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Axion strings are horizon-size topological defects that may be produced in the early Universe. Ultralight
axion-like particles may form strings that persist to temperatures below that of big bang nucleosynthesis.
Such strings have been considered previously as sources of gravitational waves and cosmic microwave
background (CMB) polarization rotation. In this work we show, through analytic arguments and dedicated
adaptive mesh refinement cosmological simulations, that axion strings deposit a subdominant fraction of
their energy into high-energy Standard Model (SM) final states, for example, by the direct production of
heavy radial modes that subsequently decay to SM particles. This high-energy SM radiation is absorbed by
the primordial plasma, leading to novel signatures in precision big bang nucleosynthesis, the CMB power
spectrum, and gamma-ray surveys. In particular, we show that CMB power spectrum data constrains axion
strings with decay constants fa ≲ 1012 GeV, up to model dependence on the ultraviolet completion, for
axion massesma ≲ 10−29 eV; future CMB surveys could find striking evidence of axion strings with lower
decay constants.
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I. INTRODUCTION

Axion strings are extended topological defects stretching
over cosmological distances that may develop for high
postinflationary reheat temperatures. For example, if the
axion arises as the pseudo-Goldstone boson of a sponta-
neously broken global Uð1Þ Peccei-Quinn (PQ) symmetry,
then axion strings develop so long as the reheat temperature
is above the temperature ofUð1Þ symmetry restoration. The
axion strings are characterized by the property that the
axion field, which is a periodic field, undergoes a full field
excursion when traversing a circle encompassing the string
core; to resolve the singularity at the string core, the heavy
radial mode of the PQ complex scalar deviates from its
vacuum expectation value (VEV) and sends the full
complex scalar field to zero at the core center. Apart from
at the string cores, the radial mode is otherwise frozen at its
VEV for temperatures well below that of PQ symmetry
breaking. The axion-string network evolves to maintain an
approximate scaling solution, where there is roughly one
string per Hubble patch at any time (see Ref. [1] for a
review). Figure 1 illustrates a snapshot of an axion-string

network in the context of a cosmological adaptive mesh
refinement (AMR) simulation performed in this work.
Axion strings were originally discussed in the context of

the quantum chromodynamics (QCD) axion, which was
introduced to solve the strong- CP problem [3–6]. It was
later realized that the QCD axion may also make up the
observed dark matter (DM) abundance [7–9]. If the PQ
symmetry is broken after inflation, then QCD axion DM is
predominantly produced through horizon-scale axion radi-
ation produced by the axion-string network just prior to its
collapse at the QCD phase transition. Numerical simula-
tions of the axion-string network predict that in order for
the QCD axion to produce the correct relic abundance from
axion strings, it should have a mass on the order of tens to
hundreds of μeV [10–26].
Axion strings may also develop in axion-like particle

models; for ultralight axion masses ma below that of the
QCD axion, the resulting string networks can persist near
or below the epoch of big bang nucleosynthesis (BBN),
leading to a number of observable signatures. These
include, for example, gravitational-wave production, con-
tributions to the effective number of neutrino degrees of
freedom Neff , and the polarization rotation of cosmic
microwave background (CMB) photons. The string net-
work persists until H ∼ma, where H is the Hubble
parameter. If the axion domain-wall number Ndw is larger
than unity, then stable domain walls develop for H ≲ma,
which could themselves lead to novel cosmological sig-
natures. If Ndw ¼ 1, then the string-domain-wall network
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collapses around H ∼ma. In this work, we restrict to axion
masses low enough at a given cosmological epoch that we
do not have to consider domain walls or specify Ndw, for
simplicity.
It has been shown that axion strings with axion masses

ma roughly less than 10−18 eV, with decay constants
fa ≳ 1014 GeV, could produce detectable gravitational-
wave signatures at next-generation observatories [27] (see
also [28–31]). The gravitational waves are sourced by
the energy density in the evolving string network. If
the network persists until after the CMB decouples
(ma ≲ 10−29 eV), then axion strings may rotate the polari-
zation of CMB photons by an amount that is proportional
to the electromagnetic anomaly coefficient; polarization
observations of the CMB already constrain this scenario
[32–37]. Interestingly, the polarization signatures are
independent of fa and only depend on the electromagnetic
anomaly coefficient of the axion.
In this work, we point out that axion-like particle strings,

which we refer to as axion strings for simplicity, also leave
novel energy injection signatures in the primordial plasma.
It is well established that the axion-string network evolves

by emitting axions to maintain the scaling solution.
However, we show that the string network releases a
subdominant fraction of its energy into heavy radial modes
(see also [38,39]) that promptly decay to Standard Model
(SM) final states and, under certain circumstances that we
enumerate, high-energy SM Higgs particles. This high-
energy SM radiation is absorbed by the primordial plasma
and can undo the success of BBN, modify the CMB power
spectrum, or even lead to observable gamma-ray signatures
today. Understanding how to translate cosmological mea-
surements of these observables to constraints on or evi-
dence for axion strings requires a detailed understanding of
how axion strings emit heavy radial modes.
While this work focuses on global strings, local string

networks are closely related and result from gauging the
Uð1ÞPQ symmetry that gives rise to the axion as a Goldstone
mode. The axion is then “eaten” by the Abelian gauge field,
which acquires a mass of order the scale of symmetry
breaking. Thus, unlike for global strings, local strings do
not emit massless radiation, except gravitational-wave emis-
sion and perhaps other massless radiation that they may
couple to indirectly. High-energy SM radiation from cosmic

FIG. 1. Zoom-in of the axion-string network as realized in a PQ-Higgs field simulation, which is discussed in Sec. V. We show the
energy density in axion radiation in a 3D volume rendering enclosing approximately 1.9 Hubble volumes at logðms=HÞ ≈ 7.2; the string
network evolves to maintain the scaling solution by emitting energy into relativistic axion modes. As we discuss in this work, however,
axion strings can also efficiently produce high-energy SM radiation through the production and subsequent decay of heavy radial modes
and through the direct production of SM Higgs bosons. Inset in this figure is the outline of the AMR grid structure, showing the different
refinement level locations at this snapshot. The finest refinement level (yellow boxes) is nested within the intermediate level (red boxes)
and is mostly localized around the string cores. The intermediate level covers a larger area and ensures proper numerical convergence of
the outgoing radiation wherever necessary. The blue lines correspond to the string cores where the width of the line is matched to the
string core width. Note that, due to the periodic nature of the simulation box, some strings seem to end suddenly but are in reality
continuing on the other side of the volume. Animations are available [2].
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string networks has been studied before in the context of local
strings (see, e.g., [40–47]). It is debated whether or not local
strings can directly emit heavy modes with masses of order
the symmetry-breaking scale (see, e.g., [40,41,48,49]), but if
they can then they would be constrained through probes
analogous to those studied in this work. Higgs condensates
surrounding local strings have also been studied previously
[43,44,47], in analogy with the Higgs configurations around
global strings studied in this work.
The remainder of this article is organized as follows. In

Sec. II we review constraints on and future probes of axion-
like particle strings from the axion contribution to Neff ,
gravitational waves, CMB distortions, and CMB polariza-
tion rotation. In Sec. III, through analytic arguments and
AMR simulations, we compute the amount of heavy radial-
mode emission from an axion string network. The emitted
radial modes can, in turn, decay into SM degrees of
freedom and inject energy into the primordial plasma.
To compute this effect, in Sec. IV we derive the branching
ratios of the radial mode into SM particles. Among such
SM final states, the radial mode can also decay into a pair of
SM Higgs bosons via a PQ scalar-Higgs quartic coupling.
In particular, such a coupling would give rise to non-
winding classical Higgs configurations surrounding axion
strings. In Sec. V we compute the properties of such Higgs
“sheaths” analytically and using AMR simulations. Using
these results, in Sec. VI we obtain constraints on axion
strings from the energy-injection signatures they would
leave in the primordial plasma at the epochs of BBN and
CMB decoupling, in addition to constraints arising from
present-day gamma-ray surveys. We conclude in Sec. VII
with a discussion of how some of our results may apply to
local strings.

II. EXISTING PROBES OF AXION STRINGS

We describe some of the current and future probes of
axion strings that have been previously discussed in order
of decreasing axion mass ma, as the constraints typically
become stronger as one allows the string network to persist
to later times. Note that throughout this work we consider
only the so-called “field theory axions,” which are those
that emerge as the pseudo-Goldstone bosons of spontane-
ously broken Uð1Þ PQ symmetries. Axion-like particles are
also motivated by the framework of the string axiverse
[50,51], where the axions arise not from global symmetry
breaking but rather as the zero modes of higher-dimensional
gauge fields integrated over the compact manifolds in string
theory compactifications [50,52–58]. Axion string produc-
tion for string theory axions is more subtle than for field
theory axions and is not considered here; we discuss the
formation and signatures of string theory axion strings in [59]
(see also [60]).
To produce axion strings in field theory realizations, the

Universe must reheat after inflation to a temperature
TRH > fa, large enough to restore the PQ symmetry.

This is because finite-temperature corrections to the effec-
tive potential for the PQ field restore the PQ symmetry for
temperatures T ≳ ffiffiffi

3
p

fa, where the numerical prefactor is
somewhat model dependent (see, e.g., [61,62]). The maxi-
mum reheat temperature, given a Hubble parameter during
inflation HI , is determined by hypothesizing that the
inflaton decays promptly at the end of inflation to the
SM, such that the energy density after reheating ρRH ∼ T4

RH
is equal to the energy density directly before reheating,
which is roughly 3M2

plH
2
I, whereMpl is the reduced Planck

mass. If the inflaton does not decay promptly, then the
reheat temperature may be lower. The Hubble scale during
inflation is constrained by the tensor-to-scalar ratio as
measured by CMB anisotropy measurements. A combina-
tion of Planck data and data from the BICEP2/Keck Array
constrain HI ≲ 5 × 1013 GeV at the 95% confidence level
[63], which implies TRH ≲ 1016 GeV. Thus, we conclude
that fa ≲ 6 × 1015 GeV, regardless of the axion mass ma,
in order to produce axion strings.
The string network is relatively unconstrained at present

until BBN. However, this may change in the future with the
next-generation gravitational-wave observatories. Axion
strings evolve primarily through axion emission. As we
discuss in this work, a subdominant fraction of the energy
density is also emitted in the form of heavy radial modes,
though the energy density in this fraction is suppressed
relative to that in axions by an amount ∼ logðfa=HÞ ∼ 102,
where H is evaluated at late times, such as during BBN or
CMB decoupling. On the other hand, the axion string
network also sources gravitational waves but with a rate
heavily suppressed relative to axion emission by an amount
∝ ðfa=MplÞ2. Thus, gravitational-wave emission has a
negligible effect on the dynamics of axion strings for the
decay constants of interest (fa ≲ 1015 GeV). However, the
spectrum of gravitational waves emitted by the string
network may be detectable through next-generation low-
frequency gravitational-wave observatories such as LISA
and the Square Kilometer Array with pulsar timing; in
particular, Ref. [27] concluded that string networks with
fa ≳ few × 1014 GeV for ma ≲ 10−18 eV may be detect-
able. Note that the recently detected gravitational-wave
signal at pulsar timing array experiments, including the
European Pulsar Timing Array and NANOGrav, is not
compatible with axion string emission because of the Neff
bound discussed below [64–68].
At BBN, existing constraints on axion strings arise from

the contribution of relativistic axions toNeff (see, e.g., [27]).
The string network evolves by emitting relativistic axions;
the energy density in axions is [21] ρa ≈ 4

3
H2c1πf2a log3�,

where log�≡ logðms=HÞ, whereH is the Hubble parameter
at the epoch of interest and c1 is anOð1Þ coefficient that we
discuss later in this article.Wemay divide this energy density
by the energy density in one species of neutrino to compute
the contribution to Neff during radiation domination, in
particular, at 1 MeV:

SIGNATURES OF PRIMORDIAL ENERGY INJECTION FROM … PHYS. REV. D 109, 055005 (2024)

055005-3



ΔNeffjBBN ≈ 1.1

�
g�

10.75

��
c1
0.25

��
log�
90

�
3
�

fa
1015 GeV

�
2

;

ð1Þ

where g� is the effective number of degrees of freedom. At
BBN,ΔNeff is constrained at 95% to be less than 0.46,which
implies fa ≲ 7 × 1014 GeV for ma ≲ 10−18 eV. Note that it
ismore appropriate to account for the change in g� around the
epoch of BBN, and amore detailed calculation incorporating
this effect can be found in [27]which found an approximately
similar upper bound fa ≲ 9 × 1014 GeV. Note that the BBN
constraints leave a narrow range of decay constants that may
be detectable with gravitational-wave observations. In this
work, we further constrain and narrow the parameter space
that may be detectable in gravitational waves through radial-
mode emission.
If the string network persists to the epoch of CMB

decoupling, then additional probes arise from the gravita-
tional effects of the string network imprinted on CMB
anisotropies [69–71]. No analyses of these anisotropies have
been performed to date that account for the scaling violation
of the string network. However, extrapolating from existing
results from global strings [72], to account for the larger
values of ξ expected at the CMB decoupling epoch, suggests
that fa ≳ 2 × 1014 GeV are likely in tension with CMB
anisotropy data [27]. Axions emitted from strings contribute
to ΔNeff during the CMB epoch as well,

ΔNeffjCMB ≈ 0.8

�
c1
0.25

��
log�
120

�
3
�

fa
5 × 1014 GeV

�
2

; ð2Þ

and the bound ΔNeff < 0.34 [73] leads to fa≲
3 × 1014 GeV, with log� evaluated at recombination. Note
that the CMB limit is stronger than that from BBN in part
because of the larger log� value at theCMB epoch and in part
because for the CMBNeff is measured in matter domination,
at z ∼ 1100, while matter-radiation equality is at z ∼ 3400.
Axion strings persisting until after recombination

(ma ≪ 10−29 eV) may also rotate the polarization of
CMB photons [32–35,37]. This effect involves the axion-
electromagnetic interaction, which may be parametrized by

L ⊃
AαEM
4πfa

aFμνF̃μν; ð3Þ

where F is the electromagnetic field strength (with F̃ its
dual), αEM is the fine-structure constant, andA is the mixed
PQ-electromagnetic anomaly coefficient. If a photon prop-
agates along a trajectory over which the background axion
field changes by an amountΔa, then the polarization angle of
the photon will change by ΔΦ ¼ AαEM=ð2πfaÞΔa. Given
that complete loops enclosing string cores are characterized
by Δa ¼ 2πfa field excursions, we expect that photons
propagating through a background of cosmic axion strings

will undergo polarization-angle rotations on the order of
ΔΦ ∼AαEM. Reference [34] performed a dedicated search
for this effect in CMB polarization data as measured by
Planck and set the upper limitAξ0 ≲ 0.93, where ξ0 ∼ 10 is
the expected number of strings per Hubble patch at recombi-
nation, though in detail this upper limit likely depends on the
morphology of the string network assumed in [34].
Interestingly, the polarization probes are independent of
fa and close to probing theoretically motivated parameter
space for whichA≳ 0.1 [74]. In contrast, the signatures that
we develop in this work are independent of A but directly
probe fa.

