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The extension of the Standard Model lepton sector by three right-handed Majorana neutrinos [heavy
neutral leptons (HNLs)] with masses up to GeV scale is considered. While the lightest heavy neutral lepton
is the dark matter particle with mass of the order of 5 keV, the remaining two HNLs ensure standard (active)
neutrino mass generation by means of the seesaw type I mechanism. Two heavy sterile neutrinos with
quasidegenerate masses up to 5 GeV can induce the deviation of lepton universality violation parameter in
the decays of πþ and Kþ mesons from the Standard Model value. Contours are obtained for the permissible
values of this parameter within the framework of two mixing scenarios, taking into account the lifetime
boundary for heavy neutral lepton from big bang nucleosynthesis in the Universe. When calculating the
HNL decay width in the framework of the model with six Majorana neutrinos, three active and three heavy,
both two-particle and three-particle lepton decays, essential for masses below the mass of the pion, were
taken into account. When calculating the decay widths, the limiting case known as the “Dirac limit” is not
used. The results based on the explicit form of mixing matrices for three HNL generations and the diagram
technique for Majorana neutrinos, which explicitly take into account the interference terms for diagrams
with identical mass states, can lead to some differences in lifetime from the results using the Dirac limit and
the displacement of the corresponding experimental exclusion contours of the “mass-mixing” type. For the
second mixing scenario, a mass region of 460 MeV < M < 485 MeV has been found that allows violation
of lepton universality in charged kaon decays at the level observed in the experiment.
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I. INTRODUCTION: THE MAIN FEATURES
OF THE MODEL

Extension of the Standard Model (SM) leptonic sector
by heavy neutral leptons of right helicity (HNL, also
referred to as sterile Majorana neutrinos) known for a long
time [1,2] has been analyzed multilaterally recently due to
the attractive general features of such an extension, within
the framework of which the symmetry between right and
left neutrinos is restored, new large energy scales are not
necessarily introduced, neutrino oscillations and their
masses generation by means of the seesaw mechanism
are successfully explained, and a number of important
cosmological applications of the model, such as baryon
asymmetry of the Universe generation, description of the
inflationary stage of the early Universe, and its accelerated

expansion at the present time are successfully inter-
preted [3,4].
New useful features are realized in the construction of the

so-called minimal neutrino standard model νMSM [5,6]
which is a minimal extension of the SM. In νMSM
framework the HNL masses do not exceed the electroweak
scale and there are no other new particles up to the Planck
scale. Cosmological observations impose significant limi-
tations on the model parameter space, which lead to at least
threeHNLand establish a strict upper limit on themass of the
lightest active neutrinominðνe;μ;τÞ. The lightest heavy lepton
N1 with mass of the order of 10 keV, the lifetime more than
τUniverse ∼ 1017 sec and mixing parameter of the order of
10−13–10−7, plays a role of the dark matter (DM) particle in
such an extension [7,8]. The direct method of N1 DM
detection is due to the possibility of observation of the
one-loop decay process of N1 → γν in galactic media [9].
Two remaining heavy leptons ensure the mechanism ofmass
generation of standard (or active) neutrinos; their masses can
vary in a wide range of values up to multi-GeV scale,
however, enough baryon asymmetry through oscillation-
induced leptogenesis can be generated even if they are of the
order of MeV and their mass splitting is rather small [10].
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Mixing of light enough HNL states with active neutrino
states could lead to observable HNL production in charged
meson decays such as πþ → eþN2;3 and Kþ → lþ; N2;3,
l ¼ e, μ which could violate the lepton universality prin-
ciple demonstrating departures from the SM ratio Rπ;K ¼
Γðπ; K → eνÞ=Γðπ; K → μνÞ [11–15] which is a quantity
stable with respect to radiative corrections and hadroniza-
tion uncertainties.
In this paper we estimate the possible departure of the

lepton universality parameter

ΔrM ¼ RM

RSM
M

− 1 ð1Þ

from zero value due to HNL contributions in the νMSM-
like model where an explicit form of mixing for the three
lepton generations is used. The Lagrangian of extension has
the form

L ¼ LSM þ iν̄R∂μγμνR −
�
Fl̄LνRH̃ þMM

2
νcRνR þ H:c:

�
;

ð2Þ
where lL ¼ ðνL; eLÞT is the left lepton doublet, νR are HNL
flavor states, ðνRÞc ≡ CνTR (C ¼ iγ2γ0), ν̄R ≡ ν†Rγ

0,H is the
Higgs doublet (H̃ ¼ iτ2H†), F is the Yukawa matrix and
MM is a Majorana mass matrix. After spontaneous sym-
metry breaking MD ¼ FhHi ¼ Fv (v ¼ 174 GeV) is the
matrix of Yukawa term. The full 6 × 6 mass matrix

1

2
ðν̄LνcRÞM

�
νcL
νR

�
þH:c:¼ 1

2
ðνLνcRÞ

�
0 MD

MT
D MM

��
νcL
νR

�

þH:c:; ð3Þ

where the flavor states ðνLÞα; ðνRÞI and the mass states νk,
NI (α ¼ e; μ; τ; k; I ¼ 1; 2; 3) are connected by the unitary
transformation

�
νL

νcR

�
¼ UPL

�
ν

N

�
; U ¼ W · diagðUν; U�

NÞ; ð4Þ

where PL is the left projector and Uν, UN are unitary 3 × 3
matrices. The block-diagonal form of the mass matrix (3)
looks as

U†MU� ¼
�
U†

ν 0

0 UT
N

�
W†MW�

�
U�

ν 0

0 UN

�

¼
�
U†

νmνU�
ν 0

0 UT
NMNUN

�
¼

�
m̂ 0

0 M̂

�
; ð5Þ

where m̂ ¼ diagðm1; m2; m3Þ, M̂ ¼ diagðM1;M2;M3Þ,
W†MW ¼ diagðmν;MNÞ, and M is defined by Eq. (3).
In the following diagonalization procedure [16], the unitary

W matrix is represented as an exponent of an anti-
Hermitian matrix

W ¼ exp
�

0 θ

−θ† 0

�
ð6Þ

and decomposed

W ¼
�
1 − 1

2
θθ† þOðθ4Þ θ þOðθ3Þ

−θ† þOðθ3Þ 1 − 1
2
θ†θ þOðθ4Þ

�
: ð7Þ

The flavor states are related to the mass states in the
following form:

νL ≃
�
1 −

1

2
θθ†

�
UνPLνþ θU�

NPLN; ð8Þ

νcR ≃ −θ†UνPLνþ
�
1 −

1

2
θ†θ

�
U�

NPLN: ð9Þ

For the left neutrino the main contribution in the flavor basis
is given by the first term in (8) which corresponds
to the well-known phenomenological relation νLα ¼P

αðUPMNSÞαjPLνj [17], where UPMNS is the Pontecorvo–
Maki–Nakagawa–Sakata (PMNS) matrix. Deviation from
unitarity for the PMNS matrix in the approximations W ∼
Oðθ2Þ [and also W ∼Oðθ3Þ] is given by UPMNS ≃
ð1 − 1

2
θθ†ÞUν and defined by the η ¼ − 1

2
θθ†-matrix. The

Lagrangian terms for HNL currents interaction with W�; Z
bosons have the form

Lν
NC ¼ −

g
2cW

γμνLU
†
PMNSUPMNSνLZμ;

Lν
CC ¼ −

gffiffiffi
2

p l̄LγμUPMNSνLW−
μ þ H:c:;

LN
NC ¼ −

g
2cW

N̄Lγ
μUT

Nθ
†θU�

NNLZμ

−
�

g
2cW

ν̄LγμU
†
νθU�

NNLZμ þ H:c:

�
;

LN
CC ¼ −

gffiffiffi
2

p l̄LγμθU�
NNLW−

μ þ H:c: ð10Þ

In the following consideration we are keeping only the first
and the second order terms in θ, as it is customary to do in the
available literature. The HNLmixing parameter is defined in
the approximation W ∼Oðθ2Þ as Θ≡ θU�

N . The standard
set of active neutrino masses is defined in the framework of
the Oðθ2Þ scenario as a solution of seesaw type I equation

mν ≃ −MDθ
T ≃ −MDM−1

M MT
D ð11Þ

with ambiguous definition ofMD by means of the UN mass
matrix in the HNL sector [16,18]

MD ¼ �iUPMNS

ffiffiffiffi
m̂

p
Ω

ffiffiffiffiffi
M̂

p
U†

N; ð12Þ
where Ω is an arbitrary orthogonal matrix, ΩΩT ¼ I.
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In conclusion of this section, simplifying for greater
clarity the model to one generation of neutrino ν, we recall
the terminology used in the literature (see [4]) for the
limiting cases of the mass term parameters in the
Lagrangian, Eq. (2). Case MM ¼ 0 is called the Dirac
limit, since the Weyl spinors νL and νR represent the left-
and right-chiral components of the Dirac neutrino with the
mass termMDν̄ν ¼ MDðν̄LνR þ ν̄RνLÞ. The lepton number
is preserved. Case MM ≪ MD is called the pseudo-Dirac
limit, since it is possible to divide the four components of
the Dirac neutrino into two Majorana neutrinos with left-
chiral components ðνL � νcRÞ=

ffiffiffi
2

p
. Case MM ≥ MD corre-

sponds to the case of seesaw mechanism (MM ≫ MD is the
“seesaw limit”), since we have two Majorana mass states,
one of which has a mass m1 of the order of M2

D=MM, the
other m2 of the order of MM, and the mixing parameter
of the two flavor states is of the order of MD=MM. To
simplify calculations, the Dirac limit is used in the available
literature when Feynman rules for processes involving
active neutrinos and HNL are an analog of Standard
Model rules. In this paper, the Dirac limit is not used, the
corresponding diagram technique for processes involving
Majorana fermions was developed in [19,20] for calcula-
tions within supersymmetric models and can be directly
applied to HNL production and decays.
For further analysis of the lepton universality within the

framework of two characteristic mixing scenarios (Sec. III)
compatible with cosmoligical limitations (Sec. II), calcu-
lations are reproduced for two-particle semileptonic HNL
decays (Sec. IV) and calculations are made for three-
particle leptonic HNL decays (Sec. V) in the model with all
six Majorana neutrinos. They are used for the lifetime
restrictions on the mixing parameter space (Sec. VI).
Bounds on the characteristic lepton universality parameter,
Eq. (1), in the decays of K� and π� are considered in the
framework of characteristic mixing scenarios in Sec. VII.

