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This work presents a model for testing Lorentz and CPT symmetry through sidereal-variation studies
of the hyperfine-Zeeman deuterium ground-state transition frequencies. It represents an advancement
over previous models by using a well-established deuteron wave function parametrization to calculate
contributions from nucleon Lorentz-violating operators toward the Lorentz-violating frequency shift.
Furthermore, this work extends the analysis beyond the zeroth-boost order previously considered. This
study centers on deuterium’s potential for testing Lorentz-violating nonminimal terms. Specifically, it
compares the prospects of an ongoing deuterium experiment with the current best limits on nonminimal
coefficients. The conclusion drawn is that the deuterium experiment holds the potential to enhance and
establish first-time limits on nonminimal proton, neutron, and electron SME coefficients, marking it as a
valuable experiment in the current worldwide systematic search for Lorentz and CPT violation.
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I. INTRODUCTION

Lorentz symmetry, a global symmetry of the standard
model of particle physics and a local one of the theory of
general relativity, plays a pivotal role in the current physics
paradigm. Therefore, the pursuit of Lorentz violation as a
low-energy signal for theories beyond the standard model
and general relativity is unsurprising [1]. Another compel-
ling motivation for searching for Lorentz violation is its
close connection to CPT symmetry due to the well-known
result that CPT violation in a realistic field theory implies
Lorentz violation [2,3].
A framework for the systematic search for Lorentz

violation called the Standard-Model Extension (SME)
[3] was proposed and successfully motivated many exper-
imental studies in the last decades [4]. Its first iteration, the
minimal SME, was constrained to Lorentz-violating oper-
ators with mass dimensions d ≤ 4. Since then, the SME
has been extended, on multiple occasions, to incorporate
operators with higher mass dimensions, called nonminimal
Lorentz-violating operators [5–8].
The constraints on Lorentz violation obtained from

these experiments are limits on the so-called coefficients
for Lorentz violation, also known as SME coefficients [4].
These coefficients are parameters that quantify the

contribution of Lorentz-violating operators to the exper-
imental observables, with each coefficient associated with
a unique operator [3]. Hence, the discovery of a nonzero
coefficient implies evidence of a breaking in Lorentz
symmetry. The coefficients associated with the operators
with mass dimensions d ≤ 4 are called minimal coeffi-
cients, and the ones linked to operators with d > 4 are
nonminimal. The coefficients are assumed to be different
for operators corresponding to different types of particles,
leading to categories of coefficients like electron coeffi-
cients or photon coefficients.
Since the inception of the SME, there has been a

recognition that the high precision attainable in atomic
spectroscopy experiments made them favorable for detec-
ting Lorentz violation [9,10]. Consequently, several exper-
imental groups in this field designed experiments that
imposed constraints on minimal SME coefficients [11–21].
In recent years, there has been an effort to study the

prospects of using atomic spectroscopy experiments to
detect Lorentz-violating signals from nonminimal opera-
tors [22–24]. These studies reported limits on nonminimal
SME coefficients by reinterpreting the results from experi-
ments designed in the context of the minimal SME
framework. For instance and of relevance for the discus-
sion, a reassessment [23] of the results obtained by a
time-variation study with a hydrogen maser [11] derived
constraints on nonminimal SME electron and proton
coefficients that contributed to the Lorentz-violating sig-
nals constrained in the experiment.
These publications also delved into determining

systems better suited for imposing bounds on nonminimal
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coefficients than those proposed in the minimal SME
context. A difference between minimal Lorentz-violating
contributions to the atomic spectrum and the nonminimal
ones is that some nonminimal coefficients are proportional
to higher powers of the momentum of the fermions within
the atom than the minimal coefficients. This observation
led to the recognition that using atoms with higher
momentum constituents could enhance sensitivity to these
coefficients [22–24].
Consequently, hydrogen might not be the optimal choice

