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The neutrinoless double beta decay experimental effort continues to make tremendous progress
with hopes of covering the inverted neutrino mass hierarchy in coming years and pushing from the
quasidegenerate hierarchy into the normal hierarchy. As neutrino oscillation data are starting to suggest that
the mass ordering may be normal, we may well be faced with staring down the funnel of death: a region of
parameter space in the normal ordering where—for a particular cancellation among the absolute neutrino
mass scale, the Majorana phases, and the oscillation parameters—the neutrinoless double beta decay rate
may be vanishingly small. To answer the question of whether this region of parameter space is theoretically
preferred, we survey five broad categories of flavor model structures which make various different
predictions for parameters relevant for neutrinoless double beta decay to determine how likely it is that the
rate may be in this funnel region. We find that a non-negligible fraction of predictions surveyed are at least
partially in the funnel region. Our results can guide model builders and experimentalists alike in focusing
their efforts on theoretically motivated regions of parameter space.
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I. INTRODUCTION

Neutrino oscillations [1–4] provide one of the few strong
motivations for physics beyond the Standard Model (SM)
as they require at least two massive, active neutrinos.
Oscillation experiments, however, tell us about neither the
absolute neutrino mass scale nor about the nature of the
neutrino mass: Dirac vs Majorana. One possible means
of probing the latter question is to consider lepton number
violating processes which provide a clear and striking
signature that neutrinos are Majorana particles [5]. The
most experimentally promising lepton number violating
process is neutrinoless double beta decay (0νββ) which is
the transition of a nucleus with (A, Z) atomic numbers to
(A, Zþ 2), accompanied by the emission of two electrons,
but without the emission of two antineutrinos [6]. The
observation of neutrino oscillations has already demon-
strated that the lepton number of individual flavors is not
conserved; 0νββ could go one step further marking the first

observation that total lepton number is not a conserved
symmetry of nature either.1 This process is experimentally
challenging to measure (for reviews see [11–15]); however,
experiments continue to make tremendous progress cover-
ing more and more parameter space pushing into the region
suggested by neutrino oscillations. Indeed, thanks to the
progress in neutrino oscillation experiments, all neutrino
mixing angles and mass splittings are now measured to a
good accuracy [16], which allows for improved predictions
of the theoretically allowed regions of parameter space for
0νββ experiments.
Somewhat surprisingly, the observed leptonic mixing

pattern seems to be in considerable contrast to the quark
mixing matrix, a difference that could imply a nontrivial
connection between the two sectors. Many models attempt-
ing to make sense of the so-called “flavor puzzle” of the
SM make predictions for the mixing parameters, including
the so-called Majorana phases and absolute neutrino mass
scale, which can be compared with experimental data.
These models provide experimental targets for a wide
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1Note that the converse need not be true. That is, the non-
observation of 0νββ, e.g., if the atmospheric mass ordering was
found to be inverted, does not guarantee that neutrinos are Dirac
neutrinos. One such scenario is pseudo-Dirac neutrinos [7–10]
where neutrinos are actually Majorana but jmββj may be quite
small even in the inverted ordering.

PHYSICAL REVIEW D 109, 055028 (2024)

2470-0010=2024=109(5)=055028(23) 055028-1 Published by the American Physical Society

https://orcid.org/0000-0002-5209-872X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.109.055028&domain=pdf&date_stamp=2024-03-18
https://doi.org/10.1103/PhysRevD.109.055028
https://doi.org/10.1103/PhysRevD.109.055028
https://doi.org/10.1103/PhysRevD.109.055028
https://doi.org/10.1103/PhysRevD.109.055028
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


variety of neutrino experiments and can be used to
plan experimental stages or requested benchmark sensitiv-
ities [17,18]. Making precise predictions is challenging,
however, due to the very large number of flavor models
considered in the literature that still provide acceptable
fits to existing neutrino (and possibly quark) data as they
make a wide variety of predictions for the remaining
neutrino parameters.
In this paper we will focus on the predictions related to

flavor models applied to the neutrinoless double beta
decay rate observable, motivated by the predictivity of
flavor models for several parameters which enter this
observable. Taking the exchange of three light Majorana
neutrinos as the dominant contribution to 0νββ, the
predicted ranges for the particle physics observable
jmββj depend critically on the neutrino mass ordering
which remains undetermined by oscillation data:
normal (NO) with m1 < m2 < m3 or inverted (IO) with
m3 < m1 < m2.

2 Of particular interest is the region in the
NO which leads to immeasurably small rates of 0νββ due
to a precise cancellation among the absolute neutrino
mass scale, the Majorana phases, and the oscillation
parameters3; this region is known as the funnel and is
often quantified as values of jmββj < 1 meV for concrete-
ness. In this paper we will study this region of parameter
space from a theoretical point of view in the context of a
wide range of flavor models taking a bottom-up approach
(see [22,23] for earlier studies before θ13 was measured).
We aim to provide a comprehensive study of viable

categories of conceivable predictions phenomenologically
related to the structure of existing flavor models discussed
in the literature which make predictions for jmββj and to
determine the fractions of predicted parameter space which
fall into the funnel region within the constraints of the latest
neutrino oscillation data. That is, we investigate whether or
not categories of flavor models that have been studied in the
literature containing any conceivable models prefer to be in
the funnel. Even though a particular focus of our work
is the funnel region, we will also present a global overview
of the preferred regions of parameter space in these
phenomenological categories of models to demonstrate
the existence and location of theoretically motivated
regions of observables. The advantage of doing such a
study before experimental limits reach the normal hierarchy
is to understand what ranges of observables models predict
before the measurements are made. This can guide future
work both from the experimental and theoretical sides as

we identify preferred regions of parameter space which can
serve as targets to focus experimental efforts on. From the
theoretical side we give a detailed overview of different
categories of flavor models which make predictions for
0νββ, assess their validity by comparing their predictions to
current knowledge of the mixing parameters and bounds
on the absolute mass scale, and calculate their preferred
regions of parameter space. Our work can thereby provide
important guidance for future model-building work. We
focus on the low scale application of these predictions, so
our results do not depend on any details of neutrino mass
generation; therefore, we do not include potential renorm-
alization group effects on the running of the parameters that
may be present in some scenarios.
This paper is organized as follows. We start with a short

introduction to 0νββ in Sec. II. Then, we explain and
discuss the categories of predictions we consider, including
our results, in Secs. III and IV. We conclude in Sec. V.

II. NEUTRINOLESS DOUBLE BETA
DECAY REVIEW

We start with a short review about neutrinoless double
beta decay. We make the oft-used assumption that the
dominant contribution to 0νββ arrives from the exchange
of three light (mν ≲ 100 MeV [24]) Majorana neutrinos;
see [24–32] for other new physics scenarios which give
rise to 0νββ. The observable in neutrinoless double beta
decay is the decay half-life, which is a function of various
physics parameters,

ðT0νββ
1=2 Þ−1 ¼ G0νββðQ;ZÞjM0νββðA; ZÞj2jmββj2; ð1Þ

where G0νββðQ;ZÞ is the phase-space factor of the par-
ticular transition which depends on the isotope’s Q value
and is well known, jM0νββðA; ZÞj2 is the nuclear matrix
element which currently presents a considerable source of
theoretical uncertainty [14,33,34], and jmββj is the effective
neutrino mass defined as [35]

jmββj ¼
����
X3
i¼1

U2
eimi

����: ð2Þ

The effective neutrino mass contains the particle physics
information of interest relevant for understanding neutrino
masses and mixings and is the focus of this paper. We write
it in terms of mixing parameters in the standard para-
metrization of the neutrino mixing matrix [4], the PMNS
matrix [36,37], where we choose to assign the Dirac CP
phase to the second row of the matrix such that Eq. (2) is
independent of it.4 In this case the PMNS matrix reads

2We define the neutrino mass eigenstates in the usual way with
decreasing amounts of the νe fraction: jUe1j > jUe2j > jUe3j;
see, e.g., [19].

3While this region is essentially impossible to probe exper-
imentally, it does have the advantage that if it was known that
jmββj were in the funnel, then we would have good knowledge of
both Majorana phases [20,21], something that is otherwise
essentially impossible.

