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In this paper, we put forward a connection between the self-interacting dark matter and the Dirac nature
of neutrinos. Our exploration involves a Z4 ⊗ Z0

4 discrete symmetry, wherein the Dirac neutrino mass is
produced through a type-I seesaw mechanism. This symmetry not only contributes to the generation of the
Dirac neutrino mass but also facilitates the realization of self-interacting dark matter with a light mediator
that can alleviate small-scale anomalies of the ΛCDMwhile being consistent with the latter at large scales,
as suggested by astrophysical observations. Thus the stability of the DM and Dirac nature of neutrinos are
shown to stem from the same underlying symmetry. The model also features additional relativistic degrees
of freedomΔNeff of either thermal or nonthermal origin, within the reach of cosmic microwave background
(CMB) experiment providing a complementary probe in addition to the detection prospects of DM.
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I. INTRODUCTION

Understanding the fundamental constituents of the
Universe remains one of the paramount pursuits in modern
physics. The intriguing interplay between dark matter (DM)
and neutrinos has emerged as a focal point in this quest with
the nature of neutrinos and dark matter standing out as
mysteries. Although neutrino oscillation experiments offer
valuable insights about neutrino masses and mixings [1–6],
their findings are inconclusive in determining the intrinsic
nature of neutrinos [7]. Alternative experimental avenues
such as neutrino-less double beta decay experiments
(0νββ) [8–12], hold promise in establishing the Majorana
nature of neutrinos. However, as of now, no such evidence
exists, leaving the Majorana nature of light neutrinos
unverified. This void has ignited a heightened interest in
scrutinizing the plausibility of light Dirac neutrinos as a
compelling alternative.
Similarly the study of DM stands as a cornerstone in our

quest to comprehend the underlying structure and dynamics
of the Universe. Apart from the gravitational interactions,
the nature and interactions of DM are still a mystery.
Among the intriguing facets of DM, the concept of self-
interacting dark matter (SIDM) has emerged as a compel-
ling avenue that departs from the conventional paradigm of
noninteracting dark matter particles. In contrast to its

noninteracting counterpart, SIDM postulates large self-
scattering of dark matter particles, providing a solution
to challenges on smaller scales, such as the too-big-to-fail,
missing satellite, and core-cusp problems—issues that
collision less cold dark matter fails to address [13–15].
Motivated by these, in this paper, we explore a flavor

symmetric setup that can explain the origin of Dirac
neutrino mass as well as give rise to a viable DM candidate
with large self-interaction. In particular, we focus on the
realization of Dirac neutrino mass through the influence of
the cyclic symmetry Z4. Such cyclic symmetry has already
been considered in the literature as a discrete manifestation
of the Lepton number symmetry and is quoted as “Lepton
quarticity” [16–19]. Apart from this Z4 symmetry, another
Z0
4 symmetry is also imposed to forbid the direct tree-level

coupling between left and right handed neutrinos as well as
to realize a dark matter candidate.
After constructing the flavor symmetric model to incor-

porate the issues mentioned here, we focus on achieving the
correct relic abundance of SIDM. There has been growing
interest in the light DM regime, particularly in the GeV to
sub-GeV scale, due to the null detection of DM at direct
detection experiments [20,21]. However, coupling DMwith
light mediators to achieve self-interaction cross section to
mass ratio σ=m ∼ 1 cm2=g≡ 2 × 10−24 cm2=GeV that can
solve the small-scale anomalies often results in elevated DM
annihilation rates leading to a relic abundance below the
desired range for DMmasses below a fewGeV [22]. Despite
numerous proposed production mechanisms for SIDM,
achieving the correct relic density remains challenging,
though possible at the cost of introducing nonminimal
aspects to the model [22–28].
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In addition, the Dirac nature of neutrino necessitates the
existence of the right-handed neutrino νR, which may
contribute to the effective number of relativistic neutrino
species, denoted as Neff that can be probed by the CMB
experiments [29–31]. Present constraints from the CMB
have imposed limitations Neff ¼ 2.99þ0.34

−0.33 at the 2σ or 95%
confidence level. Anticipated future experiments such as
CMB Stage IV (CMB-S4) [30] are poised to achieve
unparalleled sensitivity, aiming to reach ΔNeff ¼ Neff −
NSM

eff ¼ 0.06 at 2σ, thereby approaching the SM prediction.
This heightened precision holds the potential to scrutinize
our setup. We estimate the ΔNeff in our model depending
upon Yukawa couplings and masses of additional particles
which can be of thermal and nonthermal origin and show
the parameter space that can be probed by the future CMB
experiments.
The manuscript is built up as follows: In Sec. II, we

introduce our framework and discuss the Dirac neutrino
mass generation in Sec. III. Then in Sec. IV, we estimate the
ΔNeff for our model outlining different possible thermal
history for the νR production in the early Universe. Then we
study the SIDM phenomenology in Sec. V discussing
certain constraints in Sec. VI. We finally conclude in
Sec. VII and put several technical details in Appendices.