III. PROMPT RADIAL-MODE EMISSION FROM
AXION STRINGS

We now turn to our calculation of the SM radiation
produced by evolving axion strings. We start by considering
SM particles generated by the decay of heavy radial modes
that are generated by the evolving strings. First,we review the
standard picture for axion string evolution in the context of a
field theory UV completion with a PQ complex scalar field
that undergoes spontaneous symmetry breaking.

A. PQ axion strings

Let us first recall the dynamics of axion strings in the
scaling regime, at temperatures T ≪ fa but HðtÞ ≫ ma
(see Refs. [1,21] for modern reviews). Note that the
dynamics we describe here are valid for both axion-like
particle strings and the QCD axion string network at
temperatures above the QCD phase transition. This is
because the QCD axion mass is temperature dependent
in the early Universe; it only becomes relevant at the QCD
epoch, where it rises rapidly and quickly exceeds the
Hubble parameter. Thus, at temperatures well above a
GeV the dynamics of the QCD axion string are the same as
those of axion-like particle strings with HðtÞ ≫ ma.
Furthermore, in this limit, the domain-wall number also
does not affect the dynamics, since the domain-wall
number only plays a role in the evolution when the axion
potential becomes important.
In the standard field theory UV completion the axion a

arises as the (pseudo-) Goldstone boson of global PQ
symmetry breaking of a complex scalar field Φ, which for
T ≪ fa we represent as

Φ ¼ ðfa þ sÞffiffiffi
2

p e−ia=fa ; ð4Þ

where s is the radial mode.1 In vacuum, the field Φ is
subject to the Lagrangian

1For simplicity we assume a KSVZ-type UV completion
[75,76].
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L ¼ ∂μΦ∂
μΦ† − λΦ

�
jΦj2 − f2a

2

�
2

: ð5Þ

In the thermal Universe the field Φ also has a thermal mass
term V thermðΦÞ ¼ m2

thermjΦj2, with m2
therm ≈ λΦT2=3 (see,

e.g., [62]). The thermal potential restores the PQ symmetry
at T ≫ fa. After PQ symmetry breaking, the radial mode
acquires a massms ¼

ffiffiffiffiffiffiffiffi
2λΦ

p
fa, while the axion is massless.

After PQ symmetry breaking, the radial mode abundance
redshifts like matter until it decays to lighter states every-
where except at the location of the axion string cores.
Axion strings are topologically protected solutions to the
PQ equations of motion for which the axion acquires a
2πfa phase shift when traversing a path that encloses a
string. The radial mode, which takes values s ≈ 0 far from
the strings, reaches the value s ¼ −fa, so thatΦ ¼ 0, at the
string core. As we discuss further below, semianalytic
solutions are available for infinitely straight strings (see,
e.g., [1] for a review), though in the cosmological context the
strings move, bend, combine, and disappear dynamically,
thus requiring numerical simulations (see Refs. [21,24,26]
for the current cutting-edge simulations). The string network
primarily loses energy by radiating axions, though (impor-
tantly for this work) a small fraction of the dissipated energy
goes into heavy radial modes.
The axion strings have tension μeff ≈ πf2a logðms=HÞ, to

leading order in large logðms=HÞ. The log arises because
the axion configuration that surrounds the string has an
energy density that falls off slowly with distance, leading to
a logarithmic divergence in the string tension; the large-
distance cutoff is ∼H−1, which is approximately the
distance to the nearest string in the scaling regime. The
energy density in the string network is ρs ≈ 4ξH2μeff ,
where ξ is the average number of strings per Hubble patch.
Note that ξ is formally defined by ξ≡ lt2=V at time t,
where l is the string length within a large volume V. In the
scaling regime, ξ is approximately constant, regardless of
whether the Universe is, e.g., matter or radiation domi-
nated. Logarithmic derivations to the scaling solution are
now understood to arise [24,26] (but see Ref. [77]), with
ξ ≈ c1 logðms=HÞ at large log, with c1 ≈ 0.25 in the
radiation-dominated epoch [26]. In Appendix D we show
that c1 ≈ 0.06 during matter domination.
At large logðms=HÞ, the rate of axion production is

(e.g., [21])

Γa ≈ 8H3ξμeff : ð6Þ

Recent simulations suggest that the momentum-space
distribution of radiated modes is nearly conformal:
∂Γa=∂k ∝ ðH=kÞq, with q ¼ 1.02� 0.03, for 1 ≪ k=H ≪
ms=H [26] with k being the momentum of the radi-
ated axion.

B. Radial-mode emission: General expectations

In addition to radiating axions, the strings may also
radiate radial modes. In the next subsection, we compute
the radial-mode emission rate by performing dedicated
simulations, but in this section, we discuss our general
expectations for this emission rate. At momenta k≳ms we
do not expect that the PQ theory differentiates between
axion emission and radial-mode emission, since at these
high energies the radial-mode emission is mildly relativ-
istic. On the other hand, radial-mode emission is disallowed
at frequencies less than ms. Since dΓa=dk ∝ 1=k, as
observed in simulations for H ≪ k ≪ ms, we conjecture
that Γk≳ms

a =Γk≲ms
a ∼ c=logðms=HÞ, for some constant c,

where Γk≳ms
a denotes the axion emission with k≳ms and

Γk≲ms
a is that with k≲ms. Since for high k the theory should

not differentiate axion versus radial-mode emission, we then
conjecture the radial-mode emission rate Γs ≈ Γk≳mS

a ,

Γs ≈ 8cH3ξπf2a; ð7Þ

to leading order in large logðms=HÞ, where c is an unde-
termined constant expected to be of order unity.
A deeper understanding of the relation between (6) and

(7) is found through the distribution of string loops. As
discussed in [26], we may understand the spectrum
dΓa=dk ∼ 1=k observed in simulations through the obser-
vation, in the same simulations, that ldnl=dl ≈ const.
Here, nl represents the number density of string loops with
lengths less than l at any given time. A loop of length l
radiates axions at a characteristic wavelength k ∼ 1=l.2

Moreover, it has been shown that string loops (and also
kinks in long strings) radiate energy at a constant rate
dE=dt regardless of the loop (kink) size [12,16,78,79]. This
implies a conformal spectrum of axion emission
dΓa=dk ∼ 1=k, with the high-k modes being emitted by
loops and kinks with large curvature; if l≲ 1=ms, then
these loops and kinks also emit radial modes with similar
efficiency to axions. Indeed, in the numerical simulations
described below, we find that radial modes are dominantly
produced in regions of large string curvature.
In this work, we restrict to the case λΦ ¼ 1, which fixes

the string width for a given fa. For a study of the
dependence of the string radiation on λΦ, see Ref. [80],
which used AMR to simulate individual strings with initial
sinusoidal displacements. Reference [80] also measured the
eigenmode decomposition of the axion and radial-mode
emission and compared it to analytic estimates in the
Nambu-Goto limit. Crucially, however, as their string

2More precisely, axion string loops of size l appear to radiate
axions with a conformal instantaneous spectrum ∝ 1=k for 1

l ≲
k≲ms [39]; in Appendix E we perform numerical simulations of
collapsing string loops to verify this scaling and discuss in more
detail how it leads to a conformal emission spectrum for the
network as a whole.
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configurations are isolated and do not contain regions of
large curvature, they found radial-mode emission to be
heavily suppressed relative to axion emission by 3 to 5
orders of magnitude when λΦ ¼ 1 depending on the
amplitude of the sinusoidal oscillations.

1. Analytic estimate for radial-mode
emission rate from string tension

In the following subsections, we simulate the string-
network evolution to measure the constant c. First, however,
we present a rough but insightful analytic argument that
suggests a value c ∼ 0.1, which we later verify and refine
with the numerical simulations. The general idea behind our
approach below is that as the string network evolves it
radiates energy into axions and radial modes, but that energy
must come from the stored energy in the string tension. Thus,
it is plausible that the fraction of radiated energywith k≳ms
will be proportional to the fraction of the string tension that,
in Fourier space, also has k≳ms. For k≳ms, the axion and
the radial mode are not qualitatively different, so we
hypothesize that the modes emitted with k≳ms are split
democratically between axions and radial modes. Below, we
make this argument precise.
We parametrize the PQ profile describing a long string

oriented along the z axis as

Φ ¼ faffiffiffi
2

p gðmsrÞeiθ; ð8Þ

where gðmsrÞ is a dimensionless function and fr; θ; zg
describe a 3D cylindrical coordinate system. For a string
solution, g ∼msr for small msr and g ∼ 1 − 1=ðmsrÞ2 for
largemsr. To estimate the emission of radial modes, we can
Fourier transform the gradient of the position-space profile
to see which momentum modes are supported with k≳ms.
The position-space expression for the energy density is
given by

ρstrðr; θ; zÞ ¼ j∇Φj2 þ λΦ

�
jΦj2 − f2a

2

�
2

¼ m2
sf2a
2

��
g02 þ g2

x2

�
þ 1

4
ðg2 − 1Þ2

�
; ð9Þ

where x ¼ msr and 0 denotes a derivative with respect to x.
The string tension μ is then given by

μ ¼
Z

dθdrrρstr: ð10Þ

Restricting to a given plane orthogonal to the infinite string,
the 2D Fourier transform of the energy density is

ρ̃ðkÞ≡
Z

d2xe−ik·xρstrðxÞ ¼ 2π

Z
∞

0

drrρstrðrÞJ0ðkrÞ;

ð11Þ

where J0 is the zeroth Bessel function of the first kind. At
small k, we have ρ̃ðkÞ ∝ logðkÞ, which gives rise to the IR
divergence in the string tension μ ¼ ρ̃ð0Þ. Physically, this
divergence is cut off by the Hubble scale providing the
largest, relevant length scale at k̃IR ∼H=ms. (Note that we
define μeff to be the effective tension computed with the IR
cutoff kIR.) At large k, ρ̃ðkÞ falls exponentially, as in Fig. 2.
We estimate the part of the string tension relevant for

axion emission as that with k > ms; we compute this
contribution as μUV ≡ ρ̃ðmsÞ ¼ 2πcUVf2a, where the con-
stant cUV is defined with the specific normalization because
we show in the following paragraph that it is related to the
constant c in (7). Numerically, we find cUV ≈ 0.16.
Let us now discuss the relation between μUV and Γs. By

comparing the evolution of the energy density of the string
network in the scaling solution to that of the free-string
network, one may infer that the string network must emit
energy with a rate Γtot ¼ 8ξμH3 [21]. Let us assume that
the modes with k > ms emitted from the strings are split
equally between axions and radial modes; while this is
almost certainly not completely true, it allows us to make an
Oð1Þ estimate for the radial-mode emission rate. Then, we
estimate that Γs ≈ 8cUVH3ξπf2a. Comparing with (7), we
thus estimate that c ≈ cUV ≈ 0.16. As we show in the
following subsections, this estimate for c is similar to what
we find in dedicated numerical simulations of the string
network.