4It is clear from Eq. (2) that there can be only two physical
phases; the inclusion of δ in the first row leads to an additional
phase redundancy which does not affect observables.
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UPMNS ¼

0
B@

c12c13eiα=2 s12c13eiβ=2 s13
ð−c23s12 − c12s13s23eiδÞeiα=2 ðc12c23 − s12s13s23eiδÞeiβ=2 c13s23eiδ

ð−c12c23s13 þ e−iδs12s23Þeiα=2 ð−c23s12s13 − e−iδc12s23Þeiβ=2 c13c23

1
CA; ð3Þ

where we use the shorthand notation cij ¼ cos θij, sij ¼
sin θij and the Majorana phases α, β where one of them can
be between ∈ ½0; π� and the other one between ∈ ½0; 2π�.
Thus, we can see that jmββj is a function of seven free
parameters: the three neutrino masses, two mixing angles,
and two Majorana phases [38–40].
A nontrivial feature of the seven parameters is that the

predicted range of 0νββ also depends on the neutrino mass
ordering. Oscillation experiments are starting to provide
hints for the neutrino mass ordering, in particular, when
combined in global fits which currently show a preference
for the NO [41–43].5 Using the measured values of the
neutrino mass splittings and mixing angles, jmββj depends
on only three unknown parameters: the absolute neutrino
mass scale, which is constrained to be at most somewhat
light, and two Majorana phases, which are completely
unconstrained. Note that jmββj only constrains at most one
combination of the two phases; unless jmββj ≈ 0, it is
not possible to determine both Majorana phases using
oscillation data with a detection of 0νββ alone [20,21].
Furthermore, the Majorana phases do not lead to manifest
CP violation in 0νββ [47,48]6; they affect the 0νββ
amplitude in aCP-even way, which excludes the possibility
to determine them by considering 0νββ with the emission
of two electrons and its CP conjugated process with the
emission of two positrons.
The absolute mass scale can, in principle, be constrained

by beta decay end-point experiments such as KATRIN [50],
but the best constraints up to now come from cosmology.
Constraints vary from

P
mν < ½87; 90� meV at 95%

CL [51,52]. We take 90 meV [51] as our fiducial number,
which then maps ontom1 ≲ 17 meV in the normal ordering
for the best-fit oscillation parameters. Current cosmological
data seem to be incompatible with the inverted ordering at
95% CL, although the details of this constraint depend
considerably on one’s choice of priors [53–55]. The
currently preferred region for the neutrino masses is shown
in Fig. 1 using oscillation data, the oscillation preference
for the normal ordering (not used in the statistical tests
elsewhere in this paper), and the cosmological constraint on

the sum of neutrino masses (also not used in the statistical
tests elsewhere in this paper). Note that the different
preferred regions for each mass are correlated with one
another. We see that m2 has both an upper and lower limit
while either m1 or m3 can be zero. We also see that each
mass state has two disjoint preferred regions due to the
different mass orderings as well as the important constraint
from cosmology.
The current best limit on jmββj is from KamLAND-Zen

with 136Xe [56],

jmββjexp < ð36–156Þ meV; ð4Þ

where the range of values is due to the range of predictions
for the nuclear matrix element. The most optimistic matrix
element values indicate that this constraint starts to push
into the inverted hierarchy while future experiments [57]
will further probe a large part of this region, subject to
nuclear matrix element uncertainties. In addition, future
constraints on the neutrino mass scale from cosmology
have important implications for 0νββ [58].
In Fig. 2 we show the allowed regions in the jmββj −

mlightest plane based on our knowledge of oscillation data,
as well as the constraints on the lightest neutrino mass and
upper limits on jmββj. The regions are drawn at the 3σ limit,
which means we impose that the total Δχ2, understood as
the sum of all Δχ2 of the mixing angles and mass splittings,
is equal to 11.83, which is 3σ with 2 dof.7 This is different
from what is commonly done in the literature, where each
individual oscillation parameter is allowed to increase to
some critical threshold without consideration for the total
test statistic. We do not impose information in the test
statistic for the lightest mass from cosmological measure-
ments or from jmββj, although since the latter only pushes
into the inverted hierarchy, it would not affect a discussion
of the funnel. We also do not include a penalty factor for
current preference from the oscillation data for the normal
ordering over the inverted ordering, although this also
would not affect the funnel discussion. We avoid those
constraints because they make the distinction between the
normal ordering and the inverted ordering complicated in a

5The hints coming from long baseline accelerator neutrino
experiments, however, might be an indication of new physics
[44–46].

6Note that the Majorana phases can lead to CP violating
phenomena in other observables, for example, in the leptogenesis
scenario where a lepton asymmetry is generated via the decay of
heavy, right-handed neutrinos which depends on the Majorana
phases of these neutrinos [49].

7Here, the choice of the number of degrees of freedom is
nontrivial. Our choice is based on the fact that, since there are two
physics parameters, jmββj and mlightests, this corresponds to
2 degrees of freedom. While they are clearly related to each
other, even with known oscillation parameters, the additional
freedom from the two Majorana phases more than ensures that
jmββj is a distinct degree of freedom.
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way that depends quite sensitively on the precise statistical
test performed. Finally, we do not include any information
about δ (even though δ does not affect 0νββ, it is relevant
for specific classes of flavor models) from long-baseline
oscillation data as there is a mild tension among the two
relevant data sets, NOvA and T2K [45,46], and most values
are allowed in any case. The yellow regions show the
allowed region if all oscillation parameters are known
perfectly at the best-fit values from [42]. The only free
parameters in the yellow region are the two Majorana
phases. The blue region shows the enlarged region that we
can expect with the expected precision of the oscillation
parameters from DUNE and JUNO [59,60]. This shows
that the future measurements of the oscillation parameters
by DUNE and JUNO will take us very close to the perfect
knowledge case. The red regions show the additional
parameter space due to the current oscillation uncertainties,
also taken from [42]. We see that future oscillation experi-
ments will constrain the parameter space further close to
the relevant limit of perfect information; however, the
oscillation parameters are already measured rather pre-
cisely such that the Majorana phases present the largest
uncertainty in the allowed regions of parameter space.
Therefore, predictions which are in agreement with the
oscillation data but additionally predict the Majorana
phases are of particular phenomenological interest as they
prefer only parts of the generally allowed parameter space.
We are specifically interested in the funnel region in

NO, which we define as jmββj < 10−3 eV, consistent with
other analyses in the literature, e.g., [20,21,61]. Such
small values of jmββj can only be achieved if the

FIG. 1. Current knowledge on the absolute masses of the three neutrinos. The data included are the average of the three global fits for
Δm2

21, jΔm2
31j, and the preference for the normal ordering [41–43], as well as the cosmological constraint on the sum of the neutrino

masses that does not yet show evidence for neutrino masses [51]. Left: The Δχ2 for parameter estimation, where we also note that the
minimum χ2 for each state is ∼1.75 and thus is an acceptable fit to the data. Right: The 1σ, 2σ, and 3σ preferred regions for each mass
state, individually. The thicker regions are more preferred.

FIG. 2. Currently allowed region in the jmββj-mlightest plane for
both mass hierarchies (the upper band corresponds to IO, the
lower region to NO). The yellow region is the expected allowed
region with perfect knowledge of the oscillation parameters, and
the blue region indicates the increased region allowed due to the
expected future precision in the oscillation parameters from
DUNE and JUNO. The red region indicates the increased region
including the current uncertainties on the oscillation parameters.
All contours are drawn at true 3σ. The current upper limit on
jmββj from KamLAND-Zen is shown as horizontal gray bands,
where the darker and lighter gray regions assume different
determinations of the nuclear matrix element [56]. The upper
bound from cosmology on the absolute neutrino mass scale in
NO [51] is shown as a vertical gray band.
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atmospheric mass ordering is normal and for m1 ∈
½6 × 10−4; 8 × 10−3� eV, assuming the best-fit values of
the neutrino parameters from oscillations [42]. To under-
stand the cancellation, we interpret the expression for
jmββj as a quadrilateral in the complex plane; see Fig. 3
(see [62] for an alternative graphical representation of
jmββj). If jmββj ≈ 0, the quadrilateral reduces to a triangle.
Since m1jU2

e1j grows faster with m1 than m2jU2
e2j and

m3jU2
e3j in the NO, there are values of m1 where the sum

or difference of m2jU2
e2j and m3jU2

e3j corresponds to
m1jU2

e1j. The situation is different in IO as the inequalities
m1jU2

e1j > m2jU2
e2j > m3jU2

e3j are satisfied for all values
ofm3 and the currently allowed values for the mixing matrix
elements from [42]. There are no values of the lightest mass
where two sides of the quadrilateral sum up another side.
Therefore, the quadrilateral never collapses to a triangle, and
the minimum of jmββj in the IO is jmββj ¼ 19.8 meV with
m3 ¼ 2.98 meV. These values for the absolute neutrino
mass scale which lead to jmββj < 10−3 eV can be tested
with the next generation of laboratory-based experiments
like the ECHo experiment [63], Project 8 [64], and the
PTOLEMYexperiment [65], as well as cosmological experi-
ments [66–69] which will be sensitive down to neutrino
masses in the Oð10 meVÞ region. This, combined with the
preference for the NO over the IO from oscillation data,
makes a study of the funnel region most timely.