II. THE MODEL

In this theoretical framework, the foundation is laid upon
an underlying symmetry, where the Standard Model (SM)
gauge group is extended with a discrete symmetry Z4 ⊗ Z0

4.
To establish the genesis of Dirac neutrino mass, we
introduce three right chiral fermions νRs to the particle
content, accompanied by three vectorlike fermions
Nð≡NL þ NRÞ. We introduce a singlet scalar η to generate
Yukawa coupling between N and νR. Additionally, we
introduce another Dirac fermion χ as a potential DM
candidate and a singlet scalar S to mediate DM self-
scattering due to its Yukawa coupling. The particle content
and charge assignments under the imposed symmetry are
detailed in Table I, where z and z0 denote the fourth roots of
unity, satisfying z4 ¼ 1 and z04 ¼ 1. The “prime” notation
distinguishes charges under the two distinct cyclic sym-
metries imposed in this context. The charge assignments
ensure that there is no direct coupling of νR with νL.
The dual purpose of the imposed symmetry is evident

from Table I. First, it prevents Majorana mass terms for N
and νR. Second, it safeguards against the catastrophic
couplings of potential DM candidates that challenge its
stability. In particular, the incorporation of Z0

4 symmetry is
crucial to secure the seesaw origin of neutrino mass, by
preventing a tree-level coupling between left- and right-
handed neutrinos and it also restricts certain DM couplings
that could otherwise render DM unstable.
The Lagrangian for the model dictated by the imposed

symmetry is given by:

−L ⊃ fijL̄Li
Φ̃NRj

þ gijN̄Li
ηνRj

þMijN̄Li
NRj

þ yχχcχSþmχ χ̄χ þ VðΦ; η; SÞ; ð1Þ

with i, j ¼ 1, 2, 3. The scalar potential VðΦ; η; SÞ can be
written as:

VðΦ; η; SÞ ¼ −μ2hðΦ†ΦÞ þ λhðΦ†ΦÞ2

−
μ2η
2
η2 þ λη

4
η4 þ λhη

2
ðΦ†ΦÞη2

þ μ2S
2
S2 þ λS

4
S4 þ λhS

2
ðΦ†ΦÞS2

þ ληS
4

η2S2: ð2Þ

Here we assume that the fields η and S are real, a choice
consistent with the real charges assigned to these fields
(z2 ¼ z02 ¼ −1). Before proceeding further, here it is worth
noticing that, in the absence of terms involving S2 and S4,
the theory exhibits an enhanced Abelian global symmetry.
This symmetry can be interpreted as a generalized global
lepton number symmetry Uð1ÞL, often invoked in the
context of Dirac seesaw realizations for light neutrino
masses. However, the presence of the S2 and S4 terms
explicitly break this Uð1ÞL invariance, while the Z4 ⊗ Z0

4

remains the remnant symmetry group governing all inter-
actions and still providing a viable framework for the
realization of Dirac neutrino mass and self-interacting
dark matter.
Since the SM Higgs doublet Φ and η bear trivial charges

under Z4 but possess nontrivial Z0
4 charges, the acquisition

of vacuum expectation values (vev) by Φ and η leads to the
spontaneous breaking of Z0

4 down to a remnant Z2

symmetry, while the Z4 symmetry remains unbroken and
unaffected. Moreover, under the remnant Z2 symmetry, χ is
odd, while all the other particles are even. As a result, χ acts
as a stable dark matter. Following the breaking of Z0

4

symmetry, neutrinos can subsequently attain a tiny nonzero
mass through the type-I Dirac seesaw mechanism, as

TABLE I. The charge assignment of the SM and BSM particles
under the extended discrete symmetry.

Fields Z4 Z0
4

L̄L z3 z03
lR z 1
Φ 1 z0

NL;R z z02
νR z 1
η 1 z02

χ z z0
S z2 z02
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illustrated in Fig. 1, which we will discuss in details, in
Sec. III.
The scalar S being charged under Z4 does not acquire

any vev thus ensuring that the Z4 symmetry remains
unbroken. On the other hand, as η and Φ both acquire
vevs, a mixing occurs between η and the Higgs field h.
Parametrizing Φ and η as

hΦi¼ 1ffiffiffi
2

p
�

0

h0 þv

�
; hηi¼ uþη0;

after the spontaneous symmetry breaking, the minimization
conditions read as:

μ2h ¼ v2λh þ
u2λhη
2

μ2η ¼ u2λη þ
v2λhη
2

: ð3Þ

Thus the scalar mass-matrix in the basis ðh0 η0 SÞT can
be written as:

M ¼

0
BB@

2v2λh uvλhη 0

uvλhη 2u2λη 0

0 0 M2
S

1
CCA ð4Þ

Notably, the mass of S remains unchanged as it does not
mix with the other fields, but it does receive mass
contributions from the vevs of Φ and η. After diagonalizing
the resulting mass matrix, we obtain the physical states h
and η as a linear combination of h0 and η0, with the masses
of the particles h, η and S given by

m2
h ≈ 2v2λh ð5Þ

M2
η ≈ u2λη −

u2

2λh
ðλ2hη − 2λhληÞ ð6Þ

M2
S ¼ μ2s þ

v2λhs
2

þ u2ληs
2

ð7Þ

Here we have used the approximation that u ≪ v. The
various parameters entering the Lagrangian can be expressed

in terms of physical masses and the mixing angle as

λh ¼
m2

hcos
2θ þM2

ηsin2θ

2v2

λη ¼
M2

ηcos2θ þm2
hsin

2θ

2u2

λhη ¼
sin 2θðm2

h −M2
ηÞ

2uv
ð8Þ

III. DIRAC NEUTRINO

As outlined in the preceding section, the Z4 charge
assigned to νR effectively prohibits the Majorana mass term
(mνcRνR), thereby establishing the viability of neutrino Dirac
mass generation within our scenario. It is crucial to reiterate
that this implementation allows Z4 to be interpreted as a
minimal discrete realization of the Lepton number sym-
metry Uð1ÞL. The Feynman diagram illustrating neutrino
mass generation is depicted in Fig. 1. This process is
facilitated by a Dirac fermion N and a singlet scalar η,
where the latter breaks theZ0