C. PQ simulations for radial-mode radiation: Setup

We simulate the evolution of axion strings with the
Lagrangian as in (5) along with the thermal mass term for
Φ. We fix λΦ ¼ 1 throughout this work for definiteness, in
all of our simulations, such that the radial-mode mass is
ms ¼

ffiffiffi
2

p
fa. We follow the basic procedure outlined in [26]

and the equations of motion, along with common technical

FIG. 2. 2D Fourier transform of the string energy density for an
infinite, straight string, from (11).
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details pertaining to the base code, can be found therein.
Reference [26] performed simulations of the axion string
network to measure the axion radiation and infer the axion
mass that gives rise to the observed DM abundance for the
QCD axion. For our purposes, however, we are interested in
the ratio of emission rates of radial-mode emission relative
to axion emission.
Our code is based on the AMReX framework [81] and is

capable of AMR. AMR allows for a dynamical grid with
multiple refinement levels that track given spatial locations
at higher spatial and temporal resolution (see Fig. 1 for an
illustration of an AMR grid). While our setup is largely
identical to that of [26], our different objective forces two
major changes. First, because the radial-mode spectrum is
expected to peak at short wavelengths which propagate
throughout the entire simulation volume, we do not employ
any of the AMR capabilities (i.e., we use a single refine-
ment level). This is because the AMR setup would miss
some of the short-wavelength radiation of the radial mode
since its amplitude is often too small compared to that of
axion radiation to trigger our refinement criteria. (Note,
however, that we do use multiple AMR refinement levels in
our simulations including the Higgs field in Sec. V.)
Instead, the simulation is performed on a static lattice
containing initially 5123 grid sites to ensure that the radial
mode is resolved as well. As the comoving width of axion
strings decreases over time, the number of grid sites is
increased by a factor of 23 through quartic interpolation
every time the string width would be resolved by less than
four grid sites, up to a final size of 40963 grid sites.
The second change we make relative to the simulation

setup in [26] involves our initial conditions. Reference [26]
started with thermal initial conditions at ηi for the complex
scalar field Φ. Here, since we are unable to evolve to as
large of logðms=HÞ values as in [26]—since we are not
using multiple refinement levels—we preevolve the state
following the procedure in [21]. The preevolution mitigates
the effects of transient oscillations to the string cores that
are relevant at small values of logðms=HÞ and which would
otherwise contaminate our emission measurement. The
preevolution procedure is described in more detail in
Appendix B and involves modified equations of motion
that support a constant string width and a moderate
amount of Hubble friction. The preevolved state is
designed to be close to the attractor solution at our
starting time logðms=HÞ ¼ 2. To avoid the reintroduction
of transient radial-mode excitations when starting from a
preevolved state due to the sudden change in the under-
lying physics, we introduce a short adiabatic regime
between logðms=HÞ ¼ 2 and logðms=HÞ ∼ 3. In this
regime, we smoothly interpolate between the two sets
of equations of motion using a logistic function. (See
Appendix B for more details.)
The simulation volume is a periodic box with comoving

side length L ¼ 33=ðR1H1Þ, where R1 is the scale factor of

the Friedmann-Robertson-Walker (FRW) metric at a refer-
ence time t1 such that the Hubble parameter is Hðt1Þ ¼
fa ≡H1. Our simulation is evolved in conformal time η
defined by RðtÞ=Rðt1Þ≡ η. The simulation begins at ηi ≈
2.3 [logðms=HÞ ¼ 2], and we evolve until ηf ≈ 21.7
[logðms=HÞ ≈ 6.5]. We use a low-storage strong stability-
preserving third-order Runge-Kutta algorithm to advance the
field with a time step size given by the Courant-Friedrichs-
Lewy condition throughΔη ¼ 0.33Δx. The Laplacian oper-
ator is computed through a finite-difference seven-point
stencil. At the end of the simulation, our box contains
approximately 3.5 Hubble volumes.
The simulations are performed at the NERSC Perlmutter

supercomputer. Each simulation runs for approximately
30 minutes on 256 AMD EPYC 7763 CPUs (i.e., 128 total
nodes, 256 total CPUs, and 16 384 total CPU cores).

D. PQ simulations for radial-mode radiation: Results

We are interested in measuring the amount of axion and
radial-mode radiation that is emitted from the string net-
work over time. In Fig. 3 we illustrate the radial-mode and
axion radiation from a snapshot near the end of the
simulation, at logðms=HÞ ≈ 6.5. In the top panels, we
show the time derivative of the radial mode squared (ṡ2),
in logarithmic units, which is a proxy for the radial-mode
energy density. The string network is clearly visible in the
top right panel; the bright regions away from the strings are
regions of significant axion radiation. The zoom-in in the
top left panel shows a string region producing large
amounts of radial-mode emission. That region of the string
is characterized by its high curvature, which suggests that
radial modes are predominantly produced from regions of
the strings with high curvature of order the radial mode
mass itself (see also Appendix E). In contrast, the lower
panels shows the axion time derivative squared (ȧ2) for the
same state as in the top panels. The axion radiation has
support at longer wavelengths relative to radial-mode
radiation. Thus, while the high-curvature region also
produces significant axion radiation, the contrast versus
the rest of the string regions is not as large.
To compute the energy densities more precisely, we use

the fact that away from the string cores both the axions and
radial modes are free fields. At a given point x the energy
density of a real, free scalar field X, which solves its
classical equations of motion, is

ρXðxÞ ¼
1

2
Ẋ2 þ 1

2
ð∇XÞ2 þ 1

2
m2

XX
2

¼ Ẋ2; ð12Þ

wheremX is the field’s mass and where we have applied the
equation of motion to arrive at the second line. This implies
that we can compute the average energy density over the
simulation box, ρX ≡ 1

L3

R
d3xρðxÞ, by
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ρX ¼ 1

L3

Z
d3xẊ2ðxÞ ¼ 1

L3

Z
d3k
ð2πÞ3 j

˜̇XðkÞj2: ð13Þ

We may take XðxÞ to be either the axion aðxÞ or the radial
mode sðxÞ. ˜̇XðkÞ is the Fourier transform of ẊðxÞ as
extracted from the simulation, where ẊðxÞ is screened to
avoid contributions from the strings themselves [21,26].
Explicitly, we use ẊðxÞ → ẊðxÞðsðxÞ=fa þ 1Þ2, since
ðs=fa þ 1Þ2 ≈ 1 away from strings but ≈0 near the core.
The exact form of this screening has little effect on the
result [26]. In Fig. 4 we show the energy density as a
function of time, displayed as logðms=HÞ, for both the
axion and the radial mode. The energy density emitted by
the string network is dominated by axion radiation; to

compute the emission rates, we need to take the appropriate
time derivatives:

ΓX ¼ R−z d
dt

ðRzρXÞ: ð14Þ

Here, z characterizes how the average energy density of the
field X redshifts, with z ¼ 3 for nonrelativistic modes and
z ¼ 4 for relativistic modes. The axions have z ¼ 4 since
they are massless. The redshift factor z for the radial mode
can be computed by [21,24,27]

z≡
R
dkz½k=ms� ∂ρsyou∂k

ρs
; ð15Þ

FIG. 3. Top: 2D projection of the radial-mode energy ṡ2 at the end of our 3D simulation investigating radial-mode emission around
logðms=HÞ ∼ 6.5. The full simulation box, spanning ∼1.5 Hubble lengths, is shown on the right with a detailed view shown on the left.
Axion strings stand out as bright closed loops with strong emissions in particular around kinks and recent string reconnections. Bottom:
the same state of the string network but illustrated for the axion energy density ȧ2 instead of that of the radial mode. The axion emission
has more support at long wavelengths relative to that of the radial mode.

BENABOU, BUSCHMANN, KUMAR, PARK, and SAFDI PHYS. REV. D 109, 055005 (2024)

055005-8



with

z½k=ms�≡ 3þ ðk=msÞ2
ðk=msÞ2 þ 1

ð16Þ

and

∂ρs
∂k

¼ jkj2
ð2πLÞ3

Z
dΩkj ˜̇sðkÞj2: ð17Þ

In Fig. 5 we show our results for z computed over time from
the simulation output for the radial mode. In general, we
find z ≈ 3.7, though it appears that z slightly decreases over
time. Note that z can be no smaller than z ¼ 3 and
physically we expect z > 3 since the radial modes are
produced semirelativistically. The small decrease in z over
time may be expected since as we go to larger logðms=HÞ
values we have a larger dynamical range between the
Hubble scale, which provides an IR cutoff, and the UV
cutoff provided by ms; this may account for an increased
weight for the low-k part of the spectrum at later times. In
our fiducial analysis below we take z as measured at each
logðms=HÞ step, though we show that our results are robust
to changes in z. For example, we consider z as small as 3.3
and as large as 3.8.
In the left panel of Fig. 6 we show the instantaneous

axion spectrum, divided by 8H3ξπf2a; referring to (6), we
expect Γa=ð8H3ξπf2aÞ ≈ logðcams=HÞ, where ca is a con-
stant of order unity that accounts for finite contributions to
the string tension and the precise form of the IR cutoff to
the tension. We fit the model expectation to the data [for
logðms=HÞ ≥ 5] to get the best-fit curve shown in dashed
black, which has ca ≈ 0.063� 0.002. (The grey band

illustrates the 1σ band on ca.) We perform the fit to the
Γa data assuming that the data points for Γa have Gaussian
uncertainties σ ¼ αΓ̃aðcaÞ, where α is a hyperparameter
and Γ̃aðcaÞ is the model prediction for Γa for a given choice
of ca. To reduce statistical and systematic noise we perform
a total of nine simulations with different initial states; see
Appendix B for more details. The results of these simu-
lations are similar and hence we combine them by
averaging Γa, Γs, and ξ. We profile over α to compute
the confidence interval for ca. The best-fit value for α at the
best-fit value for ca is then used to construct the 1σ error
bars on the data points shown in Fig. 6.
The quantity Γa=ð8H3ξπf2aÞ is observed to rise linearly

with logðms=HÞ, as expected. In contrast, we expect
Γa=ð8H3ξπf2aÞ ¼ c, referring to (7), to be constant with
logðms=HÞ. In the right panel of Fig. 6 we show the Γs data
from our fiducial choice of z, which is extracted directly
from the simulation at each time step. The best-fit value of c
is shown in dashed black with the grey band indicating the
1σ confidence interval; we find c ≈ 0.33� 0.13. We use
this value of c in our analyses below looking at the effect of
radial-mode-induced energy injection, though keep in mind
that different UV completions may give slightly different
values for c.
Our best-fit value of c has a mild dependence on the

choice of z for the radial model emission. Choosing a
constant z of 3.8 (3.5) (3.3) leads to a central value for c of
∼0.38 (0.25) (0.17). We do not consider this source of
uncertainty further since it is subdominant compared to
other sources of uncertainty in our analyses.

FIG. 4. Energy densities ρ for the axion (black) and radial mode
(grey) as extracted from the simulation.

FIG. 5. The quantity z computed for the radial mode, defined in
(14) and (15), describes how the instantaneous emission redshifts
at production. Completely nonrelativistic (relativistic) radiation
has z ¼ 3 (z ¼ 4), with the free particles scaling with the scale
factor like ρs ∝ R−z. The emitted spectrum of radial modes is
semirelativistic, giving the intermediate z shown.
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IV. RADIAL-MODE DECAYS

While the semistatic axion strings are protected from
decay by the topology of the configuration, the radiated
radial modes, with the production rate given in (7), will
promptly decay to lighter states. In particular, the radial
modes may decay to pairs of axions or pairs of SM states.
The amount of visible energy injected by the string network
is proportional to the branching ratio

B≡ Γs→SM

Γs→SM þ Γs→aa
; ð18Þ

where Γs→SM (Γs→aa) is the decay rate to SM final states
(axion final states). This quantity depends on the UV
completion of the theory. We consider Kim-Shifman-
Vainshtein-Zakharov (KSVZ)-type [75,76] axion-like-par-
ticle scenarios for illustration. [Note that the simplest
implementations of the Dine-Fischler-Srednicki-Zhitnitskii
(DFSZ) [82,83] scenario give a coupling of the axion to
gluons, which we want to avoid since we are considering
axion-like particles and not the QCD axion.]
In the KSVZ-type scenario, the Lagrangian is given by

L ¼ j∂Φj2 − VðΦÞ þ Q̄iDQ − ðyQQ̄LQRΦþ H:c:Þ; ð19Þ

with QL, QR forming a vector-like fermion. That fermion is
charged under SUð2ÞL ×Uð1ÞY but is a singlet under
SUð3Þc, since we are focusing on axion-like-particles and
not the QCD axion. After spontaneous symmetry breaking,
the vector-like fermion acquires a mass mQ ¼ yQfa=

ffiffiffi
2

p
.

The vector-like quarks must be able to decay as other-
wise the population produced in the early Universe, both
thermally prior to the PQ phase transition and from the
evolution of the string network, would become nonrela-
tivistic at later times and overclose the Universe. New
interactions beyond those in (19) are needed for the vector-
like quarks to decay (see Ref. [84] for a review). In this
regard, for specific choices of SUð2ÞL × Uð1ÞY charges for
the vector-like quarks, additional interactions with the SM
are possible. For example, dimension-four operators of the
form f̄QH, where f are SM fermions,Q are the vector-like
quarks, and H is the SM Higgs, may lead to heavy-quark
decay. Dimension-five operators may also be responsible
for such decays [84]. For our purposes, the specific forms
of such operators are not important; all that is required is
that if a heavy quark is produced it will eventually decay to
SM final states.
Without loss of generality, let us assume that under a

Uð1ÞPQ transformation Φ → eiαΦ, QL → eiαQL, and
QR → QR for constant α. This transformation leaves the
Lagrangian in (19) invariant and allows us to construct
operators that respect the PQ symmetry but that induce PQ
fermion decay using QR.
As an illustration, let us consider the possible dimension-

four operators that give rise to heavy-quark decay. We
chose the convention for the weak isospin such thatUð1ÞEM
is generated by Q ¼ Y þ T3, where T3 ¼ 1

2
σ3 is the third

generator of SUð2ÞL and σ3 is the third Pauli matrix; the
SM Higgs H then has weak hypercharge Y ¼ 1

2
, right-

handed leptons have Y ¼ 1, and left-handed leptons have

FIG. 6. Left: normalized axion emission rate as measured in our AMR axion string simulation as a function of logðms=HÞ. This
quantity is expected to evolve with time as logðcams=HÞ, for some constant ca. We fit this expectation to the data to determine
ca ≈ 0.063� 0.002 (see text for details). Importantly, the normalized axion emission rate rises logarithmically with time. The dashed
curve and grey band show the best-fit model expectation and the associated uncertainty band, respectively. Right: as in the left panel but
for the normalized radial-mode emission rate. Unlike the axion emission rate, the normalized radial-mode emission rate is expected to be
constant with time [see (7)]. By fitting a constant to the normalized radial-mode emission rate data, we determine the constant c in (7) to
be c ≈ 0.33� 0.13.
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Y ¼ − 1
2
. If the KSVZ fermions have SUð3Þ × SUð2Þ ×

Uð1ÞY quantum numbers ð1; 1; YÞ, then their Yukawa
couplings must be to left-handed SM leptons via
(H̃i ¼ ϵijH†j)

L ¼ −yL̄iQRHi þ H:c: or L ¼ −yL̄iQRH̃i þ H:c:;

ð20Þ
enforcing Y ¼ −1 or Y ¼ 0 for the hypercharge of QR. If
Y ¼ 0, though, the axion does not have nontrivial inter-
actions with gauge fields at late times. If instead the
quantum numbers are ð1; 2; YÞ, then the Yukawa couplings
must be to right-handed SM leptons via

L ¼ −yQ̄i
LψRHi þ H:c: or L ¼ −yQ̄i

LψRH̃i þ H:c:;

ð21Þ

enforcing Y ¼ 3
2
or Y ¼ 1

2
for the hypercharge of QL.