III. RESULTS FOR MODEL CATEGORY
PREDICTIONS

In this section we will introduce the categories of model
predictions we study, provide an overview of the under-
lying theories, and present the preferred regions of param-
eter space and fractions in the funnel.
We start by providing a complete phenomenological

study of categories of models which make predictions
for observables which enter jmββj. These categories of
models can be further subdivided into groups of model
predictions which have the same predictions. These
groups of predictions are defined to cover existing
individual models that are studied in the literature but
are expanded to include other conceivable models with
different combinations of the same input parameters. An
important condition of our analysis is that we will not be
concerned with whether or not all of these particular
phenomenological predictions can be fully realized in
concrete models, and we simply consider the option that
they could be, thereby providing a phenomenological
starting point for model builders by investigating con-
ceivable model predictions.
The model categories and the neutrino parameters they

predict are schematically shown in Fig. 4. Starting from the
phenomenological point of view from model predictions
for observables entering jmββj, we consider categories of
models which make predictions for one or several of them.
Indeed, each phenomenological category makes predic-
tions at a certain level in the mass matrix. Predictions for
the mixing parameters are generally driven by the structure
of the neutrino mass matrix while predictions for the
neutrino masses depend on the number of free parameters

FIG. 3. Visual representation of mββ on the complex plane in
the normal ordering for some choice of the Majorana phases and
the mass of the lightest neutrino. Since the three legs that make up
mββ nearly close in this example, jmββj is small enough to be in
the funnel.

FIG. 4. Overview and categorization of the models studied and
the parameters they predict. The grayed parameters, δ and θ23, do
not affect neutrinoless double beta decay, and not all flavor
models (specifically sum rules) that predict the Majorana phases
α and β also predict δ. Each category contains groups of models
for which we derive results. The groups of models contain
individual models realized in complete scenarios, for example,
based on underlying symmetries.
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in the neutrino mass matrix. Models which affect the
neutrino masses typically also predict a lower (and upper)
limit on the lightest neutrino mass, allowing an additional
probe of these categories via experiments sensitive to the
absolute neutrino mass scale.
The five model categories we consider in this work are as

follows:
(i) Generalized CP (Sec. III B), which makes predic-

tions for all three complex phases only.
(ii) Sum rules (Sec. III C), which make predictions for

the masses and the Majorana phases only.8

(iii) Charged lepton corrections (Sec. III D), which make
predictions for the mixing angles and complex
phases.

(iv) Texture zeros (Sec. III E), which make predictions
for all nine parameters in the mass matrix.

(v) Modular symmetries (Sec. III F), which also make
predictions for all nine parameters in the mass
matrix.

To better understand the predictions of these models, we
compare the number of constraints to the number of free
parameters in the neutrino sector. As we are interested in
neutrinoless double beta decay which can only happen for
Majorana neutrinos, we focus on this case only, even
though the model categories we study here also allow
for Dirac neutrinos. The complex, symmetric Majorana
mass matrix has twelve parameters, of which three phases
can be absorbed into the three flavor eigenstates. Therefore,
we are left with nine free parameters. The Majorana mass
matrix Mν is diagonalized as

Mν ¼ UPMNSDνUT
PMNS ð5Þ

with the PMNS matrix UPMNS [36,37] and the diagonal
mass matrix Dν which contains the eigenvalues of Mν

which are the light neutrino masses, including the Majorana
phases Dν ¼ diagðm1eiα; m2eiβ; m3Þ, amounting to nine
free parameters. In Appendix A, we give the expressions
for the mass matrix elements as a function of the mixing
parameters and mass eigenvalues. Both sides of Eq. (5) are
parametrized with the same number of parameters: nine.
Nevertheless, there is no one-to-one mapping of the mixing
parameters to the matrix elements; all mass matrix elements
depend on a combination of mixing parameters.
We point out that the nine parameters in the mass matrix

need not be split up in terms of masses (eigenvalues),
mixing angles, and complex phases in the usual way; there
are other viable parametrizations of the degrees of freedom
of the mass matrix. One such example is with SU(3)
generators (e.g., Gell-Mann matrices); see Appendix B.

Focused on the usual parametrizations, the nine free
parameters in the neutrino sector, assuming Majorana
neutrinos, are the three neutrino masses, three neutrino
mixing angles, and three CP phases. Out of these nine
parameters, five have been measured at neutrino oscillation
experiments (three angles, two mass splitting) while a
sixth parameter, the Dirac CP phase, will be measured in
the future [60,70]. Out of these five measured parameters,
only four impact 0νββ as jmββj does not depend on θ23 (it
also does not depend on δ). Experiments sensitive to the
absolute neutrino mass can constrain one parameter which
also plays a role in 0νββ.
Each different class of models not only impacts different

sets of the physical parameters, as shown in Fig. 4, but
also constrains those parameters at different levels. Some,
such as generalized CP or sum rules, provide only a small
number of constraints while others, like modular sym-
metries, provide a large number of interconnected con-
straints among all the parameters.

A. Numerical approach

In order to quantify the validity of a given model and also
its interplay with the funnel, we perform careful numerical
studies, the methods of which are outlined here. While
there are some necessary choices to be made about the
nature of the analyses, they have been made in such a way
as to allow for a direct comparison among the different
models and model classes and a representative numerical
picture of the relationship between flavor models compat-
ible with oscillation data and the funnel.
We study the predictions of the flavor models, requiring

that the model predictions for the mixing parameters are in
agreement with the experimental data; i.e., these flavor
models correctly describe leptonic mixing and are hence
not ruled out.9 We will use the current global fit data for the
mixing angles from [42] to derive the allowed values for
jmββj. As discussed in the previous section, we consider the
true 3σ allowed regions of parameter space which corre-
sponds to a total Δχ2 ¼ 11.83 (3σ for 2 dof) interpreted as
the sum of the individual Δχ2 of the mixing angles and
mass splittings. This approach is different from what is
commonly done in the literature, where the allowed regions
in the jmββj-mlightest plane (either in general or for a specific
model) are derived by varying the individual mixing
parameters in their 3σ ranges, which leads to a total Δχ2
larger than it should be. This difference in the statistical
approach leads to a difference in our results compared to
results in the literature, with other allowed regions being
artificially looser than the quoted statistical significance

8We will consider sum rules for the masses here. There exists
another category of sum rules which involves the angles; these
typically arise in models with charged lepton corrections; see
Sec. III D.

9We only consider priors on the three mixing angles and two
mass splittings but not on the sign of Δm2

31, despite some
evidence that it is positive. In case a model also predicts δ, we
do not include a prior. Similarly, we do not include any prior on
the absolute neutrino mass scale.
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implies. Another crucial difference arises from our usage of
up-to-date global fit results of the mixing parameters. In
particular, the uncertainty on Δm2

31 decreased in the past
5 years from 4% to 1%; after 2013 the uncertainty on Δm2

21

and θ12 remained similar, and the improvements in the
precision of θ13 [16] do not have a huge impact on the
uncertainties for 0νββ.
To determine the fraction of models in the funnel we

follow several steps for each class of models:
(1) We first calculate the number of models which are

viable. These are the models that are in agreement
with the oscillation data.

(2) Then we determine which of those have any
fraction within the funnel which we define to be
mββ < 10−3 eV.

(3) Then we determine the fraction of each model that is
within the funnel as outlined below.

Different classes of models structure their predictions
differently; some provide constraint equations while
others also introduce new underlying parameters of the
model. Thus, there is not a straightforward means to
consistently sample the model space; a study of one model
(or one class of models) might prefer a different statistical
test and come to slightly different conclusions. Instead,
we use a simple phenomenologically motivated definition
that will be equally representative for all models, although
we caution the reader that, even still, some regions
of parameter space may be over-/under-represented com-
pared to the representative size of the underlying param-
eters. We define the fraction within the funnel as

f ¼
R
funnel d logmlightestd logmββR

d logmlightestd logmββ
; ð6Þ

where the integrals are over the allowed parameter space
for a given model. For the denominator we only take the
NO into account because the mass ordering will be known
at high significance before neutrinoless double beta decay
experiments probe the normal ordering. We also consider
the same expression with a linear distribution on the
masses (d logm → dm). In addition, we bound the integral
mlightest ∈ ½10−4; 10−1� eV and mββ ∈ ½10−4; 100� eV as
shown in Fig. 2. In some cases this affects the numerical
results somewhat artificially; however, these numbers are
well motivated by existing limits on the lightest neutrino
mass and jmββj, and the general narrative does not change
much. In addition to the fraction within the funnel, we
also show probability density functions (PDFs) of each
category in the jmββj-mlightest plane, where the darker the
color, the higher the PDF. Due to the common choice to
present these plots in log-log scale, the regions covered
in these models are not necessarily uniform in the
colored regions.

We now turn to the five model classes in the following
subsections.

B. Models with generalized CP

In models where CP is a conserved quantity, the
values of the CP violating phases are constrained to be
0 or π [71–76]. On the other hand, the phases can have
nontrivial phases if a discrete symmetry is combined with a
generalized CP symmetry [75]. Apart from the CP con-
serving values, possible predictions for the Majorana
phases are π=2; 3π=2 [77–83]. Similar to [84] we consider
16 combinations of values for the Majorana phases
ðα; βÞ∈ f0; π=2; π; 3π=2g. Out of the 16 combinations,
several map onto each other (see Appendix C) such that
there are only ten independent combinations. All of them
are viable since they only predict the Majorana phases, and
the ones with ð0; πÞ; ðπ; 0Þ predict a region in the funnel;
see Fig. 5. We find a ∼50% probability (using a log prior)
that these two models are in the funnel. Furthermore, these
models cover much of the whole allowed region for mββ.
Since the PDF is not uniform, however, there is a
preference in these models for mββ values close to the
lower allowed bound in IO and towards small values of the
lightest mass in NO, even though all models are compatible
with all values ofmlightest as they do not predict a lower limit
on the absolute neutrino mass.