4 symmetrywhile preserving the
Z4 symmetry, given its trivial charge under Z4. It is note-
worthy that the Z4 charged scalar S does not acquire a
vacuum expectation value, ensuring the preservation of the
Z4 symmetry even after spontaneous symmetry breaking.
Consequently, the mass matrix for the neutrinos and N

can be written in the basis of ðνL NLÞ and ðνR NRÞT as:

MνN ¼
�

0 m

m0 MN

�
ð9Þ

Here, the matrices m ¼ fv=
ffiffiffi
2

p
and m0 ¼ gu are both

3 × 3 matrices. Diagonalizing the above mass matrix we
obtain the light neutrino mass matrix as:

Mν ¼ mM−1
N m0 ð10Þ

The detailed calculation for this block diagonalization
process is provided in Appendix A.
Diagonalizing the neutrino mass matrix [Eq. (10)], we

get the neutrino mass eigenvalues which should align with
the neutrino oscillation data [1,7]. To ensure this compat-
ibility, we adopt a strategy akin to the Casas-Ibarra para-
metrization for Majorana neutrino masses [32]. We can
diagonalize the above neutrino mass matrix [Eq. (10)] by a
biunitary transformation as:

M̂ν ¼ V†
lL Mν VlRffiffiffiffiffiffiffi

M̂ν

q ffiffiffiffiffiffiffi
M̂ν

q
¼ V†

lL mM−1
N m0 VlR ð11Þ

Here, without loss of generality, we assume MN to be
diagonal and replace MN by its diagonal form M̂N in
the following discussion. VlL corresponds to the trans-
formation matrix for the left-handed neutrinos, typically
the Pontecorvo–Maki–Nakagawa–Sakata (PMNS) matrix
without the Majorana phases.

FIG. 1. Dirac neutrino mass via type-I seesaw mechanism.
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VlL ¼

0
BB@

c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13
s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

1
CCA ð12Þ

where cij ¼ cosðθijÞ and sij ¼ sinðθijÞ for i, j running
from 1 to 3 and δ is the Dirac CP phase. The values of the
oscillation parameters are given by [1], θ12 ¼ 31.5°–38.0°,
θ23 ¼ 41.8°–50.7°, θ13 ¼ 8.0°–8.9° and δ ¼ 157°–349° at
3σ C.L. On the other hand, VlR represents the trans-
formation matrix for the right-handed neutrinos. Multiply-

ing on both sides of the [Eq. (11)] by
ffiffiffiffiffiffiffiffiffiffiffi
M̂ν

−1
p

, and rewriting
the M̂N

−1 as the product of two square roots, we obtain

I ¼
ffiffiffiffiffiffiffiffiffiffiffi
M̂ν

−1
q

V†
lLmM−1

N VlRm0
ffiffiffiffiffiffiffiffiffiffiffi
M̂ν

−1
q

I ¼
� ffiffiffiffiffiffiffiffiffiffiffi

M̂ν
−1

q
V†
lLm

ffiffiffiffiffiffiffiffiffiffiffiffi
M̂N

−1
q �� ffiffiffiffiffiffiffiffiffiffiffiffi

M̂N
−1

q
m0VlR

ffiffiffiffiffiffiffiffiffiffiffi
M̂ν

−1
q �

≡ RR−1 ð13Þ

In this context, R represents a general complex matrix,
contrary to the orthogonal matrix utilized in the Casas-
Ibarra parametrization [32] for the complex symmetric
Majorana neutrino mass matrix.
From Eq. (13), one can deduce the Yukawa couplings

f and g as:

f ¼
ffiffiffi
2

p

v

�
VlL

ffiffiffiffiffiffiffi
M̂ν

q
R

ffiffiffiffiffiffiffiffi
M̂N

q �

g ¼ 1

u

� ffiffiffiffiffiffiffiffi
M̂N

q
R−1

ffiffiffiffiffiffiffi
M̂ν

q
V†
lR

�
: ð14Þ

The matrix R is a general complex matrix with 8
independent parameters. It plays a crucial role in tuning
the couplings f and g. We have considered the R matrix to
be diagonal, and we varied the diagonal elements in the
range ½10−4; 107�. For simplicity, we assume the VlR matrix
to be identity matrix. Thus g is a diagonal matrix whereas f
has a general structure that explains the neutrino oscilla-
tion data.

IV. CONTRIBUTION TO ΔNeff

As mentioned earlier, the insistence on the Dirac nature
of neutrinos dictates that the newly introduced right-chiral
fermions νRs have a mass similar to SM neutrinos. The
existence of these additional ultralight species in the early
Universe can significantly contribute to the total radiation
energy density. Consequently, they affect the effective
relativistic degrees of freedom denoted as Neff which is
expressed as

Neff ≡ ρrad − ργ
ρνL

: ð15Þ

Here, ρrad signifies the total energy density of the thermal
plasma, while ργ and ρνL represent the energy density of
photons and a single active neutrino species, respectively. In
the absence of any novel light degrees of freedom, the
Standard Model precisely predicts Neff and is commonly
quoted as 3.045 [33–39]. In Dirac neutrino mass models,
because of the presence of νRs, the additional contribution to
Neff , in the total radiation energy density can be written as,

ΔNeff ¼ NνR ×
ρνR
ρνL

����
T¼TCMB

; ð16Þ

whereNνR is the number of generations of νR, and ρνR is the
energy density of the single generation of νR where we
assume that all three νRs behave identically and hence
contribute equally to the energy density.
In our setup, νR establishes a connection with the SM

bath solely through the coupling term gijNLi
ηνRj

.
Consequently, the production of νR in the early Universe
is contingent solely on the Yukawa coupling g. The strength
of g dictates the possibility of both thermal and nonthermal
production of νR. In Fig. 2, we illustrate the relative

FIG. 2. The range of diagonal elements of f and g matrices
which satisfy the neutrino oscillation data. Here we have used
hηi ¼ u ¼ 1 GeV.
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coupling strength of the diagonal elements of f and g that
satisfies the neutrino oscillation data, with MN varying in
the range [200, 2000] GeV, depicted in the color code.
Figure 3 delineates the processes involved in maintaining

νR in thermal equilibrium. By comparing the interaction
rate of these pertinent processes against the Hubble
expansion rate, we estimate the lower limit on the coupling
g necessary to keep νR in equilibrium with the thermal
bath. This has been demonstrated in Fig. 4 for a set of
benchmark values of the coupling parameter g̃ ¼P

i gii=3 ¼ 10−3; 10−4; 10−5 by keeping the other param-
eters MN and Mη fixed at 500 GeV and 0.1 GeV
respectively.

