fig. 5
above thus extends the analysis of that paper by including
two extra PCs.
One might wonder if the results of the right panel of

Fig. 5 depend significantly on the region of parameter space
considered. To address this question, we show in Fig. 6
the same observable, but for very different values of Y2:
ð325 GeVÞ2 on the left panel, and 0 on right panel. Both
scenarios constitute clear deviations from the decoupling

limit Y2 ≫ v2. Therefore, the observed failure on both
panels of PCT

1 (the decoupling PC) to reproduce the 2HDM
result away from cβ−α ¼ 0 was expected. As for the other
PCs, the figure shows that they are very good replications
of the 2HDM. That PCT

2 has such accurate result is
surprising, as it imposes the scaling Y2 ∼Oðξ−2Þ, which
thus seems incompatible with very small values of Y2. On
the other hand, the circumstance that this PC simultane-
ously imposes the scalings cβ−α ∼OðξÞ and M2 ∼Oðξ−2Þ
compensates for that apparent incompatibility, so that the
end result is very accurate. Still, PCT

2 has a less accurate
description of the full model than PCT

3 on the right panel of
Fig. 6. This shows that the conclusions of the right panel
of Fig. 5 do depend on the region of parameter space
considered.
Figure 7 shows the decay width of h → γγ (left panel)

and h → γZ (right panel), again comparing the different
possible PCs with the 2HDM result. In both cases, we

FIG. 5. Comparison between the 2HDM and HEFTapproaches to it. Left: the decay width of h → bb̄. Right: differential cross section
of hh → hh.

FIG. 6. Comparison between the 2HDM and HEFT approaches to it in the differential cross section of hh → hh for nondecoupling
scenarios: with Y2 ¼ ð325 GeVÞ2 and M ¼ 600 GeV (left) and Y2 ¼ 0 and M ¼ 520 GeV (right).

SALLY DAWSON et al. PHYS. REV. D 109, 055037 (2024)

055037-12



also show the SM result, which is not obtained by the
2HDM one in the alignment limit cβ−α ¼ 0. This feature is
related to the well-known nondecoupling effects typical of
these processes, which are caused by the loop of charged
scalars [114–119]. We checked that, in both processes, PCT

1

at Oðξ0Þ generates the SM curve, and not the 2HDM one.
This result is in agreement with the circumstance that PCT

1

is the decoupling PC. The figure shows that PCT
1 presents a

reasonable description of the 2HDM already atOðξ1Þ. This
means that, even though the loops with charged SM bosons
do not contribute at this order [recall Eq. (34)], the
modification of the Yukawa interactions is sufficient to
provide a decent replication of the UV model result, albeit
with a simple linear dependence on cβ−α. Figure 7 also
shows that PCT

3 at Oðξ0Þ on both panels is quite deviated
from the 2HDM result, even in the alignment limit. That
curve has an approximately constant relative difference
with regards to the 2HDM throughout all the allowed range
of cβ−α: around 7% in h → γγ and around 3% in h → γZ.
On the other hand, PCT

3 at Oðξ1Þ describes an excellent
replication of the 2HDM result in both processes. This is
not what happens in PCT

2 , which, despite presenting a
smaller relative difference to the 2HDM result at Oðξ0Þ
(in its constant value), does not provide as adequate an
approach to the 2HDM result as PCT

3 at Oðξ1Þ.

IV. CONCLUSIONS

The HEFT can be used at the LHC to parametrize
possible deviations from the SM. Eventual nonzero HEFT
coefficients should then be converted into coefficients of
specific UVmodels via a matching procedure. In this paper,
we noted that such a procedure is not unambiguous. Even
if a simple expansion in inverse powers of a heavy mass
is used, very different PCs are obtained by considering
different set of independent parameters. Moreover, different
PCs approach the full model differently for different obser-
vables. We illustrated these aspects by considering three
BSM models with an extended scalar sector: the Z2RSE,

the CSE, and the 2HDM. For each model, we investigated
three PCs, providing the relevant HEFT coefficients. In all
the models, one of the PCs chosen is the decoupling PC,
in the sense that it leads to the same results as the SMEFT.
In the Z2RSE, we showed that two PCs that perform an

expansion just in inverse powers of the heavy physical mass
lead to very different results, due to different choices for the
independent parameters. We also showed regions where
both approach the full theory less rapidly than the SMEFT
results. In the CSE, the decoupling PC leads to a very slow
convergence, so that even the SMEFT dimension-eight
results are inadequate to replicate the full model away from
the alignment limit. Finally, in the 2HDM, we illustrated
how different PCs are more accurate for different observ-
ables. For example, while the PC identified as PCT

3 is most
adequate for two body decays of the Higgs boson, PCT

2 is
clearly more accurate for some regions of processes such
as hh → hh. We also showed that an intuition for the per-
formance of a PC is not always available, as PCT