C. Models with mass sum rules

Mass sum rules are relations between the three complex
neutrino eigenvalues mieiαi (for overviews see [85–87]),
and they arise in flavor models where the neutrino mass
matrix depends on two complex parameters only [88]. Then
the three eigenvalues of the mass matrix are not indepen-
dent but are related by a sum rule. As one complex neutrino
mass eigenvalue can be expressed as a function of the other
two, these models constrain two parameters in the mass
matrix, and therefore these models predict two parameters
of interest in jmββj.
Mass sum rules can be parametrized with five, free, real

model parameters,

c1eiχ1ðm1eiαÞd þ c2eiχ2ðm2eiβÞd þmd
3 ¼ 0; ð7Þ

where d is the power of the sum rule, c1, c2 are the
real coefficients of the sum rule, and χ1, χ2 are the phases.
Note that we have set the coefficient and phase of m3 to be
1 and 0, respectively.
Up to now 12 mass sum rules have been identified in

over 60 different models [85,89–148]. These previously
studied sum rules have parameters within certain typical
ranges: c1; c2 ∼Oð1Þ, d ¼ �1;�1=2; χ1; χ2 ¼ 0; π;�π=2.
However, other values for these parameters are possible.
For this study we will remain agnostic about the model

realizations of the mass sum rules and study mass sum rules
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with c1;c2∈½1=6;2=6;3=6;4=6;5=6;1;2�, d ¼ �1;�1=2,
χ1; χ2 ¼ 0; π; π=2; 3π=2. These choices include 11 realized
mass sum rules; additionally, we consider c1¼2=ð ffiffiffi

3
p þ1Þ,

c2 ¼ ð ffiffiffi
3

p
− 1Þ=ð ffiffiffi

3
p þ 1Þ, d ¼ 1, χ1 ¼ 0, χ2 ¼ π to fully

cover the parameter space of allowed mass sum rules
with constant coefficients. For the sake of concreteness
we do not include d ¼ �1=4;�1=3 as they have not
appeared yet in realized sum rules in the literature. Our
choice of parameters to study covers existing models in
the literature. It is conceivable that other models could
also be realized with ratios of larger integers; in order
to retain some amount of predictivity, we truncate the
parameters at the level of existing models in the
literature.
A mass sum rule can be interpreted as a triangle in the

complex plane which closes if the sum rule is fulfilled; this
leads to prediction for the Majorana phases depending on
the light neutrino masses. Furthermore, there is a lightest
neutrino mass for which the triangle can close; in some
cases there is also an upper limit on the neutrino masses.
For some coefficients the mass sum rule can never be
fulfilled like −2

ffiffiffiffiffiffiffiffiffiffiffi
m1eiα

p
þ 1=2

ffiffiffiffiffiffiffiffiffiffiffi
m2eiβ

p
− ffiffiffiffiffiffi

m3
p ¼ 0, while

in other cases the mass sum rule can only be fulfilled
for one neutrino mass ordering but not for the others, like
m1eiα − 2m2eiβ −m3 ¼ 0 which can only be fulfilled in the
NO. All of these predictions affect jmββj, making this
observable the ideal probe of the existence and type of mass
sum rules. In general, mass sum rules only allow a small
range in the jmββj −mlightest parameter space [15]. In Fig. 6
we show the allowed ranges for several representative sum
rules. We see that predictions from sum rules can be very
different, and while all sum rules predict a lower bound
on the lightest mass, some of them also predict an
upper bound.

In Fig. 7 we show the PDF of models with sum rules. Out
of the 3137 models, 1968 are viable, of which 14% are in
the funnel. None of the 12 models realized in the literature
has a fraction in the funnel.10 There are 17 models with
at least 50% in the funnel, and they are enumerated in
Appendix D.11

From Fig. 7 we also see that sum rules cover the whole
parameter space rather uniformly; however, none of the
models we studied allows for m1 < 10−4 eV in NO while
there is no lower bound in IO. This can be understood as in
NO there is a hierarchy between the masses even for small
m1, which requires larger coefficients than we study to
fulfill the sum rule for smaller masses. In IO, on the other
hand, m1 and m2 are nearly degenerate such that cancella-
tions between them can occur, which allows the sum rule to
be fulfilled.
We further investigate the roles the five individual sum

rule parameters play in the behavior of the models as shown
in Fig. 8. These figures show, for each value of each
parameter, the fraction of all models that are either not
consistent with oscillation data (orange), consistent with
oscillation data but never in the funnel (green), or consistent
with oscillation data and some fraction in the funnel (blue).
Interesting trends appear. We see that sum rule models
are more likely to be in the funnel for small c1 and large c2.
The exponent d also plays an important role, particularly
that d ¼ 1 is never in the funnel as in this case the sum rule
always leads to values of m3 so large that the quadrilateral
for mββ cannot collapse to a triangle. On the other hand,

FIG. 5. Left: PDF of all ten different models within the generalized CP classification using the latest constraints from the oscillation
data. Right: histograms showing how much of each model is in the funnel. We see that all ten models are consistent with oscillation data,
and two of them are in the funnel. Using a log prior onmlightest, there is a ∼50% probability that they are in the funnel, while with a linear
prior the probability is much less.

10This statement seemingly contradicts previous results
[86,149]; however, this discrepancy arises due to the different
choice of χ2 contours.

11We provide a text file containing all sum rule models at
peterdenton.github.io/Data/0nubb_Survey.
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models with d ¼ −1=2 have the largest fraction (≈20%) in
the funnel. The values of χ1, χ2 individually do not
drastically impact the validity or fraction in the funnel,
while we find that for d ¼ −1 over 80% of the models are
viable but less than 40% for d ¼ 1=2.
We generally find that more than 50% of the models

studied are viable. For the coefficients c1, c2 we find that
the larger they are, the more viable models we find;
however, c1 ¼ 2 again leads to fewer viable models.
Furthermore, if both coefficients are small, there is only

a small fraction of valid models, which we also show in
Fig. 9. Finally, even though the values of χ1, χ2 individually
are not very important for the validity or fraction in the
funnel, we find a correlation between them, and larger

values of both are preferred to find valid models; see Fig. 9.
For the other parameters we do not find strong correlations
among them.
Thus, if the data indicate that we could be in the funnel or

if one wants to build specific models that map onto sum
rules that are consistent with current oscillation data and are
or are not in the funnel, this can give some guidance about
what kinds of parameters are likely to achieve those goals.

D. Models with discrete symmetries in the neutrino
sector and nonzero charged lepton mixing

Many flavor models based on discrete symmetries
predict θ13 ¼ 0 which is in strong contrast to the exper-
imental data which prefer θexp13 ≈ 8.5° [150,151]. Therefore,
these predictions from discrete symmetries need to be
corrected. A way to do so is by introducing a nondiagonal
charged lepton mixing matrix, as the measurable PMNS
matrix is the product of the neutrino mixing matrix and the
charged lepton mixing matrix UPMNS ¼ U†

eUν. The intro-
duction of a nondiagonal charged lepton mixing matrix
leads to relations between the observable mixing param-
eters, including the Majorana phases. These relations
are called mixing sum rules [18,152–160] (for reviews,
see [161–163]) and are similar to the relations between the
mixing parameters which arise in models with modular
symmetries described below. A nondiagonal charged
lepton mixing matrix could, for example, originate in
grand unified theories based on SU(5) [164] or SO(10)
[165,166] where the structures of the mass matrices for the
charged lepton mass matrix and down quarks coincide
[167–170] such that the charged lepton sector exhibits
CKM-like mixings [171]. In [155,159] a detailed,
systematic study of various forms of Uν, Ue in flavor
models has been conducted, and the expressions for the
Majorana phases, as well as for the mixing parameters,
have been derived.

FIG. 7. Same as Fig. 5 but for sum rules.