Recall that ms ¼
ffiffiffiffiffiffiffiffi
2λΦ

p
fa, while mQ ¼ yQfa=

ffiffiffi
2

p
. For

the radial modes to decay to KSVZ fermions far away from
the string cores we need 2mQ < ms, which implies
yQ <

ffiffiffiffiffi
λΦ

p
. If this inequality is not satisfied, then radial

modes that propagate sufficiently far from the string cores
will not be able to decay to KSVZ fermions and must decay
directly to axions or SM final states, as we discuss below.
On the other hand, near the string cores, the KSVZ fermion
masses are greatly reduced and indeed the fermion masses
vanish at the core centers. Thus, the radial modes are
always able to decay to Q pairs near the string cores; these
KSVZ fermions are then kinematically trapped near the
string cores until they decay to SM final states.
We now consider several scenarios for the decays of the

radial mode. Since the radial mode always decays to a pair
of axions, we consider one SM channel at a time to
compute the branching ratio into the SM. The expressions
given below can be appropriately modified when multiple
channels involving SM final states exist at the same time.

A. Decay into PQ fermions

Let us start by considering the case yQ <
ffiffiffiffiffi
λΦ

p
. Then, the

decay rate of radial modes to KSVZ fermions is

Γs→Q̄Q ¼ NLy2Q
ms

16π

�
1 −

4m2
Q

m2
s

�3
2

¼ NLy2Q

ffiffiffiffiffiffiffiffi
2λΦ

p
fa

16π

�
1 −

y2Q
λΦ

�3
2

; ð22Þ

where NL ¼ 1 if the fermions are SUð2ÞL singlets and
NL ¼ 2 if they are doublets. This decay channel contributes
to Γs→SM, since the KSVZ fermions decay completely to
SM final states. On the other hand, because of the kinetic
term, the radial mode may decay to axions at tree level,
such that

Γs→aa ¼
1

32π

m3
s

f2a
¼ ð2λΦÞ3=2

32π
fa: ð23Þ

Thus, the branching ratio of the radial mode to SM final
states is

B ¼ NLy2ð1 − y2Þ3=2
1þ NLy2ð1 − y2Þ3=2 ; y≡ jyQjffiffiffiffiffi

λΦ
p < 1: ð24Þ

For NL ¼ 1 (NL ¼ 2), the branching ratio may be as large
as B ≈ 0.16 (B ≈ 0.27). On the other hand, if the Yukawa
coupling to KSVZ fermions is small relative to the PQ self-
coupling, then the branching ratio is suppressed; for
example, B ≈ 2 × 10−4 for y ¼ 10−2 and NL ¼ 2.

B. Decay into electroweak gauge bosons

In addition to the tree-level decays of the radial mode to
KSVZ fermions and axions, there are one-loop decays to
SM gauge bosons that may also be relevant. Taking the
vector-like quarks to be in the fundamental representation
of SUð2ÞL (NL ¼ 2), for example, the decay rate to W
bosons is given by

Γs→WW ¼ α22
72π3

m3
s

f2a
¼ α22

72π3
ð2λΦÞ3=2fa: ð25Þ

Assuming NL ¼ 2, we thus find B ≈ 2 × 10−5, where we
use the value of the weak fine-structure constant α2ðms ≈
1016 GeVÞ ≈ 0.02 at energy scales of order the grand
unified theory (GUT) scale. The field s can also decay
to ZZ, γγ, and γZ, though these processes are roughly a
factor of 5 smaller in total than the decay rate to WW. See
Appendix A for more details.

C. Decay into SM Higgs

The UV Lagrangian may also contain the renormalizable
terms connecting the PQ field with the Higgs field through
the potential3

VðH;ΦÞ ¼ λH

�
jHj2 − μ̃2H

2λH

�
2

þ λΦ

�
jΦj2 − f2a

2

�
2

þ λHΦjHj2
�
jΦj2 − f2a

2

�
: ð26Þ

Here, H is the SM Higgs doublet, λH is the Higgs quartic
coupling, and −μ̃2H is related to the Higgs mass parameter.

3The λHΦ quartic term contributes to the electroweak hierarchy
problem by adding a mass term for the Higgs field, with mass
parameter of order fa, but this theory already has a hierarchy
problem of the same order so the addition of this term does not
make the hierarchy problem qualitatively worse. In (26) we leave
off additional, bare mass terms forH in the UV that are needed to
drive the Higgs mass parameter towards zero in the IR.
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The stability of the electroweak-symmetry-breaking vac-
uum requires

λ2HΦ < 4λHλΦ: ð27Þ

With this requirement, one can see by integrating out the
radial mode that the Higgs acquires a VEV hjHj2i ¼ v2EW=2,
with v2EW ¼ μ2H=λH and μ2H ≡ 4λHλΦ

4λHλΦ−λ2HΦ
μ̃2H.

Expanding Φ about its VEV, we see that the radial mode
acquires an interaction with the Higgs field,

L ⊃ λHΦjHj2jΦj2 ¼ λHΦfasjHj2 þ � � � ; ð28Þ

which allows the radial mode to decay at tree level to Higgs
pairs. Since the radial-mode mass is well above the Higgs
mass, the decay rate s to Higgs pairs is given by

Γs→HH ¼ 1

4π
ffiffiffi
2

p λ2HΦffiffiffiffiffi
λΦ

p fa <
1

π
ffiffiffi
2

p λH
ffiffiffiffiffi
λΦ

p
fa; ð29Þ

such that B ¼ 1=½1þ λ2Φ=ð2λ2HΦÞ� and B < 1=½1þ λΦ=
ð8λHÞ�. As we discuss further below, the Higgs quartic
coupling famously runs to small and potentially even
negative values at high energy scales. On the other hand,
λH does receive threshold corrections near the PQ scale that
push it to further positive values in the UV (see, e.g., [85]).
For definiteness, let us assume that λH ¼ 0.01 at the PQ
scale, such that B ≲ 0.1, though smaller, positive values for
λH do not qualitatively change the branching ratio. (For
example, B ≲ 0.01 if λH ¼ 10−3 at the PQ scale.) On the
other hand, if λH is negative at the PQ scale this leads to
runaway behavior for the axion strings, and so we do not
consider that possibility further.
In summary, depending on the Lagrangian parameters

the branching ratio to SM final states may be as large as
B ∼ 0.3 or as small as B ∼ 10−5. On the other hand, there
are many ways of achieving a large branching ratio; for
example, if the radial mode is kinematically allowed to
decay to PQ fermions, then it will generically do so with a
large branching ratio unless the Yukawa coupling to the
fermions is small. The branching ratio B ∼ 10−5 is irre-
ducible if we insist on the axion coupling to W bosons; it
can be a factor of a few smaller still if all other s-decay
channels to SM final states are removed and the axion only
couples to hypercharge and not to SUð2ÞL.
Last, we note that even if yQ >

ffiffiffiffiffi
λΦ

p
, such that the radial

mode is not kinematically allowed to decay to KSVZ
fermions asymptotically far away from the string, the radial
mode could still decay to fermions close to the string. In the
presence of a background field Φ the KSVZ fermions have
a mass ∼yQjΦj; asymptotically far away from the strings,Φ
goes to its VEV fa=

ffiffiffi
2

p
. However, at the string core,Φ ¼ 0,

with the magnitude of Φ rising to fa over a distance of
order m−1

s from the string core. However, we do not

consider such decays further here and rather bracket the
possible branching ratio to SM final states as being within
the range B∈ ð10−5; 0.3Þ.

V. AXION-HIGGS STRINGS

The quartic coupling between the PQ scalar and the SM
Higgs field—the term parametrized by λHΦ in (26)—is
generically present in KSVZ models. This term could be
present in the UV, but otherwise it is generated under the
renormalization group through the KSVZ fermions at lower
energy scales. We show in this section that the presence of
this coupling leads to nontrivial, classical Higgs field
profiles surrounding the strings. Below, we refer to these
strings as axion-Higgs strings and to the Higgs profiles as
“Higgs sheaths.” These Higgs sheaths may have a number
of important implications, but for our purposes, they
provide efficient sources of SM radiation from the cosmo-
logically evolving axion-Higgs string network. In this
section, we study the axion-Higgs strings and perform
dedicated simulations to study their dynamics and the
radiated Higgs fields that are shed during their cosmologi-
cal evolution.
Axion-Higgs strings were studied previously in [86] in

the context of the DFSZ model, where they were called
electroweak axion strings. However, the DFSZ electroweak
axion strings are fundamentally different from the axion-
Higgs strings that we discuss in this section. In particular,
the Higgs sheaths we discuss have no nontrivial winding
around the string cores, while the electroweak axion strings
exhibit nontrivial winding in the context of the two-Higgs
doublet model. In the DFSZ model, there are two Higgs
doublets H1 and H2 that have nontrivial interactions with
the complex PQ scalar Φ, including those of the form

Vmix ⊃ κΦ†2H1H2 þ H:c:; ð30Þ

where κ is a coupling constant. If we let the PQ
charge of Φ be unity and the PQ charges of H1 and H2

be X1 and X2, respectively, then PQ invariance requires
2 − X1 − X2 ¼ 0. Axion string solutions in this scenario
may be of the form, for infinite, straight strings,
Φ ¼ faeiθgðrÞ=

ffiffiffi
2

p
, H1 ¼ v1eiθð0; h1ðrÞÞT , H2 ¼ v2eiθð0;

h2ðrÞÞT [86]. However, while the tension associated with
the Φ profile is ∝ f2a, the tension associated with the H1

and H2 profiles is significantly smaller, of order the Higgs
field VEVs v21;2. Given this reason, we do not consider the
DFSZ scenario in further detail in this work.4

4Recall that since at least one of H1 and H2 is PQ charged,
some of the SM quarks would also carry PQ charges. Hence, the
axion would acquire tree-level derivative interactions with those
SM quarks and, in turn, with gluons through the aGG̃ operator.
Thus, owing to the QCD-generated mass, a is no longer a
candidate for an axion-like particle. This is another reason why
we focus on a KSVZ-type model.
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In contrast to the electroweak axion strings scenario
discussed in [86], the Higgs sheath solutions that we present
here contribute to the tension at order f2a. The Higgs sheath
solutions appear in KSVZ-type scenarios, with single Higgs
multiplets, with the Lagrangian as in (19) and (26). As we
discuss below, the λΦH termgenerates nontrivial solutions for
the Higgs field exterior to the strings with no winding.
Below, we first discuss the Higgs sheath profiles for

infinite, straight strings, and then we confirm the semi-
analytic expectations for the Higgs profiles using numerical
simulations of the axion-Higgs cosmology.

A. Semianalytic solutions for infinitely
straight axion-Higgs strings

Consider an infinitely straight string in the ẑ direction in
cylindrical coordinates ðr; θ; zÞ, in the theory consisting of
the PQ scalar Φ and a single complex scalar field H, with
the potential given in (19) and (26). In reality, the Higgs is
an SUð2Þ doublet, but by gauge symmetry, it is sufficient to
work with a singlet Higgs field when computing the
contribution to the string tension.
In cylindrical coordinates, the ansatz for an infinite,

straight axion string along ẑ is

Φ ¼ faffiffiffi
2

p gðrÞeiθ; ð31Þ

for some function gðrÞ. We hypothesize that in the presence
of the λHΦ interaction the Higgs field acquires a nontrivial
profile that we may write as

H ¼ faffiffiffi
2

p hðrÞ ð32Þ

for a real function hðrÞ. Then, in Minkowski space, a static
solution ðg; hÞ obeys the equations of motion

h00 þ 1

r
h0 þ μ̃2Hh −

1

2
λHΦf2ahðg2 − 1Þ − λHf2ah3 ¼ 0 ð33Þ

and

g00 þ1

r
g0−

1

r2
g−λΦg3f2aþλΦf2ag−

1

2
λHΦh2gf2a ¼ 0: ð34Þ

Here primes denote derivatives with respect to r. Writing
the total energy density associated with the string solution
as ρtot ¼ ρH þ ρΦ þ ρint, the subcomponents of the energy
density associated with the different fields are

ρH ¼ 1

2
ðh0Þ2f2a −

1

2
μ̃2Hh

2f2a þ
1

4
λHh4f4a;

ρΦ ¼ 1

2
ðg0Þ2f2a þ

1

2

g2

r2
f2a þ

λΦ
4
ðg2 − 1Þ2f4a;

ρint ¼
1

4
λHΦh2ðg2 − 1Þf4a: ð35Þ

The tension is defined as the total energy per unit length
of the string,

μtot ¼ 2π

Z
∞

0

drrρtotðrÞ: ð36Þ

Note that, unlike for the PQ field Φ which has nontrivial
winding around the string, there is no topological protec-
tion for the Higgs profile. The stability of the Higgs profile
can rather be determined by the following consideration. A
trivial solution to the equation of motion (33) is given by
h ¼ 0 everywhere. We denote the tension corresponding to
that solution as μh¼0.