II. THE LIGHTEST HNL AS A CANDIDATE
FOR THE ROLE OF A DARK MATTER PARTICLE

In the following it is assumed that heavy neutral leptons
N1;2;3 are ordered by mass and N1 is the lightest one. For a
mass M1 of the order of keV the main decay channel is
N1 → ννν. The decay width corresponding to the four-
fermion effective Lagrangian defined by Eq. (10) has
the form

ΓðN1 → νννÞ ¼ G2
FM

5
1

96π3
X
α

jΘα1j2; ð13Þ

where α ¼ e; μ; τ. Details of calculation can be found in
Appendix A.
Heavy lepton N1 must not decay at a time scale

of the order of the age of the Universe, which
means τN1

≥ 4× 1017 sec. This limitation is significantly

strengthened when taking into account the one-loop
induced decay N → γ; ν, which can give a distinctive signal
with photon energy Eγ ¼ M1=2. The decay width

ΓðN1 → γ; νÞ ¼ 9αEMG2
FM

5
1

256π4
X
α

jΘα1j2: ð14Þ

Although the increase of the width is small ΓN→ννν=
ΓN→γν ≡ krad ¼ 8π

27αEM
≈ 128, the limitation on the lifetime

can be increased by the 8 orders of magnitude due
to specifics of the gamma-astronomical observations,
see [21,22], providing τN1

> 1025 seconds. It is convenient
to introduce the effective mass parameter

ðmDÞαI ¼
����X

k

ffiffiffiffiffiffi
mk

p
UαkΩkI

����2 ð15Þ

allowing to associate the masses of active neutrinos with
the mixing matrix Θ. The connection of the effective mass
parameter with the phenomenological value of mixing U2

I
is given byX

α

ðmDÞαI ¼ MIU2
I ; where U2

I ¼
X
α

jΘαIj2: ð16Þ

Then the N1 lifetime in seconds can be expressed as

τN1
¼ 3 × 1022

�
M1

1 keV

�
−4
�P

αðmDÞα1
1 eV

�
−1

sec; ð17Þ

and the gamma-astronomical constraint can be rewritten as

ðmDÞx ray ≡ 3 × 10−3
�

M1

1 keV

�
−4

eV; ð18Þ

where we used an estimate for the lifetime τX ¼ 1025

seconds. It is shown by the solid blue line in Fig. 1.
A known direct constraint from below on the HNL mass

is M1 > 0.4 keV, since the distribution of HNL as fer-
mionic dark matter in the phase space of the galaxy is
limited by the distribution for a degenerate Fermi gas
(Tremaine-Gunn bound, see [24]).
The cosmological restriction for the density of N1 dark

matter in the Universe appears in the scenario where the
mixing of active and sterile neutrinos Θ is quite small, and
the sterile neutrino has never been in thermal equilibrium.
The dominant mechanism of the formation of sterile
neutrinos (Dodelson-Widrow mechanism, see [25]) arises
from the active-sterile neutrino oscillations. The energy
fraction of sterile neutrinos in the Universe in the case of
nonresonant production [26,27] is given by

ΩNh2 ≃ 0.1
X3
I¼1

X
α¼e;ν;τ

�jΘαIj2
10−8

��
MI

1 keV

�
2

: ð19Þ

In particular, the density of the N1 particle expressed using
the effective mass parameter defined by Eq. (15) is
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ΩN1
h2 ≃

�P
αðmDÞα1

10−4 eV

��
M1

1 keV

�
: ð20Þ

It leads to a restriction from above on mD summed by
flavors

ðmDÞDM ¼ 10−5
�

M1

1 keV

�
−1

eV: ð21Þ

The excluded area where ΩN > ΩDM ¼ 0.12 is shown in
Fig. 1 by a light-red color. Combining the obtained
constraints (18) and (21) for the effective mass parameter,
we getX

α

ðmDÞα1 < mD ≡min ððmDÞDM; ðmDÞx rayÞ: ð22Þ

III. ON THE CLASSIFICATION
OF MIXING SCENARIOS

In the following we consider three possibilities of Ω
matrix parametrization most appropriate to the constraint
given by Eq. (22),

(i) “Fine-tuning” of mixing for normal (NH) and
inverted (IH) hierarchies

ΩðFTÞ
NH ¼

0
B@

1 0 0

0

0
Ω2×2

1
CA ΩðFTÞ

IH ¼

0
B@

0

0
Ω2×2

1 0 0

1
CA;

ð23Þ

where Ω2×2 is a 2 × 2 orthogonal matrix. In this
form of mixing the constraint is imposed directly on
the mass of the lightest active neutrino mlightest (m1

for NH, m3 for IH):

X
α

ðmDÞα1 ¼
X
α;k

j ffiffiffiffiffiffi
mk

p
Uα1δk1ðk3Þj2 ¼ m1ð3Þ: ð24Þ

Here we used the unitarity condition for the PMNS
matrix assuming that U ≃UPMNS up to Oðθ2Þ. With
such form of mixing matrix there is a fine-tuning of
mixing that explicitly highlights the nonzero mass of
the lightest active neutrino, unlike the scenarios
considered in the following, where the small finite
numerical value of mass is not so significant. The
effective mass parameter ðmDÞα1 summed by the
flavor index α gives a counterpart of the parameter
U2

α which is used in experimental reconstructions,
see Sec. VI.

(ii) Mixing expressed by the real orthogonal rota-
tion matrix Ω∈ SOð3;RÞ with the following
parametrization:

Ω ¼

0
B@

c2 −c3s2 s2c3
c1s2 c1c2c3 − s1s3 −c3s1 − c1c2s3
s1s2 c1s3 þ c2c3s1 c1c3 − c2s1s3

1
CA;

ð25Þ
where cj ¼ cos αj and sj ¼ sin αj, αj ∈R are Euler
angles. Note that the condition (22) for matrix (25)
restricts only α1 and α2 angles. Moreover, in this
scenario one can take mlightest ¼ 0.

(iii) Mixing expressed by the complex special orthogonal
matrix Ω∈ SOð3;CÞ with the same parametrization
as given by Eq. (25) but replacement of αj → ωj ¼
αj þ iβj, βj ≠ 0. The same as in the previous case,
here mlightest ¼ 0.

Possible deviations of the Ω matrix from the form of
fine-tuning above were analyzed in [28]. However, in the
following we focus mainly on the form of fine-tuning
which is consistent with the cosmological constraints in a
wide range of HNL dark matter masses, demonstrating also
flexibility of the mixing factor in the HNL decays (13) and
(14), which can vary due to changes both of M1 and the
lightest neutrino mass.
Discussion of ambiguity of the choice of the type of

matrix Ω in the general case can be found in [18], the most
significant of them are related to the processes of lepton
flavor violation [29] in different sectors of the model. The
minimal parametric choice Ω ¼ I corresponds to a special
case of fine-tuning with normal hierarchy, when redundant
parameters are not introduced. A similar form for the
inverse hierarchy occurs when Ω is an antidiagonal matrix.
In these two cases

FIG. 1. Bounds for the effective mass parameter ΣαðmDÞα1, see
(15), summed by the flavor index, as a function of dark matter
particle mass. See Eq. (24) for the fine-tuning of mixing. The
blue region is excluded at the level τN1

> 1025 seconds by
gamma-astronomical nonobservation of N1 → γν decay. Gray
areas are more detailed exclusions from HEAO-1, XMM, and
Chandra experiments which are recalculated for mD using the
contours in [23]. The violet area is excluded by the Tremaine-
Gunn bound [24]. There is an overproduction of dark matter by
means of the Dodelson-Widrow mechanism [25] in the excluded
light-red area above the red line.
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ΘðNHÞ
min ¼

0
BBBBBB@

iUe1

ffiffiffiffiffi
m1

M1

q
iUe2

ffiffiffiffiffi
m2

M2

q
iUe3

ffiffiffiffiffi
m3

M3

q
iUμ1

ffiffiffiffiffi
m1

M1

q
iUμ2

ffiffiffiffiffi
m2

M2

q
iUμ3

ffiffiffiffiffi
m3

M3

q
iUτ1

ffiffiffiffiffi
m1

M1

q
iUτ2

ffiffiffiffiffi
m2

M2

q
iUτ3

ffiffiffiffiffi
m3

M3

q

1
CCCCCCA
; with ΩðNHÞ

min ¼

0
B@

1 0 0

0 1 0

0 0 1

1
CA ð26Þ

ΘðIHÞ
min ¼

0
BBBBBB@

iUe3

ffiffiffiffiffi
m3

M1

q
iUe2

ffiffiffiffiffi
m2

M2

q
iUe1

ffiffiffiffiffi
m1

M3

q
iUμ3

ffiffiffiffiffi
m3

M1

q
iUμ2

ffiffiffiffiffi
m2

M2

q
iUμ1

ffiffiffiffiffi
m1

M3

q
iUτ3

ffiffiffiffiffi
m3

M1

q
iUτ2

ffiffiffiffiffi
m2

M2

q
iUτ1

ffiffiffiffiffi
m1

M3

q

1
CCCCCCA
; with ΩðIHÞ

min ¼

0
B@

0 0 1

0 1 0

1 0 0

1
CA; ð27Þ

where UαI are the elements of UPMNS. In further consid-
eration this case of mixing, Eq. (26) or Eq. (27), is
designated as mixing scenario 1.
For parametric scenarios in the seesaw type I models

which are more interesting for collider phenomenology it is
needed to combine very small active neutrino masses of the
order of F2v2=MM with moderately heavy HNL, providing
observable signals within the LHC and next colliders
energy reach, and enhance at the same time small mixing
factors of the order of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mν=MHNL

p
, providing observable

rates at the luminosity frontier. This is achieved either by
fine-tuning of the mixing matrices in a specific scenario
with additional symmetries [30], or in the framework of
Casas-Ibarra diagonalization with complex-valued param-
eters. The first sort of models gives quasi-Dirac neutrinos
processed by the standard calculation technique, which are
not fully consistent with the second sort of models beyond
the Dirac limit, where evaluations are performed with
Majorana fermions. In the latter case Ω2×2, Eq. (23), is
chosen as an element of Oð2;CÞ:

Ω2×2ðξ;ωÞ ¼
�

cosω − sinω

ξ sinω ξ cosω

�
: ð28Þ

In further consideration, this choice is designated as mixing
scenario 2.
Three new parameters are introduced in (28), ξ ¼ �1,

ReðωÞ and ImðωÞ. The Dirac limit of scenario 2 has been
considered in detail in the literature. Significant enhance-
ments of the collider signals appear with the complex-
valued ω parameter which leads to the factors Xω ¼ eImðωÞ
in the mixing matrix Θ. Detailed phenomenological analy-
ses of active and sterile neutrino mixing in [31] showed
that a phenomenologically consistent hierarchy of mixings
ΘeI , ΘμI , and ΘτI with suppressed ΘeI relative to other
matrix elements can be achieved in a wide interval of Xω

independently on the values of HNL masses. Translating
the experimental upper bounds on ΘαI from the shortest
possible lifetimes of N2;3 from π� and K� meson decays

into the upper bound on Xω, one obtains at the HNL mass
scale 102 MeV ImðωÞ ¼ 4.5 for the lifetime of the order of
1 sec and ImðωÞ ∼ 7 for the lifetime of the order of 0.01 sec.
Values of ImðωÞ > 6–7 lead to large mixing parameters of
the W�; Z-neutrino interactions not consistent with the
data. Complex-valued parametrization of Ω was also used
for the study of HNL properties at the TeV scale [30,32],
see also [33].
Extensive literature is devoted to the study of the question

of the number of HNL generations. For the νMSM model,
the case of only two HNL generations in comparison with
the case of three generations has been analyzed within the
cosmological framework in [5] for arbitraryΩ and diagonal
MM with the result that the number of HNL generations
equal to 3 is preferred.Neutrino phenomenology for the case
of two right-handed neutrinos has been analyzed in [34]
where the decoupling limit of the three right-handed
neutrino model has been constructed using a specific form
of Ω matrix in the basis where theMM matrix and the mass
matrix of charged standard leptons are diagonal and realwith
an underlying symmetry for the Yukawa couplings or the
elements of MM (texture zeros). Constraints on thermal
leptogenesis and lepton flavor violation (LFV) processes
have been found for such a case. In the presence of a
sufficiently large number of acceptable cosmological sce-
narios, wewill adhere to the framework of the νMSMmodel
with dark matter production through active-sterile neutrino
mixing, where the mass difference of N2 and N3 is small in
comparison with the known mass splittings of the light left-
handed neutrino mass states [35].
Significant recent reconsideration for the case of two

HNL generations in the region of the parameter space
corresponding to the mass less than the mass of K meson
and performed taking into account the available set of
modern data, see [36], is discussed in Sec. IV below in
connection with the comparison for the case of three HNL
generations considered in this paper. The analysis of lepton
universality within scenario 2 in the Dirac limit assuming
the νMSM framework with soft BBN constraints τ < 1
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second and without the contribution of mixing from dark
matter HNL was performed in [15].
Since in the following the decomposition of the

anti-Hermitian matrix W, Eq. (6), by powers of θ to the
second order terms is used for the transition to the mass

basis of leptons, the question naturally arises about the
scope of applicability of such a decomposition and taking
into account the Oðθ3Þ terms of the decomposition (and
higher). Within the framework of a nonminimal Oðθ3Þ
decomposition, it is necessary to take into account the terms
of the order of OðθMDÞ when [37]

MN ¼
�
θ−1 −

1

3
θ†
�
MD ¼ MM þ θ†MD;

whereas, within the framework of the standard minimal
approximation for the seesaw mechanism, it is assumed

TABLE I. Values for correction factor κM in Eq. (33) from [38].
Here sW ¼ sin θW is the sine of the Weinberg angle.