As the significance of this contribution can differ based
on whether the νRs existed in the thermal bath or were
generated nonthermally [40–45], based on this criterion, we
categorize our analysis into two scenarios: (i) [Case 1]:
g̃ ≥ 10−3 (thermal production) and (ii) [Case 2]: g̃ < 10−3

(nonthermal production).

A. Case 1 [10− 3 ≤ g̃ <
ffiffiffiffiffiffi
4π

p
]

In this scenario, the substantial interaction rate ensures
that νR remains in thermal equilibrium along with N and
η. The primary production mechanism for νR arises from
the annihilation of η and N. As long as the interaction rate
of elastic scattering processes (depicted in Fig. 3) exceeds
the Hubble expansion rate, νR stays in equilibrium
with the thermal bath. Once this interaction rate drops
below the Hubble parameter, HðTÞ, the νR species
decouple from the thermal bath and evolve independently.
The energy density of νR at the time of decoupling,
determined by their decoupling temperature, contributes
to ΔNeff and is given by:

ΔNeff ¼ NνR ×

�
TνR

TνL

�
4

¼ NνR

�
g�sðTdec

νL Þ
g�sðTdec

νR Þ
�

4=3

; ð17Þ

where, g�sðTdec
α Þ represents the relativistic entropy degrees

of freedom at the decoupling temperature Tdec
α for the

species α (where α ¼ νL; νR).
Figure 5 illustrates the contribution ofΔNeff from the νRs

that were once in equilibrium with the SM plasma, as a
function of the coupling g̃. This has been calculated by
using Eq. (17), after evaluating the decoupling temperature
of νR from the thermal plasma. The plot demonstrates an
increase in the ΔNeff contribution with a higher coupling
strength g̃. This is due to the fact that a larger g̃ results in a
higher interaction rate, maintaining νR in thermal equilib-
rium for an extended period, causing a relatively late
freeze-out of νR and consequently contributing more to
ΔNeff . The color-coded representation ofMN indicates that
as the mass of N increases, the interaction rate decreases,
and freeze-out occurs earlier. Therefore, a heavierMN leads
to a lower contribution to ΔNeff . The red shaded region in
the plot is already excluded by the Planck-2018 data at 2σ
C.L. [29].
We also observe that once three of the νRs were produced

in the thermal bath, ΔNeff would always have a minimum
contribution of 0.14, well above the future sensitivity of
CMB-S4 and SPT-3G [30,31]. As CMB-S4 or SPT-3G can
probe ΔNeff down to 0.06 at 2σ C.L., they have the
potential to validate or falsify this scenario.

B. Case 2 [10− 12 < g̃ < 10− 3]
In this scenario, the interaction strength of νR is notably

weak, making thermal production of νR infeasible.
However, through Nk decays, it becomes possible to

FIG. 3. Elastic scattering of νR with η and N, to keep νR in
thermal equilibrium.

FIG. 4. ΓTotal ¼ ðΓηνR↔ηνR þ ΓNνR↔NνRÞ and H are plotted as a
function of T. We have taken three values of the coupling
g̃ ¼ 10−3; 10−4; 10−5, MN ¼ 500 GeV and Mη ¼ 0.1 GeV.
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generate sufficient νR energy density to meet the current
sensitivity of ΔNeff . Since g̃ is small in this case, the
coupling f̃k ¼ fk1 þ fk2 þ fk3 can be large while satisfy-
ing the constraints from neutrino oscillation data as
demonstrated in Fig. 2. Thus f̃k coupling plays a crucial
role in maintaining the thermal equilibrium of Nk with the
SM plasma. To ensure the thermal equilibrium of Nk with
the bath particles (Φ and νL), we keep f̃ in the order
Oð10−3Þ or larger for MN ∼Oð102–103Þ GeV. Thus we
consider the scenario in which Nk was in equilibrium in the
early Universe, and from its decay, we will evaluate the
abundance of νR. The two decay channels for Nk are shown
in the Fig. 6. To track the evolution of νR and Nk, the
relevant Boltzmann equations can be written as:

dYNk

dx
¼ βs

Hx

�
−hσviNkNk→XX̄

�
Y2
Nk

− ðYeq
Nk
Þ2�

−
Γ2

s
K1ðxÞ
K2ðxÞ

YNk
−
Γ1

s
K1ðxÞ
K2ðxÞ

ðYN − Yeq
Nk
Þ
	

ð18Þ

dỸνRk

dx
¼ β

Hs1=3x
hEΓ2iYNk

; ð19Þ

where the dimensionless parameters YNk
¼ nNk

=s and
ỸνRk ¼ ρνRk=s

4=3. ỸνRk is the νR abundance produced from
Nk decay. In the above equation Γ1, Γ2 and hEΓ2i can be
expressed as