5 If μtot < μh¼0, with μtot including the
nontrivial Higgs field profile, then the Higgs sheath is
stable.
As already discussed, the stability of the PQ and electro-

weak vacua requires 0 < λHΦ <
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4λΦλH

p
and λH > 0. The

PQ and Higgs VEVs are then

hjΦj2i ¼ v2Φ
2
; v2Φ ¼ f2a −

λHΦ

2λΦ

μ2H
λH

≈ f2a;

hjHj2i ¼ v2EW
2

; v2EW ¼ μ2H
λH

: ð37Þ

We use this notation below in describing the behavior of the
field profiles. In practice, we may approximate vEW ≈ 0,
sincefa ≫ vEW. The radialmodemass ism2

s ¼ 2λΦf2a.With
the approximation vEW ≈ 0, and assuming all of the dimen-
sionless coupling constants (λH, λHΦ, λΦ) are order unity,
there is only one dimensionful scale, which is fa. At small r,
the equations of motion enforce gð0Þ ¼ 0 in addition to
h0ð0Þ ¼ 0. The quantity hð0Þ cannot be computed analyti-
cally; it must be computed numerically. However, the
fact that the equations of motion do not depend on any
dimensionful parameters ensures that hð0Þ ∼ 1, such that
Hð0Þ ∼ fa. Asymptotically far from the string core, h → 0
and g → 1. The fieldsΦ andH thus have field excursions of
order fa over distance scales of orderf−1a , sincefa is the only
dimensionful parameter in the problem. This implies that the
contributions to the tension from bothH andΦ are expected
to be of order f2a. Note that both g and h approach their
asymptotic values at r → ∞ through terms that fall of with r
as 1=r2, which implies that both the radial mode and the
Higgs field have IR-finite contributions to the tension, unlike
the contribution from the axion field, which is logarithmi-
cally divergent in the IR.
It is important to contrast the Higgs solution above with

that found in the DFSZ electroweak axion string. In the
latter case, the Higgs fields have nontrivial winding, which
implies that regularity at r ¼ 0 forces H1ð0Þ ¼ H2ð0Þ ¼ 0.

5More precisely, we define μh¼0 as the energy density per unit
string length of the string solution with h ¼ 0 fixed minus the
energy density per unit string length of the Universe with h ¼ 0
and g ¼ 1 everywhere.
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On the other hand, H1;2ðr ¼ ∞Þ ∼ v1;2. Thus, the Higgs
fields in the electroweak axion strings only have field
excursions of order their VEVs v1;2. It is precisely because
our Higgs field does not wind that it is able to haveHð0Þ ∼
fa and thus contribute substantially to the string tension.
In Fig. 7 we illustrate the radial mode and Higgs field

profiles found for the infinite, straight string by numerically
integrating (33) and (34) using a fourth-order collocation
method. We take the Higgs VEV to be zero since physically
it is much less than fa, and we make the choices
ðλΦ; λH; λHΦÞ ¼ ð1; 4; 2Þ. Note that jΦj ¼ 0 at the string
core, as required in order to remove the singularity
associated with the axion winding, while at large distances
from the string, the PQ mode asymptotes to its VEV
jΦj ¼ fa=

ffiffiffi
2

p
. The Higgs field has a nonzero value at the

string core (jHj=fa ≈ 0.3), since it has trivial winding, and
it asymptotes to zero infinitely far from the string.
Let us now verify that the Higgs sheaths are stable by

computing the tension of these configurations and compar-
ing to the solution with H ¼ 0 everywhere. In Fig. 8 we
illustrate μtot − μh¼0 as a function of λH for the choices
ðλΦ; λHΦÞ ¼ ð1; 2Þ. Note that vacuum stability requires
λH > λ2HΦ=ð4λΦÞ ¼ 1 in this case, which is indicated.
For all λH the differences in tension are negative, sug-
gesting that the Higgs sheaths represent the energetically
preferred solutions and are stable to decay.
A network of axion strings with Higgs sheaths may be

expected to evolve by emitting classical axion, Higgs, and
radial-mode radiation. By energy conservation, the total
rate of energy loss to radiation by the string network is
equal to the time derivative of the energy difference

between the evolving string network and the free string
network (see, e.g., [21]). The axion emission rate should be
mostly unaffected by the Higgs profiles since the Higgs
profiles extend over a distance ∼m−1

s while the axion
emission dominantly comes from longer wavelengths.
The Higgs emission rate should then arise from the IR-
finite part of the string tension μ ∼ πf2a. More precisely,
assuming the Higgs emission arises from energy conser-
vation associated with the IR-finite part of the string
tension, we expect

ΓH ¼ ð8H3ξπf2aÞfðλH; λΦ; λHΦÞ; ð38Þ

where fðλH; λΦ; λHΦÞ is a function of the dimensionless
coupling constants. An analytic derivation of fðλH; λΦ; λHΦÞ
appears difficult, due to the nonlinear nature of the equations
of motion. In the following subsection, we numerically
calculate f for specific choices of the coupling constants
by performing AMR simulations.

B. AMR simulations of axion-Higgs strings

We verify the development of axion-Higgs strings and
the subsequent classical radiation of Higgs modes through
AMR lattice simulations of the coupled equations of
motion in the early Universe. The simulation setup is
similar to that in Sec. III except that it uses an adaptive
mesh; details are described in Appendix C.We use an AMR
grid instead of a static lattice grid in order to access a larger
dynamical range. Note that we simulate the coupled Higgs-
PQ system on an adaptive lattice with comoving side length
L ¼ 46=ðR1H1Þ up to logðms=HÞ ¼ 7.2, with R1 and H1

as defined in Sec. III. We start the simulation with thermal
initial conditions for both the Higgs field and the axion.

FIG. 8. Difference in tension between the infinitely straight
Higgs sheath solution and the solution with no nontrivial Higgs
field profile (h ¼ 0). We illustrate this difference as a function of
λH with the other dimensionless coupling constants fixed to the
indicated values. Negative values indicate that the Higgs sheath
profile is stable.

FIG. 7. Higgs and radialmodeprofiles around six string segments
extracted from the AMR simulations (solid) at logðms=HÞ ¼ 5.79.
The profiles are computed froma small subvolumearound the string
location, by averaging the field values in bins of distance to the
string. The measured profiles are compared to the infinitely long,
static string solution (dashed), which is found by numerically
solving (34) for ðλΦ; λH; λHΦÞ ¼ ð1; 4; 2Þ.
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Our fiducial choice for the couplings is λΦ ¼ 1, λHΦ ¼ 0.3,
and λH ¼ 0.05, as discussed further below, though we also
consider variations to this fiducial choice. A 2D projection
of the simulation volume, for an example simulation, is
shown in Fig. 9 at logðms=HÞ ∼ 7 for both the Higgs
radiation energy density and the axion radiation energy
density. Higgs sheaths and Higgs emission regions are
clearly visible surrounding axion strings.
The goal of the simulations is to measure the function f

characterizing the Higgs emission rate that appears in (38).
First, let us consider reasonable choices for the parameters
λH; λΦ, and λHΦ. Without any prior for λΦ, we simply take
λΦ ¼ 1 for illustrative purposes. The value we take for λH is
more subtle since it is known that λH runs to small and
potentially even negative values at high energy scales,
assuming no new heavy physics (see, e.g., [87]). We insist

that λH is positive for consistency. In fact, the PQ field itself
should give a threshold correction to the Higgs quartic
coupling at energy scales of order fa, which is the relevant
scale for considering the Lagrangian when solving the
classical equations of motion at distances of order f−1a from
the string core. That threshold correction could push the
Higgs quartic coupling to values around λH ∼ 5 × 10−2,
depending on the PQ scale and the top-quark mass [88]. For
definiteness, let us then take λH ¼ 5 × 10−2.6 We may then

FIG. 9. As in Fig. 3 but for the simulations including Higgs fields. Top: 2D projection of the Higgs energy ḣ2 towards the end of our
fiducial 3D simulation around logðms=HÞ ∼ 7.0. The full simulation box, spanning ∼1.65 Hubble lengths, is shown on the right with a
detailed view shown on the left. Bottom: the same state of the string network but illustrated for the axion energy density ȧ2 instead of that
of the Higgs. Animations available at https://bit.ly/AxionStrings.

6More precisely, a constant value of λH may not capture the full
dynamics, since if we associate the radial direction from the string
with the renormalization group scale, the value of λH should drop
by its threshold correction when starting at the string core and
traveling to distances much larger than m−1

s . We adopt a constant
value of λH here for simplicity.
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vary λHΦ from small values all the way to the vacuum
stability limit.
For each simulation we compute ΓH through an analo-

gous procedure to that used in Sec. III, restricting to
logðms=HÞ > 5. In particular, we extract ΓH analogously
to Γs and Γa using (13) with XðxÞ ¼ hðxÞ and (14) with
z ¼ 4. In Fig. 10 we illustrate the example data points for
ΓH for our fiducial simulation, along with the resulting
linear fit to extract f, as defined in (38). In Fig. 11 we show
fðλH; λΦ;ΛHΦÞ ¼ ΓH=ð8H3ξπf2aÞ as a function of λHΦ and
λH for a sequence of five simulations. All other couplings
are fixed to our fiducial choice.
Note that there are two distinct ways that the axion

strings may create Higgs radiation: (i) the strings may
radiate high-energy radial modes, which decay quantum
mechanically to Higgs pairs with branching ratio B ≈
2λ2HΦ=λ

2
Φ, in the limit λHΦ ≪ λΦ; and (ii) the strings

directly radiate classical Higgs radiation, with the rate
given in (38). Both contributions should be accounted for
when computing the energy injection due to axion strings.
In Fig. 11 we show, in addition to fðλH; λΦ; λHΦÞ, the
radial-mode emission rate times the branching ratio B of
the radial mode to Higgs particles, though for the purpose
of illustration, we neglect the backreaction of the Higgs
field on the PQ field when calculating Γs. That is, in
Fig. 11 we use the PQ-only simulation results when
computing Γs. Still, this comparison suggests that, while
the direct emission of Higgs particles may dominate in
certain regions of parameter space, the Higgs sheaths do
not parametrically increase the energy-injection relative to
what would naively be estimated based off of radial-mode
emission alone.

VI. OBSERVATIONAL CONSTRAINTS ON AXION
STRINGS FROM SM RADIATION

We now consider the observational constraints that arise
from radial-mode-induced radiation into SM final states for
string networks that survive until at least the epoch of BBN.
Note that while we frame the discussion in terms of radial-
mode emission and decay, the following arguments also
apply to high-energy Higgs emission from Higgs sheaths.
A summary of all of the upper limits on fa derived in this
section is provided in Table I.
As discussed in Sec. IV, radial modes decay to SM final

states with a model-dependent branching ratio B. The SM
particles, which may be, e.g., Higgs boson pairs or heavy
gauge bosons, then subsequently undergo a sequence of

FIG. 11. Comparison between direct Higgs emission,
fðλH; λΦ; λHΦÞ ¼ ΓH=ð8H3ξπf2aÞ, and Higgs production through
radial-mode decay,ΓsBðs→HHÞ=ð8H3ξπf2aÞ, withBðs→HHÞ¼
1=½1þλ2Φ=ð2λ2HΦÞ�, as a function of λHϕ (top) and λH (bottom). The
respective other parameters have been fixed to our fiducial choices:
λHΦ ¼ 0.3 and λH ¼ 0.05. The production mode through s decay
has been extracted from the simulation without Higgs feedback in
Sec. III where the grey band corresponds to the 1σ uncertainty.

FIG. 10. Direct Higgs emission fðλH; λΦ; λHΦÞ ¼
ΓH=ð8H3ξπf2aÞ (data points) at our fiducial parameter set
including a linear fit (dotted line) with the corresponding 1σ
uncertainty band (grey band).
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prompt decays to produce a spectrum of SM final states,
with a characteristic energy scale given by the radial-mode
mass ms. At the epochs of BBN and CMB decoupling,
those SM particles rapidly deposit their energy in the
primordial plasma through scattering processes. Note that
this also applies to neutrino final states. High-energy
neutrinos (e.g., E ∼ 1012 GeV) scatter off the primordial
plasma at rates much faster than the Hubble rate at the
epochs of BBN and reionization (see Ref. [89], for
example, for a discussion of the high-energy neutrino cross
sections). Thus, for the purpose of the following discus-
sions we do not differentiate between neutrino and non-
neutrino SM final states.
We derive constraints on the axion decay constant

associated with axion strings at three different cosmologi-
cal epochs: (i) BBN, (ii) the dark ages between CMB
decoupling and reionization, and (iii) today (redshift
z ¼ 0). All of these constraints arise from injecting addi-
tional energy into the Universe from the string network
through radial-mode decay into SM final states. At a given
redshift z the energy injected per unit time per unit volume
from radial-mode decay is, referring to (7),

dEðzÞ
dtdV

����
string

¼ 8πcf2aξðzÞH3ðzÞB: ð39Þ

The redshift dependence of (39) may be made more explicit
by recalling that

H3 ¼ H3
0½ΩΛ þ Ωmð1þ zÞ3 þ Ωradð1þ zÞ4�3=2; ð40Þ

where ΩΛ (Ωm) (Ωrad) is the present-day relative abundan-
ces of the cosmological constant (matter) (radiation)
relative to the critical density ρc.
The expression in (39) is closely related to those for

energy injection from DM decay and annihilation.
Moreover, constraints exist already from the epochs of
BBN, CMB decoupling, and today on annihilating and
decaying DM models. Thus, we may reinterpret these
constraints in the context of radial-mode radiation from
strings. The energy deposited per unit volume per unit time
from DM decay and annihilation is, respectively,

dEðzÞ
dtdV

����
DMdecay

¼ ρc;0ΩDMð1þ zÞ3ΓDM→SM;

dEðzÞ
dtdV

����
DMann:

¼ ρ2c;0Ω2
DMð1þ zÞ6 hσvi

mDM
; ð41Þ

where in the top line ΓDM→SM is the DM decay rate to SM
final states, ΩDM is the energy density fraction in DM
today, and in the bottom line the DM with mass mDM
annihilates to the SM with a velocity-averaged cross
section hσvi.

