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Unlike other realizations of the 2-Higgs doublet model (2HDM), the so-called type-I allows for a very
light Higgs boson spectrum. Specifically, herein, the heaviest of the two CP-even neutral Higgs states, H,
can be the one discovered at the Large Hadron Collider (LHC) in 2012, with a mass of ≈125 GeV and
couplings consistent with those predicted by the Standard Model (SM). In such a condition of the model,
referred to as “inverted mass hierarchy,” the decay of the SM-like Higgs state into pairs of the lightest
CP-even neutral Higgs boson, h, is possible, for masses of the latter ranging from MH=2 ≈ 65 GeV down
to 15 GeVor so, all compatible with experimental constraints. In this paper, we investigate the scope of the
LHC in accessing the process gg → H → hh → bb̄ττ by performing a Monte Carlo (MC) analysis aimed at
extracting this signal from the SM backgrounds, in presence of a dedicated trigger choice and kinematic
selection. We prove that some sensitivity to such a channel exists already at run 3 of the LHC while the
High-Luminosity LHC (HL-LHC) will be able to either confirm or disprove this theoretical scenario over
sizable regions of its parameter space.
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I. INTRODUCTION

In the SM of particle physics, it is well known that the
Higgs boson [1,2] is responsible for the generation
of fermion and gauge boson masses through what is

called spontaneous symmetry breaking (SSB) [3,4].
Such a mechanism also predicts a self-interaction for the
Higgs state.
The measurement of such a self-coupling is the only

experimental way to understand the SSB mechanism and to
reconstruct the Higgs potential responsible for it. This is an
important (and challenging) task also because it can shed
some light on possible beyond the SM (BSM) effects that
may affect Higgs self-couplings in general.
The LHC has started a new campaign of measurements

after the recent upgrade, the so-called run 3. This will
involve, among other things, measuring ever more precisely
the coupling of the SM-like Higgs boson to other SM
particles or even progressing toward the measurement of its
self-coupling. The LHC is also capable of measuring new
decays of the SM-like Higgs boson into non-SM particles.
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Current results from the ATLAS and CMS experiments
indicate that the measured SM-like Higgs signal rates in all
channels agree well with the SM theoretical predictions at
the ∼2σ level [5,6]. However, there are several pieces of
evidences, both theoretical (the hierarchy problem, the
absence of gauge coupling unification, etc.) and experi-
mental (neutrino masses, the matter-antimatter asymmetry,
etc.), which indicate that the SM could not be the ultimate
description of Nature but should be viewed as a low-energy
effective theory of some more fundamental one yet to be
discovered.
There exist several BSM theories that address these

weaknesses of the SMwhile identifying the 125 GeV scalar
particle as a part of an extended scalar sector. One of the
simplest extensions of the SM is the 2HDM, which
contains two Higgs doublets, Φ1 and Φ2, which give
masses to all fermions and gauge bosons. The particle
spectrum of the 2HDM is as follows: two CP-even (h and
H, with mh < mH, one of them being identified with the
SM-like Higgs boson with mass 125 GeV: H in our case),
one CP-odd (A) and a pair of charged (H�) Higgs bosons.
According to the latest experimental results from both

ATLAS and CMS, the presence of non-SM decay modes of
the SM-like Higgs boson is not completely ruled out. Both
experiments have set upper limits on the branching ratio
(BR) of such non-SM decays which are 12% for ATLAS [5]
and 16% for CMS [6]. The LHCexperiments are expected to
soon constrain the BRs of such non-SM decays beyond the
5%–10% level using indirect measurements [7,8]. There
exist several BSMmodels that possess such non-SM decays
of the SM-like Higgs boson: non-minimal scenarios of
Supersymmetry [9] such as the next-to-minimal supersym-
metric Standard Model and new minimal supersymmetric
Standard Model (NMSSM/mMSSM) [10–13], models for
dark matter (DM) [14–17], scenarios with first order
electroweak (EW) phase transitions [18,19] and an extended
Higgs sector [20,21]. It is then crucial to use LHC Higgs
measurements to test BSM models that predict such exotic
SM-like Higgs decays (i.e., into non-SM particles).
Previous phenomenological studies explored the poten-

tial presence of a lighter Higgs boson [22–33] and provided
prominent signatures to probe the extended Higgs sector at
the LHC. Direct detection of a light scalar h might be
possible in a variety of production mechanisms and decay
channels. In the 2HDM, if the heavy CP-even H is the
observed SM-like Higgs boson, then H can decay into a
pair of light CP-even Higgs states, H → hh, or CP-odd
ones, H → AA. The phenomenology of such decays of the
observed SM-like Higgs boson is studied in Refs. [32–35]
for the case of the 2HDM, with an emphasis on the so-
called type-I (see below). In this analysis, we focus
primarily on the indirect generation of a pair light Higgs
through the decay H → hh, where the main production
mode of H is via gluon fusion (ggF). This decay channel
falls within an interesting class of processes that were

probed at the LHC to explore the light Higgs within the
sub-62 GeV range.
Following the discovery of the SM-like Higgs boson by

ATLAS and CMS at the LHC in 2012, there have been
several experimental searches for exotic decays of the
SM-like Higgs through four fermions final states: pp →
H → XX → f1f1f2f2, where f1;2 are 2 light fermions such
as muons, taus, or bottom quarks. Such a search clearly
benefits from the large cross section σðpp → HÞ as
well as from the large BR of the exotic SM-like Higgs
decay H → hh that could reach up to 10% in some
BSM scenarios. In that spirit, the ATLAS and CMS
collaborations have performed several searches looking
for ττττ [36,37], ττμμ [36,38–40], bb̄μμ [36,41,42], bb̄ττ
[43,44], eeee [45], eeμμ [45], and μμμμ [45–49], which
have enabled one to set an upper limit on the BR of the X
decay into any given 2 light fermions.
Motivated by the recent search for bb̄ττ final states

conducted by the CMS experiment [43,44], herein, we
would like to address the study of signal and background
for such a final state within the so-called 2HDM type-I.
We first demonstrate that, within this framework, the
production rate of bb̄ττ via the process σðpp → HÞ ×
BRðH → hhÞ × BRðh → bb̄Þ × BRðh → ττÞ could be
substantial and then perform a feasibility study based on
a signal-versus-background analysis using standard
Monte Carlo (MC) simulation tools. It is found that the
interesting parameter space could be either confirmed or
disproved by a large dataset (say 3000 fb−1), which can be
attained at the High Luminosity LHC (HL-LHC) [50], with
possible hints of such a signal already at run 3 of the LHC
(for 300 fb−1).
The paper is organized as follows: in Sec. II we give a

brief review of the 2HDM and describe the theoretical and
experimental constraints that are used. In Sec. III, we
present some general features of the SM-like Higgs boson
decays into two light Higgs bosons and further into bb̄ττ
final states over the parameter space of the inverted mass
hierarchy scenario of the 2HDM type-I. In Sec. IV, we
perform a detailed MC study of the feasibility of the signal
process gg → H → hh → bb̄ττ at the current run 3 of the
LHC and future HL-LHC stages. In Sec. V, we end this
work with some conclusions.