M0
v ρ0 ω ϕ J=ψ

κM 1 − 2s2w 4
3
s2W

4
3
s2W − 1 1 − 8

3
s2W

FIG. 2. Branching ratios for HNL decays. Upper plot—scenario 1 for both the normal and the inverted hierarchy. Middle plot—
scenario 2 with Ω ¼ ΩNHðξ;ωÞ, where ξ ¼ þ1, ReðωÞ ¼ 0, and ImðωÞ ¼ 7. This parameter set comes from the big bang
nucleosynthesis (BBN) limits, see Fig. 8. Bottom plot—the same as the middle plot but for the case of IH. Left panel: branching
ratios for semileptonic two-body decays of N2 with charged pseudoscalar or vector mesons and charged lepton in the final state. Solid
lines correspond to e− in the final state, long-dashed lines to μ−, dotted lines to τ−. Blue lines show decay with πþ, green Kþ, orange ρþ,
purpleDþ, and red Bþ. Right panel: branching ratios for pure leptonic three-body decays of N2. Gray lines show ννν decay mode, green
lines νe−eþ, purple lines νμ−μþ, dashed purple lines νe−μþ, dashed blue νe−τþ, dashed orange νμ−τþ, and red lines show ντ−τþ mode.
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that MN ¼ MM. For nonminimal decomposition of the W
matrix, the condition must be met,

Ω−1 ¼ ΩT þ 1

3
M̂−1ðΩ−1Þ�m̂; ð29Þ

which is a condition for the self-consistency of the
diagonalization procedure, taking into account the
OðθMDÞ terms. For scenario 2, the mixing matrix, in
addition to a small parameter of the order of

ffiffiffiffiffiffiffiffiffiffiffi
m=M

p
,

contains a potentially large factor of the order of Ω−1, the
limited contribution of which must be checked. This issue
is discussed in Sec. VI.

IV. SEMILEPTONIC HNL DECAYS

HNL decays with meson in the final state can be divided
into four groups [38]:

(i) pseudoscalar neutral meson M0
ps ¼ π0; η; η0; K0;

D0; B0 in the final state with the decay width

ΓðNI → ναh0psÞ¼
G2

FM
3
I

32π
fM0

ps
jΘαIj2ð1−x2MÞ2; ð30Þ

(ii) pseudoscalar charged meson M�
ps ¼ π�; K�; D�;

D�
s ; B�; B�

s ; B�
c

ΓðNI → l−αMþ
psÞ ¼

G2
FM

3
I

16π
fMþ

ps
jVqq0 j2jΘαIj2

× ðð1 − x2αÞ2 − x2Mð1þ x2αÞÞ
× λ

1
2ð1; x2M; x2αÞ; ð31Þ

(iii) vector neutral meson M0
v ¼ ρ0;φ;ω,

ΓðNI → ναh0vÞ ¼
G2

FM
3
I

16π

g2M0
v

m2
M0

v

jVqq0 j2jΘαIj2ð1þ 2x2MÞ

× ð1− x2MÞ2; ð32Þ
(iv) vector charged meson M�

v ¼ ρ� in the final state
with the decay width

ΓðNI → l−αMþ
v Þ ¼

G2
FM

3
I

32π
κM

g2M0
v

m2
M0

v

jΘαIj2

× ðð1− x2αÞ2 þ x2Mð1þ x2αÞ− 2x4MÞ
× λ

1
2ð1; x2M;x2αÞ; ð33Þ

where GF is the Fermi constant, Vqq0 is the Cabibbo-
Kobayashi-Maskawa matrix element, fM and gM are
the corresponding meson decay constants [38], xM ¼
mM=MHNL, xα ¼ mα=MHNL, mα is the mass of charged
lepton lα, λ is the two-particle kinematic function, and κM is
an additional dimensionless correction factor for hadronic
matrix element h0jJZμ jM0

vi (see [38] for details). Values of
κM are given in Table I. These two-particle widths, see
Figs. 2 (left panel) and 3, introduce essential contributions
to the total N2 width starting from the π0 threshold.

V. LEPTONIC HNL DECAYS

In this section we calculate squared amplitudes and HNL
decay widths for the four-fermion effective interaction terms
when M1;2;3 ≪ MW;MZ. Three different decay amplitudes
with respect to the mixing factors can be distinguished:
NI → νi; νj; νj, NI → νi; l

þ
β ; l

−
β , and NI → νi; lþα ; l−β . Three-

particle decay widths are calculated symbolically (p ¼ k1 þ
k2 þ k3, p2 ¼ M2

I , k
2
i ¼ m2

i , i ¼ 1; 2; 3) keeping all masses
of leptons nonzero by integrating in invariant variables over
the Dalitz plot. The details of these calculations are given in
Appendix B. In the model under consideration, all six
neutrinos are Majorana fermions, which requires careful
determination of the signs of the interference terms. See in
this connection [19] for the fermion flow technique for
diagrams with Majorana fermions, or [20] for the case of
generic basis of γ matrices. Three cases for amplitudes
take place:
Case 1. Three active neutrino mass states appear in the

final state: NIðpÞ → νiðk1Þ; νjðk2Þ; νjðk3Þ, i; j ¼ 1; 2; 3.
The Feynman diagram is shown in Fig. 4. Insofar as the
approximation Oðθ2Þ is used, the PMNS matrix can be
operated as a unitary one ðU†UÞ ¼ δij and there are no
Zνjνk≠j vertices. Neglecting the active neutrino masses for
the sake of clarity, we get the squared amplitude of the
following structure:

jM3νj2 ¼ 64G2
FjðU†ΘÞiIj2½ðpk3Þðk1k2Þ þ ðpk2Þðk1k3Þ�:

Details of the calculations can be found in Appendix A.

FIG. 3. Branching ratios for semileptonic two-body decays of
N2 with neutral pseudoscalar or vector mesons and active
neutrino in the final state. Curves for NH and IH practically
coincide; they are evaluated for the same parametric scenarios as
in Fig. 1. Black lines show decay with π0, redK0, green η, blue η0,
orangeD0, purple B0, dashed black ρ0, dashed gray φ, dashed red
ω, and dashed blue J=ψ . There is a very weak sensitivity of
partial widths in relation to the choice of the mixing scenario and
active neutrino mass hierarchies.
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The mixing factor jðU†ΘÞiIj2 is reduced taking the sum
over the active neutrino mass states,

X
i

jðU†ΘÞiIj2 ¼
X
i

X
α;β

U�
αiΘαIUβiΘ�

βI

¼
X
α;β

ðUU†ÞαβΘαIΘ�
βI ¼

X
α;β

δαβΘαIΘ�
βI

¼
X
α

jΘαIj2;

and the decay width

Γ
�
NI →

X
i;j

νi; νj; νj

�
¼ G2

FM
5
I

96π3
X

α¼e;μ;τ

jΘαIj2: ð34Þ

Case 2. Two leptons of different flavors and a neutrino
mass state appear in the final state: NIðpÞ → νjðkÞ;
lþα≠βðp1Þ; l−β ðp2Þ. The Feynman diagram is shown in
Fig. 5. Neglecting the interference term between diagrams
with intermediate Wþ and W−,

jMW j2 ¼ 128G2
F½jΘαIj2jUβij2ðpp2Þðp1kÞ

þ jΘβIj2jUαij2ðpp1Þðp2kÞ�:

After summing by the active neutrino mass states and using
UU† ¼ I due to approximate unitarity of PMNSmatrix, the
decay width takes the form

Γ
�
NI →

X
i¼1;2;3

νil
þ
α≠βl

−
β

�

¼ G2
FM

5
I

192π3
ðjΘαIj2 þ jΘβIj2ÞGðrα; rβÞ; ð35Þ

where

Gðx; yÞ ¼ ð1 − 7x − 7x2 þ x3 þ 12xy − 7y − 7y2 þ y3

− 7x2y − 7xy2ÞRþ 12ðy2 þ x2y2 − 2x2Þ

× ln

�
1þ x − yþ R

2

�
þ 12x2ð1 − y2Þ ln

�
1

x

�

þ 12y2ð1 − x2Þ ln
�
1 − x − yþ R
1 − xþ y − R

�
;

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2xþ x2 − 2yþ y2 − 2xy

q
:

In the limiting case me ≪ mμ, mμ ≪ mτ Eq. (35) is
reduced to

Γ
�
NI →

X
i¼1;2;3

νil
þ
α≠βl

−
β

�
jmβ→0

¼ Γ
�
NI →

X
i¼1;2;3

νil
þ
α≠βl

−
β

�
jmα→0

¼ G2
FM

5
I

192π3
ðjΘαIj2 þ jΘβIj2Þð1− 8rþ 8r3 − r4 − 12r2 lnðrÞÞ;

ð36Þ
where r ¼ m2

M2
I
, m ¼ maxfmα; mβg. This result is the same

as the one obtained in [38].

FIG. 4. Diagram for case 1. HNL decay into three active
Majorana neutrinos.

FIG. 5. Diagrams for case 2. HNL decay into Dirac charged
lepton and antilepton of different flavors associated with one
active Majorana neutrino.

FIG. 6. Diagrams for case 3. HNL decay into Dirac charged
lepton and antilepton with the same flavor and one active
Majorana neutrino.
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Note that if one assumes that the active neutrinos are
Dirac fermions, then there is no interference between
diagrams with Wþ and W− because they correspond to
different final states ν̄lþl− and νlþl−. Discussion of the
approaches to evaluations for Dirac and Majorana fer-
mions can be found in [39], where the Dirac limit is used
for the neutrinos. Beyond the Dirac limit, the interference

term between diagrams with Majorana neutrinos vanishes
if the active neutrino mass is taken to be zero. To
illustrate the suitability of approximations of this kind
it is useful to calculate the decay width with an
interference term using a simplified amplitude neglecting
the m

MI
power terms, and integrating over the triangle

Dalitz plot

Γ
�
NJ →

X3
k¼1

νklþα l−β

�
¼ G2

FM
5
J

192π3

�
jΘαJj2 þ jΘβJj2 −

4

MJ

X3
k¼1

mkRefΘαJΘ�
βJU

�
βkUαkg

�
: ð37Þ

One can observe that the interference term, suppressed by the mass ratio, may be not small in the case of scenario 2 with
huge mixing factors of the order of eImðωÞ and for HNL masses at the eV scale (see the discussion of such scales in [33]).
The sign of the interference term depends on the sign of ReðωÞ.
Case 3. Two leptons of the same flavor and a neutrino mass state appear in the final state:NIðpÞ → νjðkÞ; lþα ðp1Þ; l−α ðp2Þ.

The Feynman diagram is shown in Fig. 6. The amplitude contains both charged and neutral currents and includes in this
case three interfering diagrams. The mixing factor appearing in the squared amplitude is reduced by summing over the states
of active neutrinos1X

i

ΘαIU�
αiðU†ΘÞ�iI ¼

X
i;β

ΘαIU�
αiUβiΘβI ¼

X
β

ðUU†ÞαβΘαIΘ�
βI ¼

X
β

δαβΘαIΘ�
βI ¼ jΘαIj2: ð38Þ

Integration of the amplitude

X
i

jMWZj2 ¼ 128G2
F

�
ðC21 þ C22Þ

X
β

jΘβIj2 þ ð1 − 2C1ÞjΘαIj2
�
½ðpp2Þðp1kÞ þ ðpp1Þðp2kÞ�

þ 128G2
F

�
ð4C1C2Þ

X
β

jΘβIj2 − 4C2jΘαIj2
�
m2

α

2
ðpkÞ

gives the decay width

Γ
�
NI →

X
i¼1;2;3

νilþα l−α

�
¼ G2

FM
5
I

96π3

��
ðC21 þ C22Þ

X
β

jΘβIj2 þ ð1− 2C1ÞjΘαIj2
�
F 1ðrÞ þ 4

�
C1C2

X
β

jΘβIj2 − C2jΘαIj2
�
F 2ðrÞ

�
;

ð39Þ

where C1 ¼ s2W − 1
2
, C2 ¼ s2W , r ¼ m2

α

M2
I
,

F 1ðrÞ ¼ ð1 − 14r − 2r2 − 12r3Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4r

p
þ 12r2ð1 − r2Þ ln

�
1 − 3rþ ð1 − rÞ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4r
p

rð1 − ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4r

p Þ

�
;

F 2ðrÞ ¼ ð2rþ 10r2 − 12r3Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4r

p
− ð6r2 − 12r3 þ 12r4Þ ln

�
1 − 3rþ ð1 − rÞ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4r
p

rð1 − ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4r

p Þ

�
:

In the charged lepton massless limit r ¼ 0, F 1ðrÞ ¼ 1,
F 2ðrÞ ¼ 0 and the factor −2C1 in front of the interfer-
ence term is positive. Comparison of the decay width
calculated using Eq. (39) and the decay width in the

Dirac limit is shown in Figs. 7(a) and 7(b). The differ-
ence in three-particle widths, caused by the opposite
signs of the interference terms in Eq. (39) compared with
the Dirac limit, can be several times; however, the main
contribution to the total HNL width made by two-particle
modes is significantly greater than the three-particle
modes.