A. Constraints from BBN

During the radiation-dominated epoch, the energy dep-
osition for string-induced radial-mode decay and that for
DM annihilation scale the same with redshift, up to the
logarithmic dependence of ξ on z. Thus, we may determine
the upper limit on fa by identifying

�
fa
Mpl

�
2

¼ 9

8πc
Ω2

DM

Ω3=2
rad

1

Bξðz�Þ
�hσvi
mDM

H0M2
pl

�
; ð42Þ

where ξðz�Þ is the value at the epoch given by redshift z�
where the DM annihilation constraint is evaluated. Note that
above Mpl ≈ 2.4 × 1018 GeV is the reduced Planck mass.
We now consider the constraints on axion strings from

BBN by reinterpreting the BBN constraints on DM
annihilation. DM annihilation constraints during the epoch
of BBN arise from two different mechanisms related to
(i) hadronic energy injection and (ii) photonic and leptonic
energy injection. Hadronic energy injection may increase
the neutron-to-proton ratio, which in turn increases the
primordial 4He mass fraction [90–94]. Electromagnetic
energy injection, on the other hand, may photodissociate
nuclei [91,92,94–96]. For example, photodissociation of
4He may lead to the overproduction of 3He. The hadronic
energy injection constraints and electromagnetic energy
injection constraints scale differently with DM mass: for
masses mDM well above a GeV, the electromagnetic
constraints are for fixed hσvi=mDM since they are con-
straints on the total injected energy, while the hadronic
constraints scale as hσvi=m3=2

DM since they are proportional
to the number of injected nucleons [97]. This implies that

TABLE I. Summary of the observational constraints derived in
this work on axion strings from the high-energy SM radiation
they emit in the scaling solution. The BBN and CMB constraints
arise from primordial energy injection at these epochs, while the
gamma-ray constraint is from present-day gamma-ray searches.
We provide the approximate redshift of the constraint, the
maximum axion mass mmax

a for the constraint to apply (though,
considering domain-wall formation, more nontrivial constraints
could apply at higher axion masses), and the upper bound on the
decay constant fmax

a for a given branching ratio B of the radial
mode to SM final states. More formally, all of the upper bounds

apply to fa=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0.33
c

1
B

25
ξðz�Þ

q
, but for this table we fix c ¼ 0.33, which

parametrizes the energy injection into radial modes, and the
number of strings per Hubble volume ξðz�Þ at the values given in
the table. Note that these limits are quoted in terms of radial-mode
production and decay but also apply, with the appropriate
modifications, to the scenario in which the strings directly
produce high-energy Higgs radiation, as discussed in Sec. V.

Probe z mmax
a (eV) ξðz�Þ

ffiffiffiffi
B

p
fmax
a (GeV)

BBN ∼106 10−23 25 1014

CMB ∼600 10−29 30 2.2 × 1012

γ-ray 0 10−33 30 9.2 × 1011
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for very large DM masses the electromagnetic constraints
are more powerful; thus, the electromagnetic constraints are
the leading ones to use when constraining heavy radial-
mode decay.
We adopt the S-wave DM annihilation constraint from

[92] on the 3He=D ratio, which states

hσvi
mDM

H0M2
pl ≲ 2.4 × 10−13ð0.5=ϵvisÞ; ð43Þ

where ϵvis is the fraction of annihilation energy that goes
into photons and e�. For both WþW− and hh final states,
ϵvis ≈ 1=2, which is the value we adopt.7 Note that photo-
dissociation only becomes efficient when T ≲ 0.3 keV
[92], which implies that the BBN constraint requires
ma ≲ 2 × 10−23 eV. When the mass is less than this critical
value, the decay constant is constrained to be less than

fa ≲ 1 × 1014 GeV

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0.33
c

1

B
25

ξðz�Þ

s
: ð44Þ

Note that above we used c ≈ 0.33 from Sec. III D. Recall
from Sec. II that at this same epoch constraints exist from
not overproducing the observed value of Neff from the
axion radiation emitted by the string network, constraining
fa ≲ 9 × 1014 GeV. The constraint in (44) is stronger than
the Neff constraint at this epoch for B ≳ 0.01.

B. Constraints from the CMB

At redshifts z≲ 3000, energy injected into the SM
plasma by annihilating or decaying DM, or radial-mode
decay from strings, changes the ionization history of the
ordinary matter. These changes, in turn, change the CMB
angular power spectrum, which is accurately measured and
modeled under standard cosmology. CMB constraints on
annihilating and decaying DM have been extensively
studied (see, e.g., [98–105]). Recently, Ref. [105] found
that for WþW− final annihilation states8 the annihilation
cross section is constrained by the CMB power spectrum to
be smaller than

hσvi
mDM

H0M2
pl ≲ 8.8 × 10−16: ð45Þ

These constraints predominantly arise from energy injec-
tion at redshifts z ≈ 600. Note that the CMB constraints, as

in the case of BBN, are a function of hσvi=mDM since they
constrain the total injected energy.
It is less straightforward to reinterpret the CMB angular

power spectrum constraints in terms of strings. This is
because the injected energy from string emission does not
redshift the same way as either energy injection from DM
annihilation or decay, as the Universe goes through matter-
radiation equality into the epoch of matter domination.
Below, we carefully compute the upper limit on fa by
performing a dedicated CMB power spectrum analysis for
the specific form of the redshift-dependent energy injection
appropriate for string emission. First, though, let us
approximate the upper limit by assuming that the energy
deposition happens instantaneously at zinj ¼ 600. Then, we
may translate the CMB constraints on DM annihilation9 to
constraints on radial-mode decay by equating (39) and
dE
dtdV jDMann from (41) at zinj. This leads to the relation

�
fa
Mpl

�
2

¼ 9

8πc

Ω2
DMð1þ zinjÞ3=2
Ω3=2

m BξðzinjÞ

�hσvi
mDM

H0M2
pl

�
; ð46Þ

where both fa and hσvi represent the upper limits. This
then implies that

fa ≲ 1.06 × 1012 GeV

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0.33
c

1

B
30

ξðzinjÞ

s
: ð47Þ

Performing this calculation more carefully leads to a similar
result, as we discuss below.
Before describing our simulation framework for energy

injection from axion strings, let us briefly comment on a
crucial assumption in the above estimate. We assume that,
apart from the redshift dependence, the energy-injection
signal from axion strings has the same phenomenology as
that from DM decay and annihilation. On the other hand,
we know that in detail this assumption cannot be true, since
the axion strings deposit their energy in narrow cylinders
around the string cores, while DM annihilation and decay
processes deposit energy in a relatively smooth fashion
throughout the entire Hubble volume of interest. On small
angular scales, we thus expect to see differences between
the morphology of the DM-induced signals and the string-
induced signals, for example, as manifest through the
angular power spectrum of the CMB.
Roughly speaking, the comoving separation between

strings at zinj is ðRðzinjÞHðzinjÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
ξðzinjÞ

p Þ−1. From this esti-
mate, we may compute the typical angular separation
between strings θ by dividing the length scale above by
the comoving distance from today to the redshift zinj; then,
identifying the angularmultipole numberl through θ ∼ π=l,
we estimate that only for l≳ 800ðzinj=600Þ1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξðzinjÞ=30

p
should themorphologyof the strings signal differ from that of

7Note that ultrahigh-energy hadronic particles will rapidly—
on time scales much faster than the Hubble time H−1—cascade
through scattering processes to produce low-energy particles,
including photons and e�. It is thus possible that our choice of
ϵvis ¼ 0.5 is conservative, since really ϵvis should reflect the
fraction of energy injected into visible final states after the
cascade processes.

8Note that hh final states are expected to be similar since they
have comparable visible energy deposition fractions.

9Using instead the limits from DM decay leads to compatible
results.
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DMannihilation and decay. The analyses we describe below
make use of Planck data with l≲ 2500; thus, the high-l
modeling we perform likely underestimates the true
anisotropy. We suspect that this implies that the limits
presented here are conservative, but this should be checked
in the future with a dedicated analysis that accounts for the
anisotropies on small angular scales arising from strings
depositing their energy locally. On the other hand, we verify
that limiting the analysis to l ≤ 800, corresponding to
zinj ¼ 600, does not qualitatively change the sensitivity of
the search, since the string-induced energy-injection signal
predominantly appears at low l; in particular, we check that
limiting l ≤ 800 actually makes the upper limit stronger by
∼20%, though at a level expected from statistical fluctua-
tions alone.

1. Dedicated CMB bound on axion strings

To go beyond the approximation in (47) we perform a
dedicated analysis that accounts for the unique redshift
dependence of the axion-string-induced energy injection.
We use CLASS to compute the CMB anisotropy with
energy injection from radial-mode decay, using the for-
malism described in [106]. The steps of the computation are
as follows: (i) the recombination histories of the matter
temperature and ionization fraction of H are computed
using a modified version of RECFAST [107], which allows
for an exotic energy injection; (ii) the evolution of matter
and metric perturbations is then determined following
cosmological perturbation theory by solving (in Fourier
space) the coupled linearized Einstein plus fluid equations
for the photons, baryons, DM, and neutrinos; (iii) finally, a
line-of-sight integral is used to compute the angular power
spectra for the temperature (TT), E modes (EE), and their
cross spectrum (TE).
We now discuss the recombination modeling in more

detail. In the following, we assume that the rate of energy
injection from radial-mode decays is given by (39), where
the prefactor c is extracted from our simulations, and we
take a constant value of ξ for simplicity. As the stable
radial-mode decay products (high-energy photons, elec-
trons, and positrons) cool, they deposit their energy in
various channels, including into the ionization of H and He,
Ly-α excitations, free-streaming continuum photons, and
heating of the intergalactic medium. These processes
increase the ionization fraction of H. CLASS has built-in
options to include exotic energy injection from, e.g., DM
annihilation/decay. We perform straightforward modifica-
tions to the thermodynamics module to include energy
injection from radial-mode decay from axion strings.
To obtain the fraction of energy deposited into each

channel for s → WW decay,10 we use DarkHistory [108],

which models the evolution of the ionization fraction of H
and the gas temperature and the cooling of decay products.
Importantly, it includes the backreaction of changes in the
ionization fraction and gas temperature on the various
energy-loss mechanisms. As DarkHistory requires an initial
electron and photon energy spectrum, but limits the mass of
the annihilating particle to 105 GeV and the highest energy
bin to ∼5.4 TeV for both the electron and photon, we
assume a box function for these spectra spanning a single
energy bin centered at 1 TeV with width ∼60 GeV for the
electron and ∼80 GeV for the photon, with the integrated
energy obtained from HDMSpectra [109], which computes
decay spectra for GUT-scale masses. We verify that our
results are insensitive to the width and mean energy of these
box spectra, and thus, to a good approximation, depend
only on the total energy injected; for example, injecting
GeV-energy particles instead of TeV-energy particles leads
to test-statistic changes less than ∼10%. As a consistency
check, we also verify that using the deposition fractions
from DarkHistory in CLASS retrieves the electron ioniza-
tion fraction computed by DarkHistory.
We set constraints on the injected energy using Planck

2018 CMB data [110]. We use Cobaya [111] to interface
between CLASS and the Planck 2018 likelihood code Plik
(described in detail in [112]). In particular, we use the
likelihood planck_2018_highl_plik.[TT|TTTEEE]_lite, a
version of the Planck 2018 high-lTT þ EEþ TE binned
likelihood which is marginalized (in the Bayesian sense)
over 47 nuisance parameters that model the foreground.
As noted in [113], modifications to the TT spectrum

from energy injection are almost degenerate with the
primordial scalar spectral index ns and amplitude As. This
degeneracy is broken by the polarization information in the
EE andTE spectra. To account for the degeneracy,we profile
(in the frequentist sense) over the ΛCDM parameters
ðh;Ωb;Ωcdm; As; nsÞ, fixing all other cosmological param-
eters to their best-fit values from the Planck 2018 TT þ
EEþ TEþ lowlþ lowEþ lensing data analysis.11 When
profiling, we also fix the deposition fractions to their values
calculated with the Planck 2018 best-fit parameters for ease
of computation. Note that for simplicity we do not profile
over the optical depth τ and instead fix the reionization
history to the default model of DarkHistory.
More precisely, we construct the profile-likelihood ratio

λðfaÞ ¼
pðdjf ˆ̂θnuis; fagÞ
pðdjfθ̂nuis; f̂ag

; ð48Þ

where p is the Planck partially marginalized likelihood,
given the data d, the five ΛCDM nuisance parameters θnuis,
and the signal parameter fa. The quantities fθ̂nuis; f̂ag

10Given the similar energy injection signatures for WW, ZZ,
and hh production at high energies, we only use the WW final
state in the analysis that follows.