II. THEORETICAL AND EXPERIMENTAL
CONSTRAINTS

The 2HDM is obtained by extending the Higgs sector of
the SM with an additional Higgs doublet field. Assuming
that Φi (i ¼ 1, 2) are the two SUð2ÞL Higgs doublets and
v1;2 are their vacuum expectation values (VEVs), the most
general renormalizable potential which is invariant under
SUð2ÞL ×Uð1ÞY with a softly broken Z2 symmetry is
given by [21]:
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VHiggsðΦ1;Φ2Þ ¼ λ1ðΦ†
1Φ1Þ2 þ λ2ðΦ†

2Φ2Þ2 þ λ3ðΦ†
1Φ1ÞðΦ†

2Φ2Þ þ λ4ðΦ†
1Φ2ÞðΦ†

2Φ1Þ

þ 1

2

�
λ5ðΦ†

1Φ2Þ2 þ H:c:
�þm2

11Φ
†
1Φ1 þm2

22Φ
†
2Φ2 þ

�
m2

12Φ
†
1Φ2 − H:c:

�
: ð1Þ

By hermiticity, λ1;2;3;4 as well as m2
11 and m2

22 are all real-
valued. The parameters λ5 andm2

12 can be complex and can
generate CP violation in the Higgs sector. However, in
what follows, we assume that there is no such phenomenon.
After EW symmetry breaking (EWSB) takes place, from

the 8 degrees of freedom initially present inΦ1 andΦ2, 3 are
taken up by the ensuing Goldstone bosons to give masses to
the gauge bosons W� and Z, so we are eventually left
with 5 physical Higgs states. A pair of charged HiggsH�, a
CP-oddA and twoCP-even statesH andh (withmh < mH),
asmentioned.One of the neutralCP-evenHiggs states has to
be identified with the 125 GeV SM-like Higgs particle
observed at the LHC. In the present study, as intimated, we
will assume mH ¼ 125 GeV while mh < mH=2.
The whole Higgs sector of the 2HDM is then para-

metrized by 7 parameters: e.g.,

mH� ; mA; mH; mh; α; β and m2
12; ð2Þ

where α is the mixing angle between the CP-even compo-
nents of the neutral Higgs states of the doublet fields while
β is the mixing between the CP-odd components and is
given by tan β ¼ v2=v1. As we are considering the scenario
where H state is the 125 GeV scalar, the SM (alignment)
limit is recovered when cosðβ − αÞ ≈ 1.
From the above Higgs potential, one can derive, in

particular, the triple Higgs coupling Hhh needed for our
analysis, as follows [51,52]:

Hhh¼−
gcβ−α
2mWs22β

�ð2m2
hþm2

HÞs2αs2β−2ð3s2α−s2βÞm2
12

�
;

ð3Þ

where sx and cx are shorthand notations for sin x and
cos x, respectively. The coupling Hhh is proportional to
cosðβ − αÞ which is close to unity in our scenario with H
being the observed SM-like Higgs boson, as explained.
In the Yukawa sector, if we proceed to EWSB like

in the SM, we end up with flavor changing neutral
currents (FCNCs) at tree level. Such dangerous FCNCs
can, however, be avoided by imposing a discrete Z2

symmetry [53] by coupling each fermion type to only
one of the Higgs doublets. As a consequence, there are four
types of 2HDM [21], of which, in this study, we are
interested only in the so-called type-I, wherein only the
doublet Φ2 couples to all fermions exactly as in the
SM [21].
The neutral Higgs couplings to fermions can be obtained

from the Yukawa Lagrangian and are given by [21]:

−LYukawa ¼
X

f¼u;d;l

mf

v

�
cos α
sin β

f̄fhþ sin α
sin β

f̄fH

�
: ð4Þ

As one can read from the above Lagrangian term, the
CP-even neutral Higgs couplings to quarks and leptons are
similar in the 2HDM type-I, since both are proportional to
1

sin β ∝
1

tan β: in particular, the H couplings to all fermions are
suppressed if tan β ≫ 1.
The parameter space of the 2HDM (whatever the type) is

limited by both theoretical and experimental constraints.
The theoretical ones that have been imposed on the Higgs
potential are as follows.

(i) Perturbativity constraints imply that all quartic
coefficients of the Higgs potential satisfy the con-
dition jλij ≤ 8π (i ¼ 1;…5) [21].

(ii) Perturbative unitarity constraints require that 2 → 2
scattering processes involving Higgs and gauge
bosons remain unitary at high energy [54–56].

(iii) Vacuum stability conditions require the Higgs
potential to be bounded from below when the Higgs
fields become large in any direction of the field
space [57].

We have used the public code 2HDMC-1.7.0 [58] to check the
above theoretical constraints.
We also take into account experimental constraints from

Higgs analyses at lepton and hadron colliders (LEP,
Tevatron, and LHC) as well as EW precision observables
(EWPOs). Limits from flavor physics observables are also
considered. Specifically, we have proceeded as follows.
(1) Exclusion limits at 95% confidence level (CL)

from Higgs analyses at the aforementioned colliders
are implemented via HiggsBounds-5.9.0 [59] and
HiggsSignals-2.6.0 [60].

(2) We impose compatibility with the EWPOs by
requiring the computed S, T, and U values [61–63]
be within 2σ of the SM fit of [64], taking into
account the full correlations among the three
parameters.

(3) Constraints from B-physics observables are taken
into account by using the public code SuperIso v4.1

[65], in particular, we have used the following
measurements:
(a) BRðB̄→XsγÞjEγ<1.6 GeV ¼ ð3.49� 0.19Þ× 10−4

[66],
(b) BRðBs → μþμ−ÞðLHCbÞ ¼ ð3.09þ0.46

−0.43Þ × 10−9

[67,68],
(c) BRðBs→μþμ−ÞðCMSÞ ¼ ð3.83þ0.38

−0.36Þ×10−9 [69],
(d) BRðB0 → μþμ−ÞðLHCbÞ ¼ ð1.2þ0.8

−0.7Þ × 10−10

[67,68], and
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(e) BRðB0→μþμ−ÞðCMSÞ ¼ ð0.37þ0.75
−0.67Þ×10−10 [69].

B-physics observables enforce indirect experimental
constraints on both tan β and mH� . The recent improved
calculation of BRðB̄ → XsγÞ within the 2HDM (type-II)
leads to a stronger lower bound on the charged Higgs mass
(mH� ≥ 800 GeV (95% CL) [70]. This constraint is,
however, relaxed in the 2HDM type-I, enabling the
possibility of a light charged Higgs boson in a low mass
range 100–200 GeV and tan β > 2 [71]. A previous
analysis [72] showed that Bd → μ�μ∓ (resp Δms) requires
tan β > 3 (resp tan β > 2.5) [72]. In this study, we only
considered the most constraining decays on the parameter
space of the 2HDM type-I, namely Bd;s → μþμ− and
B → Xsγ.
Lastly, additional constraints on light charged Higgs

boson (i.e.,mH� < 200 GeV) have been taken into account.
At the LHC, both ATLAS and CMS Collaborations have
carried out a variety of searches for light charged Higgs
bosons (mH� < mtop) in top quark decay, in different
final states, i.e., H� → τν [73–79], cs [80–82], cb [83],
W�Að→ μþμ−Þ[84]. These experiments have set upper
limits on charged Higgs production and decay rates.
Lately, the ATLAS group carried out a search for Hþ →
cb in tt̄ events, with 139 fb−1 of data at

ffiffiffi
s

p ¼ 13 TeV [85];
limits on Brðt → HþbÞ × BrðH� → cbÞ in the range 0.15%
to 0.42% were obtained.