for limiting the size of some proton coefficients as every
nonexotic atom, except for hydrogen, possesses a multi-
nucleon nucleus that enhances the sensitivity to these
coefficients. The rationale behind this lies in the fact that
the internal nuclear motion of the proton adds to its overall
momentum, which, as previously mentioned, is a desirable
attribute. A simplified deuterium model and order-of-
magnitude calculations demonstrated that conducting a
similar experiment to the hydrogen-maser one with deu-
terium could substantially improve previously reported
coefficient limits [23].
The heightened sensitivity to the proton coefficients

applies to any atom with a multinucleon nucleus, not
solely deuterium, as highlighted in a subsequent publica-
tion [22] to the one that presented the deuterium model.
However, considering these heavier atoms presents a
challenge, compared to the hydrogen case, as understand-
ing the internal nuclear state becomes crucial to derive
Lorentz-violating corrections to their spectrum.
The commonly used nuclear model within the SME

framework [9,22] is the Schmidt model [25,26] due to its
comparative simplicity. The model assumes a shell struc-
ture for the nucleus, where pairs of nucleons of the same
type form states with zero total angular momentum. Never-
theless, this model’s drawback is that it suggests many
atomic systems are sensitive to either neutron or proton
coefficients but not both, contrary to expectations where
both types of coefficients are anticipated to contribute,
albeit with the contribution from one type being suppressed
compared to the other. For example, within the context
of the minimal SME, applying more advanced techniques
to obtain the energy shift unveiled contributions from
coefficients associated with both nucleons contrary to
the prediction from Schmidt model [17,27,28]. More-
over, while the model serves to approximate angular
momentum expectation values, it is indifferent to the
contributing nucleon’s momentum magnitude and requires
it to be estimated by other means. Despite its limitations,
the simplicity of the Schmidt model enabled the impo-
sition of stringent limits on numerous nonminimal SME
coefficients [22].
In this context, the Stefan Meyer Institute (SMI) in

Vienna has initiated a deuterium beam spectroscopy experi-
ment [29], currently underway at the Laboratoire Aimé
Cotton (LAC) in Paris [30]. This experiment is motivated

by the aforementioned deuterium model presented in [23].
However, as a model designed to demonstrate the potential
advantage of deuterium over hydrogen, it remained under-
developed to work as a functional model for imposing
bounds on SME coefficients.
This work aims to develop a model for the Lorentz-

violating shift to the hyperfine-Zeeman transition frequen-
cies of deuterium’s ground state, in the presence of a weak
magnetic field, with the expectation to be used by the
SMI/LAC experiment and potentially by future similar
experiments to establish bounds on nonminimal SME
coefficients. One of deuterium’s advantages lies in its
multiple well-established deuteron ground-state wave-
function parametrizations. For this study, we will employ
the parametrization based on the Paris nucleon-nucleon
potential [31,32]. This study marks the first application of a
nuclear model beyond the Schmidt model in the non-
minimal SME context. Moreover, deuterium’s sensitivity to
neutron and proton coefficients positions it as an excellent
candidate for establishing new and enhanced bounds on
nonminimal SME coefficients.
This paper contains three additional sections besides the

Introduction and Summary. The subsequent section, Sec. II,
outlines the derivation of the laboratory-frame Lorentz-
violating frequency shift for the Zeeman-hyperfine tran-
sitions within the ground state of deuterium. Following is
Sec. III, which presents the transformation of the frequency
shift into the canonical Sun-centered frame, the main result
of this work. The discussion of the prospects for the SMI/
LAC experiment in establishing new or enhanced limits on
SME coefficients is the topic of Sec. IV. Finally, throughout
this work, natural units with ℏ ¼ c ¼ 1 are employed.

II. LORENTZ-VIOLATING FREQUENCY SHIFT

This section, comprising four subsections, derives the
Lorentz-violating frequency shift for the Zeeman-hyperfine
transitions of the ground state of deuterium. The first two
subsections introduce the unperturbed deuterium states and
the Lorentz-violating perturbation considered in this work.
Following is a calculation of the relevant Lorentz-violating
correction to the deuterium’s spectrum in the presence of a
weak magnetic field. The section concludes by deriving an
expression for the Lorentz-violating frequency shift for the
pertinent transitions.