11https://wiki.cosmos.esa.int/planck-legacy-archive/images/b/
be/Baseline_params_table_2018_68pc.pdf.
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represent those that maximize the marginalized likelihood,

while ˆ̂θ denotes the nuisance parameters that maximize the
likelihood at fixed fa. We then compute the test statistic

tðfaÞ ¼ −2 log λðfaÞ; ð49Þ

which is illustrated in Fig. 12. We invoke Wilks’ theorem
and set the one-sided 95% upper limit as the value of
fa > f̂a for which tðfaÞ ≈ 2.71 (see Ref. [1] for details).
Note that this analysis is formally a hybrid Bayesian-
frequentist analysis, since the likelihood p has been
marginalized over the 47 foreground nuisance parameters.
Additionally, we note that we find no evidence in favor of
the axion model, given that the test-statistic difference
between the best-fit point f̂a and the null hypothesis
(fa ¼ 0) is much less than unity. We find the 95% one-
sided upper limit to be

fa ≤ 2.2 × 1012 GeV

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0.33
c

1

B
30

ξðzinjÞ

s
: ð50Þ

Comparing to (47), we see that this upper limit is similar to
the naive estimate based off of translating the DM anni-
hilation limit.
There are two caveats related to the bound in (50) that are

important to consider related to ξ. First, we note that the
energy injection does not take place instantaneously at
zinj ∼ 600 but rather over a range of redshift values near this
characteristic redshift. Thus, taking a constant number of
strings per Hubble patch is not completely correct, but in
practice since ξ varies logarithmically with time we verify
that this approximation is valid to the precision quoted.
Second, and more importantly, the time specified by zinj is
within the epoch of matter domination, and the string
network has a different scaling solution during matter
domination than during radiation domination, as we discuss

in Appendix D. In particular, if we assume that the string
network follows the radiation-epoch scaling solution until
zin, then we expect a characteristic value ξðzinjÞ ∼ 30, while
when using the matter-dominated scaling solution in
Appendix D we would infer ξðzinjÞ ∼ 7. In practice, we
expect ξðzinjÞ to be between these two values, since z ¼
600 is only slightly below matter-radiation equality.
Computing ξðzinjÞ directly through simulations is difficult
because of the large logðms=HÞ values where matter-
radiation equality occurs. Thus, we simply note that the
prefactor in (50), accounting for the ξðzinjÞ dependence as
well, may be as large as ∼4.5 × 1012 GeV if we use the
lower bound ξðzinjÞ≳ 7.
To help unpack this analysis, in Fig. 13 we illustrate the

angular power spectra for an energy injection signal

from radial-mode decay corresponding to fa
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c

0.33
B
1

ξ
30

q
¼

8.15 × 1012 GeV. We observe a suppression of the power
spectrum that is stronger at smaller scales.

C. Constraints from present-day gamma rays

Additional constraints appear if one assumes that the
network persists until z ¼ 0 (ma ≲ 10−33 eV). In this case,
we may reinterpret the results of searches for extragalactic
DM decay. High-energy gamma rays and e� from DM
decay are reprocessed to lower-energy gamma rays through
a cascade of electron-positron pair production and inverse
Compton scattering off of background radiation fields, and
for high ms, well above the PeV scale, the spectrum of
reprocessed gamma rays observed on Earth approaches a

universal spectrum that peaks, in terms of the flux E2
γ
dΦγ

dEγ

(units of GeV=cm2=s=sr), between 10 and 100 GeV
[114].12 Reference [115] constrained τ ≳ 1.3 × 1027 s for
DM decay to bb̄ formDM > 1011 GeV; considering that the
upper limit only depends on the energy injected into non-
neutrino species, we may infer that the upper limit for hh or
WþW− final states would be the same to within 10%.
Reference [116] used more aggressive modeling of the
extragalactic gamma-ray background to constrain τ ≳
1028 s for mDM ≳ 109 GeV, for both WþW− and hh final
states, with the limits insensitive at the less than 10% level
to mDM for mDM ≳ 109 GeV [115]. Since the energy
injection is dominated by decays with z ≪ 1, we may
translate these limits to limits on fa through the relation

�
fa
Mpl

�
2

¼ 3

8πc
ΩDM

Bξðz ¼ 0Þ
ΓDM→SM

H0

; ð51Þ

FIG. 12. The test statistic, defined in (49), for the profiled
Planck 2018 TT þ EEþ TEþ lensing likelihood for the CMB
anisotropy with radial-mode energy injection. The 95% upper
limit is shown in red.

12Note that we approximate the sub–100 GeV emission as
isotropic, since the extragalactic gamma-ray background limits
do not incorporate spatial information; a potentially stronger and
more accurate analysis, however, would incorporate the expected
anisotropy.
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where ξðz ¼ 0Þ is the value at z ¼ 0. Using the lifetime
bound from [116], this then implies

fa ≲ 9.2 × 1011 GeV

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0.33
c

1

B
30

ξðzinjÞ

s
: ð52Þ

This upper limit is marginally stronger than the CMB upper
limit in (50), though; as we discuss further in Appendix D,
the number of strings per Hubble patch is likely more
comparable to ξðz ¼ 0Þ ∼ 7 at this epoch.

VII. DISCUSSION

In this work, we set strong constraints on axion-like
particle strings that survive to temperatures at or below that
ofBBN.We studied the effects of primordial energy injection
from the decays of massive radial modes, released during the
evolution of the axion string network. The strength of the
derived upper limits depends on how long the network
persists and on the branching ratio of the radial modes to SM
final states. For relatively generic branching ratiosB ∼ 0.1 to
SM final states, the upper limit from BBN (CMB) is around
fa ≲ 3 × 1014 GeV (fa ≲ 5 × 1012 GeV). These upper lim-
its rely crucially on understanding how the axion-string
network sheds energy into radial modes and directly into SM
final states, which we studied through a combination of
analytic arguments and dedicated numerical simulations.
QCD axion string simulations predict that the QCD

axion decay constant should be within a factor of a few of
1011 GeV in order to produce the correct DM abundance if
the PQ symmetry is broken after inflation [24,26], assum-
ing a standard cosmological history. It is thus also well
motivated to consider axion-like particle strings with
similar decay constants, as these axion-like particles may

accompany the QCD axion in some realization of the
axiverse paradigm. Interestingly, this region of parameter
space should be probed by the next generation of CMB
experiments [117], making CMB probes an exciting future
possible discovery channel for axion-like particles.
Last, we note that while this work focused on global

strings it is possible that some of the results may be relevant
to local strings, such as strings in the Abelian-Higgs model.
The Abelian-Higgs model is obtained simply by taking the
same Lagrangian used in this work to produce axion strings
and gauging the Uð1ÞPQ symmetry with an Abelian gauge
field (see, e.g., [118] for a review). After spontaneous
symmetry breaking, both the radial mode and the gauge
field are heavy, with masses of order fa. The previously
massless axion is now “eaten” by the massive gauge field,
such that there are no light degrees of freedom.
It is typically assumed that local string networks evolve

by emitting gravitational-wave radiation, with the direct
production of massive modes exponentially suppressed and
thus not relevant for dynamics [119]. On the other hand, the
question of whether heavy-state emission is truly exponen-
tially suppressed is unresolved, with some works claiming
that it is relevant for the network dynamics [40,41,48,49].
Our work concludes that for global strings the production
of heavy states is only logarithmically suppressed relative
to the production of massless states. This may suggest that
in the local string scenario the strings are able to produce
heavy states with a similar efficiency as in the global case.
Heavy-mode production from local strings would have a
number of important implications, including making such
strings susceptible to energy-injection constraints along the
lines of those discussed in this work. Dedicated local-string
cosmological simulations are needed, however, to under-
stand to what extent the results found here for global strings
carry over to local strings.

FIG. 13. Binned CMB anisotropy data (TT, TE, and EE) from the Planck 2018 Data Release on top of the best-fit model for the CMB
anisotropy without any energy injection computed from CLASS (fa ¼ 0). We also show the best-fit model, profiled over nuisance

parameters, with fa
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c

0.33
B
1

ξ
30

q
¼ 8.15 × 1012 GeV.
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APPENDIX A: KSVZ RADIAL-MODE
DECAY WIDTHS

In this appendix, we compute the decay widths of the
radial mode into various final states. We focus on a KSVZ-
type UV completion, for reasons explained in the main text.
The Lagrangian for the PQ field and the KSVZ fermions

is given by

L¼j∂Φj2−VðΦÞþQ̄iDQ−ðyQQ̄LQRΦþH:c:Þ; ðA1Þ

with

VðΦÞ ¼ λΦðjΦj2 − f2a=2Þ2: ðA2Þ

Here QL, QR form a vector-like fermion which we take to
be neutral under SUð3Þc. They can, however, be charged
under Uð1ÞY and SUð2ÞL, where we denote NL ¼ 1ð2Þ if
they are singlets (doublets) under SUð2ÞL. In particular,
we now consider the case where the KSVZ fermions are
charged under SUð3Þc × SUð2ÞL ×Uð1ÞY as ð1; 2; 1=2Þ.
We can parametrize the radial (s) and the axion (a) mode as

Φ ¼ 1ffiffiffi
2

p ðfa þ sÞeia=fa : ðA3Þ

Below the PQ breaking scale, fa, we can write the
interactions with the fermion as

L ⊃
yQffiffiffi
2

p ðfa þ sÞeia=faQ̄LQR þ H:c: ðA4Þ

To remove the axion from this interaction, we may perform
the standard anomalous rotation QL → eia=ð2faÞQL and
QR → e−ia=ð2faÞQR. After this rotation, the effective theory
is given by

L ⊃
1

2
ð∂sÞ2 þ 1

2
ð∂aÞ2 þ 1

fa
sð∂aÞ2 þ 1

2

s2

f2a
ð∂aÞ2

−
λΦ
4
ð4f2as2 þ 4fas3 þ s4Þ

þ Q̄iDQ −
�
yQffiffiffi
2

p Q̄LQRðfa þ sÞ þ H:c:
�

þ α2
8πfa

aWW̃ þ αY
8πfa

aBB̃: ðA5Þ

Thus, themass of the radial mode is given byms ¼
ffiffiffiffiffiffiffiffi
2λΦ

p
fa.

From the above, we can compute the relevant decay widths:

Γðs → aaÞ ¼ 1

32π

m3
s

f2a
;

Γðs → Q̄QÞ ¼ NLy2Q

ffiffiffiffiffiffiffiffi
2λΦ

p
fa

16π

�
1 −

y2Q
λΦ

�3
2

;

Γðs → WþW−Þ ¼ α22
72π3

m3
s

f2a
;

Γðs → ZZÞ ¼ α22
576π3

m3
s

f2a

ðc4w þ s4wÞ2
c4w

;

Γðs → γγÞ ¼ α2em
144π3

m3
s

f2a
;

Γðs → γZÞ ¼ α22
72π3

m3
s

f2a

ðc2w − s2wÞ2s2w
c2w

; ðA6Þ

where cw ≡ cos θw, sw ≡ sin θw, θw is the Weinberg angle,
and α2 ≡ g22=ð4πÞ, where g2 is the coupling constant
of SUð2ÞL.

APPENDIX B: PREEVOLUTION AND
ADIABATIC REGIME

We follow the procedure described in [21] to avoid
transient radial-mode excitations at small values of
logðms=HÞ. Instead of starting the simulation from a
thermal initial state and having strings form dynamically
by explicitly simulating the PQ phase transition, we start
the simulation in this procedure after the PQ phase
transition from a preevolved initial state that already
contains strings. This preevolved initial state is generated
by evolving a thermal initial state within a modified-
physics scenario where strings have a constant width.
This width can be tuned to match the string width at the
intended starting time of the actual simulation, ηi ≈ 2.3
(logðms=HÞ ¼ 2Þ. Additionally, this scenario contains a
moderate amount of Hubble friction, which allows us to
evolve strings for far longer such that they have sufficient
time to deexcite. This is achieved by changing the relation
R=R1 ¼

ffiffiffiffiffiffiffiffi
t=t1

p
to R=R1 ¼ t=t1 and forcing ms ∝ 1=R.

These modified equations of motion read
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ψ 00
i þ

3

η
ψ 0
i −

∇2ψ i

η2ηi
þ η2i
η2

ψ iðjψ j2 − 1Þ ¼ 0; ðB1Þ

where the dimensionless fields ψ i ¼ ψ1;ψ2 are given
by Φ ¼ ðψ1 þ iψ2Þfa=

ffiffiffi
2

p
.

The initial state for the preevolution stage is a thermal
state with wave numbers up to a certain threshold in each
spatial direction; see Ref. [23] for more details. We perform
a total of nine different simulations that differ in the wave
number threshold: two initial states are statistically inde-
pendent realizations using the first 13 wave numbers, while
the other initial states are based on the first 10, 15, 18, 20,
25, 30, and 35 wave numbers, respectively. Due to the
existence of an attractor solution [21], the impact of our
choice of threshold is marginal at sufficiently large
logðms=HÞ. The preevolution simulation is performed with
5123 grid cells as the resolution is not an issue here due to
the constant string width. The simulation starts at η ¼ 1 and
ends when the total string length is close to the attractor
solution at ηi, ξðηiÞ ≈ 0.18.
Furthermore, as the underlying physics changes instan-

taneously when starting the main simulation from a
preevolved state, we introduce a short adiabatic period
between the two regimes. We do this by computing ψ 00

1;2 in

both scenarios and combining them, ψ ð1Þ00
1;2 ð1 − fÞ þ fψ ð2Þ00

1;2 ,
with a logistical function f ¼ 1=ð1þ exp½−10ðη − 2.8Þ�Þ.