III. NUMERICAL RESULTS

As mentioned repeatedly, in this study, we focus on the
inverted mass hierarchy scenario, where the heaviest Higgs
is identified as the observed 125 GeVat the LHC. We then
scan randomly the 2HDM parameters over the ranges of
Table I.
The important theoretical constraints on the 2HDM arise

from tree-level perturbartive unitarity and electroweak
vacuum stability. The parameter space allowed by these
two constraints can be enlarged, if we allow for a mass term
breaking the imposed Z2 symmetry softly, thus choosing a
nonzerom2

12 [86]. The choice ofm
2
12 ¼ m2

hcβsβ is motivated
to ensure a compliancewith the theoretical and experimental
constraints. On the other hand, after conducting a general
scan over sinðβ − αÞ∈ ½−0.25; 0.25�, and varying the
remaining parameters in the ranges given in Table 1, we
found that the positivevalues of sinðβ − αÞ are ruled out after
applyingHiggsSignal, which enforces constraints derived from
Higgs signal strength measurements (depicted by red points
in Fig. 1). We therefore restrict ourselves to negative values

of sinðβ − αÞ and narrowed down our scan to the following
range: sinðβ − αÞ∈ ½−0.25;−0.05�.
Upon meeting the theoretical requirements and the

constraints derived from past and ongoing experimental
studies, described in Sec. II, we illustrate in Figs. 2 and 3
the BRs for different decay modes of the light Higgs:
h → γγ; bb̄, and ττ. Away from the fermiophobic limit,
where the light Higgs couplings to fermions ðκhfÞ are very
suppressed (cα=sβ → 0) and the diphoton decay of the light
Higgs state can become significant, the total width of the h
state is clearly dominated by h → bb̄, over the entire
2HDM type-I parameter space, with a BR of 85%, followed
by the decay into ττ with BR of order ∼8%. The decay rate
of h → bb̄ drops to 45% when κhf approaches very small
values (≲0.001) and mh is around 15 GeV. Furthermore,
the partial width Γðh → bb̄Þ exhibits a suppression near the
2mb threshold and, therefore, h → γγ can closely compete
with h → bb̄ there. Within the same parameter space, the
decay width of the charged Higgs (ΓH�) is dominated by
the bosonic decay channel H� → W�h (see Fig. 4), which
is kinematically open in the mass rangemh ∈ ½10; 62� GeV,
whereas the fermionic decays are suppressed. The branch-
ing ratio BRðH� → W�hÞ enjoys an enhancement of the
coupling H∓W�h which is proportional to cosðβ − αÞ ≈ 1.
Previous phenomenological studies in the framework of
2HDM type-I motivated the charged Higgs bosonic decays
[87–89] to search for light charged Higgs, we therefore will
not be exploring the charged Higgs scenario any further in
this analysis.

TABLE I. The input parameters of the 2HDM are tabulated and their scan ranges given. (Note that we have fixed mH ¼ 125 GeV).

Parameter mh (GeV) mA (GeV) mH� (GeV) sinðβ − αÞ tan β m2
12 (GeV2)

Range [10, 62] [62, 100] [96, 200] [−0.25;−0.05] [2, 25] m2
h cos β sin β

FIG. 1. The parameter space of the 2HDM type-I over the
(sinðβ − αÞ; tan β) plane. Cyan points satisfy all theoretical
constraints and pass HiggsBounds test. Red points are allowed
by all theoretical requirements and experimental constraints
imposed by HiggsBounds and HiggsSignal.
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Figure 5 shows the overall cross section of the process
pp → H → hh → bb̄ττ, wherein the main channel for
producing the SM-like Higgs boson H is the gluon-gluon
fusion mechanism. Here, BRðh → bb̄Þ;BRðh → ττÞ and
BRðH → hhÞ are also displayed. Since the decay width of
the SM-like Higgs (ΓH) is of the order of a few MeV
(ΓATLAS

H ¼ 4.6þ2.6
−2.5 MeV [90] and ΓCMS

H ¼ 3.2þ2.4
−1.7 MeV

[91]), one can assume the narrow width approximation
(NWA)1 and then write the complete production times
decay cross section as follows:

σbb̄ττ ¼ σðgg → HÞ × BRðH → hhÞ × BRðh → bb̄Þ
× BRðh → ττÞ; ð5Þ

FIG. 2. BRðh → γγÞ as a function of κhf vs. mh (left panel) and as a function of mh vs tan β (right panel) vs mh.

FIG. 3. BRðh → bb̄Þ (left panel) and BRðh → ττÞ (right panel) vs mh and tan β.

FIG. 4. BRðH� → W�hÞ vs mH� and tan β in the 2HDM
type-I.

1The same applies to the h state, which would be even
narrower.
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where σðgg → HÞ is theH production rate computed (here)
at leading order (LO) using SusHi 1.7.0 [92–94] at the center-
of-mass energy of 13 TeV. (The N3LO QCD corrections
will be considered through a K-factor [95,96],
see below.) As shown previously in Eq. (3), the trilinear
Higgs coupling Hhh is proportional to cosðβ − αÞ. In the
inverse mass hierarchy configuration of the 2HDM type-I,
current data drive cosðβ − αÞ to closely approach 1 and thus
BRðH → hhÞ is not suppressed. However, it is observed
that the BR of the SM-like Higgs boson (H) decaying into a
pair of light Higgs bosons (hh) remains below 10% when
the decay channel becomes kinematically accessible. This
limitation arises from the precise measurements of the
Higgs boson couplings, which impose stringent constraints
on exotic decays of the Higgs boson, i.e., into BSM
particles and/or undetected final states. As mentioned
previously, the ATLAS and CMS collaborations have
set, respectively, an upper limit of 12% [5] and 16% [6]
on BRðH → BSMÞ at 95% CL, using LHC run 2 data.2

Further searches for light pseudoscalars, where ma ranged
between 15 and 62 GeV, imposed upper limits on light
Higgs decay rates, i.e., H → aaðhhÞ. Recently, the CMS
group reported a search forH → aa → 4γ with 132 fb−1 of
data [99]; upper limits on BðH → aa → 4γÞ ranging
between 0.80 fb for ma ¼ 15 GeV to 0.26 fb for ma ¼
62 GeV were obtained. The ATLAS collaboration searched
for H → aa in bb̄μμ final state with 139 fb−1 of data at

ffiffiffi
s

p ¼ 13 GeV; upper limits in the range ð0.2–4.0Þ × 10−4

were placed on BðH → aa → bb̄μμÞ [100]. As stated
above, a recent search for exotic Higgs decay in bb̄ττ
and bb̄μμ final states has been performed by the CMS
group with 138 fb−1 of data [42]. Upper limits on BRðH →
aa → μμbb̄Þ and BRðH → aa → bb̄ττÞ are in the range
ð0.17–3.3Þ × 10−4 and ð1.7–7.6Þ × 10−2, respectively. Our
surviving points were checked against the upper limits on
BRðH → hh → 4γ [99], bb̄ττ [42], μμbb̄ [42], μμττ) [40].3