1The squared amplitude is not summed up by neutrino mass
states ν1;2;3; see details of the calculation in Appendix A.
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Case of HNL in final state. Decay channels with HNL in
the final state N2;3 → N1 þ � � � are suppressed by the factor
of ∼OðΘ2Þ in comparison with the channels described
above. They are insignificant for the following analysis.

VI. CONSTRAINTS ON THE MIXING
PARAMETERS FOR N2 AND N3

In both scenarios defined in Sec. III the contribution of
N1, the DM particle, to the lepton universality parameter is
small and the degree of lepton universality violation (LUV)
depends on N2 and N3.

A. Upper bounds from accelerator experiments

There are experimental restrictions for phenomenologi-
cal parameters defined as

U2
α ¼

X3
I¼1

jΘαIj2 ð40Þ

U2
I ¼

X
α¼e;μ;τ

jΘαIj2; ð41Þ

U2 ¼
X
α

X
I

jΘαIj2 ¼ TrðΘ†ΘÞ: ð42Þ

For the decay channels π; K → e; μþ Emiss the missing
energy is reconstructed in the experiments TRIUMPH [40],
PIENU [41], NA62 [42], E949 [43], and KEK [44]. In the
experiments DELPHI [45], PS191 [46], CHARM [47], and
NuTeV [48] an identification of HNL decay displaced
vertices is carried out. A combination of bounds from
these two types of experiments taken from [36] is shown
in Fig. 8.
Taking into account the valuable remark in review [33]

regarding the use of the so-called “model-independent

approach” in the analysis of data from various experi-
ments,2 we note the need for careful translation when
bringing the results to a common denominator. In the
general case when the mass and the mixing parameter are
not independent variables, the exclusion contours are
subject to dependence on the field-theoretic model of
the expansion of the lepton sector. The partial probabilities
of HNL decays in the model under consideration with six
Majorana neutrinos differ from the corresponding proba-
bilities in the model with active Dirac neutrinos and
Majorana sterile neutrinos. These deviations can be sig-
nificant and may lead to some quantitative displacement of
the exclusion contours, although a qualitative correspon-
dence will take place.
Significant development beyond the model-independent

approach has been performed in [36] where two HNL
generations with degenerate masses have been introduced
with the 3 × 2 Ω matrix analogous to Eq. (28). In this case
m1 ¼ 0 in the active neutrino mass matrix for NH and
m3 ¼ 0 for IH.

B. Lower bound for BBN

Cosmological considerations imposing restrictions on the
lifetime of N2 and N3 on the level of τN2;3

< 0.1–1 sec [50]
were recently improved in [51] giving the minimal level of
0.02 sec. These bounds aremodel dependent and obtained in
the framework of a rather specific scenario of the big bang
nucleosynthesis. A simplified estimate for BBN lifetime
limit is used in the following evaluations:

FIG. 7. Comparison of the HNL leptonic decay widths calculating in the Dirac limit and in model with three Majorana active
neutrinos. (a) Partial widths of three-body leptonic HNL decays N → lα; lα; ν evaluated in the Dirac limit (dashed line) and using
Eq. (39) (solid line). (b) Ratios of partial widths for three-body leptonic HNL decays N → lα; lα; ν evaluated in the Dirac limit and using
Eq. (39) for ImðωÞ ¼ 0 (solid line) and ImðωÞ ¼ 10 (dashed line).

2Assumption of the independence of the mixing parameter
from the HNL mass seems to be quite strong even within the
framework of consideration with one generation of leptons, see
for example [49]. Neutrino oscillations can be described with at
least two generations of HNL’s, two generations are involved in
the low-scale leptogenesis.
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τHNL < τBBN ¼
�
0.02 sec; MHNL > 140 MeV

0.1 sec; MHNL < 140 MeV:
ð43Þ

In the scenario 1 framework, the minimal mixing
matrix (26) does not contain redundant parameters, so the
lifetime dependence on the HNL mass is unambiguous,
see Fig. 9.
For scenario 2, it is necessary to take into account

the constraint for Ω matrix elements following from the
self-consistency condition of the model with Casas-Ibarra
diagonalization extended to the cubic terms in the decom-
position of the W matrix, see Eq. (7). The exponential
factor e2ImðωÞ may give a huge increase of the mixing
parameters jΘα2j2 and jΘα3j2

jΘðNHÞ
α2ð3Þj

2jImðωÞ>1 ≃
e2ImðωÞ

4M2ð3Þ
j ffiffiffiffiffiffi

m2

p
Uα2 þ iξ

ffiffiffiffiffiffi
m3

p
Uα3j2

þO
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

Δm2
atm

p
M2ð3Þ

�
; ð44Þ

FIG. 8. Constraints on U2
e and U2

μ for various HNL masses. Green lines are the lower bounds derived from the BBN lifetime limit, left
panels—NH, right panels—IH; thin green lines are for the simplified model with two HNL’s, thick green lines—for the full model with
three HNLs and the lightest active neutrino massm1=MDM orm3=MDM of the order of 10−8. Excluded domains in gray color correspond
to the upper limits from two types of accelerator experiments: experiments with the missing energy reconstruction [TRIUMPH [40],
PIENU [41] (π decay), NA62 [42], E949 [43], and KEK [44] (K decay)] and experiments with the displaced vertices (DELPHI [45],
PS-191 [46], CHARM [47], and NuTeV [48]), the division of the gray region into subdomains corresponding to different accelerator
experiments can be found in [36]. Seesaw bound contours of U2

e and U2
μ in the simplified case of two HNLs and/or the case of three

HNLs with m1ð3Þ ¼ 0 are shown by red and dark red lines.

FIG. 9. The lifetimes of N2 (green lines) and N3 (dark red lines)
as a function of their massesM2 ¼ M3 in the case of normal (solid
lines) and inverted (dashed lines) hierarchies, scenario 1. Red line
correspond to BBN constraints (43), which is taken from [51]. N2

contour for the case of normal active neutrino hierarchy practically
coincides with N3 contours for both hierarchies.
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jΘðIHÞ
α2ð3Þj

2jImðωÞ>1 ≃
e2ImðωÞ

4M2ð3Þ
jξ ffiffiffiffiffiffi

m2

p
Uα2 − i

ffiffiffiffiffiffi
m1

p
Uα1j2

þO
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

Δm2
atm

p
M2ð3Þ

�
: ð45Þ

Using the constraint of Eq. (29) for the orthogonal matrix
Ω, one arrives to

1

3
M̂−1ðΩ−1Þ�m̂jImðωÞ>1 ≃ 0; so

m2;3

M2;3
eImðωÞ ≡ ϵ ≪ 1;

ð46Þ

and for m2;3 ≃Oð0.1 eVÞ the inequality must hold:

ImðωÞ≲ 16.1þ ln

�
ϵ

�
M2;3

1 MeV

��
: ð47Þ

In this scenario first the allowed lifetime domain on
the ImðωÞ −M plane is found, see Fig. 10, which is then
translated to the allowed domain for the lepton uni-
versality parameterΔrM. In the phenomenological analysis,

in the following we use the commonly accepted denomi-
nation for the model parameter space,

U2
α ¼

X3
I¼1

jΘαIj2 ¼
( m1

M1
jUα1j2 þ jΘðNHÞ

α2 j2 þ jΘðNHÞ
α3 j2; NH

m3

M1
jUα3j2 þ jΘðIHÞ

α2 j2 þ jΘðIHÞ
α3 j2; IH;

ð48Þ

where m1ð3Þ is the mass of lightest active neutrino for
normal (inverted) hierarchy. The case of a simplified model
with two HNL generations, see [36], can be reproduced in
the limiting case of the model under consideration when
m1ð3Þ → 0 is taken, which is valid for the range of HNL
masses where the lower bound of U2

α ≫ jΘα1j2 at fixed
nonzero m1 or m3.

C. Lower bound for seesaw

In the limiting case of ImðωÞ → 0 which is the transition
to the real-valued Ω matrix, it is necessary to take into
account all terms, since they become comparable in the
order of magnitude,

lim
ImðωÞ→0

ΘðNHÞ ¼

0
BBBBBB@

ffiffiffiffiffi
m1

M1

q
Ue1

ffiffiffiffiffi
m2

p
Ue2 cosϕþξ

ffiffiffiffiffi
m3

p
Ue3 sinϕffiffiffiffiffi

M2

p ξ
ffiffiffiffiffi
m3

p
Ue3 cosϕ−

ffiffiffiffiffi
m2

p
Ue2 sinϕffiffiffiffiffi

M3

pffiffiffiffiffi
m1

M1

q
Uμ1

ffiffiffiffiffi
m2

p
Uμ2 cosϕþξ

ffiffiffiffiffi
m3

p
Uμ3 sinϕffiffiffiffiffi

M2

p ξ
ffiffiffiffiffi
m3

p
Uμ3 cosϕ−

ffiffiffiffiffi
m2

p
Uμ2 sinϕffiffiffiffiffi

M3

pffiffiffiffiffi
m1

M1

q
Uτ1

ffiffiffiffiffi
m2

p
Uτ2 cosϕþξ

ffiffiffiffiffi
m3

p
Uτ3 sinϕffiffiffiffiffi

M2

p ξ
ffiffiffiffiffi
m3

p
Uτ3 cosϕ−

ffiffiffiffiffi
m2

p
Uτ2 sinϕffiffiffiffiffi

M3

p

1
CCCCCCA
; ð49Þ

FIG. 10. The BBN constraints for HNL lifetime (green line for N2 and dark red line for N3) as a function of its mass in scenario 2 with
following parametrization of mixing Ω ¼ ΩNHðξ ¼ þ1;ωÞ for NH (a) and Ω ¼ ΩIHðξ ¼ þ1;ωÞ for IH (b) with ReðωÞ ¼ 0. Blue lines
correspond to the restriction from above on the ImðωÞ parameter (47) with ϵ ¼ 1 (solid line) and ϵ ¼ 10−3 (dotted line). The allowed
parameter domains for corresponding HNL are above the lines marked by N2 (green line) and N3 (dark red line) and below the blue
solid line.
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lim
ImðωÞ→0

ΘðIHÞ ¼

0
BBBBBB@

ffiffiffiffiffi
m3

M1

q
Ue3

ffiffiffiffiffi
m1

p
Ue1 cosϕþξ

ffiffiffiffiffi
m2

p
Ue2 sinϕffiffiffiffiffi

M2

p ξ
ffiffiffiffiffi
m2

p
Ue2 cosϕ−

ffiffiffiffiffi
m1

p
Ue1 sinϕffiffiffiffiffi

M3

pffiffiffiffiffi
m3

M1

q
Uμ3

ffiffiffiffiffi
m1

p
Uμ1 cosϕþξ

ffiffiffiffiffi
m2

p
Uμ2 sinϕffiffiffiffiffi

M2

p ξ
ffiffiffiffiffi
m2

p
Uμ2 cosϕ−

ffiffiffiffiffi
m1

p
Uμ1 sinϕffiffiffiffiffi

M3

pffiffiffiffiffi
m3

M1

q
Uτ3

ffiffiffiffiffi
m1

p
Uτ1 cosϕþξ

ffiffiffiffiffi
m2

p
Uτ2 sinϕffiffiffiffiffi

M2

p ξ
ffiffiffiffiffi
m2

p
Uτ2 cosϕ−

ffiffiffiffiffi
m1

p
Uτ1 sinϕffiffiffiffiffi

M3

p

1
CCCCCCA
; ð50Þ

where ϕ ¼ ReðωÞ. If zero mass of the lightest active
neutrino is taken, m1 ¼ 0 (NH) or m3 ¼ 0 (IH), then the
values of mixing matrix elements form the “seesaw bound”
as it is called in the existing literature; see for example [36].
Note that in the case of nearly degenerate M2 and M3

inherent to νMSM-like model to which we adhere, there is
no ϕ dependence of the mixing parameter U2