2 properly
replicates the 2HDM for very low values of Y2, even
though it scales this parameter as a heavy one. As a global
conclusion, we note that the existence of multiple theo-
retically consistent PCs complicates the interpretation of
HEFT coefficients in terms of parameters of specific UV
models.
This paper is the first exploration of the existence of

multiple possible matchings between the HEFT and a UV
model. In the future, other models and other processes
could be considered, and a systematic comparison between
PCs can be put forward. It would be also relevant to
investigate the effect of radiative corrections, and their
impact on the consistency of different PCs. Supplemental
Material [68] accompanies this paper, containing the HEFT
couplings for the CSE and the 2HDM.
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APPENDIX: HEFT APPROACH TO THE CSE

In this appendix, we focus on the integration out of the
heavy scalars of the CSE, as has already been done for the
Z2RSE [60] and the 2HDM [39,40]. We begin by consid-
ering the potential in Eq. (18) in terms of the physical states
h1, h2, and h3. We can split the Lagrangian in the form

LCSE ¼ Llight
CSE þ Lheavy

CSE ; ðA1Þ

where Llight
CSE involves only light (i.e., non-BSM) fields. On

the other hand, Lheavy
CSE involves light and heavy fields, and

we can conveniently write it as follows:

Lheavy
CSE ¼ 1

2
ð∂μHaÞ2 − 1

2
ðM2ÞabHaHb þ Ja1H

a þ Jab2 HaHb

þ Jabc3 HaHbHc þ Jabcd4 HaHbHcHd; ðA2Þ

where ðM2Þab is the diagonal squared mass matrix, Ha ¼
ðh2; h3Þ are the heavy fields, and the Jk contain only light
fields. The heavy scalars Ha are integrated out at tree level
by solving their equations of motion (EoM):

Ja1 þ ð−∂2 −M2 þ 2J2ÞabHb þ 3Jabc3 HbHc

þ 4Jabcd4 HbHcHd ¼ 0: ðA3Þ

As we are only interested in at most 2 → 2 scattering
processes at tree level,10 we neglect terms with more than
four fields in Llight

CSE. We also neglect EoM solutions that give
rise to terms with more than four light fields in the EFT
Lagrangian. Since J1 and J2 have at least two and one light

fields, respectively, the EoM solutions for Ha ¼ ðh2; h3Þ
with two fields are fully contained in

H̄a ¼
X∞
n¼0

ðM−2−2nÞab∂2nJb1

¼ ðM−2ÞabJb1 þ ðM−4Þab∂2J1 þ � � � ; ðA4Þ
where J1 has terms with two and three light fields. Note that
the full Ha solution for (A3) has no terms with zero and
one fields (it starts with the two-light-field terms in H̄a).
One can thus easily observe that the J2 and J3 terms in the
Lagrangian (A2) will give EFT operators with at least five
and six fields, as J2 and J3 start with one and zero light
fields, respectively. Furthermore, the EFT operators pro-
duced by the J4 term in Lagrangian (A2) will contain at least
eight light fields, where J4 starts with zero fields. Hence, the
resulting EFToperators containing up to four light fields are
simply provided by the first line of Eq. (A2)11:

LEFT
CSE

���
≤ 4 fields

⊂ Llight
CSE þ

1

2
ð∂μH̄aÞ2 − 1

2
ðM2ÞabH̄aH̄b

þ Ja1H̄
a: ðA5Þ

Now, it is possible to match this effective Lagrangian with
the one given by HEFT in Eq. (1). This matching yields the
coefficients a, b, κ3, and κ4 of the lowest order HEFT
Lagrangian shown in Table II. The expressions for Ja1 up to
two light fields are

Jh21 ¼ c2s1
v

�
2m2

WWμW
†
μ þm2

ZZμ
2
�þ h21

48v

	
3c2s31

�
−3v2δ̄23

þ 4m2
h þ 2m2

2

�þ 3s1v2
��
9c21 − 1

�
c2δ̄23 − 8c1δ3Is2

�
þ

ffiffiffi
2

p
s21v
�
2s2ð3e1I þ e2IÞ − 9c1c2e12R

�
þ

ffiffiffi
2

p �
c21 − 1

�
v
�
3c1c2e12R − 2s2ð3e1I þ e2IÞ

�
− 6ð3c21 þ 1Þc2s1ð2m2

h þm2
2Þ


; ðA6Þ

Jh31 ¼ s1s2
v

�
2m2

WWμW
†
μ þm2

ZZμ
2
�þ h21

48v

	
−3s1v2

×
�
−9c21s2δ̄23 þ

�
3s21 þ 1

�
s2δ̄23 − 8c2c1δ3I

�
þ

ffiffiffi
2

p
v
�
2c2
�
c21 − s21 − 1

�ð3e1I þ e2IÞ
þ 3c1s2

�
c21 − 3s21 − 1

�
e12r
�

þ 6s1s2
�
−3c21 þ s21 − 1

��
2m2

h þm2
3

�

: ðA7Þ

10Notice that for one-loop amplitudes with three and four
external particles, vertices with more than four fields are also in
general relevant.

11This result is actually general. By construction, indeed, the
terms of (A2) that only contain two heavy fields are included in
ðM2Þab, while the operators that contain at least one light field in
addition to the two heavy ones are given in Jab2 . Moreover, if the
Ha particles are mass eigenstates and there are no heavy-light
mass mixing terms, Ja1 will always contain at least two light
fields. These two are the assumptions that we have employed to
extract the four-field EFT operators in this appendix.
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