A. Unperturbed quantum states

In this subsection, we present a simplified nonrelativistic
three-fermion system model for the deuterium atom in its
zero-momentum inertial frame. We use this simplified
model to obtain the unperturbed states that will be used
in the perturbative calculation.
The deuterium atom is a bound system composed of a

proton, a neutron, and an electron. The electron orbiting
motion around the nucleus is approximately nonrelativistic.
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Likewise, we can apply a similar nonrelativistic approxi-
mation to describe the proton and neutron motion inside the
deuteron. While this approximation may not provide the
same level of precision for describing the motion of
nucleons as it does for the electron, it remains a valid
approach as the three-momentum of the nucleons is smaller
than their masses in natural units.
The unperturbed Hamiltonian considered in this work

has the form,

HD ≈
p2e
2me

þ p2p
2mp

þ p2n
2mn

þ V þ U; ð1Þ

where pw represents the three-momentum of each particle,
with e for the electron, p for the proton, and n for the
neutron. The mass of the corresponding fermion is denoted
by mw with w∈ fe; p; ng. The Hamiltonian includes two
interaction potentials. The potential V represents the
electromagnetic interaction between the proton and elec-
tron, and U is the nuclear interaction between the proton
and neutron.
Another approximation employed in this work is the

treatment of the deuteron as being nearly at rest in the zero-
momentum frame of the deuterium atom. This assumption
is reasonable because the deuteron is significantly more
massive than the electron. Under this premise, the momenta
of the proton and neutron are opposite, pp ≃ −pn, in the
deuterium zero-momentum frame. To simplify the presen-
tation, we introduce a notation where p ≃ pp, which
implies pn ≃ −p.
The potential VðrepÞ in the Hamiltonian (1) is a function

of rep, which represents the distance between the electron
and proton. Due to the large size of the deuterium radius
compared to the deuteron one, we can approximate
rep ≃ red, where red is the distance between the electron
and the center of mass of the deuteron. The potential
UðrpnÞ, on the other hand, depends on the position of the
proton relative to the neutron.
Building upon the earlier discussion, we can decompose

the Hamiltonian (1) into two parts as follows:

HD ≈He þHd: ð2Þ

The Hamiltonian He represents the single-particle
Hamiltonian governing the behavior of the electron in the
deuterium zero-momentum frame. It can be expressed as

He ≈
p2e
2me

þ VðredÞ; ð3Þ

where red is the distance between the electron and the center
of mass of the deuteron. Conversely, Hd encapsulates the
Hamiltonian describing the behavior of the deuteron in its
rest frame,

Hd ≈
p2

2μd
þ UðrpnÞ: ð4Þ

Here, μd ¼ mpmn=ðmp þmnÞ is the reduced mass in the
proton-neutron two-body system.
We denote the single-particle states of the electron within

the deuterium atom as jnJLmi, where the quantum
numbers ðJ;mÞ label the total electronic angular momen-
tum, L represents the orbital angular momentum, and n
signifies the principal quantum number. They are the
energy states of the Hamiltonian (3), and the ones used
in this work are the well-established nonrelativistic sol-
utions for an electron in the presence of a coulomb
potential.
The ground state of the Hamiltonian (4) is denoted as

jSdmdi, where ðSd;mdÞ are the quantum numbers associ-
ated with the spin of the deuteron. We can express the
quantum state for the deuterium atom with total atomic
angular momentum quantum numbers ðF;mFÞ as

jnFJLmFi ¼
X
m;md

hJmSdmdjFmFijnJLmijSdmdi; ð5Þ

where hj1m1j2m2jj3m3i represents the Clebsch-Gordan
coefficients.
Our primary focus in this study lies in the deuterium