Compatibly with these constraints, we find that the cross
section for the process gg → H → hh → bb̄ττ reaches its
maximum value of 0.4 pb when BRðh → bb̄Þ, BRðh → ττÞ
and BRðH → hhÞ are at their maximum values. Over the
parameter region allowing for this, we have marked several
Benchmark Points (BPs) amenable to MC simulation,
which are listed in Table II. As stated above, both
ATLAS and CMS searched for H → aa in different final
states, i.e., bb̄ττ final state. Such decay topology is well
motivated in many BSM such as next-to-minimal 2HDM.
In the 2HDM-I, the decay channel H → aa → bb̄ττ is
kinematically open when ma ∈ ½10; 62� GeV, and the
branching ratios of H → aa, a → bb̄ and a → ττ could
respectively reach 10%, 85% and 7% as shown in Fig. 6,
leading to σH→aa→bb̄ττ ≈ σH→hh→bb̄ττ. However, one cannot
explore low mass range where ma is below 40 GeV
[101,103] given that such a region is already excluded
by LEP search for h → aa [104] and Z width (ΓZ)
measurements [105,106].
An additional scan is performed to further explore the

2HDM type-I parameter space, and to test the sensitivity of
tan β and mh to the current experimental searches. After
performing a general scan, we have selected a point with

FIG. 5. BRðh → bb̄Þ as a function of σðgg → H → hh → bb̄ττÞ vs. BRðh → ττÞ (left panel) and σðgg → H → hh → bb̄ττÞ as a
function of mh vs. BRðH → hhÞ (right panel).

2Recently, the ATLAS collaboration also performed a combi-
nation of run 1 and 2 direct searches for invisible Higgs decays,
where several production modes of the SM-like Higgs boson are
considered [97]. An upper bound of 10.7% (7.7%) on BRðH →
invisibleÞ at the 95% CL has been observed (expected). The CMS
collaboration has also lately presented the combination of a
search for H → invisible with the SM-like Higgs state produced
in association with a top-antitop pair (i.e., pp → tt̄H) or a vector
boson (i.e., pp → VH) using 138 fb−1 of data from both run 1
and 2: the combined upper limit on BRðH → invisibleÞ is 15%
at 95 C.L. [98].

3A similar work has been carried out in a previous study [101],
where we used EasyNData [102] to digitise the upper bounds
from published papers in order to check our parameter space
against the aforementioned exclusions.
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high ma (H → aa is not open kinematically) and large
BðH → hh → bb̄ττÞ from the surviving parameter space
(marked with green color in Fig. 7). We then used the values
of its parameters (i.e., mH� ¼ 165.58 GeV, mA ¼
98.9 GeV, sinðβ − αÞ ¼ −0.10, and m2

12 ¼ 154 GeV2)
to run another scan while mh and tan β are varied randomly
as shown in Table I.
We show in the left panel of Fig. 8 the allowed region

resulting from passing the theoretical constraints, indicated
by blue color. The points that meet the theoretical require-
ments and also align with experimental data are highlighted
in red color. To gain a better understanding of this restricted
parameter space, which is limited to a narrow range of
values of tan β, we highlight, in the right panel of Fig. 8, the
excluded tan β region and the corresponding searches.
For values of tan β below 9, the CMS search for exotic
decays in the bb̄ττ [44] final state has excluded the mass
range where mh < 50 GeV whereas the region where
mh > 50 GeV is excluded by the LEP search for
eþe− → hA → bb̄bb̄ [104]. The ATLAS search for events

with at least three photons (i.e., 3γ) targeting the process
pp → H → hh → 4γ [107] has excluded the region with
8.6 ≤ tan β < 10.3 when mh ranged between 40 ≤ mh ≤
61.7 GeV. The large tan β region is excluded by both
HiggsSignal (HS) (brown areas) and by the following
experimental searches: eþe− → ha → bb̄bb̄ [104], pp →
hh → bb̄ττ [44] and pp → H → hh → bb̄μμ [108].
The allowed parameter space in the mass range [40,
54.8] GeV corresponds to tan β∈ ½10.3−11.4�. There are
few allowed points around mh ≈ 62 when tan β≈
9.8–10.1. This can be seen clearly in Figs. 9 and 10
(indicated by yellow points).
We show in Fig. 9 the different BRs within the

described parameter space. Similarly to Fig. 2, the
dominant channel within the parameter space where
mh < 60 GeV is h → bb̄, with a BR that can reach up
to 85%. The second prominent channel is h → ττ with a
BR that goes up to 8%. Another interesting observation is
that the fermionic decay rates of h → bb̄ and ττ remain
relatively unaffected by tan β variations. For large tan β,

TABLE II. The cross sections σbb̄ττ ≡ σðgg → HÞ × BRðH → hhÞ×BRðh → bb̄Þ×BRðh → ττÞ for our BPs are given for the
collision energy

ffiffiffi
s

p ¼ 13 TeV alongside the BRs for the decay channels H → hh, h → bb̄ and ττ. The unit of all masses is GeV. Here,
mH ¼ 125 GeV, and in the values of cross section σbb̄ττ the K-factor has been taken into consideration.

BP mh (GeV) ma (GeV) m�
H (GeV) sinðβ − αÞ tan β σbb̄ττ (pb) BRðH → hhÞ BRðh → bb̄Þ BRðh → ττÞ

BP1 17.67 73.70 184.51 −0.053 19.68 0.34 0.07 0.81 0.076
BP2 25.9 80.61 171.88 −0.064 16.71 0.3 0.068 0.84 0.068
BP3 28.56 94.46 155.45 −0.11 9.09 0.28 0.065 0.85 0.067
BP4 33.20 88.29 99.75 −0.076 14.42 0.25 0.058 0.85 0.067
BP5 37.56 88.88 188.64 −0.064 16.45 0.28 0.072 0.8 0.064
BP6 40.68 88.37 144.39 −0.054 19.37 0.26 0.063 0.82 0.066
BP7 47.27 98.91 165.58 −0.10 11.34 0.38 0.074 0.85 0.074
BP8 54.03 98.91 165.58 −0.10 11.28 0.40 0.083 0.84 0.07
BP9 43.44 98.91 165.58 −0.10 10.43 0.34 0.077 0.80 0.065
BP10 49.39 98.91 165.58 −0.10 10.41 0.21 0.056 0.78 0.065

FIG. 6. BRðH → aaÞ as a function of ma vs. BRða → ττÞ (left panel) and BRða → bb̄Þ (right panel) in the 2HDM type-I.