FIG. 6. Allowed region at Δχ2 ¼ 11.83 for the current con-
straint on the oscillation parameters, shown in red; the region for
the expected future precision at Δχ2 ¼ 11.83, shown in blue; and
perfect precision, shown in orange. The large regions are with no
model constraints while the smaller regions are for various sum
rules ðc1; c2; d; χ1; χ2Þ. A: ð1; 2; 12 ; π; π2Þ, B: ð12 ; 12 ;− 1

2
; π; πÞ, and

C: ð1; 2; 1; π; 0Þ.
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Wewill consider the cases of two or three rotations in the
neutrino sector and one or two rotations in the charged
lepton sector. For the neutrino mixing angles, we use
θν23 ¼ 45°, and several cases for θν12 motivated by different
popular symmetry forms of the neutrino mixing matrix,
i.e., sin2 θν12 ¼ 1=3, 1=2, 1=ð2þ ϕgÞ, ð3 − ϕgÞ=4, and 1=4

with ϕg ¼ ð1þ ffiffiffi
5

p Þ=2 the golden ratio. We call these
models TBM, BM, GRA, GRB, and HG, standing for
tribimaximal mixing, bimaximal mixing, golden ratio A
form, golden ratio B form, and hexagonal form, respectively.
Additionally, we consider models with three neutrino

rotations with θν13 ¼ π=10, π=20, and arcsinð1=3Þ, which
we call T13-1, T13-2, and T13-3, respectively, motivated by
existing models in the literature [145,172–175]. The rota-
tions in the charged lepton sector are free and are effectively
constrained by the measured mixing angles. In fact, for
models with θν13 ¼ 0 the charged lepton corrections are
crucial to reproduce the observed mixing angles. However,
charged lepton corrections also impact the predictions for the
other mixing angles such that deviations from maximal θ23
can also be achieved. Therefore, we also includemodels with
two charged lepton rotations. However, we constrain
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FIG. 8. The 3137 considered sum rule models split into the values of each of the five parameters with one panel for each of the five
parameters. The bars indicate the fraction of models with a specific value of one parameter that are either inconsistent with oscillation
data (orange), consistent with oscillation data but never in the funnel (green), or consistent with oscillation data and some fraction in the
funnel (blue). We only study the case of NO.
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ourselves to a maximum of a total of four rotations split
between the neutrino and charged lepton sector as they
provide sufficient freedom to reproduce the three measured
mixing angles. More rotations or different predicted values
of the neutrino or charged lepton mixing angles might arise,
however, in concrete models [176–178].
To summarize the previous paragraph, we consider one

or two charged lepton corrections where we study all
combinations of θe13; θ

e
12; θ

e
23 rotations.12 Additionally, we

also consider phases in the charged lepton mixing matrix
which are necessary to obtain predictions on the phases in
the PMNS matrix. We introduce the phase matrices
Ψ ¼ diagð1; e−iψ1 ; e−iψ2Þ and Q ¼ diagð1; eiξ1=2; eiξ2=2Þ.
Explicitly, we derive results for the following scenarios:

(i) Two rotations in the neutrino sector, one charged
lepton rotation (15 cases),

UPMNS ¼ ðUe
ijÞ†ΨUν

23ðπ=4ÞUν
12ðθν;k12 ÞQ

where ðijÞ∈ f12; 13; 23g
and k∈ fTBM;BM;GRA;GRB;HGg: ð8Þ

(ii) Two rotations in the neutrino sector, two charged
lepton rotations (15 cases),

UPMNS ¼ ðUe
ijÞ†ðUe

lmÞ†ΨUν
23ðπ=4ÞUν

12ðθν;k12 ÞQ
where ðijÞ∈ f12; 13g; ðlmÞ∈ f13; 23g; ðijÞ ≠ ðlmÞ

and k∈ fTBM;BM;GRA;GRB;HGg: ð9Þ

(iii) Three rotations in the neutrino sector, one charged
lepton rotation (45 cases),

UPMNS ¼ ðUe
ijÞ†ΨUν

23ðπ=4ÞUν
13ðθν;p13 ÞUν

12ðθν;k12 ÞQ
where ðijÞ∈ f12; 13; 23g

and k∈ fTBM;BM;GRA;GRB;HGg
and p∈ fT13-1;T13-2;T13-3g: ð10Þ

For the phases contained in Ψ, Q, we remain agnostic
about their values, and we vary them freely.13 Notice that
all four phases are not physical in all cases. In fact, only
for the case of two charged lepton rotations with
θe12; θ

e
13 ≠ 0 do all four phases play a role. The number

of free parameters thus varies in the different scenarios.
The case of three neutrino rotations and one charged
lepton rotation has the same number of rotations as the
case with two of each; however, since the free mixing
angles are always contained in the charged lepton sector,
the case of two neutrino rotations and two charged lepton
rotations has the most freedom.
These models make predictions for the mixing angles

and the Majorana phases; therefore, they can be tested in
0νββ experiments. In addition, these models also predict
the CP phase δ; however, we do not include a prior on δ in
our analysis. Nevertheless, this prediction also presents a
crucial test of this class of models [155,156]. On the other
hand, these models do not predict a lower bound on the
lightest neutrino mass.
For the models with two rotations in the neutrino sector

and one charged lepton rotation, we find that 8 out of 15
models are viable. The BM mixing pattern in the neutrino
sector cannot be brought into agreement with experimental
data with one charged lepton rotation. Other mixing
patterns are viable assuming a 1-2 or 1-3 rotation in the
charged lepton sector. All models studied with two charged

FIG. 9. Fraction of valid models with sum rules for a set of two model parameters where we find correlations.

12We do the rotations in the standard order UPMNS ¼
ðUe

12Þ†ðUe
13Þ†ðUe

23Þ†ΨUν
23U

ν
13U

ν
12Q.

13Simultaneously employing, for example, a generalized CP
symmetry allows us to fix the values of the phases like in [159].
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lepton rotations are viable. In particular, for BM mixing,
two charged lepton rotations are required to correct both
vanishing θ13 and maximal θ12. For three neutrino rotations
and one charged lepton rotation, we find that only 8 out of
45 models are viable.
These results are in general agreement with results

from the literature [158,159]. Nevertheless, we notice that
improved precision on the oscillation parameters in com-
parison to the time where these studies were done now
disfavors some models which were previously allowed. In
total we find that out of the 75 cases, 31 models are viable.
The predictions for 0νββ experiments are shown in

Fig. 10. We find that many models predict a region in
the funnel. As this category of models does not predict the
mass scale, the regions extend to small masses and cover
the quasidegenerate region disfavored by cosmology as
well. The funnel fractions are very similar in all models and
between 20% and 50%, demonstrating that, in this category
of models, up to a third of the parameter space can be
contained in the funnel.14

E. Models with texture zeros

In models with texture zeros, it is assumed that the
complex symmetric Majorana mass matrix has some
vanishing entries.15

Of particular importance for this paper is the 1-1 element
of the Majorana mass matrix which coincides with the
observable jmββj; see [181–188]. A symmetry realization
of texture zeros can come from an extended scalar sector
and suitable Abelian symmetries [189]. Here, however, we
will remain agnostic of any underlying symmetry behind

texture zeros as well as about the origin of the neutrino
mass term.16

Majorana mass matrices with three or more independent
texture zeros are already ruled out by current oscillation
data [194], as in this case there are more observables than
free parameters. Therefore, we will focus on one- and two-
texture zero mass matrices.17

For the vanishing mass matrix element Mαβ ¼ 0, the
condition

X3
i¼1

UαiUβiDi ¼ 0 ð11Þ

applies, where Di stands for the elements of the diagonal
matrix D and α, β run over the flavor indices e, μ, τ. This
condition takes the form of a mass sum rule, similar to
Sec. III C, where the coefficients are the mixing matrix
elements. We show explicitly the expressions for vanish-
ing mass matrix elements in Appendix A. In the case
of one-texture zero mass matrices, all six possible matri-
ces are in agreement with experimental data [182],
although in some case only one mass ordering is allowed;
see Tables I and II.
There are, in total, 15 two-texture zero matrices of which

seven are in agreement with experimental data [194–202].
Two of them feature a vanishing e − emass matrix element
(Mee ¼ 0, Meμ ¼ 0 or Mee ¼ 0, Meτ ¼ 0) and therefore
predict 100% of the parameter space in the funnel. Upon
imposing two vanishing mass matrix elements, we obtain
four relations between the mixing matrix elements and

FIG. 10. Same as Fig. 5 but for models with discrete symmetries and charged lepton corrections.

14We provide a text file containing all the charged lepton
correction models at peterdenton.github.io/Data/0nubb_Survey.

15Note that one can also consider the case where there are
zeros in the charged- and neutral-lepton mass matrices separately
[179,180]; we will not consider these scenarios.

16There are other models which constrain the number of free
parameters in the mass matrix by imposing that the trace or the
minor of the mass matrix is zero [190–193] which we will not
consider here.

17The case with no texture zeros is not predictive as there are
more free parameters than observables.
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observables. The two-texture zero mass matrices in agree-
ment with experimental data have one vanishing diagonal
element of M, Mηη ¼ 0, η ¼ ðe; μ; τÞ, and one of the off-
diagonal elements in the electron row vanishes, Meγ ¼ 0

with γ ¼ μ; τ. Lastly, the case with Mμμ ¼ Mττ ¼ 0 is also
in agreement with current data.
The one-texture zero case leads to two predictions forMν

as it constrains the real and imaginary parts of this mass
matrix element.18 Two constraints also apply to oscillation
and 0νββ experiments. In the two-texture zero case the
number vanishing mass matrix elements double; therefore,
the number of constraints is now four. In both one- and two-
texture zero cases, one can derive expressions for masses;
see Appendix A.
In Fig. 11 we show the results for the one-texture zero

case. We find that three models are in the funnel where the
model with Mee ¼ 0 is 100% in the funnel and Meμ and
Meτ are partially in the funnel. Additionally, both models in
the funnel predict a lower bound on m1 ≳ 4 × 10−3 eV
in NO.
In Fig. 12 we show the results for the two-texture zero

case. We find that only 46% (7=15) of the models are viable
and 28% (2=7) of the viable models are in the funnel,
specifically the twoMee ¼ 0 models. Furthermore, the five

nonfunnel viable models predict large values of the lightest
mass mlightest > 3 × 10−2 eV, which is in the quasidegen-
erate region and is already ruled out by cosmology. This
means the only actual viable models, when also including
cosmological data, for two-texture zeros are the models
withMee ¼ 0 and one of eitherMeμ ¼ 0 orMeτ ¼ 0 which
also predict mββ ¼ 0. This is a new result.
There is another study that looked at a unique class of

models which can be described as texture zeros with
rotational corrections. This study concluded that it was
possible for models to go well into the funnel, although it is
important to note that θ13 was not known at the time of this
study [23].