1SF1=2 states. For this reason, it proves advantageous to
introduce a more concise notation by omitting certain
quantum numbers, specifically n ¼ 1, J ¼ 1=2, L ¼ 0,
and Sd ¼ 1. Under this abbreviated notation, we represent
the deuterium state j1; F; 1=2; 0; mFi as jFmFi, the single-
electron state j1; 1=2; 0; mi as jmi, and the deuteron state
j1mdi as jmdi. Consequently, jFmFi takes the form,

jFmFi ¼
X
m;md

h1=2; m; 1; mdjFmFijmijmdi: ð6Þ

It is important to note that the state jmdi≡ j1mdi does
not constitute an eigenstate of the total orbital angular
momentum of the nucleons within the deuteron due to the
noncentral nature of the potential UðrpnÞ. The deuteron
ground state is a superposition of the 3S1 and 3D1 internal
nuclear states. Hence, we can approximate the momentum
wave function of the deuteron ground state as follows:

hpjmdi ¼ u0ðpÞY00ðp̂Þχmd

þ u2ðpÞ
X
qm

h1q2mj1mdiY2mðp̂Þχq: ð7Þ

In this equation, hj1m1j2m2jj3m3i denotes the Clebsch-
Gordan coefficients, the summation over q and m encom-
passes all allowed values, ulðpÞ denotes functions that
depend solely on p ¼ jpj, Yjmðp̂Þ denotes the spherical
harmonics evaluated in the direction of p̂, and χm, with
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m∈ f−1; 0; 1g, represents the spin-triplet state derived
from the proton and neutron spin states.
In this study, we will employ the parametrization of the

deuteron wave function based on the Paris nucleon-nucleon
potential in momentum space, as detailed in [31,32]. In
this parametrization, the functions u0ðpÞ and u2ðpÞ are
given by

u0ðpÞ ¼
ffiffiffi
2

π

r Xn
j¼1

Cj

p2 þm2
j
;

u2ðpÞ ¼
ffiffiffi
2

π

r Xn
j¼1

Dj

p2 þm2
j
: ð8Þ

The coefficients Cj, Dj, and mj are provided in [32].
It is worth noting that our main goal in this study is to

estimate the magnitude of the coefficients for Lorentz
violation, rather than conducting precise calculations of
the energy shift. Thus, any of the commonly used analytical
parametrizations for the deuteron wave function could have
been suitable for this work. However, we have opted for
this specific parametrization due to its convenience for
performing some of the integrals needed for this study.

B. Lorentz-violating perturbation

In principle, the Lorentz-violating perturbation can
receive contributions from both the free propagation of
fermions within the atom and corrections to their inter-
actions. Previous studies [22,23] have established that the
dominant contribution to the Lorentz-violating energy shift
in deuterium results from the perturbation affecting the free
propagation of the fermions within the atom. Contributions
arising from corrections to the interactions will be treated as
higher-order corrections to the energy shift and, as such,
will not be considered in this work.
Therefore, in this work, we will treat the Lorentz-

violating perturbation to the deuterium atom as the sum
of three components,

δh ¼ δhNRe þ δhNRp þ δhNRn ; ð9Þ

where δhNRw represents the single-particle Lorentz-violating
perturbation for the particle with flavor w.
The derivation of a comprehensive Lorentz-violating

perturbation for a freely propagating nonrelativistic Dirac
fermion is provided in [7]. Certain Lorentz-violating
operators contributing to this perturbation, as demonstrated
in previous works [22–24], do not contribute to the
atomic energy shift at first order in perturbation theory.
Therefore, the effective single-particle Lorentz-violating
perturbation considered in this work, consistent with
previous works [22–24], can be expressed as follows:

δhNRw ¼ −
X
kjm

jpjk0Yjmðp̂Þ
�
Vw

NR
kjm þ σ · ϵ̂rT w

NRð0BÞ
kjm

�

þ
X
kjm

σ ·
�
þ1Yjmðp̂Þϵ̂− − −1Yjmðp̂Þϵ̂þ

�
T w

NRð1BÞ
kjm ;

ð10Þ

with σ ¼ ðσ1; σ2; σ3Þ standing for the Pauli vector com-
posed by the Pauli matrices σi.
The summation index k takes on the values 0, 2, and 4,

while the index j ranges from 0 to 5, and the indexm is over
the range −j ≤ m ≤ j. The unit vectors in the equation are
defined as ϵ̂r ¼ p̂ and ϵ̂� ¼ ðθ̂� iϕ̂Þ= ffiffiffi

2
p

. These defini-
tions are in terms of the unit vectors θ̂ and ϕ̂ associated with
the polar angle θ and azimuthal angle ϕ in momentum
space. These angles can be specified by the relation
p̂ ¼ ðsin θ cosϕ; sin θ sinϕ; cos θÞ.
The functions sYjmðp̂Þ correspond to the spin-weighted

spherical harmonics with a spin weight of s. The conven-
tional spherical harmonics Yjmðθ;ϕÞ can be understood as
spin-weighted harmonics with s ¼ 0 and can be expressed
as 0Yjmðθ;ϕÞ. Additional information about the definitions
and useful properties of spin-weighted spherical harmonics
can be found in Appendix A of [5].