α in the case of
ImðωÞ ¼ 0 when the Θ matrix has the form (49) or (50)
(due to sin2 ϕþ cos2 ϕ ¼ 1). Seesaw bound is introduced
to mark a minimal possible value of phenomenological
parameters,3 in particular for U2

α we can write

U2
αmin ¼

X3
J¼1

jðΘminÞαJj2. ð51Þ

It is appropriate to call this parameter at m1 ¼ 0 or m3 ¼ 0
as the “absolute seesaw bound” for NH or IH, and if we
choose a nonzero mass of the lightest active neutrino, then
to call (51) as just a seesaw bound. These two bounds
coincide when m1

M1
≪ m2

M2
; m3

M3
. For the νMSM-like model

with mlight ∼ 10−5 eV, M1 ∼ 1–10 keV and M2 ≃M3 ∼
1–104 MeV such inequatity is not respected, since

mlight

M1

∼ 10−8–10−9 and
m2;3

M
∼ 10−8–10−13 ð52Þ

so the mixing component of dark matter HNL N1 becomes
the dominant term of U2

α, or at least the same order of
magnitude term as the other terms for M1 ∼ 1 keV. The
difference in bounds is illustrated in Fig. 8.

VII. RESTRICTIONS ON THE LEPTON
UNIVERSALITY PARAMETER IN THE DECAYS

OF π� AND K� MESONS

Limitations on the lepton universality (LUV) parameter
are imposed by the restrictions on the N2 and N3 lifetime
from the big bang scenario and experimental restrictions
from meson decays.
In the effective four-fermion approximation the width of

the scalar meson M ¼ π�; K�

ΓðMþ → lþα ; NIÞ ¼
G2

Ff
2
M

4π
jΘαIj2m4

Mλ
1=2ð1; rI; rαÞ

× ½rI þ rα − ðrI − rαÞ2�; ð53Þ

where GF is Fermi constant and fM is meson form factor,
α ¼ e, μ, τ (only channels allowed by energy-momentum
conservation are admitted), I ¼ 1; 2; 3 number of HNL
generation, j ¼ 1; 2; 3 active neutrino mass states; rα ¼
m2

α=m2
M, rI ¼ M2

I =m
2
M. In the case of only one active

neutrino in the final state the mass corrections are neglected
and

ΓðMþ → lþα ; νjÞ ¼
G2

Ff
2
M

4π
jUαij2m4

Mrαð1 − rαÞ2: ð54Þ

A convenient variable to analyze deviations from the
Standard Model lepton universality is the ratio [11]

RM ¼
P

iΓðMþ → eþνiÞ þ
P

jΓðMþ → eþNjÞP
iΓðMþ → μþνiÞ þ

P
jΓðMþ → μþNjÞ

ð55Þ

or its derivative demonstrating the deviation of the ratio from
zero,

FIG. 11. Lepton universality parameters Δrπ , red lines, and
ΔrK , blue lines, as a function of the HNL mass in the case of
quasidegenerate M2 ≃M3 ≡M for scenario 1. First generation
HNL N1 with the mass M1 ≃ 5 keV is the dark matter particle.
Vertical green lines are the lower bounds from BBN lifetime
constraints for IH (left line) and NH (right line). Horizontal
dashed lines correspond to experimental values of LUV param-
eters: Δrπ ¼ 5 × 10−4 and ΔrK ¼ 10−3, see [52].

3The more accurate calculation of minðU2
αÞ shows that the real

minimal value occurs when ImðωÞ ≠ 0 and differs for different α.
However, this boundary shift is insignificant for our consider-
ation. For example, the seesaw bound decreases by less than one
half for U2

e when ImðωÞ ≃�0.5 for ξ ¼ �1.
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ΔrM ≡ RM

RSM
M

− 1 ¼
P

ijUeij2 þ
P

IjΘeIj2GM
eIP

ijUμij2 þ
P

IjΘμIj2GM
μI
− 1; ð56Þ

where masses of active neutrinos are neglected and only
decays which are allowed kinematicallyMI < mM −mα are
accounted for. If MI > mM −mα then GM

αI ¼ 0. The SM
parameter and the BSM parameter are

RSM
M ¼ rμð1 − rμÞ2

reð1 − reÞ2
;

GM
αI ¼

λ1=2ð1; rI; rαÞ½rI þ rα − ðrα − rIÞ2�
rαð1 − rαÞ2

:

Using the unitarity condition for the full 6 × 6 mixing
matrix

X3
i¼1

jUαij2 þ
X3
I¼1

jΘαIj2 ¼ 1; ð57Þ

one can rewrite (56) in the form

ΔrM ¼ 1þP
3
I¼1 jΘeIj2ðGM

eI − 1Þ
1þP

3
I¼1 jΘμIj2ðGM

μI − 1Þ − 1: ð58Þ

The values of parameter (58) for a fixed type of mixing
(scenario 1, minimal mixing) is shown in Fig. 11.

A. Numerical analysis

Taking into account the combined restrictions (see Fig. 8),
the allowed values of the mass are M > 430 MeV (NH) or
M > 350 MeV(IH) forU2

e boundsandM > 290 MeV(NH)
orM > 300 MeV(IH) forU2

μ bounds.Wewill be interested in
themass rangeM > 430 MeVwhere the experimental upper
bound is high enough to allowLUVat the observational level.
The upper bound for the mass range 350–430MeV (allowed
for IH) contains strong experimental errors (see Fig. 8), which
makes it difficult to estimate the LUV without knowing the
specifics of data processing. Consequently, in the case of π
decay, the lepton universality is violated due to the nonun-
itarity of the PMNS matrix and

Δrπ ¼
1þ ðGπ

e1 − 1ÞjΘe1j2 − ðU2
e − jΘe1j2Þ

1þ ðGπ
μ1 − 1ÞjΘμ1j2 − ðU2

μ − jΘμ1j2Þ
− 1: ð59Þ

ForK-meson decay the functionGK
eJ is nonzero in an allowed

rangeM < 493 MeV. Moreover, ifM2 andM3 are quaside-
generate, then GK

α2 ≡GK
α3 and

ΔrK ¼ 1þ ðGK
e1 − 1ÞjΘe1j2 þ ðGK

e2 − 1ÞðU2
e − jΘe1j2Þ

1þ ðGK
μ1 − 1ÞjΘμ1j2 þ ðGK

μ2 − 1ÞðU2
μ − jΘμ1j2Þ

− 1:

ð60Þ
For the dark matter fermion N1 we take M1 ¼ 5 keV. The
values for the contribution of terms with m1 ¼ 10−5 eV are
given in Table II. Components of the mixing matrix are

jΘe1j2 ¼
�
1.35 × 10−9 for NH

4 × 10−11 for IH

jΘμ1j2 ¼
�
2.2 × 10−10 for NH

1.08 × 10−9 for IH

so terms ðGM
α1 − 1ÞjΘα1j2 ∼ 10−14–10−21 can be neglected in

comparison with other terms.
As demonstrated by Fig. 12, the kinematic factor GK

μ2

does not exceed 5, so the value of ðGK
μ2 − 1ÞðU2

μ − jΘμ1j2Þ∼
U2

μ ≪ 1. Using this approximation, the parameter of lepton
universality violation (LUV) can be written in a simple
form

Δrπ ≡ Δrnonunitary ≃ ðU2
μ − jΘμ1j2Þ − ðU2

e − jΘe1j2Þ; ð61Þ
ΔrK ≃ Δrnonunitary þGK

e2ðU2
e − jΘe1j2Þ −GK

μ2ðU2
μ − jΘμ1j2Þ:

ð62Þ
In the following the upper and lower bounds are denoted by
ū and u for U2

e and by v̄ and v for U2
μ. Then the maximum

and minimum values of the LUV parameter for the pion are

ðΔrπÞmin ≃ ðv − ūÞ þ δdm; ðΔrπÞmax ≃ ðv̄ − uÞ þ δdm

ð63Þ

and for the kaon (M > 430 MeV)

TABLE II. Values of kinematic function GM
α1 − 1 for M ¼ π; K

meson and α ¼ e, μ. Mass of HNL DM fermion is M1 ¼ 5 keV,
mass of the lightest neutrino is 10−5 eV.

α e e μ μ

Meson π K π K
Gmeson

α1 − 1 9.6 × 10−5 9.6 × 10−5 4.8 × 10−10 2.5 × 10−9

FIG. 12. Dependence of the kinematic functions GK
α2, α ¼ e, μ

for Kþ decay on the HNL mass. Note that ifM2 ¼ M3 ¼ M, then
the functions GK

α2 and GK
α3 coincide.
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ðΔrKÞmax ≃ ðv̄ − uÞ þ δdm þ GK
e2ðū − jΘe1j2Þ

−GK
μ2ðv − jΘμ1j2Þ;

ðΔrKÞmin ¼ ðΔrKÞmax with replacement u ↔ ū; v̄ ↔ v;

ð64Þ

where

δdm ¼ jΘe1j2 − jΘμ1j2 ¼
�
1.12 × 10−9 for NH;

−1.04 × 10−9 for IH:
ð65Þ

If the mass of the lightest active neutrino m1ð3Þ ¼ 0 (or,
equivalently, if there are only two generations of HNL)
then δdm ¼ 0. In the considered mass rangeM > 410 MeV,
one can assume that ū; v̄ > 107, so ū ≫ v; δdm and
v̄ ≫ u; δdm. Therefore, when the HNL mass is greater
than the kinematic threshold MK −me, it follows that
ðΔrnonunitaryÞmax ≃ v̄ and ðΔrnonunitaryÞmin ≃ −ū. The case
430 MeV < M ≲ 493 MeV is separately considered
since LUV occurs due to the decay channel Kþ →
eþ; N2;3 with a kinematic factor up to 105 (see Fig. 12)
and in such case

ðΔrKÞmax ∼ v̄þ GK
e2ðū − jΘe1j2Þ

ðΔrKÞmin ∼ −ðūþGK
μ2v̄Þ þ GK

e2ðu − jΘe1j2Þ
for 430 MeV < M < 493 MeV: ð66Þ

These boundaries are shown in Fig. 13(a). Maximum value
of LUV parameter for HNLmass greater than the kinematic
threshold (M > 493 MeV) is shown in Fig. 13(b). Note
that taking into account the finite value of DMmixing jΘ2

e1j
leads to the fact that the second (positive) term of ðΔrKÞmin
in (66) becomes negligible small despite the large kin-
ematic factorGK

e2. This in turn leads to ðΔrKÞmin < 0 due to
the negative first term in (66).