SEARCHING FOR H → hh → bb̄ττ IN … PHYS. REV. D 109, 055020 (2024)

055020-7



the Yukawa couplings4 become suppressed, leading the
BRs of the light Higgs state decaying into fermions to
become fairly independent on the values of tan β within
the considered parameter space.
In Fig. 10, we present the production cross section of the

SM-like Higgs stateH times its decay BR into bb̄ττ via hh,
i.e., σðgg → HÞ × BRðH → hh → bb̄ττÞ, within the speci-
fied parameter space. The maximum value of this product is
observed to be 0.4 pb, which occurs, again, when
BRðH → hhÞ, BRðh → ττÞ and BRðh → bb̄Þ all reach
their maximum values within the considered parameter
space. Similarly to the previous scenario, we have selected
a few BPs to perform a MC simulation. These BPs are
carefully chosen to cover a range of interesting scenarios
and to explore various aspects of the model, see Table II.

IV. FEASIBILITY STUDY AT THE LHC RUN 3

In our MC analysis, we focus on the bb̄ττ final state,
where both τ leptons decay into either an electron or a
muon, along with their respective neutrinos. To distinguish
between the decays of the τ particles, we use the short-hand
notations τe and τμ to represent the channels τ → eν̄eντ and
τ → μν̄μντ, respectively. The final states τeτe and τμτμ are
neglected in order to suppress the significant contamination
from Drell-Yan (DY) background events. In Fig. 11, we
present the Feynman diagram of the signal process, where
effective vertices are considered for the gluon-gluon-Higgs
coupling and for leptonic tau decay [109].
We use MadGraph-v.3.4.2 [110] to generate parton-level

events of both signal and background processes. To account
for the τ decays, we use the TauDecay library [109].5 The
QCD corrections are taken into account by using K-factors

for (what we will prove to be) the two main background
processes Zð→ τeτμÞbb̄ [111] and tt̄ [112]: specifically,
K ¼ 1.4 for both bb̄Z and tt̄. The K-factor for the signal
production process gg → H is taken as K ¼ 2.5, which
includes the N3LO QCD corrections of Refs. [95,96]. We
then pass the events to PYTHIA8 [113] for parton showering,
fragmentation/hadronization and heavy flavor decays.
Then, we use DELPHES-3.5.0 [114] with a standard CMS
card to simulate the detector response. Finally, we employ
MadAnalysis 5 [115] to apply cuts and to conduct the
kinematic analysis. As mentioned already, the BPs and
the corresponding parameter values used to generate MC
samples of events for the signal process are given in
Table II, where, as usual, the collision energy at the
proton-proton level is assumed to be 13 TeV.
In order to generate signal and background events effi-

ciently, we apply the following kinematic cuts at parton level:

pTðbÞ>10GeV; pTðlÞ>5GeV; Emiss
T >5GeV;

jηðb;lÞj<2.5;ΔRðll;bl;bbÞ>0.3; HT <70GeV:

Where HT is computed over all partons.
The LO cross sections of all background processes

considered in our initial MC analysis are given in
Table III. As intimated, it is found that the dominant
background processes arise from top pair production (tt̄)
and Zð→ τeτμÞbb̄, so that we will simulate only these two
processes in our final (detector level) analysis.

A. Parton level analysis

In Fig. 12, the pT distributions of the leading and
subleading leptons as well as of the b-(anti)quarks for
the signal are displayed. These spectra provide insights into
the transverse momentum of final-state particles involved
in the signal process, in order to guide our final analysis at
detector level.
On the one hand, it is observed that the leading and

subleading leptons originating from the light Higgs decay
(recall that mh < 62.5 GeV) tend to have lower transverse
momentum, indicating that they are relatively softer when
compared with the leading (subleading) b-(anti)quarks
from the same light Higgs state (owing to neutrinos
carrying away energy). In particular, the peak value of
pT of the subleading lepton is less than 10 GeV, which
means a stiff (detector level) cut on pTðlÞ may lead to a
severe loss of signal events. On the other hand, since the
b-tagging efficiency decreases with pT , then one should
expect that a stiff (detector level) cut on, especially, the
subleading b-jet can also lead to a severe loss of signal
events. In short, these factors call for a dedicated trigger
choice, that we will illustrate below.
In Fig. 13, we show the leading (subleading) lepton and

b-(anti)quark of different background processes at parton
level. It is observed that the subleading lepton from

FIG. 7. BRðH → hh → bb̄ττÞ as a function of ma vs m2
12

within the allowed parameter space of the 2HDM type-I.

4Notice that κfh ¼ sinðβ − αÞ þ cot β cosðβ − αÞ ≈ sinðβ − αÞ
for large tan β, with sinðβ − αÞ ¼ −0.10.

5The TauDecay package has been added to the UFO file of the
2HDM type-I.
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FIG. 10. BRðh → hhÞ (left panel) and σðgg → HÞ × BRðH → hh → bb̄ττÞ (right panel) as a function of tan β vs mh.

FIG. 9. BRðh → bb̄Þ (left panel) and BRðh → ττÞ (right panel) as a function of tan β vs mh. Here, mH� ¼ 165.58 GeV,
mA ¼ 98.9 GeV, sinðβ − αÞ ¼ −0.10, m2

12 ¼ 154 GeV2.

FIG. 8. Allowed (left panel) and excluded (right panel) parameter space over the (mh; tan β) plane. Here, mH� ¼ 165.58 GeV,
mA ¼ 98.9 GeV, sinðβ − αÞ ¼ −0.10, m2

12 ¼ 154 GeV2.
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Zð→ bb̄Þτeτμ can be very soft, just like the subleading
lepton from the signal events. Similarly, the subleading
b-(anti)quark from Zð→ τeτμÞbb̄ can be very soft, which
can then mimic the subleading b-(anti)quark of the signal
events. Thus, this renders even more important the accurate
choice of a dedicated trigger for this analysis. However, as
intimated, from Table III, it is clear that the dominant
background processes are pp → Zð→ τeτμÞbb̄ and
pp → tt̄. Therefore, in order to discover the signal process,
the key task is to ultimately suppress these two back-
grounds. Armed with the knowledge acquired at the parton
level, we will investigate below how to suppress these two
types of noise most effectively at the detector level.

B. Detector level analysis

We only consider events with two b-jets and two leptons
of different flavor with opposite charges (i.e., e∓μ�) in the
final state. Given that both (leading and subleading) leptons
in the signal events are soft, as illustrated in Fig. 14, it will
be necessary to suitably adjust the transverse momentum
(pT) thresholds of the leading electron (e) and subleading
muon (μ). By reducing these pT thresholds, one can include
more signal events and then increase the acceptance so to
mitigate the potential significant loss of signal events due to
the softness of the leptons, especially the subleading one.
Consequently, the trigger choice could lead to a more
comprehensive view of the final state and potentially
improve the overall sensitivity of the analysis.