Γ1ðNk → hνLÞ ¼
P

jðfkjÞ2
8π

MNk

�
1 −

M2
h

M2
Nk

�
2

ð20Þ

Γ2ðNk → ηνRÞ ¼
g2kk
8π

MNk

�
1 −

M2
η

M2
Nk

�
2

ð21Þ

hEΓ2ðNk → ηνRÞi ¼
g2kk
16π

M2
Nk

�
1 −

M2
η

M2
Nk

�
2

ð22Þ

Here, we have used index k for the three generations of N
and index j in fkj is for three generations of νL. In Eq. (18),
the hσviNkNk→XX̄ is the total thermal averaged cross section
for annihilation of Nk into all the particles that are
kinematically accessible. The second term is for decay
of Nk to η and νR while the third term corresponds to the
decay and inverse decay of Nk to h and νL. The inverse
decay is not included in the second term as νR is never in
thermal equilibrium and since its number density is
extremely small as compared to the bath particles, it can
be ignored. In this scenario, as f̃k is larger than gkk and is
crucial for keeping the Nk in equilibrium, Nk always
dominantly decays to h and νL. For gkk ≤ 10−5 and
f̃k ≥ 10−3, even though the branching ratio for Nk → ηνR
is always suppressed (i.e., BrðNk → ηνRÞ ≪ 1%), it is still
possible that significant amount of νR can be produced
untill the inverse decay νLϕ → Nk is effective maintaining
the Nk number density. Once xð¼ MNk

=TÞ goes beyond 1,
because of the Boltzmann suppression, this inverse decay
will no longer be effective and hence the νR production
from Nk decay will be suppressed. After solving the
Boltzmann Eqs. (18) and (19) for three generations of
N, ΔNeff produced by ρνRk can be calculated as:

ΔNeff ¼ 2

�P3
k¼1 ρνRk
ρνL

�
TDðνLÞ

¼ 2

�
s4=3

P
3
k¼1 ỸνRk

ρνL

�
TDðνLÞ

; ð23Þ

where TDðνLÞ is the standard neutrino decoupling temper-
ature. The factor 2 is for νR and anti-νR.
In Fig. 7, the contribution to ΔNeff from nonthermal

production of νR is illustrated. It is evident that an increase
in the coupling strength g̃ leads to a higher decay width,

FIG. 5. The contribution to ΔNeff is shown from the thermal
production of νR with respect to the coupling g̃. The color code
represents the value of MN .

FIG. 6. The Feynmann diagram for two possible decay proc-
esses of N.
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resulting in enhanced νR production. According to Eq. (22),
the decay width also rises with MN . One might anticipate
that, with increasing MN , more νR would be produced,
consequently yielding a larger ΔNeff. However, the plot
reveals a contrary trend where ΔNeff decreases as MN
increases. This seemingly counterintuitive behavior can be
rationalized by considering the production timescale of νR.
For larger MN, νR is produced earlier in the Universe
compared to scenarios with lighterMN. The energy density
of early produced νR experiences more significant dilution
due to redshift compared to later-produced νR energy
density. The yellow region in the plot is excluded by
Planck-2018 data at 2σ C.L., while future experiments such
as SPT-3G and CMB-S4 [30,31] are poised to probe
portions of the ΔNeff parameter space depicted in the plot.

V. SELF-INTERACTING DM

Self-interacting dark matter (SIDM) emerges as a sol-
ution to address small-scale anomalies encountered in the
ΛCDM model. These anomalies, including the “core-cusp
problem” concerning the density profiles of dark matter
halos in galaxies [46], the “too big to fail” problem
associated with the absence of the most luminous satellite
galaxies in the most massive subhalos [14,47–49], and the
“missing-satellite problem” involving the overprediction of
small satellite galaxies in simulations [47,50,51], reveal
discrepancies between the predictions of ΛCDM and
observations on smaller scales.

Unlike the standardΛCDMmodel, which considers dark
matter as collision-less, SIDM allows dark matter particles
to interact with each other through self-scattering, extend-
ing beyond gravitational interactions. This interaction in
SIDM involves elastic scattering through a t-channel,
mediated by either a gauge boson or a scalar particle.
The normalized cross section is constrained by observa-
tions [52–55] and is approximately within the range of
σ=mDM ∼ ð0.1–1Þ cm2=g for clusters (with velocities
around 1000 km=s), ð0.1–10Þ cm2=g for galaxies (with
velocities around 200 km=s), and ð0.1–100Þ cm2=g for
dwarf galaxies (with velocities around 10 km=s).
In this paper, we explore the possibility of realization of a

fermionic SIDM χ mediated by a scalar particle S both of
which are charged under the Z4 symmetry. The stability of
the dark matter is further guaranteed by the remnant Z2

symmetry, under which χ is odd while all the other particles
are even. The diagram illustrating the self-interaction
process is shown in Fig. 8. In this scenario, the non-
relativistic self-interaction of darkmatter (DM) is effectively

described by a Yukawa-type potential: VðrÞ ¼ − y2χ
4πr e

−MSr.
For details on the self-interaction cross section, please see
Appendix C.

A. DM relic density

In the outlined model, the scalar particle S serves as the
mediator for self interactions of dark matter. It also
establishes a portal between DM and visible sector through
its coupling with the SM Higgs and η. The scalar couplings
λhs and ληs establish thermal connections, bringing the S
particle into equilibrium with the SM bath. This thermal
equilibrium facilitates the freeze-out mechanism, crucial
for achieving the required relic density of DM. In order to
ensure adequate self-interaction among DM particles, a
substantial coupling and a relatively smaller mediator mass
is necessary. It consequently gives rise to the dominant
channel governing the DM freeze-out process, i.e., the
annihilation process χχ → SS which is depicted in Fig. 9.
This process results in significant DM annihilation rates,
often leading to a lower-than-desired relic abundance in the
low DM mass range [22]. While achieving a pure thermal
relic poses challenges, recent studies have delved into a
hybrid approach that incorporates both thermal and non-
thermal contributions. This approach, potentially leading to

FIG. 8. Feynman diagram depicting the dark matter self-
interaction.