VIII. SUMMARY

The most general case of extending the lepton sector of
the SM by three sterile Majorana neutrinos in order to
generate the masses of standard neutrinos using the seesaw
mechanism allows one to build a structured hierarchy of
mixing parameters within a well-defined basis for mass
states. Cosmological limitations on the lifetime and energy
fraction of the lightest mass state of neutral heavy leptons,
considered as a dark matter particle, restrict the mass to
vary in an interval of 0.4–40 keV within the sensitivity of
modern experiments, which allows the use of preferred
forms of active and heavy neutrino mixing matrices for the
analysis of data from experiments with extracted beams and
colliders.
Limitations of the possible form of the mixing matrix in

the seesaw type I models, which are of undoubted interest,
can be obtained by combining constraints on the matrix
elements imposed from above by the absence of signals on
colliders and beam dump experiments, while constraints on

FIG. 13. Lepton universality violation (LUV) parameters Δrπ and ΔrK as a function of the HNL masses in the case of quasidegenerate
M2 ≃M3 ≡M. The BBN bound is respected for the depicted mass interval according to the allowed domains in Fig. 8. The choice of
M1 and the active neutrino masses for both normal and inverted hierarchies are the same as in Fig. 11. (a) Lepton universality violation
(LUV) parameter in Kþ decays with the mixing matrix corresponds to Eq. (28), scenario 2. The orange line corresponds to the minimum
value of LUV ðrKmin < 0Þ with reversed sign (to illustrate on a log scale) for both hierarchies in the case of three HNL generations,
m1ð3Þ ∼ 10−5 eV, the blue line shows the maximum value of the LUV parameter, see Eq. (66) for details. The horizontal dotted black line
is the experimental value of ΔrK ≃ 10−3; see [52]. The vertical green line is a kinematic threshold M ¼ MK −me for kaon decay
Kþ → eþ; N2ð3Þ. (b) Lepton universality violation parameter in πþ and Kþ decays when the mass of HNL is greater than all kinematic
thresholds for considered decay channels. In such a case, LUVoccurs due to PMNS nonunitarity:

P
i jUαij2 ¼ 1 −

P
I jΘαI j2 ≠ 1. The

maximum value of Δrnonunitary is estimated from the upper experimental bound on U2
μ; see Eq. (63) for details.
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the mixing from below are provided by baryogenesis
scenarios within the framework of the big bang concept,
as well as restrictions on flavor oscillations. However, the
numerical values for the boundaries strongly depend on the
mixing scenario within a particular model which, from a
technical point of view, is ambiguously implemented by a
certain choice of the Ω matrix in the MD − UPMNS − UN
connection, Eq. (12). The lepton universality violation
parameter in K� and π� decays is sensitive to the neutral
heavy leptons due to their additional contributions to
meson decay widths, dependent on the mixing matrix.
Two mixing scenarios analyzed above are rather

different; in the fine-tuned scenario 1 the mixing matrix
depends on the mass ratio ðmi=MiÞ1=2 of active neutrino
and HNL, which suppresses any HNL production or
decay channel and imposes rather strict restrictions on N1

from the cosmological lifetime and DM energy fraction
requirements, not affecting N2 and N3 masses. In
scenario 2 with three additional parameters for the N2

and N3 mixing, intensively discussed in the literature, a
sort of tuning is needed to generate small masses of
active neutrinos by means of seesaw type I and the
baryon asymmetry of the Universe by means of N2 − N3

flavor oscillation mechanism. HNL production is
enhanced by the mixing parameter eImðωÞ and stronger
restrictions on the N2 and N3 masses (N2 ∼ N3) from
below are imposed not affecting to large extent N1 which
has a negligible mixing. Strong hierarchy of ΘeI and ΘμI ,
ΘτI elements of the mixing matrix naturally appears in
scenario 1 and can be easily configured for the NH case
in scenario 2. The cosmological upper bound on the HNL
lifetime is critical for determining the bound on the
masses of N2 and N3, so their lifetime was carefully
evaluated taking into account the three-particle leptonic
decay channels which are dominant below the thresholds
of the two-particle channels. Our main results can be
summarized as follows:

(i) In the range of HNL masses 120 MeV < M <
140 MeV (close to the mass of π meson) a small
window for the U2

e consistent with the data on the
missing energy reconstruction and search for
displaced vertices was found in the case of a normal
hierarchy (NH): 3 × 10−8 < U2

e < 2 × 10−7.
(ii) There is a possible range of parameters consistent

with the experimental upper bound for U2
e, U2

μ and
the limitations of big bang nucleosynthesis (BBN)
with the following dependencies on the mass
hierarchy:

M > 430 MeV for U2
e withNH;

M > 350 MeV for U2
e with IH;

M > 290 MeV for U2
μ withNH;

M > 300 MeV for U2
μ with IH:

Combining these constraints, we can conclude that
M > 430 MeV for NH and M > 350 MeV for IH
in addition to the allowed window of HNL mass
mentioned above.

(iii) In the model with three generations of sterile
Majorana neutrinos where the lightest active neu-
trino mass is m1 ∼ 10−5 eV and MDM ∼ 1 keV, the
lower limit for HNL mass coming from the U2

e BBN
bound M > 430 MeV (NH) is raised in comparison
with the simplified model with two generations of
HNL where m1 ¼ 0 and M > 170 MeV.

(iv) The lepton universality violation parameter ΔrM,
M ¼ π�; K� does not exceed Oð10−4Þ at M2 and
M3 masses of the order of 102 MeV in scenario 1,
demonstrating very high sensitivity to the BBN
lifetime restrictions (M > 480 MeV for IH and
M > 830 MeV for NH). In the allowed BBN
region the LUV parameter does not exceed
Oð10−10Þ for NH and Oð10−7Þ for IH. The
situation is more involved in the three-parametric
scenario 2 where the lifetime bound is given by an
exclusion contours on the mixing—mass, ImðωÞ −
M plane.

Using the theoretical SM value for Rπ and RK
from [53,54] and the experimental value from
Particle Data Group [52], the lepton universality
violation parameter for π� is found to be Δrπ ¼
ð−4� 3Þ × 10−4 and ΔrK ¼ ð4� 4Þ × 10−3 for
K�. A maximal value of the lepton universality
violation parameter ΔrK is comparable or exceeds
the experimental value in the HNL mass range
between 460–485 MeV. It follows that the cur-
rently achieved level of experimental accuracy is
quite moderate, as a result of which future experi-
ments of high precision have a great potential for
the discovery of BSM physics lepton mixing
scenarios.

Some differences between the BBN exclusion contours
obtained in the literature and in evaluations above can
take place due to approximations for the explicit form
of mixing matrices for three HNL generations in the
scenarios under consideration, and calculations of the
widths of three-particle HNL decays beyond the Dirac
limit. The HNL lifetime bound is essential for manip-
ulations with displaced vertices. If a lifetime bound is
denoted by τ0 and a decay width is factorized in the
form of a mixing factor times matrix element squared,
Γ0 ¼ jUαj2M2, then a bound for the mixing factor is
jUαj2 > 1=ðτ0M2Þ. This qualitative estimate gives a shift
of the jUαj2 contour upwards (downwards) when either
the lifetime bound or the matrix element squared
decreases (increases). For HNL masses less than the
threshold of around 0.14 GeV, see [51], the BBN
contour in Fig. 8 can be shifted upwards, which is
explained by a steplike approximation of the upper limit
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for the lifetime τ0 increase to approximately 0.1 sec. At
masses exceeding the threshold of 0.14 GeV the contour
in Fig. 8 can be shifted downwards, which is explained
by different ways of taking into account the permissible
areas for Imω and M, see Fig. 10. When generating a
contour in this paper, the lower permissible boundary on
the Imω −M plane exactly corresponds to a displace-
ment along the curve in Fig. 10, whereas for the case of
two HNL generations either asymptotic behavior is
used, see Eq. (44), or the limiting case of the so-called
“dominant mixing” is taken, when the ratios
jUej2∶jUμj2∶jUτj2 have the form of a ratio of some
numerical constants, which is equivalent to a step-
function approximation [55]. Departures in the case
of inverse neutrino mass hierarchy are a consequence
of completely different structure of mixing matrices for
NH and IH in our case. Some displacement of the
contours appears also due to contributions to the width
by the interference terms or different signs of these
terms in the three-particle decays beyond the Dirac
limit; however, against the background of two-particle
contributions above the thresholds, this displacement is
not very significant. As a result of evaluations, in our
case the open windows for HNL masses are slightly
smaller and for larger values of MHNL, the lower
permissible limit is changed. Significant changes occur
with the three-generation seesaw bound curves com-
pared to the two-generation absolute seesaw bound
curves due to an additional term in the parameters
U2

e and U2
μ which includes nonzero active neutrino

masses. The above-mentioned changes do not affect
the mass range, which is most interesting for observing
the violation of lepton universality.
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APPENDIX A: AMPLITUDES FOR THE
THREE-PARTICLE LEPTONIC DECAYS

Models with Majorana fermions have a number of
diagram technique features, see [19,20]. The diagram
technique for Majorana fermions proposed in [20], where
the charge conjugation matrix was explicitly included in
the Feynman rules, has been modified in [19] where
standard propagators are used; vertices do not include
the charge conjugation matrix and a specific fermion
flow defined for fermion lines is introduced. Feynman
rules are shown in Fig. 14. This appendix provides the
specifics of calculations in the cases under consideration.

Case 1. Here we choose the direction of the fermion flow
(see [19]) as shown in Fig. 15, then

M3ν ¼ −i
ffiffiffi
2

p
GFðv̄Nγμ½ðU†ΘÞ�iIPL − ðU†ΘÞiIPR�v1Þ

× ðū3γμðPL − PRÞv2Þ: ðA1Þ
Denoting the terms of the full decay amplitude as

MLL ¼ −i
ffiffiffi
2

p
GFðU†ΘÞ�iIðv̄NγμPLv1Þðū3γμPLv2Þ

MLR ¼ −i
ffiffiffi
2

p
GFðU†ΘÞ�iIðv̄NγμPLv1Þðū3γμPLv2Þ

MRL ¼ −i
ffiffiffi
2

p
GFðU†ΘÞ�iIðv̄NγμPLv1Þðū3γμPLv2Þ

MRR ¼ −i
ffiffiffi
2

p
GFðU†ΘÞ�iIðv̄NγμPLv1Þðū3γμPLv2Þ;

one can observe that there is no interference in the
approximation of zero masses of active neutrinos in the
final state,

FIG. 14. Feynman rules for Majorana fermions used in calcu-
lations of pure leptonic decay amplitudes. The direction of the
fermion flow is chosen from the bottom up, as indicated by an
arrow near the vertex, PR;L ¼ ð1� γ5Þ=2, sW ¼ sin θW . Non-
standard pseudovector structure of νν̄Z vertex, for example,
follows from the equality of vector current to zero for the
Majorana fermion.
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Tr½ðp̂ −MIÞγμPLðRÞk̂1γνPRðLÞ� ¼ 0;

Tr½k̂3γμPLðRÞk̂2γνPRðLÞ� ¼ 0:

For the amplitude terms we get

jMLLj2 ¼ 2G2
FjðU†ΘÞiIj2Tr½ðp̂ −MIÞγμPLk̂1γνPL�

× Tr½k̂3γμPLk̂2γνPL�
¼ 32G2

FjðU†ΘÞiIj2ðpk3Þðk1k2Þ;
jMRLj2 ¼ 2G2

FjðU†ΘÞiIj2Tr½ðp̂ −MIÞγμPRk̂1γνPR�
× Tr½k̂3γμPLk̂2γνPL�

¼ 32G2
FjðU†ΘÞiIj2ðpk2Þðk1k3Þ;

jMLRj2 ¼ 2G2
FjðU†ΘÞiIj2Tr½ðp̂ −MIÞγμPLk̂1γνPL�

× Tr½k̂3γμPRk̂2γνPR�
¼ 32G2

FjðU†ΘÞiIj2ðpk2Þðk1k3Þ;
jMRRj2 ¼ 2G2

FjðU†ΘÞiIj2Tr½ðp̂ −MIÞγμPRk̂1γνPR�
× Tr½k̂3γμPRk̂2γνPR�

¼ 32G2
FjðU†ΘÞiIj2ðpk3Þðk1k2Þ;

and finally for the full squared amplitude

jM3νj2 ¼ 64G2
FjðU†ΘÞiIj2½ðpk3Þðk1k2Þ þ ðpk2Þðk1k3Þ�:

Identical particles in the final state give an additional factor 1
2

for decaywidth.Note that forDirac active neutrino termsLR
and RR do not arise and the factor in front of the right-hand
side will be 32. It is also necessary to take into account the
charge conjugate mode by multiplying by 2. There is no
charge conjugated mode for Majorana neutrinos. In the
Dirac limit, see [38], Eq. (3.5) for ΓðN → ννν̄Þ, summation
over flavor indices and multiplication by a factor of 2 for
charge conjugated final states gives the same result as
Eq. (34) above.
Case 2. Acting by the same rules in combination with

Fiertz transformations, see Table III, the amplitudesM1 and

M2 for the diagram with intermediate Wþ and the diagram
with intermediate W− can be written as

M1 ¼ i2
ffiffiffi
2

p
GFΘ�

αIUβiðv̄NγμPLv1ÞðūνγμPRv2Þ;
M2 ¼ i2

ffiffiffi
2

p
GFΘβIU�

αiðv̄NγμPRv2ÞðūνγμPLv1Þ;

the squared terms are

jM1j2 ¼ 128G2
FjΘ�

αIj2jUβij2ðpp2Þðp1kÞ;
jM2j2 ¼ 128G2

FjΘβij2jUβij2ðpp1Þðp2kÞ;
M1M

†
2 ∼ Tr½ðp̂ −MIÞγμPLðp̂1 −m1ÞγνPLk̂γνPR

× ðp̂2 −m2ÞγνPR� ¼ 0;

and the squared amplitude jMW j2 ¼ jM1 þM2j2 for case 2
has the form

jMW j2 ¼ 128G2
F½jΘαIj2jUβij2ðpp2Þðp1kÞ

þ jΘβIj2jUαij2ðpp1Þðp2kÞ�:

The decay width for all lepton masses nonzero is given
by Eq. (35).
Case 3. For the three diagrams in this case, the notation

M3XY
, XY ¼ LL;LR; RL;RR is used for the neutral

current diagram and the notation M1, M2 is used for

FIG. 15. Diagram for case 1 with an explicitly specified choice
of fermion flow direction indicated by arrows.