The coefficients Vw
NR
kjm and T w

NRðqBÞ
kjm , where q can take

values of 0 or 1, represent nonrelativistic spherical coef-
ficients for Lorentz violation as defined in [7]. Each
nonrelativistic coefficient can be expressed as a linear
combination of the standard SME coefficients, the ones
in the SME Lagrange density, appropriately weighted by
powers of mw. The explicit expressions for these combi-
nations can be found in Eqs. (111) and (112) of [7].
Table IV of the same reference provides information about
the permissible ranges of values for the indices k, j, m, and
the number of independent components for each coeffi-
cient. It’s worth noting that, in this work, we adhere to the
convention established in [23], employing the subscript
index k instead of n, which is the convention used in [7].
It is common practice to further decompose the compo-

nents of the perturbation Hamiltonian based on their CPT
handedness. Specifically, each nonrelativistic spherical
coefficient can be divided into two parts, each characterized
by theCPT handedness of the corresponding operator. This
decomposition can be expressed as follows:

Vw
NR
kjm ¼ cwNRkjm − awNRkjm;

T w
NRðqPÞ
kjm ¼ gw

NRðqPÞ
kjm −Hw

NRðqPÞ
kjm ; ð11Þ

where a- and g-type coefficients are associated with CPT-
odd operators, while the c- and H-type coefficients are
related to CPT-even ones. This notation aligns with the
standard assignments in the minimal SME [3].
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C. General form of the Lorentz-violating energy
shift for states 1SF1=2 with F ≤ 3=2

As mentioned in the Introduction, this work focuses on
the Zeeman-hyperfine transitions within the ground state of
deuterium. We can obtain the relevant energy shifts from
the matrix elements of the Lorentz-violating perturbation
within the subspace spanned by the states jFmFi as given
in (6) with F ≤ 3=2. Furthermore, the assumed presence
of a weak magnetic field breaks the degeneracy associated
with the orientation of the total deuterium angular momen-
tum F allowing the use of the methods of nondegenerate
perturbation theory. Consequently, we can determine the
leading-order Lorentz-violating energy shift by evaluating
the expectation values of δh, as defined in (9), for the
states jFmFi.
It is convenient to decompose the expectation value of

the perturbation, the Lorentz-violating energy shift, as
follows:

δϵ ¼ hδhi ¼ hδhNRe i þ hδhdi; ð12Þ

where δhd represents the perturbation to the deuteron, given
by δhd ¼ δhNRp þ δhNRn .
The expectation value of the perturbation δhd for the

states jFmFi takes the following form:

hδhdi ¼ −
X
w¼p;n

X
k

�hjpjkiffiffiffiffiffiffi
4π

p Vw
NR
k00 þ h0Y20ðp̂ÞjpjkiVw

NR
k20

�

þ 2
X
w¼p;n

X
k

h�þ1Y10
ðp̂Þjpjkσ · ϵ̂−

�iT w
NRð1BÞ
k10

−
X
w¼p;n

X
k

h0Y10ðp̂Þjpjkσ · ϵ̂riT w
NRð0BÞ
k10 ; ð13Þ

where the summation over k takes values of 0, 2, and 4.
Additionally, it should be noted that the coefficient Vw