FIG. 7. The contribution to ΔNeff is shown from the Freeze-in
production of νR with respect to the coupling g. Three bench-
mark values for the mass of N are taken. MN
ð¼ MN1

¼ MN2
¼ MN3

Þ ¼ 200 GeV, 1000 GeV and 2000 GeV
correspond to red, blue, and green respectively. Mη ¼ 0.1 GeV.
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the correct relic density for SIDM, introduces new degrees
of freedom, rendering the model nonminimal [22–26].
Here, we aim to achieve the correct relic density in the
most minimal setup without adding any new degrees of
freedom.
We note that, if λhs and ληs is greater than Oð10−6Þ, then

it ensures that S stays in equilibrium and consequently
ensures the thermal equilibrium of DM with the SM
plasma. The relevant Boltzmann equations to track the
comoving number density of DM and S can be written as:

dYχ

dx
¼ −

sðMχÞ
HðMχÞ

hσviχχ→SS

x2
ðY2

χ − Y2
SÞ

dYS

dx
¼ sðMχÞ

HðMχÞ
hσviχχ→SS

x2
ðY2

χ − Y2
SÞ

−
sðMχÞ
HðMχÞ

hσviSS→ηη

x2
�
Y2
S − ðYeq

S Þ2
�
; ð24Þ

where sðMχÞ and HðMχÞ are the entropy density and
Hubble rate respectively and x is the dimension less
parameter defined as x ¼ Mχ=T. The thermally averaged
cross section for the DM annihilation to the scalar mediator
is given by

hσvi ¼ 3

4

y4χ
16πM2

χ
v2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

M2
S

M2
χ

s
ð25Þ

In Fig. 10, we illustrate the evolution of the comoving
number densities of χ and S. We set the DM mass asMχ ¼
10 GeV and the DM self-interaction coupling as yχ ¼ 0.1.
The comoving number density of χ with MS ¼ 9.928 GeV
is represented by the green solid line, while the one with
MS ¼ 0.01 GeV is depicted by the purple solid line.
Evidently, by adjusting the mass of S, it is possible to
achieve the correct relic density of χ. This mass tuning of
the scalar S is facilitated by a phase transition [56–59].
Before the phase transition, the mass of S is such that
Mi

S ≲MDMð¼ MχÞ, ensuring that the DM annihilation
rate to S is phase-space suppressed. This reduction in
the χχ → SS annihilation cross section leads to the correct
relic density of χ. Subsequent to the phase transition, S
becomes light with MS ∼Oð10Þ MeV, which is necessary
to explain the small scale problems (sub-Galactic scale)
through self-interaction of DM. This scenario is feasible if

the mediator S is coupled to another scalar ξ, inducing a
first-order phase transition. Through a coupling term like
μξS†S, below the nucleation temperature of the FOPT, the
physical mass of the mediator can undergo a change to
ðMf

SÞ2 ¼ ðMi
SÞ2 − μvξ, where vξ represents the vacuum

expectation value acquired by ξ. Careful fine-tuning
between the two terms ðMi

SÞ2 and μvξ allows achieving
a final mediator mass suitable enough to achieve the
required self-interaction.
As discussed earlier, the scalar S does not mix with the

SM Higgs h. Consequently, S does not decay into SM
particles. However, S can annihilate to η particle if
Mη < Mi

S, resulting in negligible relic of S. In Fig. 10,
the comoving number density of S is shown by the red solid
line for the process SS → ηη by choosing a typical value of
ληS ¼ 0.6. The η particle mixes with the SM Higgs h and
decay to the SM particles well before the big bang
nucleosynthesis (BBN). Further discussion on lifetime of
η particle is given in Sec. VI. Consequently, the total dark
matter relic density in the Universe is solely comprised of
the χ abundance.

B. Direct detection

The possibility of spin-independent DM nucleon elastic
scattering allows for the detection of DM in terrestrial
laboratories. As S does not acquire a vev, it does not mix
with SM Higgs and hence the tree-level DM-nucleon
scattering through the S −H mixing portal is not possible
as compared to [22,25]. Thus, in our case, the simplest
diagram for direct detection is at the one-loop level, as
depicted in Fig. 11.

FIG. 9. Feynman diagram for the dark matter annihilation.

FIG. 10. Evolution of co-moving number densities ofDMand S.
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The Higgs exchange diagram induces an effective scalar
interaction term between the dark matter χ and the quark q
of the form Ctri

q q̄qχ̄χ, with

Ctri
q ¼ y2χ

16π2M2
hMχ

�
λhs
2

L

�
M2

χ

M2
S

�	
mq ð26Þ

Here the loop function LðxÞ is given by

LðxÞ ¼ ð1þ x−1Þ lnð1þ xÞ − 1; ð27Þ

the details of which is given in the Appendix (B3). Then,
the spin-independent scattering cross section of χ off the
nucleons can be expressed as

σSI ¼
1

π

M2
χm2

n

ðMχ þmnÞ2
m2

nf2
�
Ctri
q

mq

�
2

ð28Þ

where we have considered fð¼ fp ¼ fnÞ ¼ 0.308 [60],
and m ¼ mp;mn is the nucleon mass. Figure 12 shows the
evaluated cross section (as shown in scattered points)
against various experimental data.
In Fig. 12, we showcase the σSI calculated from Eq. (28),

for the points giving rise to required self-interaction, as a
function of DM mass by the red colored points. We also
present the existing constraints from LUX-ZEPLIN (LZ)
experiment [21], the XENON1T (Migdal) [61] and
XENONnT [20] and future sensitivities of DARWIN [62]
and DS-LM [63] direct search experiments by different
colored solid lines and dot-dashed lines respectively.
For the scan, keeping λhs fixed at λhs ¼ 10−2, we vary
yχ in a range f0.5; 1g and MS is also varied in a range
f10; 100g MeV. Clearly the SIDM parameter space
remains safe from DM direct search constraints and lies
beyond the reach of future sensitivities. Hence this again
emphasizes the importance of observable ΔNeff in our
scenario which provides a complementary cosmological
probe for the verifiability of the model under consideration.