TABLE III. Formulas for all nonzero traces (combination of
traces) of gamma matrices arising during the calculation in cases
1, 2, and 3.

Trace/combination of traces
Result of
calculation

Tr½ÂγαPLðRÞB̂γβPLðRÞĈγαPLðRÞD̂γβPLðRÞ� −16ðACÞðBDÞ
Tr½ÂγαPLðRÞB̂γβPLðRÞ� · Tr½ĈγαPLðRÞD̂γβPLðRÞ� 16ðACÞðBDÞ
Tr½ÂγαPLB̂γβPL�Tr½ĈγαPRD̂γβPR� 16ðADÞðBCÞ
Tr½ÂγαPRðLÞB̂PLðRÞĈγαPLðRÞD̂PRðLÞ� 8ðADÞðBCÞ
Tr½ÂγαPLðRÞB̂γβPLðRÞ�Tr½γαPLðRÞγβPRðLÞ� −8ðABÞ
Tr½ÂγαPLðRÞB̂γβPLðRÞ�Tr½γαPRðLÞγβPLðRÞ� −8ðABÞ
Tr½ÂγαPLðRÞγβPRðLÞγαPLðRÞD̂γβPLðRÞ� 8ðADÞ

(a) (b)

FIG. 16. Diagrams for case 2 with an explicitly specified choice
of fermion flow direction indicated by arrows.
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Wþ and W− exchange diagrams, respectively. Then the
full amplitude jMWZj contains 21 terms: six terms for the
squared diagrams and 36−6

2
¼ 15 terms for the interfer-

ences. Moreover, we need to change the fermion flow
depending on each specific interference term to build a
trace of gamma matrices. For instance, we need to
change the fermion flow for Zνl vertex in the diagram
with Wþ in order to calculate M1M

†
3XY

(see Fig. 16). The
full interference term looks as

M2
interf ≡

X
XY

2Re½M1ðM3
0
XYÞ†� þ

X
XY

2Re½M0
2ðM3

00
XYÞ†�:

Symbols “0” and “00” mark those diagrams in which it
was necessary to change the fermion flow for calculation,

jMWZj2 ¼ jMZj2 þ jMW j2α¼β þM2
interf ;

where

jMZj2 ¼ 128G2
FðC21 þ C22ÞjðUΘÞiIj2½ðpp2Þðp1kÞ þ ðpp1Þðp2kÞ� þ 128G2

Fð4C1C2ÞjðU†ΘÞiIj2
m2

α

2
ðpkÞ;

jMW j2α¼β ¼ 128G2
FjΘαIj2jUαij2 · ½ðpp2Þðp1kÞ þ ðpp1Þðp2kÞ�;

−M2
interf ¼ 128G2

FC1 · 2½ðU†ΘÞiIΘ�
αIUαiðpp2Þðp1kÞ þ ðU†ΘÞ�iIΘαIU�

αiðpp1Þðp2kÞ�

þ 128G2
FC2 · 2½ðU†ΘÞiIΘ�

αIUαi þ ðU†ΘÞ�iIΘαIU�
αi� ·

m2
α

2
ðpkÞ;

and we use notation (sW ¼ sin θW where θW is the Weinberg angle)

C1 ¼
�
s2W −

1

2

�
; C2 ¼ s2W:

The square of the full amplitude is simplified after summing by the neutrino mass states, Eq. (25),

X
i

jMWZj2 ¼ 128G2
F

�
ðC21 þ C22Þ

X
β

jΘβIj2 þ ð1 − 2C1ÞjΘαIj2
�
½ðpp2Þðp1kÞ þ ðpp1Þðp2kÞ�

þ 128G2
F

�
ð4C1C2Þ

X
β

jΘβIj2 − 4C2jΘαIj2
�
m2

α

2
ðpkÞ; ðA2Þ

the decay width for lepton nonzero masses is given by Eq. (39). Note that for Dirac neutrinos, opposite signs of interference
terms above appear.

APPENDIX B: KINEMATICS OF 1 → 3 DECAY WITH MASS TERMS

This appendix contains the details of integration by the Dalitz plot in the general case of nonzero masses using invariant
variables. For the process NIðpÞ → aðp1Þ; bðp2Þ; cðp3Þ invariant kinematic variables are defined as S1 ¼ ðp − p3Þ2 ¼
ðp1 þ p2Þ2, S2 ¼ ðp − p1Þ2 ¼ ðp2 þ p3Þ2, S3 ¼ ðp − p2Þ2 ¼ ðp3 þ p1Þ2 which are then redefined to dimensionless

variables for convenience, si ≡ Si
M2

I
, ri ≡ m2

i
M2

I
, where m2

i ¼ p2
i , i ¼ 1; 2; 3 and the width

ΓðNI → a; b; cÞ ¼ 1

256π3M3
I

Z
dS1dS2jMðS1; S2Þj2Θ½−GðS1; S2;M2

I ; m
2
2; m

2
1; m

2
3Þ�

¼ M5
I

256π3

Z
ds1ds2jMðs1; s2Þj2Θ½−Gðs1; s2; 1; r2; r1; r3Þ�;

where Θ½x� is the step function and G is the Gram determinant

Gðx; y; z; a; b; cÞ ¼ x2yþ xy2 − xyðzþ aþ bþ cÞ − bcðxþ yþ zþ aÞ − zaðxþ yþ bþ cÞ
þ xzcþ xabþ yzcþ yacþ z2aþ za2 þ b2cþ bc2:

The equations for the boundaries of the physical region in terms of invariants are obtained requiring
Gðs1; s2; 1; r2; r1; r3Þ ¼ 0, so for s1 they are
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s�1 ¼ 1þ r3 −
1

2s2
ðð1 − r1 þ s2Þðs2 − r2 þ r3Þ ∓ λ1=2ðs2; 1; r1Þλ1=2ðs2; r2; r3ÞÞ

and for s2 they are given by

ðm2 þm3Þ2 ≤ S2 ≤ ðMI −m1Þ2 or ð ffiffiffiffiffi
r2

p þ ffiffiffiffiffi
r3

p Þ2 ≤ s2 ≤ ð1 − ffiffiffiffiffi
r1

p Þ2

so the width

ΓðNI → a; b; cÞ ¼ M5
I

256π3

Zð1− ffiffiffi
r1

p Þ2

ð ffiffiffi
r2

p þ ffiffiffi
r3

p Þ2
ds2

Zsþ1
s−
1

ds1jMðs1; s2Þj2:

[1] R. N. Mohapatra and G. Senjanovic, Neutrino mass and
spontaneous parity violation, Phys. Rev. Lett. 44, 912
(1980).

[2] J. Schechter and J. M. F. Valle, Neutrino masses in SUð2Þ ×
Uð1Þ theories, Phys. Rev. D 22, 2227 (1980).

[3] G. Bellini, L. Ludhova, G. Ranucci, and F. Villante, Neu-
trino oscillations, Adv. High Energy Phys. 2014, 191960
(2014).

[4] R. Adhikari et al., White paper on keV sterile neutrino dark
matter, J. Cosmol. Astropart. Phys. 01 (2017) 025.

[5] T. Asaka, S. Blanchet, and M. Shaposhnikov, The νMSM,
dark matter and neutrino masses, Phys. Lett. B 631, 151
(2005).

[6] M. Shaposhnikov, A possible symmetry of the νMSM,
Nucl. Phys. B763, 49 (2007).

[7] A. Boyarsky, O. Ruchayskiy, and M. Shaposhnikov, The
role of sterile neutrinos in cosmology and astrophysics,
Annu. Rev. Nucl. Part. Sci. 59, 191 (2009).

[8] A. Merle, KeV neutrino model building, Int. J. Mod. Phys.
D 22, 1330020 (2013).

[9] A. Boyarsky, O. Ruchayskiy, D. Iakubovskyi, and J.
Franse, Unidentified line in x-ray spectra of the Andromeda
galaxy and Perseus galaxy cluster, Phys. Rev. Lett. 113,
251301 (2014).

[10] T. Asaka and M. Shaposhnikov, The νMSM, dark matter
and baryon asymmetry of the universe, Phys. Lett. B 620, 17
(2005).

[11] R. E. Shrock, General theory of weak leptonic and semi-
leptonic decays. 1. Leptonic pseudoscalar meson decays,
with associated tests for, and bounds on, neutrino masses
and lepton mixing, Phys. Rev. D 24, 1232 (1981).

[12] R. E. Shrock, General theory of weak processes involving
neutrinos. 2. Pure leptonic decays, Phys. Rev. D 24, 1275
(1981).

[13] A. Abada, D. Das, A. M. Teixeira, A. Vicente, and C.
Weiland, Tree-level lepton universality violation in the
presence of sterile neutrinos: Impact for RK and Rπ ,
J. High Energy Phys. 02 (2013) 048.

[14] A. Abada, D. Das, A. M. Teixeira, A. Vicente, and C.
Weiland, Sterile neutrinos in leptonic and semileptonic
decays, J. High Energy Phys. 02 (2014) 091.

[15] T. Asaka, S. Eijima, and K. Takeda, Lepton universality in
the νMSM, Phys. Lett. B 742, 303 (2015).

[16] A. Ibarra, E. Molinaro, and S. Petcov, TeV scale seesaw
mechanisms of neutrino mass generation, the Majorana
nature of the heavy singlet neutrinos and ðββÞ0ν decay,
J. High Energy Phys. 09 (2010) 108.

[17] Z. Maki, M. Nakagawa, and S. Sakata, Remarks on the
unified model of elementary particles, Prog. Theor. Phys.
28, 870 (1962).

[18] J. Casas and A. Ibarra, Oscillating neutrinos and μ → e; γ,
Nucl. Phys. B618, 171 (2001).

[19] A. Denner, H. Eck, O. Hahn, and J. Kublbeck, Feynman
rules for fermion number violating interactions, Nucl. Phys.
B387, 467 (1992).

[20] H. Haber and G. Kane, The search for supersymmetry:
Probing physics beyond the standard model, Phys. Rep.
117, 75 (1985).

[21] T. M. Aliev and M. I. Vysotsky, Prospects for detecting
photons produced by the decay of primordial neutrinos in
the Universe, Sov. Phys. Usp. 24, 1008 (1981).

[22] A. Boyarsky, A. Neronov, O. Ruchayskiy, and M.
Shaposhnikov, Constraints on sterile neutrino as a dark
matter candidate from the diffuse x-ray background, Mon.
Not. R. Astron. Soc. 370, 213 (2006).