NR
020

does not exist, as per the properties of the nonrelativistic
coefficients discussed in [7]. Therefore, we can set it equal
to zero in the expression (13). Furthermore, any terms
in (10) that are absent from (13) have vanishing expectation
values for F ≤ 3=2.
The expectation values in (13) have the form,

hjpjki ¼ hu0jjpjkju0i þ hu2jjpjkju2i;

h0Y20ðp̂Þjpjki ¼
2F − 1

ð10 − 8m2
FÞ

ffiffiffiffiffiffi
5π

p hjpjki0E;

h0Y10ðp̂Þjpjkσ · ϵ̂ri ¼
2mF

3ð2F þ 1Þ ffiffiffiffiffiffi
3π

p hjpjki0B;

hþ1Y10
ðp̂Þjpjkσ · ϵ̂−i ¼

mF

3ð2F þ 1Þ ffiffiffiffiffiffi
3π

p hjpjki1B; ð14Þ

with F ≤ 3=2. The values of huljjpjkjumi are calcu-
lated from

huljjpjkjumi ¼
Z

∞

0

u�l ðpÞumðpÞpkþ2dp; ð15Þ

where the functions ulðpÞ are described in (8).
The coefficients hjpjki0E, hjpjki0B, and hjpjki1B in (14)

are linear combinations of the expectation values
huljjpjkjumi, and they have the following form:

hjpjki0E ¼ hu2jjpjkju2i −
ffiffiffi
8

p
Rehu0jjpjkju2i;

hjpjki0B ¼ 2hu0jjpjkju0i þ hu2jjpjkju2i
þ

ffiffiffi
8

p
Rehu0jjpjkju2i

hjpjki1B ¼ −4hu0jjpjkju0i þ 4hu2jjpjkju2i
þ

ffiffiffi
8

p
Rehu0jjpjkju2i; ð16Þ

where Re½x� denotes the real part of x.
Numerical values for these coefficients are outlined in

Table I. The first column of the table indicates the corres-
ponding expectation values or coefficients. The subsequent
columns contain the numerical values for each instance
of k, specifically for 0, 2, and 4. Entries marked as N/A
indicate instances where the value was not calculated
because it is not needed.
The expectation value of the electron component of the

perturbation δh is

hδhNRe i ¼ 2ð1 − FÞmF

3
ffiffiffiffiffiffi
3π

p
X
k

hjpejki
�
T e

NRð0BÞ
k10 þ 2T e

NRð1BÞ
k10

�

−
X
k

hjpejkiffiffiffiffiffiffi
4π

p Ve
NR
k00: ð17Þ

Once more, the summation over k is performed for values
of 0, 2, and 4. The expectation value of jpejk is

hjpej0i ¼ 1; hjpej2i ¼ ðαmrÞ2; hjpej4i ¼ 5ðαmrÞ4;
ð18Þ

where α represents the fine-structure constant, while mr is
the reduced mass of the atom, approximately equal to the
mass of the electron me. The expressions for the energy
shift in (17) are valid for F ≤ 3=2.

TABLE I. Numerical values for the coefficients in (14).

Coefficient k ¼ 0 k ¼ 2 (GeV2) k ¼ 4 (GeV4)

hjpjki 1.0 1.8 × 10−2 4.1 × 10−3

hjpjki0E N=A 7.8 × 10−3 −1.4 × 10−3

hjpjki0B 1.7 2.8 × 10−2 9.7 × 10−3

hjpjki1B −3.8 −1.2 × 10−2 3.9 × 10−3
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D. Lorentz-violating frequency shift for the transition
F = 3=2 → F= 1=2 in a weak magnetic field

Using the Lorentz-violating energy shift obtained in the
previous subsection, we are able to compute the Lorentz-
violating frequency shift for the Zeeman-transitions
ðF ¼ 1=2; m0

FÞ → ðF ¼ 3=2; mFÞ. This frequency shift
takes the form,

2πδν ¼ −
1

ð5 − 4m2
FÞ

ffiffiffiffiffiffi
5π

p
X
w¼p;n

X
k

hjpjki0EVw
NR
k20

þ 2m0
F −mF

6
ffiffiffiffiffiffi
3π

p
X
w¼p;n

X
k

hjpjki0BT w
NRð0BÞ
k10

−
2m0

F −mF

6
ffiffiffiffiffiffi
3π

p
X
w¼p;n

X
k

hjpjki1BT w
NRð1BÞ
k10

−
mF þm0

F

3
ffiffiffiffiffiffi
3π

p
X
k

hjpejki
�
T e

NRð0BÞ
k10 þ 2T e

NRð1BÞ
k10

�
:

ð19Þ

We remind the reader that the summation over k is limited
to the values 0, 2, and 4. Additionally, the coefficient Vw

NR
020

should be regarded as zero, as this particular combination
of indices is not permitted, as explained in [7].
We can disregard the contribution from the electron co-

efficients to the frequency shift. This is due to the fact that
hydrogen-maser experiment exhibits significantly greater
sensitivity to these coefficients than what one would
reasonably anticipate from a deuterium experiment. The
rationale behind this observation was initially addressed
in [23], and we will elaborate on it further below.
Before delving into the discussion, let us reproduce the

result for the Lorentz-violating frequency shift obtained
in [23] for the hydrogen hyperfine-Zeeman transitions of
the ground state. The frequency shift is given by

2πδν ¼ −
ΔmF

2
ffiffiffiffiffiffi
3π

p
X
k

X
w¼e;p

hjpejki
�
T w

NRð0BÞ
k10 þ 2T w

NRð1BÞ
k10

�
;

ð20Þ

where hjpejki is given by (18), with the reduced mass mr
being the one for hydrogen, which can also be taken as the
mass of the electron. Here, ΔmF represents the change in
the quantum number mF during the transition.
Keep in mind that the sensitivity to the electron co-

efficients in (19) and (20) is proportional to the ratio
δνexp=hjpejki of the experimental constraint on the fre-
quency shift δνexp relative to the corresponding expectation
value hjpejki. The expectation values hjpejki are nearly
identical for hydrogen and deuterium. Therefore, the
experiment using either hydrogen or deuterium that im-
poses the most stringent constraint on the corresponding
frequency shift will achieve the highest sensitivity to the

electron coefficients. A previous study with a hydrogen
maser [11] constrained the Lorentz-violating frequency
shift to around 0.1 mHZ. Assuming that a deuterium
experiment could obtain constraints on the order of 1 Hz,
it follows that the sensitivity of the hydrogen experiment to
the electron coefficients surpasses that achievable by the
deuterium experiment by around four orders of magnitude.
As we will see in the next section, this argument only
permits us to disregard the electron coefficients at zeroth-
boost order because the hydrogen-maser experiment did
not consider linear-boost order effects, leaving the door
open to imposing bounds on electron coefficients using
deuterium’s experiments.
The situation is different for the proton coefficients

contributing to the hydrogen and deuterium frequency shifts
in (19) and (20), respectively. In the case of hydrogen, the
sensitivity remains proportional to the ratio δνexp=hjpejki,
where hjpej2i ∼ 10−11 GeV2 and hjpej4i ∼ 10−23 GeV4.
However, for deuterium, the sensitivity is represented by
either δνexp=hjpjki0B or δνexp=hjpjki1B. Using the values in
Table I, we observe that the sensitivity to the proton co-

efficients T p
NRð0BÞ
k10 and T p

NRð1BÞ
k10 is enhanced due to the

difference in the proton’s momentum between the two
atoms. Despite the heightened sensitivity to the frequency
shift δνexp in the hydrogen experiment, a hypothetical
deuterium experiment exhibits significantly higher sensitiv-
ity to the proton coefficients.
Assuming the aforementioned values for the constraints

on the frequency shift, the deuterium experiment demon-
strates approximately 5 orders of magnitude greater
sensitivity to the proton coefficients with k ¼ 2 and
approximately 15 orders of magnitude greater for those
with k ¼ 4 than the hydrogen one. This highlights the
primary motivation for pursuing Lorentz-violation studies
with deuterium.

III. FREQUENCY SHIFT IN THE SUN-CENTERED
FRAME

This section presents the derivation of the expression for
the frequency shift in the Sun-centered frame. The meth-
odology used has been thoroughly discussed in previous
works [22,23]. The first subsection introduces the fre-
quency shift in the Sun-centered frame at zeroth-boost
order, while the subsequent subsection presents the result at
the first-boost order.