VI. FURTHER CONSTRAINT

Beyond the constraints already discussed, there are
additional constraints on various model parameters arising

from cosmological, experimental, and phenomenological
considerations which we discuss below.

Higgs invisible decay: The potential term λhη
2
ðΦ†ΦÞη2

and λhS
2
ðΦ†ΦÞS2 presented in Eq. (2) introduces two

additional decay channels for the Higgs as S and η are
lighter than SM Higgs. Such decays and hence the
corresponding couplings are constrained from the obser-
vation of the invisible Higgs decay. Considering the
current constraint on the invisible Higgs decay branching
fraction at 14.5% [64], these couplings λhη and λhs are
bounded by an upper limit of 10−2.
BBN constraints: As η breaks the Z4 symmetry and

acquires vev which is necessary for Dirac neutrino mass
generation, it mixes with the SM Higgs as already
discussed in section II, it can decay into SM charged
fermions through mixing with the SM Higgs. If such
decays occur after the BBN epoch, then it can alter the
success of BBN predictions. To adhere to the BBN bound,
it is crucial for η to decay into SM particles before the onset
of BBN. Specifically, the lifetime τη of η must be shorter
than τBBN and this imposes a lower limit on this mixing
angle. The decay width of η is given by

Γη ¼
Mηm2

l sin θ
2

8πv2

�
1 −

4m2
l

M2
η

�
3=2

ð29Þ

This BBN constraint onMη and θ, is depicted in Fig. 13.
By setting Mη ¼ 0.1 GeV, one can obtain the lifetime of η
to be smaller than τBBN for a typical value of θ ¼ 10−6.

FIG. 11. Feynman diagram for dark matter interaction with the
nucleon through one-loop process.

FIG. 12. Spin-independent DM-nucleon scattering cross sec-
tion as a function of DM mass, Mχ .
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VII. SUMMARY AND CONCLUSION

In this paper, we introduce a compelling model that
combines self-interacting dark matter and Dirac mass for
neutrinos, utilizing a discrete Z4 flavor symmetry known as
“lepton quarticity.” The Dirac neutrino mass is generated at
the tree level, incorporating three right-chiral neutrinos
(νR), along with vectorlike fermions (N) and a singlet scalar
(η). Another Z0

4 symmetry is employed to prevent the direct
coupling between νL and νR and to avoid undesirable
couplings that may render the DM unstable. The self-
interaction of DM is facilitated by a light scalar S. We
emphasize that achieving the correct relic density of SIDM
can be accomplished through the thermal freeze-out
mechanism by tuning the mediator mass to a higher value
in the early Universe. This adjustment addresses the issue
of underabundance resulting from excessive annihilation to
S. Subsequently, the mass of S can decrease to its present
value after a phase transition that occurs well after the
establishment of the DM relic density.
We delineate two distinct cases based on the thermal-

ization criteria of νR, which can yield intriguing implica-
tions from the perspective of the effective neutrino species
(ΔNeff ). While direct dark matter search experiments
do not impose stringent restrictions on the model param-
eters, ΔNeff offers an additional cosmological probe for
the model.
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APPENDIX A: MASS DIAGONALIZATION

The mass matrix we are dealing with here is a 6 × 6
matrix given by Eq. (9). To diagonalize it, we will need two
unitary 6 × 6 matrices. However, this 6 × 6 matrix can be
broken down into two parts. The first part will put the
matrix in block diagonal form, while the second part will
individually put each block matrix in their diagonal form.
We take an ansatz of this unitary matrix in the form of
U ¼ eiBV where

B¼
�

0 S

S† 0

�
; V¼

�
Vl 0

0 Vh

�
ðA1Þ

where S is a complex matrix, which we will take it to be
OðϵÞ for the perturbative approach, while Vl and Vh are
both of order Oð1Þ. The subscripts l and h (not to be
confused with the Higgs field) are written so as to remind us
that Vl diagonalizes the “light” neutrino mass matrix while
Vh does the same for the “heavy” N mass matrix. Then, the
mass diagonalization proceeds as follows

U†
LMνNUR ¼ V†

Le
−iBL MνN eiBRVR ðA2Þ

Considering a small parameter ϵ∼Oðm=MNÞ,Oðm0=MNÞ,
such that S ∼OðϵÞ. Then we can expand the U matrix as

U ¼ eiB:V

≈ ðI þ iBÞ:V

¼
�

I3 iS

iS† I3

�
:

�
Vl 0

0 Vh

�

¼
�

Vl iSVh

iS†Vl Vh

�
ðA3Þ

so that (A2) becomes

V†
Le

−iBLMνNeiBRVR ¼
�
M̂ν 0

0 M̂N

�

MνNeiBRVR ¼ eiBLVL:

�
M̂ν 0

0 M̂N

�
ðA4Þ

Writing the above equation in matrix form we get,

�
0 m

m0 MN

�
:

�
VlR iSRVhR

iS†RVlR VhR

�

¼
�

VlL iSLVhL

iS†LVlL VhL

�
:

�
M̂ν 0

0 M̂N

�
ðA5Þ

FIG. 13. BBN constraint on η − hmixing angle θ and mass of η.
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where the diagonal matrices are denoted with a hat (^)
symbol, e.g. M̂ν ¼ diagðMν1;Mν2;Mν3Þ. Upon comparing
the (12) component on both sides, we have

mVhR ¼ iSLVhLM̂N

⇒ SL ¼ −imVhRM̂
−1
N V†

hL

⇒ SL ¼ −imM−1
N ≈OðϵÞ ðA6Þ

where our assumption of S ∼OðϵÞ is justified. Similarly, by
comparing the (21) components, one can obtain a similar
expression for SR as follows:

m0VlR þ iMNS
†
RVlR ¼ iS†LVlLM̂ν

⇒ m0 þ iMNS
†
R ¼ iS†LVlLM̂νV

†
lR

⇒ m0 þ iMNS
†
R ≈ 0

⇒ S†R ¼ iM−1
N m0 ≈OðϵÞ ðA7Þ

Here, the right-hand side (rhs) of the second line in the
above expression is neglected since it is of the order of
the neutrino mass, which is extremely small compared to
MN appearing on the left-hand side (lhs). Now, using (A7),
the (11) component can be simplified as follows:

imS†RVlR ¼ VlLM̂ν

⇒ imS†R ¼ VlLM̂νV
†
lR ¼ Mν

⇒ Mν ¼ imðiM−1
N m0Þ

⇒ Mν ¼ −mM−1
N m0 ðA8Þ

APPENDIX B: LOOP FUNCTION

Since S does not mix with the Higgs, DM nucleon
scattering can happen through a one-loop process, as shown
in Fig. 11. The loop consists of one heavy fermion line
along with two scalar lines. Considering the interaction
with the light quarks in the external line, the effective
interaction term between DM and each q gives rise to the
following effective Lagrangian:

Leff ⊃
X

q¼fu;d;sg
Ctri
q mqχχq̄q ðB1Þ

with the effective coupling given by

Ctri
q ¼ −

1

m2
h

1

v
CHχχ ðB2Þ

The expression for the effectiveHχ̄χ coupling coefficient is
calculated as

CHχχ ¼
−Mχ

16π2
vλhs
2

y2χ

�
∂

∂p2
B0ðp2;M2

S;M
2
χÞ
	
p2¼M2

χ

The expression for the B function and their derivative can
be found in [65]. Here, we need only the derivative function
and its expression is given by

∂B0ðp2;M2
S;M

2
χÞ

∂p2
¼

Z
1

0

dx
xð1 − xÞ

M2
SxþM2

χx − p2xð1 − xÞ

¼
−M2

χ þ ðM2
χ þM2

SÞ ln
�

M2
χþM2

S
M2

S

�
M4

χ

¼
−1þ

�
1þ

�
Mχ

MS

�
−2
�
ln

�
1þ M2

χ

M2
S

�
M2

χ

¼ M−2
χ LðM2

χ=M2
SÞ

where the loop function LðxÞ is defined by

LðxÞ ¼ ð1þ x−1Þ lnð1þ xÞ − 1 ðB3Þ

Then, the Hχ̄χ coupling takes the form

CHχχ ¼ −
y2χ

16π2Mχ

vλhs
2

LðM2
χ=M2

SÞ

so that the effective coupling in (B2) becomes

Ctri
q ¼ y2χ

16π2
1

m2
hMχ

�
λhs
2

LðM2
χ=M2

SÞ
	
mq ðB4Þ

APPENDIX C: LOW ENERGY CROSS SECTIONS
RELEVANT FOR THE SELF-INTERACTIONS

OF DARK MATTER

The nonrelativistic DM self-scattering can be well
understood in terms of the attractive Yukawa potential

VðrÞ ¼ −
y2χ
4πr

e−MSr ðC1Þ

To capture the relevant physics of forward scattering, the
transfer cross section is defined as

σT ¼
Z

dΩð1 − cos θÞ dσ
dΩ

:

In the Born limit, yχ2MDM=ð4πMSÞ ≪ 1,

σBornT ¼ yχ4

2πM2
DMv

4

�
log

�
1þM2

DMv
2

M2
S

�
−

M2
DMv

2

M2
S þM2

DMv
2

	
:
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Outside the Born limit, where yχ2MDM=ð4πMSÞ ≥ 1, there
can be two different regions: classical regime and reso-
nance regime. In the classical regime (MDMv=MS ≥ 1),
solution for an attractive potential is given by [66–68]

σclassT ¼

8>>><
>>>:

4π
M2

S
β2 lnð1þ β−1Þ β > 1

8π
M2

S
½β2=ð1þ 1.5β1.65Þ� 10−1 < β ≤ 103

π
M2

S
½ln β þ 1 − 1=2ln−1β�2 β ≥ 103

where β ¼ 2y2χMS

4πMDMv2
.

Finally in the resonance region (MDMv=MS ≤ 1),
no analytical formula for σT is available. So approximating
the Yukawa potential by Hulthen potential ðVðrÞ ¼
� yχ2

4π
δe−δr

1−e−δrÞ, the transfer cross section is obtained to be:

σHulthenT ¼ 16πsin2δ0
M2

DMv
2

where l ¼ 0 phase shift δ0 is given by:

δ0 ¼ Arg

�
iΓðiMDMv=kMSÞ

ΓðλþÞΓðλ−Þ
	

with

λ� ¼ 1þ iMDMv
2kMS

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yχ2MDM

4πkMS
−
M2

DMv
2

4k2M2
S

s

and k ≈ 1.6 is a dimensionless number.
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