F. Modular symmetries with fixed modulus

In [87] models based on modular symmetries with a
fixed modulus were studied. In these models only one field
is introduced which, upon obtaining a vacuum expectation
value, breaks the flavor symmetry [203] (for a review see
also [204]). In comparison to models with discrete
symmetries where multiple fields are introduced, a reduc-
tion of free parameters is achieved which leads to more
correlations between physical parameters. So far, five
models with the most correlations have been identified in
the literature.19 In these models the symmetric mixing
matrix gets corrected by a 1-2 or 1-3 rotation, similar to
the case of one charged lepton rotation. Then, the three
mixing angles and the Dirac CP phase are determined by
two free model parameters only. These models also lead to
mass sum rules similar to those discussed in Sec. III C. In
this case, however, the coefficients of the mass sum rule
are not constant, but they depend on the two free model
parameters, leading to a correlation among the neutrino
masses, Majorana phases, and mixing parameters. The
expressions for the mass sum rules and the mixing angles
can be found in [87]; for convenience, we quote them
again in Appendix E. Similar to the case of mass sum
rules, these models predict a lower and an upper bound on
the lightest mass; see Sec. III C.
Our results are shown in Fig. 13. All five models are

viable, although two of them are only valid in the high
mass region that is disfavored by cosmological data.
For the five models present in the literature, we find
that two are in the funnel at only the 5% or 7% level
(log prior).
It is likely that more models with such correlations

exist. Their predictivity of different neutrino observables
makes them an interesting target for future neutrino
experiments, even beyond neutrinoless double beta
decay [18].

TABLE II. Fraction of each model in the funnel for the
two-texture zeros cases as defined in the text assuming the
NO. Models with an X are not viable anywhere in parameter
space at 3σ.

Meμ Meτ Mμμ Mμτ Mττ

Mee 1 1 X X X
Meμ X 0 X 0
Meτ 0 X 0
Mμμ X 0
Mμτ X

TABLE I. Fraction of each model that is in the funnel for the
one-texture zero cases as defined in the text using a log prior
assuming the NO. All six models are viable in some region of
parameter space.

Fraction in funnel

Mee 1
Meμ 0.31
Meτ 0.30
Mμμ 0
Mμτ 0
Mττ 0

18Even if the mass matrix element is chosen to be real, there are
still two constraints on the combination of mixing matrix
elements and mass eigenvalues.

19Note that there are models with a free value of the modulus
field where a sum rule can arise like in [205].
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FIG. 12. Same as Fig. 5 but for two-texture zeros. Note that as in Fig. 11, the twoMee ¼ 0models predict that jmββj ¼ 0 and is thus at
the bottom of the left panel, hence the presence of two models that predict 100% of the model space in the funnel. On the left panel there
is a small sliver of predicted space in the quasidegenerate region on the top right in the cosmologically disfavored region.

FIG. 13. Same as Fig. 5 but for models with modular symmetries.

FIG. 11. Same as Fig. 5 but for one-texture zeros. Note that theMee ¼ 0model predicts that jmββj ¼ 0 and is thus at the bottom of the
left panel, hence the presence of a model that predicts 100% of the model space in the funnel.
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IV. DISCUSSION

In Table III we give an overview of the number of models
contained in each category and the number of allowed
models, and we provide the fraction of models in the
funnel. We see that some model categories have a sizable
fraction in the funnel; however, we caution the reader that
this could be an over representation due to the measure
chosen; see Eq. (6). Finally, some model categories only
feature a small number of viable models; therefore, the total
number of models in the funnel is not so big.
Among the model categories surveyed, we find that

funnel fractions of ≈20%–100% are possible, making
probes of the funnel region a crucial target to comprehen-
sively test different flavor models. Interestingly, most of the
models studied that feature a fraction of parameter space
in the funnel also predict parameter space outside of the
funnel. This allows 0νββ experiments to narrow down the
parameter spaces of the models in the near future, even
without penetrating the funnel region. Exceptions to this
are texture zero models withMee¼0which predictmββ¼0

exactly and are therefore fully contained in the funnel.20

Here we focused on models based on symmetries.
Another approach, referred to as “anarchy,” assumes that
the leptonic mixing matrix can be described as the result of
a random draw from an unbiased distribution of unitary
three-by-three matrices [206–208]. In the past it has been
shown that the probability for jmββj < 10−3 eV is small,
around 5% [208]; see also [209]. Therefore, flavor models
based on symmetries can be more likely to predict a region
in the funnel in some cases.
Additionally, several models like sum rules, modular

symmetries, and one-texture zeros prefer large values for
the lightest mass and present a lower limit onmlightest within
the reach of near future 0νββ experiments [14] such that the
whole region of parameter space can be probed with
cosmology very soon. Generalized CP and charged lepton
corrections, on the other hand, do not predict the absolute

mass scale such that these models will remain viable
independent of a future measurement of mlightest. We note
that these models also predict other observables which
allow us to test these models. In fact, these predictions are
crucial in our assessment of the validity of these models.
We find that for charged lepton corrections and two-texture
zeros, only roughly half of the total models are viable due to
their predictions for the mixing angles. In comparison to
previous studies in the literature, an important change
is that the precision on Δm2

31 has improved from 4% to
1% [16], which has a big effect on the results and, in
particular, the validity of models. Future measurements
of the oscillation parameters will further test models; in
particular, improvements on δ and θ12 will probe and
distinguish different models [18] which will further narrow
down the number of valid flavor models. Even though
neither δ nor θ23, the two oscillation parameters which are
currently most uncertain, plays a role for 0νββ, their
measurements indirectly affect our results here as these
measurements constrain the model parameters in that they
tell us which models are valid. For this study we did
not include a prior on δ; however, models based on
generalized CP, charged lepton corrections, texture zeros,
and models with modular symmetries also predict δ; their
validity will be tested with the next generation of experi-
ments, which in turn will change the 0νββ landscape.
Therefore, flavor models provide a rich model space to test
with upcoming experiments, including oscillation experi-
ments and cosmology.
When quantifying the fraction of a model in a funnel,

some choices need to be made related to Eq. (6). While
many of our results are presented with a log prior inmlightest,
we also perform all the same calculations with a linear prior
in mlightest; see the right panel in Figs. 5, 7, 10–13. A linear
prior in masses is related to what one would expect in
anarchy for certain mass models [207]21 while, on the other
hand, the other fermion masses (i.e., their Higgs Yukawa
couplings) seem to be distributed uniformly on a log scale;
see, e.g., [210]. When considering a linear prior, the
fraction of the model prediction in the funnel is less than
or equal to the fraction in the funnel with a log prior. They
are the same in models which are entirely in the funnel
(such as theMee ¼ 0 texture zero model predictions) or not
at all in the funnel. The difference is because models that
are partially in the funnel all contain predictions out of the
funnel at higher values of mlightest. With a linear prior, this
region tends to quickly dominate the comparatively small
region in the funnel. Note that it is conceivable that a model
prediction would have the opposite trend: a larger funnel
fraction with a linear prior than with a log prior. However,

TABLE III. An overview of the number of total model groups
contained in each model category, the number of valid model
groups given oscillation data, and the fraction of valid model
groups which penetrate the funnel region in the NO.

Model Total Viable
Fraction of viable
models in funnel

Generalized CP 10 10 0.20
Mass sum rules 3137 1968 0.14
Charged lepton corrections 75 31 1.00
One-texture zeros 6 6 0.50
Two-texture zeros 15 7 0.28
Modular symmetries 5 5 0.40

20Potentially, some sum rules with coefficients ci > 2 or
different values of d might also be fully contained in the funnel.