[23] A. Boyarsky and O. Ruchayskiy, Bounds on light dark
matter, arXiv:0811.2385.

[24] S. Tremaine and J. E. Gunn, Dynamical role of light neutral
leptons in cosmology, Phys. Rev. Lett. 42, 407 (1979).

[25] S. Dodelson and L. M. Widrow, Sterile neutrinos as dark
matter, Phys. Rev. Lett. 72, 17 (1994).

[26] K. Abazajian, G. M. Fuller, and M. Patel, Sterile neutrino
hot, warm, and cold dark matter, Phys. Rev. D 64, 023501
(2001).

[27] M. Viel, J. Lesgourgues, M. Haehnelt, S. Matarrese, and A.
Riotto, Constraining warm dark matter candidates including

M. N. DUBININ and D. M. KAZARKIN PHYS. REV. D 109, 055004 (2024)

055004-20

https://doi.org/10.1103/PhysRevLett.44.912
https://doi.org/10.1103/PhysRevLett.44.912
https://doi.org/10.1103/PhysRevD.22.2227
https://doi.org/10.1155/2014/191960
https://doi.org/10.1155/2014/191960
https://doi.org/10.1088/1475-7516/2017/01/025
https://doi.org/10.1016/j.physletb.2005.09.070
https://doi.org/10.1016/j.physletb.2005.09.070
https://doi.org/10.1016/j.nuclphysb.2006.11.003
https://doi.org/10.1146/annurev.nucl.010909.083654
https://doi.org/10.1142/S0218271813300206
https://doi.org/10.1142/S0218271813300206
https://doi.org/10.1103/PhysRevLett.113.251301
https://doi.org/10.1103/PhysRevLett.113.251301
https://doi.org/10.1016/j.physletb.2005.06.020
https://doi.org/10.1016/j.physletb.2005.06.020
https://doi.org/10.1103/PhysRevD.24.1232
https://doi.org/10.1103/PhysRevD.24.1275
https://doi.org/10.1103/PhysRevD.24.1275
https://doi.org/10.1007/JHEP02(2013)048
https://doi.org/10.1007/JHEP02(2014)091
https://doi.org/10.1016/j.physletb.2015.01.049
https://doi.org/10.1007/JHEP09(2010)108
https://doi.org/10.1143/PTP.28.870
https://doi.org/10.1143/PTP.28.870
https://doi.org/10.1016/S0550-3213(01)00475-8
https://doi.org/10.1016/0550-3213(92)90169-C
https://doi.org/10.1016/0550-3213(92)90169-C
https://doi.org/10.1016/0370-1573(85)90051-1
https://doi.org/10.1016/0370-1573(85)90051-1
https://doi.org/10.1070/PU1981v024n12ABEH004759
https://doi.org/10.1111/j.1365-2966.2006.10458.x
https://doi.org/10.1111/j.1365-2966.2006.10458.x
https://arXiv.org/abs/0811.2385
https://doi.org/10.1103/PhysRevLett.42.407
https://doi.org/10.1103/PhysRevLett.72.17
https://doi.org/10.1103/PhysRevD.64.023501
https://doi.org/10.1103/PhysRevD.64.023501


sterile neutrinos and light gravitinos with WMAP and the
Lyman-alpha forest, Phys. Rev. D 71, 063534 (2005).

[28] M. N. Dubinin and D. M. Kazarkin, Improved cosmological
restrictions for the mixing scenarios of three sterile neu-
trinos genearations, J. Exp. Theor. Phys. 137, 814 (2023).

[29] J. Ellis, M. E. Gomez, G. K. Leontaris, S. Lola, and D. V.
Nanopoulos, Charged lepton flavor violation in the light of
the Super-Kamiokande data, Eur. Phys. J. C 14, 319 (2000);
R. Barbieri, L. Hall, and A. Strumia, Violations of lepton
flavor and CP in supersymmetric unified theories, Nucl.
Phys. B445, 219 (1995); S. Bilenky, S. Petcov, and
B. Pontecorvo, Lepton mixing, μ → eγ decay and neutrino
oscillations, Phys. Lett. 67B, 309 (1977).

[30] J. Kersten and A. Smirnov, Right-handed neutrinos at LHC
and the mechanism of neutrino mass generation, Phys. Rev.
D 76, 073005 (2007).

[31] T. Asaka, S. Eijima, and H. Ishida, Mixing of active and
sterile neutrinos, J. High Energy Phys. 04 (2011) 011.

[32] A. Ibarra, E. Molinaro, and S. Petcov, Low energy signa-
tures of the TeV scale seesaw mechanism, Phys. Rev. D 84,
013005 (2011).

[33] S. Alekhin et al., A facility to search for hidden particles at
the CERN SPS: The SHiP physics case, Rep. Prog. Phys.
79, 124201 (2016).

[34] A. Ibarra andG. G. Ross, Neutrino phenomenology: The case
of two right-handed neutrinos, Phys. Lett. B 591, 285 (2004).

[35] M. Laine and M. Shaposhnikov, Sterile neutrino dark matter
as a consequence of νMSM-induced lepton asymmetry,
J. Cosmol. Astropart. Phys. 06 (2008) 031.

[36] K. Bondarenko, A. Boyarsky, J. Klaric, O. Mikulenko, O.
Ruchayskiy, V. Syvolap, and I. Timiryasov, An allowed
window for heavy neutral leptons below the kaon mass,
J. High Energy Phys. 07 (2021) 193.

[37] M. Dubinin and E. Fedotova, Non-minimal approximation
for the type-I seesaw mechanism, Symmetry 15, 679 (2023).

[38] K. Bondarenko, A. Boyarsky, D. Gorbunov, and O.
Ruchayskiy, Phenomenology of GeV-scale heavy neutral
leptons, J. High Energy Phys. 11 (2018) 032; D. Gorbunov
and M. Shaposhnikov, How to find neutral leptons of the
νMSM, J. High Energy Phys. 10 (2007) 015.

[39] P. Ballett, T. Boschi, and S. Pascoli, Heavy neutral leptons
from low-scale seesaws at the DUNE near detector, J. High
Energy Phys. 03 (2020) 111.

[40] D. Britton et al., Improved search for massive neutrinos in
πþ → eþ neutrino decay, Phys. Rev. D 46, R885 (1992).

[41] A. Aguilar-Arevalo et al., Improved search for heavy neu-
trinos in the decay π → eν, Phys. Rev. D 97, 072012 (2018).

[42] E. Cortina Gil et al., Search for heavy neutral lepton
production in Kþ decays to positrons, Phys. Lett. B 807,
135599 (2020).

[43] A. Artamonov et al., Search for heavy neutrinos in K → μν
decays, Phys. Rev. D 91, 052001 (2015); 91, 059903(E)
(2015).

[44] T. Yamazaki et al., Search for heavy neutrinos in kaon
decay, Conf. Proc. C 840719, 262 (1984), https://inspirehep
.net/literature/211342.

[45] P. Abreu et al., Search for neutral heavy leptons produced in
Z decays, Z. Phys. C 74, 57 (1997); 75, 580(E) (1997).

[46] G. Bernardi et al., Search for neutrino decay, Phys. Lett.
166B, 479 (1986); Further limits on heavy neutrino cou-
plings, Phys. Lett. B 203, 332 (1988).

[47] F. Bergsma et al., A search for decays of heavy neutrinos in
the mass range 0.5 GeV to 2.8 GeV, Phys. Lett. 166B, 473
(1986).

[48] A. Vaitaitis et al., Search for neutral heavy leptons in a
high-energy neutrino beam, Phys. Rev. Lett. 83, 4943
(1999).

[49] M. Gronau, C. Leung, and J. Rosner, Extending limits on
neutral heavy leptons, Phys. Rev. D 29, 2539 (1984).

[50] A. D. Dolgov, S. H. Hansen, G. Raffelt, and D. Semikoz,
Cosmological and astrophysical bounds on a heavy sterile
neutrino and the KARMEN anomaly, Nucl. Phys. B580,
331 (2000); Heavy sterile neutrinos: Bounds from big bang
nucleosynthesis and SN1987A, Nucl. Phys. B590, 562
(2000).

[51] A. Boyarsky, M. Ovchinnikov, O. Ruchayskiy, and V.
Syvolap, Improved big bang nucleosynthesis constraints
on heavy neutral leptons, Phys. Rev. D 104, 023517 (2021).

[52] R. L. Workman et al. (Particle Data Group), Review of
particle physics, Prog. Theor. Exp. Phys. 2022, 083C01
(2022).

[53] V. Cirigliano and I. Rosell, Two-loop effective theory
analysis of πðKÞ → eνeðγÞ branching ratios, Phys. Rev.
Lett. 99, 231801 (2007).

[54] M. Finkmeier, Radiative corrections to πl2 and Kl2 decays,
Phys. Lett. B 387, 391 (1996).

[55] A. M. Abdullahi, P. B. Alzas, B. Batell, J. Beacham, A.
Boyarsky, S. Carbajal, A. Chatterjee, J. I. Crespo-Anadon,
F. F. Deppisch, A. De Roeck et al., The present and future
status of heavy neutral leptons, J. Phys. G 50, 020501
(2023).

LEPTON UNIVERSALITY IN A MODEL WITH THREE … PHYS. REV. D 109, 055004 (2024)

055004-21

https://doi.org/10.1103/PhysRevD.71.063534
https://doi.org/10.1134/S1063776123120051
https://doi.org/10.1007/s100520000357
https://doi.org/10.1016/0550-3213(95)00208-A
https://doi.org/10.1016/0550-3213(95)00208-A
https://doi.org/10.1016/0370-2693(77)90379-3
https://doi.org/10.1103/PhysRevD.76.073005
https://doi.org/10.1103/PhysRevD.76.073005
https://doi.org/10.1007/JHEP04(2011)011
https://doi.org/10.1103/PhysRevD.84.013005
https://doi.org/10.1103/PhysRevD.84.013005
https://doi.org/10.1088/0034-4885/79/12/124201
https://doi.org/10.1088/0034-4885/79/12/124201
https://doi.org/10.1016/j.physletb.2004.04.037
https://doi.org/10.1088/1475-7516/2008/06/031
https://doi.org/10.1007/JHEP07(2021)193
https://doi.org/10.3390/sym15030679
https://doi.org/10.1007/JHEP11(2018)032
https://doi.org/10.1088/1126-6708/2007/10/015
https://doi.org/10.1007/JHEP03(2020)111
https://doi.org/10.1007/JHEP03(2020)111
https://doi.org/10.1103/PhysRevD.46.R885
https://doi.org/10.1103/PhysRevD.97.072012
https://doi.org/10.1016/j.physletb.2020.135599
https://doi.org/10.1016/j.physletb.2020.135599
https://doi.org/10.1103/PhysRevD.91.052001
https://doi.org/10.1103/PhysRevD.91.059903
https://doi.org/10.1103/PhysRevD.91.059903
https://inspirehep.net/literature/211342
https://inspirehep.net/literature/211342
https://doi.org/10.1007/s002880050370
https://doi.org/10.1007/BF03546181
https://doi.org/10.1016/0370-2693(86)91602-3
https://doi.org/10.1016/0370-2693(86)91602-3
https://doi.org/10.1016/0370-2693(88)90563-1
https://doi.org/10.1016/0370-2693(86)91601-1
https://doi.org/10.1016/0370-2693(86)91601-1
https://doi.org/10.1103/PhysRevLett.83.4943
https://doi.org/10.1103/PhysRevLett.83.4943
https://doi.org/10.1103/PhysRevD.29.2539
https://doi.org/10.1016/S0550-3213(00)00203-0
https://doi.org/10.1016/S0550-3213(00)00203-0
https://doi.org/10.1016/S0550-3213(00)00566-6
https://doi.org/10.1016/S0550-3213(00)00566-6
https://doi.org/10.1103/PhysRevD.104.023517
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1103/PhysRevLett.99.231801
https://doi.org/10.1103/PhysRevLett.99.231801
https://doi.org/10.1016/0370-2693(96)01030-1
https://doi.org/10.1088/1361-6471/ac98f9
https://doi.org/10.1088/1361-6471/ac98f9