APPENDIX C: AXION-HIGGS SIMULATIONS

The equations of motion for the coupled PQ-Higgs
system are derived analogously to the PQ-only case and
read

h00i þ
2

η
h0i − ∇̄2hi

þ hiη2ð4λHjhj2 þ λHΦjψ j2 − 2μ2HÞ ¼ 0; ðC1Þ

along with

ψ 00
i þ

2

η
ψ 0
i −∇2ψ i þ ψ iη

2ðλHΦjhj2 þ jψ j2 − 1Þ ¼ 0: ðC2Þ

Here, given the ∼12 order-of-magnitude hierarchy between
the SM Higgs VEVand fa, we set the Higgs VEV far away
from strings to zero.
While we chose a simulation volume that is slightly

larger than that in our PQ-only simulation, it is nevertheless
not large enough to avoid the necessity of preevolving the
initial state to mitigate the effects of transient oscillations of
the string cores. The corresponding preevolution equations
of motion are derived analogously to the PQ-only simu-
lation described in Appendix B and read

h00i þ
3

η
h0i −

∇̄2hi
η2ηi

þ η2i
η2

hið4λHjhj2 þ λHΦjψ j2 − 2μ2HÞ ¼ 0; ðC3Þ

ψ 00
i þ

3

η
ψ 0
i −

∇2ψ i

η2ηi
þ η2i
η2

ψ iðλHΦjhj2 þ jψ j2 − 1Þ ¼ 0: ðC4Þ

Our preevolution procedure is identical to that described in
Appendix B but with an increased static grid size of 10243

cells to accommodate the larger volume. The thermal initial
state includes the first 18 wave numbers in each spatial
direction where the Higgs field is generated analogously to
the PQ field but without an effective mass (see Ref. [23] for
more details).
We use the final state of the preevolution as our initial

state for the main simulation starting at logðms=HÞ ¼ 2.
This state is taken as our coarse level but an extra refine-
ment level with Δx → Δx=2 is introduced whenever the
string-core width would be resolved by less than four grid
sites on the finest level. This means that by the end of the
simulation we will have three refinement levels on top of
the coarse level. A static lattice simulation would have
needed 81923 cells to match this dynamic range. The part
of our simulation volume in which the refinement level is
placed is based on two criteria: (i) the location of string
cores and (ii) a data-driven convergence criterion. The
refined region is readjusted frequently every Δη ¼ 0.12.
String cores are identified using the procedure outlined

in [120]. We ensure that the refinement region around string
cores is large enough that even a string segment moving
with the speed of light will always be at least an entire
string width away from any coarse-fine boundary until the
grid is readjusted. This criterion ensures that the strings
themselves are properly resolved at all times; however, the
emission leaving the string may not be. To guarantee that
this emission is resolved appropriately as well, we addi-
tionally employ a data-driven method that estimates the
convergence at individual grid cells.
The basic idea behind the data-driven technique is to

independently evolve a cell at two different resolutions for a
short period of time. The difference between the results
informs us about the size of the numerical truncation error
due to the finite resolution. When this difference gets too
large it means that numerical convergence is locally bad at
the current resolution and refinement is needed. In practice,
this is done easily within an AMR framework as we are
already evolving the field at different resolutions. That is, at
the end of every time step and before level synchronization
we can compare the results of, let us say, the coarse level
and the first refinement level. If this difference ΔX exceeds
a threshold τ the area around this cell will be covered by the
second refinement level during the next regrid. In order to
identify problematic cells on the coarse level, however, an
even coarser level with half the resolution of the coarse
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level is required. This setup is known as a self-shadow
hierarchy. The parameter τ is chosen empirically and we
find τ ¼ 10−3 to work well for X ¼ ψ i; hi, and τ ¼
10−3=Δηl for X ¼ ψ 0

i; h
0
i.

Our integration scheme is the same as that of our PQ-
only simulation. The simulations are performed on the
NERSC Perlmutter GPU cluster and utilize 256 NVIDIA
A100 GPUs and 64 AMD EPYC 7763 CPUs for about an
hour per run.

APPENDIX D: STRING DENSITY
IN MATTER DOMINATION

To study the evolution of the string density at times after
matter-radiation equality, we simulate the string network in
a matter-dominated cosmology. The simulations are such
that the radial mode acquires its broken VEV and strings
form when the Universe is already matter dominated. Of
course, this does not correspond to the physical scenario of
string network formation at the PQ phase transition in a
radiation-dominated epoch and the subsequent evolution of
the Universe through the epoch of matter-radiation equality.
However, the choice of initial conditions in the simulation
is not important as here we are only interested in the scaling
regime during the matter-dominated era.
Neglecting radiation energy density, we have at late times

Ωm þ ΩΛ ≈ 1, and the energy densities of matter and the
cosmological constant are equal when the scale factor is
ηeq ¼ ðΩm=ΩΛÞ13. We perform two AMR simulations: (i) a
matter-only simulationwherewe imposeηeq → ∞ andwhich
ends at logðms=HÞ ¼ 5.78, and (ii) a simulation entering the
cosmological constant–dominated epoch with ηeq ¼ 20,
which ends at logðms=HÞ ¼ 4.71. We use the same AMR
simulation setup as for our axion-Higgs simulation in
Appendix C. However, as we are not interested in measuring
any emission spectrum, we can safely skip the preevolution
procedure. Instead, we simulate explicitly through the PQ
phase transition by starting at η ¼ 0.1 from a thermal initial
state with the first nine wave numbers included.
Both simulations evolve the following equations of

motion:

½η4 þ η3eqη�ψ 00
i þ ½4η3 þ 2.5η3eq�ψ 0

i

− ½1þ η3eq�
�
∇2ψ i þ λψ i

�
η2ðjψ j2 − 1Þ þ T2

1

3f2a

��
¼ 0; ðD1Þ

where the thermal term ensures that the PQ symmetry
breaks early on in the simulation. These are the Euler-
Lagrange equations of the Lagrangian (5) in an FRWmetric
with Hubble parameter given by (40) andΩrad ¼ 0. We also
define the dimensionless fields ψ i as in Appendix B.
Denoting the total string length inside a cube of side length

D by lðDÞ, the string length per horizon is then defined by

ξ≡ lim
D→∞

lðDÞt2
D3

: ðD2Þ

To evaluate Eq. (D2), we can write the physical time t as

t ¼ 2

3
f−1a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ η3eq

q
sinh−1

��
η

ηeq

�3
2

�
; ðD3Þ

using our convention for the Hubble scale for the simulations
described in this appendix,

H ¼ fa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm=η3 þΩΛ

q
; ðD4Þ

where by definition H ¼ fa at η ¼ 1. The string length per
horizon is compared between the various cosmological
scenarios in Fig. 14. For the matter-dominated simulation,
we follow the method of Ref. [26] to fit ξ ¼ c0 þ
c1 logðms=HÞ in the interval logðms=HÞ ¼ ½4; 5.48� to find
c1 ¼ 0.0584� 0.0013. In the scenario where the Universe
transitions frommatter to cosmological constant domination,
ξ begins to drop exponentially, as expected, when the energy
densities ofmatter (ρm) and of the cosmological constant (ρΛ)
are equal. The string length for the radiation-dominated
scenario in Fig. 14 is extracted from the AMR simulation
discussed in [26], which was performed with 20483

grid cells.
In Fig. 15 we vary the number K of wave numbers

included in the initial thermal state for the matter-dominated
simulation. The proximity of ξ at large values of logðms=HÞ
as we varyK ¼ 9; 17; 30 indicates that, like in the radiation-
dominated era, the string network approaches an attractor

FIG. 14. Evolution of the string length per horizon ξ in the
matter-dominated (black solid) and radiation-dominated (black
dotted) scenarios, and during a transition between matter-domi-
nated and cosmological constant–dominated epochs (dashed).
For the matter-dominated case, the model ξ ¼ c0 þ c1 log is fit to
the ξ data.
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solution in the matter-dominated era as well. The attractor
solution implies that at late times the number of strings per
Hubble patch is the same regardless of the initial condition. In
our case, we find c1 ¼ 0.0584� 0.0013, 0.0476� 0.0003,
and 0.0548� 0.0003 for the simulations with initial con-
ditions K ¼ 9; 17; 30, respectively. Note that the error bars
quoted above and shown in Fig. 15 are statistical. We may
infer a systematic uncertainty from the variance in c1
between the simulations with varying initial mode numbers,
leading to the estimate c1¼ 0.0584�0.0013stat�0.0055sys.
Note also that in reality the network evolves smoothly from
the radiation-dominated scaling solution to the matter-
dominated scaling solution aroundmatter-radiation equality;
depending on the cosmological epochof interest, the network
may not be well approximated by the scaling solution in
either epoch but could take on intermediate values.

APPENDIX E: SINGLE LOOP SPECTRUM

We simulate a single circular collapsing string with
instantaneous radius R to study the spectral shape of the
resulting instantaneous axion emission spectrum; we find
evidence that the instantaneous emission spectrum scales
with axion momentum k as 1=k between the characteristic
frequency k ∼ 2π=R and k ∼ms, supporting the consistent
conclusions reached in [39]. For a similar simulation
involving isolated string configurations implementing
AMR, see Ref. [80].
Our simulation setup for this test is mostly the same as

that of our axion-Higgs simulations but with an artificial
initial state that creates a singular and perfectly circular
string loop. To achieve this initial condition, we generate
the initial fields at rest with

Φ1ði; j; kÞ ¼ 1 − 2=ð1þ e−0.05½jx̂−N=2j−N=4�Þ;
Φ2ði; j; kÞ ¼ sinð2πk=NÞ ðE1Þ

in index space fijkg over the three Cartesian dimensions,
with N cells in each direction (e.g., i ¼ 0; 1;…; N − 1) and
x̂ ¼ ði; j; kÞT . The result is a circular string loop with a
radius of N=4 and approximately periodic boundary con-
ditions. This construction has the advantage that the initial
radius R0 can be controlled by choosing a box length L.
The exact details of the initial state such as the overall field
amplitude are not crucial as we start our simulation in the
unbroken phase at η ¼ 0.1. By explicitly simulating the PQ
phase transition, the string is generated dynamically.
Since we study a single string we can use a relatively

aggressive AMR setup. Our coarse level consists of merely
10243 grid sites, but this is compensated by five refinement
levels at the end of our simulation at η ∼ 50 (logðms=HÞ∼
8.2) to maintain at least four grid sites per string-core width.
On a static lattice, such a simulation would require a grid of
327683 grid sites. We chose L ¼ 100=ðR1H1Þ such that the
initial string radius isR0 ¼ 25=ðR1H1Þ. The evolution ofR is
shown in Fig. 16 with the corresponding string length ξ in
Fig. 17.Weperform the simulation on theNERSCPerlmutter
GPU cluster and utilize 256 NVIDIA A100 GPUs and 64
AMDEPYC 7763 CPUs. An illustration of the axion energy
density is shown in Fig. 18.
We compute the instantaneous axion emission spectrum

F ∝ ð1=R3Þ d
dt ðR3

∂ρa=∂k), where ∂ρa=∂k is the time-
dependent differential axion energy density spectrum.

FIG. 15. String length per horizon in the matter-dominated
scenario, varying the number K of wave numbers included in the
initial thermal state.

FIG. 16. Evolution of the string loop radius R as a function of
logðms=HÞ as measured in our simulation.

FIG. 17. String length ξ as a function of logðms=HÞ for a
circular decaying string as measured in our simulation.
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Numerically, we obtain the time derivative via finite
differences uniform in logðms=HÞ with Δ logðms=HÞ ∼
0.25 (see, e.g., [21,26]). We fit a power-law model F ∼
1=kq to the instantaneous spectrum between k ∼ 4π=R and
k ∼ms. However, we do not extend the fit below k ∼ 0.1ms
in case of large R. An example spectrum and the corre-
sponding fit are presented in Fig. 19. The power-law index
q for each fit is shown in Fig. 20. We perform a linear fit to
these indices, analogously to the fit of Γs=ð8H3ξπf2aÞ, and
find q ¼ 1.06� 0.06. This result supports our claim of a
1=k scaling in this regime to within ∼6% accuracy.
In Sec. III B we argue that subhorizon-size string loops

are distributed as dnl=dl ∼ 1
l. On the other hand, above we

found evidence that string loops of radius R emit axions
with instantaneous spectra F ∝ 1=k between, roughly,
2π=R and ms. Let us now combine these two points to
argue that the network as a whole should emit axions with
an instantaneous spectrum F ∝ 1=k.

The F ∝ 1=k scaling of the full network can be under-
stood analytically in the following way. We can write the
axion emission spectra by including the contributions from
all loops of size l as

F ∝
Z

dl
dnl
dl

FlðkÞ: ðE2Þ

The factor dnl=dl governs the number density of loops as
a function of their size l, and as argued and seen in
simulations in [26], we expect dnl=dl ∝ 1=l. The spectral
function FlðkÞ governs the instantaneous emission spec-
trum from a single loop with size l and is normalized,
without loss of generality, via

R
dkkFlðkÞ ¼ 1. As an

illustration, we first focus on the case where each loop of
size l emits axions at a single frequency k ∼ 1=l, i.e.,
FlðkÞ ¼ δðk − 1=lÞ. We then arrive at

F ∝
Z

dl
l

δ

�
k −

1

l

�
∝
1

k
: ðE3Þ

We now consider the more realistic scenario seen above
where each loop with size l exhibits a conformal emission
spectrum with lower and upper frequency cutoffs of 1=l
and ms, respectively. In other words, for 1

l ≤ k ≤ ms,

FlðkÞ ¼
1

logðmslÞ
1

k
; ðE4Þ

where the prefactor is fixed by a normalization condition.
Substituting this expression into (E2), we find

F ∝
Z

1=ms

1=k

dl
l

1

logðmslÞ
1

k
∝
logðlogðms=kÞÞ

k
: ðE5Þ

Therefore, we still expect to have a conformal spectra, as
seen in the simulations above, with small doubly loga-
rithmic corrections.

FIG. 18. 2D projection of the axion energy density of a circular
decaying string at logðms=HÞ ∼ 7.6. The radius of the string loop at
this snapshot is is R ∼ 12.8=ðR1H1Þ, i.e., about 0.34 Hubble
lengths.

FIG. 19. Instantaneous axion emission spectrum F for a
collapsing circular string loop. We perform a power-law fit to
the regime between k ∼ 0.1ms and k ∼ms (dashed line).

FIG. 20. Power-law index q from fits to the instantaneous axion
emission spectra F from a collapsing circular axion string at
different logðms=HÞ. We perform a linear fit to those indices
(dotted line) with 1σ uncertainty indicated by the grey band. The
fit yields q ¼ 1.06� 0.06.
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