21For real Dirac matrices the mass part of the anarchy measure
is Δm2

21Δm2
31Δm2

32dm1dm2dm2 while the complex cases have an
additional weighting of m1m2m3 which modifies the prior.
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that does not seem to happen with the model predictions
considered here.
Finally, in all of the above computations, we assume that

the predictions in the models are exact at the low energy
scale of neutrinoless double beta decay, and we assume that
the full particle content of the mass model of neutrinos does
not modify these symmetry predictions. In models where the
symmetry arises from a high scale, presumably related to
neutrino mass generation, potential corrections to the low
scale predictions can arise, however, from renormalization
group running effects. In this case there may be corrections
from running that could have an important impact on the
parameters depending on both the flavor prediction structure
and the mass generation model; see, e.g., [149,211–217]. In
some cases such as texture zeros, the flavor prediction may
persist down to low scales [201,218], however, and thus
running has no impact in these cases. On the other hand, it
has been shown that in some mass generation models the
neutrino parameters do not run from the heavy scale to the
low scale at all [219]; thus, any flavor prediction associated
with the mass generation mechanism would be preserved at
the scale of oscillations and neutrinoless double beta decay.
In addition, in the case of random values (e.g., anarchy) of
the mixing parameters [206,208], running effects do not
significantly change the funnel narrative under various mass
generation scenarios [220]. Fully exploring this space of
both flavor predictions and underlying mass models at the
same time is beyond the scope of this paper. We can estimate
that, in these scenarios, the flavor predictions of, for
example, all of the sum rules considered that land in the
funnel may not be the ones we have shown; however, we
anticipate that a comparable fraction of them will be in the
funnel when scanning over many different mass generation
scenarios, and thus our qualitative results should be inde-
pendent of renormalization group running.

V. CONCLUSIONS

An observation of neutrinoless double beta decay will
have a tremendous impact on our understanding of nature.
Apart from proving that lepton number is not a conserved
symmetry of nature, it can also provide valuable insights
into other open problems of the SM like the flavor puzzle.
Motivated by the current and anticipated experimental
progress of various neutrino experiments, we have studied
the predicted ranges ofmββ andmlightest of several classes of
flavor models. In particular, we focused on the funnel
region in normal mass ordering with jmββj < 1 meV,
which is experimentally challenging to probe in order to
answer the question of how likely it is that a model
prediction is only realized in the funnel, which would
require a massive leap in experimental progress.
We have considered five broad classes of flavor models

based on different symmetries. After assessing their val-
idity by comparing their predictions to our up-to-date
experimental knowledge from oscillation experiments,

we calculated the funnel fractions of the valid models.
Our study shows that all of the studied model classes
feature models with parameter space in the funnel. Indeed,
the fractions of viable models that are in the funnel range
from 5%–100%. Thus, flavor models may well be more
likely to predict that jmββj is in the funnel than in the case of
random neutrino mixing matrices, anarchy, where the
funnel probability is around 5%. Additionally, we have
provided PDFs of the predicted mββ −mlightest regions of
the classes of flavor models. We find that models which
predict the absolute mass scale generally predict larger
neutrino masses such that cosmological observatories can
test them as well in the near future in addition to crucial
tests of the predicted values for the mixing angles to
upcoming oscillation experiments.
Our results can be used to plan the target sensitivity of

upcoming neutrinoless double beta decay experiments with
the goal to probe most of the parameter space motivated by
flavor models (see [221] for a similar study focusing on
existing sum rules in flavor models).
In this study we focused on light Majorana neutrino

exchange as the underlying scenario for 0νββ. Other
scenarios when new particles are introduced could also
predict a region in the funnel. For example, models with a
sterile neutrino allow for vanishing rates for 0νββ [222–227].
In particular, depending on the sterile parameters, a funnel in
IO opens up. However, a Bayesian analysis of eV sterile
parameters showed that the posterior probability that jmeej
falls into the funnel region is very small, < 0.3% [228].
On the other hand, models based on a left-right symmetry do
not predict a region in the funnel [31,32]; neither does a
model where a new scalar interaction [229] is introduced.
As neutrinoless double beta decay experiments continue

to push the limits down into the inverted mass ordering
region, understanding the theoretically favored regions of
parameter space is important to plan for experimental
upgrades. In order to unambiguously interpret a measure-
ment in the context of flavor models presented in this work,
improvements in nuclear matrix calculations are also
needed.
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APPENDIX A: EXPRESSIONS FOR THE
ELEMENTS OF THE MASS MATRIX

Here we give the expressions for the elements of the
mass matrix as a function of the mixing parameters and
the mass eigenvalues. The number of free parameters in the
Majorana mass matrix and in the mixing matrix together

PETER B. DENTON and JULIA GEHRLEIN PHYS. REV. D 109, 055028 (2024)

055028-16



with the light mass eigenvalues, nine, coincide as expected. Realistically, we are only able to measure eight out of the nine
free parameters in the mass matrix, as we have no observable which depends on the individual Majorana phases.

mee ¼ m1eiαc212c
2
13 þm2eiβc213s

2
12 þm3s213; ðA1Þ

meμ ¼ m1eiαc12c13ð−c23s12 − eiδc12s13s23Þ þm2eiβc13s12ðc12c23 − eiδs12s13s23Þ þm3eiδc13s13s23; ðA2Þ

meτ ¼ m1eiαc12c13ð−c12c23s13 þ e−iδs12s23Þ þm2eiβc13s12ð−c23s12s13 − e−iδc12s23Þ þm3c13c23s13; ðA3Þ

mμμ ¼ m1eiαð−c23s12 − eiδc12s13s23Þ2 þm2eiβðc12c23 − eiδs12s13s23Þ2 þm3e2iδc213s
2
23; ðA4Þ

mμτ ¼ m1eiαð−c12c23s13 þ e−iδs12s23Þð−c23s12 − eiδc12s13s23Þ
þm2eiβð−c23s12s13 − e−iδc12s23Þðc12c23 − eiδs12s13s23Þ þm3eiδc213c23s23; ðA5Þ

mττ ¼ m1eiαð−c12c23s13 þ e−iδs12s23Þ2 þm2eiβð−c23s12s13 − e−iδc12s23Þ2 þm3c213c
2
23: ðA6Þ

For one vanishing matrix element Mαβ ¼ 0, the expressions for the neutrino mass ratios are [182]

m1

m3

¼ ReðUα3Uβ3ÞImðUα2Uβ2eiβÞ − ReðUα2Uβ2eiβÞImðUα3Uβ3Þ
ReðUα2Uβ2eiβÞImðUα1Uβ1eiαÞ − ImðUα2Uβ2eiβÞReðUα1Uβ1eiαÞ

; ðA7Þ

m2

m3

¼ ReðUα1Uβ1eiαÞImðUα3Uβ3eiβÞ − ImðUα1Uβ1eiαÞReðUα3Uβ3eiβÞ
ReðUα2Uβ2eiβÞImðUα1Uβ1eiαÞ − ImðUα2Uβ2eiβÞReðUα1Uβ1eiαÞ

: ðA8Þ

The condition of two vanishing mass matrix elements
Mαβ;Mδγ , ðαβÞ ≠ ðδγÞ, can be translated to expressions for
the neutrino masses and Majorana phases [196],

m1

m3

¼
����Uγ3Uδ3Uα2Uβ2 −Uγ2Uδ2Uα3Uβ3

Uγ2Uδ2Uα1Uβ1 −Uγ1Uδ1Uα2Uβ2

����;
m2

m3

¼
����Uγ1Uδ1Uα3Uβ3 −Uγ3Uδ3Uα1Uβ1

Uγ2Uδ2Uα1Uβ1 −Uγ1Uδ1Uα2Uβ2

����: ðA9Þ

α ¼ arg

�
Uγ3Uδ3Uα2Uβ2 − Uγ2Uδ2Uα3Uβ3

Uγ2Uδ2Uα1Uβ1 − Uγ1Uδ1Uα2Uβ2

�
;

β ¼ arg

�
Uγ1Uδ1Uα3Uβ3 − Uγ3Uδ3Uα1Uβ1

Uγ2Uδ2Uα1Uβ1 − Uγ1Uδ1Uα2Uβ2

�
: ðA10Þ

We see that the Majorana phases depend on the value of
the Dirac CP phase in the PMNS matrix contained in
matrix elements Uμi, i∈ ½1; 3�, Uτ1; Uτ2. Furthermore, from
Eq. (A9) we see that the ratios of the neutrino masses
depend on the values of the matrix elements. With the
known values for the mass splittings, we obtain a lower
bound on the lightest mass, depending on which matrix
elements are zero.
From these expressions we see that there is no one-to-one

correspondence between mass eigenvalues and observables
in experiments. This means that only with a combination of
measurements (i.e., different oscillation channels and an
observation of neutrinoless double beta decay) can one

reconstruct the neutrino mass matrix. This situation is
similar to considering only one measurement at oscillation
experiments. In one channel one is only sensitive to a
certain combination of parameters. Only a combination of
measurements can tell us the values of the mixing angles.
In addition, for absolute neutrino mass measurements

such as from KATRIN or cosmology and neutrinoless
double beta decay, we are left with one measurement of
one combination of parameters assuming no prior knowl-
edge of the results from other experiments; one can
therefore predict something for oscillation experiments
as well. In reality, we already have measurements from
oscillations such that predictions from an absolute mass
measurement do not contribute new knowledge for
oscillation experiments.