Events featuring tau decays into leptons (τeτμ) are
collected by electron and muon triggers. The CMS cross
trigger [116,117] relies on the presence of both an electron
(e) and a muon (μ), where the leading lepton has a pT
threshold of 23 GeV and the subleading one has a pT >
12 GeV for an electron or 8 GeV for a muon [42,44]. This
trigger is limited by pT thresholds in the level-1 (L1) trigger
selection due to the limited L1 bandwidth available. The
double electron trigger is similarly limited. Recently, in run
3, CMS has overcome this limitation for electron pairs that
are close together, for example from B meson decays, by
placing tighter topological selection on the two electrons
L1 objects. This borrows from established approaches
already used in double muon triggers searching for low
pT muons from B meson decays. By applying similar
topological approaches to an electron muon trigger, it
would seem possible to develop a reasonably efficient
L1 selection targeting 10 GeV close by electron muon pairs
with a rate in the ∼2–5 kHz range at nominal run 3
luminosities. A L1 selection with such a bandwidth is
feasible to be deployed in run 3 if there is sufficient will on
the experiment’s side to do so and would be easily
achievable at the HL-LHC. At the high level trigger
(HLT) selection stage, the rate should be manageable
and if not, scouting and parking techniques [118,119]
can be used if the rate of the selection is too much to be
included in the standard physics stream. Electrons and
muons from τ decays are then selected after satisfying the
following requirements:

pe
T > 10GeV; pμ

T > 8GeV; jηej< 2.4; jημj< 2.4:

Lepton candidates must also satisfy isolation criteria, which
ensure that the amount of activity in a cone of radius
R ¼ 0.4 centered on the muon (electron) direction is
smaller than 20% (15%) of pμ

Tðpe
TÞ. For the jets candidates,

we employ the anti-kT algorithm [120] to cluster detector-
level objects with a jet radius parameter ΔR ¼ 0.4 and
pmin
T;j ¼ 10 GeV (for both light- and b-jets).6 All events are

required to have two b-tagged jets with pTðb1=b2Þ >
10 GeV (where pTðb1ð2ÞÞ represents the b-jet with highest
(lowest) pT) and jηbj < 2.4.7 The reconstruction of b-jet
with jets of pT < 20 GeV might be very challenging due to
the degradation in b-tagging efficiency over lower trans-
verse momentum ranges, however, it is still worthwhile to
investigate how the b-tagging efficiency changes in

FIG. 11. Feynman diagram for the process
gg → H → hh → bb̄τeτμ. Here, h2 ≡H and h1 ≡ h.

TABLE III. The LO background cross sections are given for the
collision

ffiffiffi
s

p ¼ 13 TeV. The K-factors mentioned in the text has
not been included here but will be used to compute the final
significances, albeit limitedly to the second and last processes
(i.e., the two dominant noises).

Background process σ (pb)

pp → Zð→ bb̄ÞZð→ llÞ, l ¼ ðe; μ; τe;μÞ 0.009

pp → Zð→ llÞbb̄, l ¼ ðe; μ; τe;μÞ 6.1

pp → Zð→ bb̄Þll, l ¼ ðe; μ; τe;μÞ 0.015
pp → ZW�j;W� → lνlðl ¼ e; μ; τe;μÞ 0.0051
pp → tt̄ → e�μ∓bb̄þ Emiss

T 0.28

6Note that our results are rather stable against a different choice
of jet clustering algorithm, like the Cambridge-Aachen one
[121,122].

7Jets are b-tagged with an average efficiency (εb=b) of
∼60% (i.e., εb=b ¼ 0.85 × tanhð0.0025 × pTÞ × ð25.0=ð1þ
0.063 × pTÞÞ [123], with pT is the transverse momentum of
the jet.)
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response to different pT thresholds, so that we will do
so below.
To increase the sensitivity of our analysis, we will

explore various kinematic distributions which include the
invariant mass of the b-jets (mbb̄) as well as the constructed
mass from the τ leptons decay products and the b-jets (mH

T ).
These variables are typically low for signal events because
the objects originate from a 125 GeV Higgs state.
Conversely, they generally have higher values for back-
ground events, where the objects do not arise from a decay
of a (rather light) resonance. Such kinematic features can
serve to efficiently discern between signal and background
events in our analysis.
Figure 15 displays the invariant mass distribution of the

b-jets for different BPs. Notably, mbb̄ aligns closely to the
light Higgs mass (mh) for each BP. We present in Fig. 16 the
transverse mass distributions constructed from the two
charged leptons and Emiss

T . As anticipated, the peak structure
in these distributions is shifted from the expected light Higgs
mass for the selected BPs (mll

T ≲mh) due to the missing
contribution of the neutrinos. Themll

T variable is defined from
pll (the total four-momentum of the leptons) and Emiss

T as

mll
T ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0
llE

0 − jpT
lljjET j cosðϕll;Emiss

T
Þ

q
: ð6Þ

For the sake of convenience, we denoteEmiss
T as ðE0; ET; pzÞ,

where pz is the unknown z-component of the missing
momentum and ET is a 2D vector defined in the ðx; yÞ
plane perpendicular to the beam direction. Here, ϕll;Emiss

T

denotes the perpendicular angle between the dilepton system
and Emiss

T .
In Fig. 17, we show the transverse mass constructed

from the two b-jets, the two leptons and Emiss
T . The variable

mH
T is defined from the two b-jet four-momenta

pbb̄ ¼ pðbÞ þ pðb̄Þ, pll and Emiss
T . To define mH

T , we
first express the visible momentum, which equals
pvis ¼ pbb̄ þ pll, so that we have

mH
T ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0
visE

0 − jpT
visjjET j cosðϕvis;Emiss

T
Þ

q
; ð7Þ

where ϕvis;Emiss
T

denotes the perpendicular angle between

visible momentum and Emiss
T . Clearly, fully reconstructing

the signal can yield a significant improvement in the signal-
to-background ratio. Selecting events with low mH

T will
efficiently mitigate the background contamination arising
from the tt̄ process, which is characterized by a large
missing transverse momentum.
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FIG. 12. The pT distributions of the leading (subleading) lepton (top panel) and leading (subleading) b-(anti)quark (bottom panel) for
different signal BPs at are shown at parton level, see Table III.
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The requirement for precisely two b-tagged jets in each
event is notably a tight condition due to the soft transverse
momentum (pT) spectrum of b-jets and the limited effi-
ciency of the b-tagging algorithm. These b-tagging tech-
niques [124,125] operate at peak efficiency when b-jets
possess a large transverse momentum of at least 20 GeV.
However, at this threshold, a significant loss of the
signal would occur particularly in scenarios involving
low Higgs masses below 60 GeV as a result of the
kinematics. Therefore, to examine how the efficiencies
can change, especially the b-tagging one, we will compare

the impact of the following three cuts, which we regard as
preselection rules:

pTðb1=b2Þ > 15=10 GeV; pTðb1=b2Þ > 20=15 GeV;

pTðb1=b2Þ > 20=20 GeV: ð8Þ

The results are provided in Tables IV–VI, respectively. (In
these tables, to estimate the number of events, we assume
that the LHC collision energy at proton-proton level isffiffiffi
s

p ¼ 13 TeV and the integrated luminosity is that of run 3,

FIG. 14. Correlations between the pT of the leading and subleading leptons for signal (black), tt̄ (red) and bb̄Zð→ τeτμÞ (blue) are
shown at detector level.
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FIG. 13. The pT distributions of the leading (subleading) lepton and b-(anti)quark of different background processes are shown at
parton level, see Table III.
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i.e., 300 fb−1.) Meanwhile, the leptons from τ decays are
collected with thresholds at pTðe=μÞ ¼ 10=8 GeV, which
can guarantee a sufficiently large fraction of signal events
to be retained. We now discuss the effect of three
preselections introduced in Eq. (8) in turn, each of which
is supplemented by the same cutflow, which has been
devised following the kinematic analysis performed at
detector level.