APPENDIX B: GELL-MANN SUð3Þ GENERATORS
AND THE MASS MATRIX

The mass matrix need not be parametrized as three
masses, three mixing angles, and three phases. Other
parametrizations are possible. One such explicit example
is with SUð3Þ generators, such as the Gell-Mann matrices;
see, e.g., [230]. That is, the mass matrix from Eq. (5) can be
written as

M ¼ Mscale

Y8
i¼1

expðaiλiÞ; ðB1Þ
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where the eight ai ∈R are free parameters as isMscale, which
sets the dimensionful scale, and the λi are some traceless
representation of SUð3Þ such as the Gell-Mann matrices.
The dimensionful scale parameter can also be thought of as
the trace part ofM. This could imply a novel flavor structure
similar to texture zeros by requiring some subset of the ai to
be zero. One could also consider representations other than
the Gell-Mannmatrices, such as cyclic representations [231].
Investigating the phenomenology of such flavor models is
beyond the scope of this work.

APPENDIX C: INDEPENDENT GENERALIZED
CP MODELS

In Table IV we list the phase combinations which are
independent for models with generalized CP. We see that
it is sufficient to constrain α to be between ½0; π� and
β∈ ½0; 2π� to cover the whole parameter space.

APPENDIX D: SUM RULES IN THE FUNNEL

In Table V we show the parameters of sum rules which
lead to at least a 50% fraction in the funnel with a log prior.

APPENDIX E: EXPRESSIONS FOR PHYSICAL
PARAMETERS IN MODELS WITH

MODULAR SYMMETRIES

Here we give the expressions for the oscillation param-
eters and the sum rule in models with modular symmetries,
first derived in [87]. The parameters θ;ϕ are free model
parameters.

(i) A model based on A4 symmetry was studied in
[232]. Two cases arise, depending on the assumption
on the charged lepton mixing matrix. The expres-
sions for the mixing parameters remain the same in
both scenarios.

sin2 θ12ðθÞ ¼
1

3 − 2 sin2 θ
; ðE1Þ

sin2 θ13ðθÞ ¼
2

3
sin2 θ; ðE2Þ

sin2θ23ðθ;ϕÞ¼
1

2
þsinθ13ðθÞ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2−3sin2θ13ðθÞ

p
1−sin2θ13ðθÞ

cosϕ;

ðE3Þ

δðθ;ϕÞ ¼ arcsin

�
−

sinϕ
sin 2θ23ðθ;ϕÞ

�
: ðE4Þ

The parameters in the sum rule [see Eq. (7)] in
case I are

c1 ¼ −e−2iϕ − ie−iϕf2 sinϕ

¼ −e−2iϕ
ffiffiffi
3

p
sinð2θÞ − cosϕ cosð2θÞ − i sinϕffiffiffi

3
p

sinð2θÞ − cosϕ cosð2θÞ þ i sinϕ
;

ðE5Þ

c2 ¼ −e−iϕ
2ffiffiffi

3
p

sinð2θÞ − cosϕ cosð2θÞ þ i sinϕ
;

ðE6Þ

d ¼ 1: ðE7Þ

TABLE IV. Pairs of values for the Majorana phases α, β in
models with generalized CP which lead to different results for
jmββj. Some pairs are equivalent to others; these are in the table to
the right. The bolded pairs are the ones which predict a region in
the funnel.

ðα; βÞ
ð0;πÞ
ðπ; 0Þ
(0, 0)
ðπ; πÞ

ðα; βÞ
ð0; π=2Þ or ð0; 3π=2Þ
ðπ=2; 3π=2Þ or ð3π=2; π=2Þ
ðπ; π=2Þ or ðπ; 3π=2Þ
ðπ=2; 0Þ or ð3π=2; 0Þ
ðπ=2; π=2Þ or ð3π=2; 3π=2Þ
ðπ=2; πÞ or ð3π=2; πÞ

TABLE V. Parameters of sum rules which lead to at least a 50%
fraction in the funnel with a log prior.

c1 c2 d χ1 χ2 Fraction in funnel

1 2 −1=2 π=2 0 0.74
1 2 −1=2 3π=2 0 0.74
4=6 1 −1=2 3π=2 0 0.67
4=6 1 −1=2 π=2 0 0.62
5=6 1 −1=2 3π=2 0 0.59
5=6 1 −1=2 π=2 0 0.58

(Table continued)

TABLE V. (Continued)

c1 c2 d χ1 χ2 Fraction in funnel

5=6 2 −1=2 π=2 0 0.58
5=6 2 −1=2 3π=2 0 0.58
1 2 −1=2 0 π=2 0.58
1 2 −1=2 0 3π=2 0.58
1=3 1 −1=2 0 π=2 0.56
4=6 5=6 −1=2 π=2 0 0.54
4=6 5=6 −1=2 3π=2 0 0.54
1=6 1=6 −1=2 π π 0.54
1=3 1 −1=2 0 3π=2 0.54
1=6 1=2 −1 0 0 0.51
1=6 4=6 −1 0 0 0.51
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In the second scenario the coefficients of the mass
sum rule are related to the coefficients in the first
case by

cðIIÞ1 ¼ cðIÞ1 e−4iϕ; ðE8Þ

cðIIÞ2 ¼ −cðIÞ2 e2iϕ: ðE9Þ

(ii) A model based on two modular S4 symmetries has
been studied in [233]:

sin θ13 ¼
sin θffiffiffi

3
p ; ðE10Þ

tan θ12 ¼
cos θffiffiffi

2
p ; ðE11Þ

tan θ23 ¼
������
cos θ þ

ffiffi
2
3

q
eiϕ sin θ

cos θ −
ffiffi
2
3

q
eiϕ sin θ

������; ðE12Þ

tan δ ¼ −
5þ cosð2θÞ
1þ 5 cosð2θÞ tanϕ: ðE13Þ

The parameters in the sum rule read

c1 ¼
1

cos2 θ − eiϕ sinð2θÞ ; ðE14Þ

c2 ¼ −
tan θ þ 2eiϕ

2e3iϕ − e2iϕ cotðθÞ ; ðE15Þ

d ¼ −1: ðE16Þ

(iii) In [234] a model with a modular S4 symmetry has
been investigated:

sin θ13 ¼
1ffiffiffi
3

p sin θ; ðE17Þ

tan θ12 ¼
1ffiffiffi
2

p cos θ; ðE18Þ

tan θ23 ¼
���� 2e

iϕ tan θ þ ffiffiffiffiffiffiffiffi
3=2

p ð1þ i
ffiffiffi
3

p Þ
3

ffiffiffiffiffiffiffiffi
2=3

p
− ð1 − ffiffiffi

3
p

iÞeiϕ tan θ

����; ðE19Þ

tan δ ¼ −
ðcosð2θÞ þ 5Þð ffiffiffi

3
p

sinϕ − 3 cosϕÞ
ð5 cosð2θÞ þ 1Þð ffiffiffi

3
p

cosϕþ 3 sinϕÞ :

ðE20Þ

The parameters of the sum rule are

f1 ¼
2=ðcos θ sin θÞ

ð−2 − 2i
ffiffiffi
3

p Þeiϕ þ iðiþ ffiffiffi
3

p Þ cot θ ; ðE21Þ

f2¼−
ðiþ ffiffiffi

3
p þ2ð−iþ ffiffiffi

3
p ÞeiϕcotθÞtanθ

2ð−iþ ffiffiffi
3

p Þe3iϕ−ðiþ ffiffiffi
3

p Þe2iϕcotθ ; ðE22Þ

d ¼ −1: ðE23Þ
(iv) The model studied in [235] is based on a A5

symmetry which leads to the following expressions,
with ϕg ¼ ð1þ ffiffiffi

5
p Þ=2 the golden ratio:

sin θ13 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

10
ð5þ

ffiffiffi
5

p
Þ

r
sin θ; ðE24Þ

tan θ12 ¼
2

1þ ffiffiffi
5

p 1

cos θ
; ðE25Þ

tan θ23 ¼
������

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5

p
ϕg

q
− e−iϕ tan θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

5
p

ϕg

q
þ e−iϕ tan θ

������; ðE26Þ

tan δ ¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5þ ffiffiffi

5
pp

sinðϕÞð2ð ffiffiffi
5

p þ 2Þ cos2ðθÞ þ 1þ ffiffiffi
5

p Þ
Dδ

; ðE27Þ

Dδ ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5þ

ffiffiffi
5

pq
cosðϕÞ cosð2θÞ

h
ð

ffiffiffi
5

p
þ 2Þ cosð2θÞ þ 3þ 2

ffiffiffi
5

p i

þ
ffiffiffi
2

p
sinð2θÞ

h
ð5

ffiffiffi
5

p
þ 11Þ cosð2θÞ þ 19þ 9

ffiffiffi
5

p i
cosð2θ23Þ: ðE28Þ

The coefficients of the sum rule are

c1 ¼ e−2iϕ
ð1 − ffiffiffi

5
p Þe2iϕ cot θ þ ð ffiffiffi

5
p þ 1Þ tan θ − 8eiϕ

ð1 − ffiffiffi
5

p Þe2iϕ tan θ þ ð ffiffiffi
5

p þ 1Þ cot θ þ 8eiϕ
; ðE29Þ

c2 ¼
10

ð ffiffiffi
5

p
− 5Þe2iϕ sin2 θ þ 4

ffiffiffi
5

p
eiϕ sinð2θÞ þ ð5þ ffiffiffi

5
p Þ cos2 θ ; ðE30Þ

d ¼ 1: ðE31Þ
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