In Table IV, we adopt the following preselection cuts:

pTðb1Þ > 15 GeV; pTðb2Þ > 10 GeV;

pTðe=μÞ ¼ 10=8 GeV: ð9Þ

As stated above, several requirements on events are
enforced. The first one is that each event contains exactly
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FIG. 15. The distributions of mbb̄ for different BPs are shown at detector level.
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T for different BPs are shown at detector level.
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two leptons ðl�l∓ ¼ e�μ∓Þ. Events with lepton-
pair invariant mass with 10 GeV of the Z-boson mass
are rejected (“mZ−veto”). This cut will not affect the
signal but can act on background events. Following the
selection of 2 tagged b-jets, we apply an additional
selection criterion on the transverse mass ðmH

T Þ requiring
that 65 GeV < mH

T < 125 GeV. This is reasonable as the
Jacobian peak of the transverse mass of the SM-like Higgs
boson is bound to be smaller than SM-like Higgs boson
mass itself, mH ¼ 125 GeV. For the signal events, where
both bb̄ and ττ originate from the decay of the light Higgs,

h, in principle, we expect the reconstructed massesmbb̄ and
mT

ll to be closely correlated. In reality, a major difference
between the two reconstructed masses, as shown in Figs. 15
and 16, arises due to the z-component of the missing energy
which is absent in mT

ll, which prevents us from finding the
precise invariant mass of the light Higgs boson decaying
into ττ. In order to quantify the difference betweenmbb̄ and
mT

ll, we have then introduced a new variable ðΔmhÞ, i.e.,
Δmh ≡ ðmbb̄ −mT

llÞ=mT
ll. A cut on Δmh < 0.5 would help

removing background events since in the latter there is no
correlation between mbb̄ and mττ. Lastly, we set cuts onmll

T

TABLE IV. Event rates of the signal with
ffiffiffi
s

p ¼ 13 TeV and integrated luminosity 300 fb−1 for different BPs are shown as a function
of our cutflow. The preselection cuts are as given in Eq. (9).

BP BP1 BP2 BP3 BP4 BP5 BP6 BP7 BP8 BP9 BP10

mh (GeV) 17.67 25.9 28.56 33.20 37.56 40.68 47.27 54.03 43.44 49.39
NoE (L, σ) 912.86 727.65 687.432 573.3 771.74 769.18 1086.62 1528.8 900.000 771.750
e�μ∓ 156.934 151.874 141.094 114.84 146.44 136.2 160.54 204.94 151.226 111.163
mZ-veto 156.934 151.874 141.094 114.84 146.44 136.2 160.54 204.94 151.226 111.163
2b-jets 33.0 42.88 39.98 32.32 38.84 34.94 40.9 53.2 38.09 26.28
65 GeV < mH

T < 125 GeV 11.78 20.56 19.1 16.42 20.4 18.78 23.02 33.92 20.95 15.15
Δmh < 0.5 8.1 15.88 15.16 12.96 16.24 14.84 18.18 27.34 16.95 12.015
mll

T < 62.5 GeV 8.1 15.86 15.14 12.94 16.24 14.84 18.18 27.18 16.63 11.98
mbb < 62.5 GeV 8.1 15.86 15.12 12.94 16.24 14.76 18.18 27.04 16.60 11.97

TABLE V. Event rates of the signal with
ffiffiffi
s

p ¼ 13 TeV and integrated luminosity 300 fb−1 for different BPs are shown as a function of
our cutflow. The preselection cuts are as given in Eq. (10).

BP BP1 BP2 BP3 BP4 BP5 BP6 BP7 BP8 BP9 BP10

mh (GeV) 17.67 25.9 28.56 33.20 37.56 40.68 47.27 54.03 43.44 49.39
NoE (L, σ) 912.86 727.65 687.432 573.3 771.74 769.18 1086.62 1528.8 900.000 771.750
e�μ∓ 156.934 151.874 141.094 114.84 146.44 136.2 160.54 204.94 151.226 111.163
mZ-veto 156.934 151.874 141.094 114.84 146.44 136.2 160.54 204.94 151.226 111.163
2b-jets 23.9 32.38 30.8 23.24 29.36 25.76 28.56 40.036 28.125 18.714
65 GeV < mH

T < 125 GeV 7.76 13.72 13.372 11.32 13.82 12.38 14.58 22.56 13.890 9.470
Δmh < 0.5 5.232 11.36 10.77 8.94 10.76 9.84 11.92 17.56 10.973 7.373
mll

T < 62.5 GeV 5.232 11.36 10.76 8.92 10.76 9.82 11.9 17.5 10.961 7.363
mbb < 62.5 GeV 5.232 11.34 10.75 8.92 10.76 9.78 11.9 17.38 10.948 7.363

TABLE VI. Event rates of the signal with
ffiffiffi
s

p ¼ 13 TeV and integrated luminosity 300 fb−1 for different BPs are shown as a function
of our cutflow. The preselection cuts are as given in Eq. (11).

BP BP1 BP2 BP3 BP4 BP5 BP6 BP7 BP8 BP9 BP10

mh (GeV) 17.67 25.9 28.56 33.20 37.56 40.68 47.27 54.03 43.44 49.39
NoE (L, σ) 912.86 727.65 687.432 573.3 771.74 769.18 1086.62 1528.8 900.000 771.750
e�μ∓ 156.934 151.874 141.094 114.84 146.44 136.2 160.54 204.94 151.226 111.163
mZ-veto 156.934 151.874 141.094 114.84 146.44 136.2 160.54 204.94 151.226 111.163
2b-jets 13.6 20.38 19.02 15.3 17.86 16.02 18.34 23.7 17.39 11.06
65 GeV < mH

T < 125 GeV 2.68 7.16 6.84 5.72 6.84 6.16 6.14 11.38 6.80 4.19
Δmh < 0.5 1.86 5.5 5.56 4.5 5.32 4.8 5.54 8.2 5.25 3.13
mll

T < 62.5 GeV 1.86 5.5 5.56 4.48 5.32 4.8 5.52 8.2 5.25 3.13
mbb < 62.5 GeV 1.86 5.5 5.56 4.48 5.32 4.78 5.52 8.12 5.23 3.13
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and mbb to be half of mH in order to capture the SM-like
Higgs boson decaying into two light Higgs bosons,
H → hh, in the signal events. Combining all kinematic
information so far, we summarize in Table IV the event
rates after meeting the event selection requirements.
Table V presents the results based on the following

preselection cuts, while considering the same kinematic
cuts as in Table IV:

pTðb1Þ > 20 GeV; pTðb2Þ > 15 GeV;

pTðe=μÞ ¼ 10=8 GeV: ð10Þ
Here, the same comments on the event kinematics of the
signal apply as for the previous table.
In Table VI, we show the cutflow results by adopting the

preselection cuts:

pTðb1Þ > 20 GeV; pTðb2Þ > 20 GeV;

pTðe=μÞ ¼ 10=8 GeV: ð11Þ

(Again, the same comments on the event kinematics of the
signal apply as for the previous table.)
When comparing the results given in Tables IV–VI,

particularly the number of events after requiring two tagged

b-jets, it is found that the larger the pT thresholds of the
b-jets, the smaller the number of signal events which can
pass the preselection cuts. This loss is an expected outcome
for a light Higgs within the sub-50 GeV range, and it aligns
with our expectations. However, it is too early to conclude
that with loose cuts one can maximise the sensitivity since
the effects of background have to be taken into account,
which is what we are going to do next.
In Table VII we show the cutflow results for the two

major background processes. Here, it is noted that two mass
observables, i.e., mH

T and Δmh, can greatly suppress
background events. Another interesting observation is that,
although the number of signal events is comparatively
smaller with the preselection cut 20=20 GeV on the two
tagged b-jets, the background events can be almost
completely removed in this case, which eventually leads
to a better sensitivity to our signal process.
This is explicitly shown in Table VIII, where the

significances Σ ¼ N Sffiffiffiffiffiffiffiffiffiffiffiffiffi
N SþN B

p 8 for 300 fb−1 and 3000 fb−1

of each BP are shown. As mentioned above, the

TABLE VII. Event rates of the two dominant background processes with
ffiffiffi
s

p ¼ 13 TeV and integrated luminosity 300 fb−1 as a
function of our cutflow. The preselection cuts are as given in Eqs. (9)–(11).

Process Zbb̄ tt̄

NoE(L, σ) 2562000 117600
pTðb1=b2Þ (GeV) 15=10 20=15 20=20 15=10 20=15 20=20
e�μ∓ 15836.8 15836.8 15836.8 61413.5 61413.5 61413.5
mZ-veto 15801.4 15801.4 15801.4 54511.6 54511.6 54511.6
2b-jets 1512.57 1059.63 503.558 16871.4 13778.6 8843.26
65 GeV < mH

T < 125 GeV 272.439 154.314 33.2724 35.2954 18.8916 3.087
Δmh < 0.5 GeV 117.072 30.0678 � � � 17.5266 7.6678 � � �
mll

T < 62.5 GeV 117.072 30.0678 � � � 14.2366 6.125 � � �
mbb < 62.5 GeV 117.072 30.0678 � � � 14.2366 6.125 � � �

TABLE VIII. Significances for our signal against the two dominant backgrounds with
ffiffiffi
s

p ¼ 13 TeV and integrated luminosity
300 fb−1 (left) as well as 3000 fb−1 (right). The preselection cuts are as given in Eqs. (9)–(11).

Significance (Σ), L ¼ 300 fb−1 Significance (Σ), L ¼ 3000 fb−1

BP 15=10 (GeV) 20=15 (GeV) 20=20 (GeV) 15=10 (GeV) 20=15 (GeV) 20=20 (GeV)

BP1 0.68 0.81 1.36 2.15 2.56 4.30
BP2 1.30 1.64 2.34 4.11 5.18 7.39
BP3 1.24 1.57 2.35 3.92 4.96 7.43
BP4 1.07 1.32 2.11 3.38 4.17 6.67
BP5 1.33 1.57 2.3 4.20 4.96 7.27
BP6 1.22 1.44 2.18 3.85 4.55 6.89
BP7 1.48 1.71 2.34 4.68 5.40 7.39
BP8 2.14 2.37 2.84 6.76 7.49 8.9
BP9 1.36 1.59 2.28 4.3 5.02 7.2
BP10 1.0 1.11 1.76 3.16 3.51 5.56

8N S and N B are, respectively, the number of the signal and
background events after applying the kinematic cuts discussed in
the text.
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preselection cut 20=20 GeV can yield a better significance,
so it is the one wewould recommend for the actual analysis.
Altogether, although it is not feasible to discover or rule out
all these BPs at run 3 of the LHC, they are all within full
reach of the HL-LHC.

V. CONCLUSIONS

The type-I is an intriguing realization of the 2HDM as it
allows for the so-called inverted mass hierarchy scenario,
wherein the Higgs boson discovered at the LHC on 4 July
2012 can be identified as the heaviest CP-even Higgs state
of this construct, H, with a mass of 125 GeV or so and
couplings to fermions and gauge bosons similar to those
predicted in the SM. Such a configuration specifically
implies that there is then a lighter CP-even Higgs state, h,
into pairs of which the heavy one can decay: i.e., via
H → hh. Needless to say, this can be realized without
contradicting any of the theoretical requirements of self-
consistency of the 2HDM or current experimental results,
whether coming for measurements of the discovered Higgs
boson or null searches for companions to it. In fact, the
latter have primarily been concentrating on other realiza-
tions of the 2HDM, where only the standard mass hierarchy
is actually possible (i.e., mh ≈ 125 GeV < mH), thereby
altogether missing out on the possibility of optimizing
searches for very light neutral Higgs states in general.
Specifically, here, by looking for H → hh signals in the
2HDM type-I, we have concentrated on the following mass
range: 15 GeV < mh < mH=2.
The production of the heavy CP-even Higgs state (the

SM-like Higgs boson) at the LHC was pursued via gluon-
gluon fusion, gg → H, indeed, the dominant channel, while
we have focused on the hh → bb̄ττ decay pattern, where
the two heavy leptons where tagged through their (different
flavor) electron and muon decays. By performing a
sophisticated MC analysis of signal versus background,
we have shown that both run 3 of the CERN machine and
its HL-LHC phase can offer sensitivity to this 2HDM type-I
signal, in the presence of very low mass trigger thresholds
(on the electrons and muons) already implemented for run 3
and also possible at the HL-LHC. We have done so by

adopting several BPs capturing representative mh values
over the aforementioned interval after a fine scanning of the
whole 2HDM type-I parameter space, of which they are
therefore representative examples amenable to further
scrutiny by the LHC collaborations. Finally notice that,
if the collision energy of the LHC increases from 13 TeV to
14 TeV, the production rate of the signal process gg → H
can increase by 10%, as shown in [95] (with the dominant
backgrounds, tt̄ and Zbb̄, scaling similarly or less), lending
further scope to our analysis in the near future.
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APPENDIX

Additional kinematic variables can serve to further
discriminate the Higgs signal from background events in
the low mass range. Leptons arising from light Higgs
decays demonstrate small opening angles, whereas those
from tt̄ (large missing transverse momentum) and Zð→
ττÞbb̄ (emitted back-to-back) would be large. Therefore,
requiring a small opening angle between the two leptons,
along with a small angle between the missing transverse
momentum and the leptons would reduce the background
processes. This is exemplified in Fig. 18. However, we did
not pursue this here.
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