A. Frequency shift at zeroth-boost order

The SME coefficients are assumed to remain constant
and uniform across all inertial reference frames [3]. How-
ever, in noninertial frames, these coefficients can exhibit
time-dependent variations. Moreover, they are frame-
dependent as they transform as tensor components under
observer transformations. Consequently, all experiments
must report limits on SME coefficients within the same
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inertial reference frame to permit any comparison of results
across different experiments. The Sun-centered celestial-
equatorial frame is used in the literature as the standard
frame for this purpose [33]. Although the rest frame of the
Sun does not precisely qualify as an inertial reference
frame, any possible time variation of the coefficients in this
frame is insignificant compared to the time scale between
the different experiments.
In the Sun-centered frame, the origin is at the Sun’s

location during the 2000 vernal equinox, and the time
coordinate T is the Sun’s proper time. The spatial Cartesian
coordinates XJ ≡ ðX; Y; ZÞ, in this frame, have the Z axis
aligned along the Earth’s rotation axis, the X axis pointing
from the Earth to the Sun at T ¼ 0, and the Y axis
completing a right-handed coordinate system.
The matrix for the observer Lorentz transformation from

the laboratory frame to the Sun-centered frame has the
form,

Λμ
νðθ; βÞ ¼ Rμ

αðθÞBα
νðβÞ; ð21Þ

where Rμ
νðθÞ represents a rotation matrix, and Bμ

νðβÞ a
boost matrix. Here, the boost parameter β is the velocity of
the laboratory frame within the Sun-centered frame, and the
rotation parameter θ specifies the orientation between the
laboratory frame and the boosted one.
The magnitude of β is relatively small compared to the

speed of light, with a value of β ≃ 10−4 in natural units. We
can simplify the expression for Λμ

ν by expanding it as a
power series of β and truncating it at a certain power of β.
Truncating the power series at the zeroth-boost order in β
simplifies the Lorentz transformation to a pure rotation,
where the boost matrix in (21) is replaced with the identity
matrix. In this subsection, we exclusively focus on the
expression for the frequency shift (19) in the Sun-centered
frame at zeroth-boost order. The contributions at linear-
boost order will be examined in the following subsection.
The coefficients in (19) are defined within a laboratory

frame with its z-axis aligned to the applied magnetic field.
Relating these coefficients to the ones within the Sun-
centered frame requires the rotation from the Earth-based
laboratory frame to the Sun-centered frame. The properties
of the nonrelativistic coefficients aid in this transformation
as they transform as components of dual spherical tensors
under observer rotations.
The reader should bear in mind that the nonrelativistic

coefficient indices relevant for the coefficient transforma-
tion are j andm, where the index j specifies the rank andm
the component of the spherical tensor associated with the
coefficient. The meaning of these indices explains why
only coefficients with m ¼ 0 contribute to the frequency
shift (19) as they correspond to the components of a
spherical tensor projected along the direction of the applied
magnetic field within the laboratory frame.

The transformation rule for a generic laboratory frame
coefficient Kw

NR
kj0, with m ¼ 0 as they appear in (19), in

terms of the corresponding coefficient in the Sun-centered
frame Kw

NR;Sun
kjm is given by

Kw
NR
kj0 ¼

X
m

eimω⊕TLdj0mð−ϑÞKw
NR;Sun
kjm : ð22Þ

Here, ϑ denotes the angle between the applied magnetic
field and the Earth’s rotation axis, while the quantities
djmm0 ð−ϑÞ refer to the small Wigner matrices, as provided in
Eq. (136) of Ref. [5], evaluated at −ϑ. Keep in mind that the
nonrelativistic coefficients with m ≠ 0, which are compo-
nents of a spherical tensor, are complex numbers, and they
obey the condition,

�
Kw

NR
kjm

�� ¼ ð−1ÞmKw
NR
kjð−mÞ; ð23Þ

where � denotes complex conjugation.
The angle ϑ can be determined based on the local

orientation of the magnetic field and the experiment’s
colatitude χ. The corresponding expression is

cosϑ ¼ cos θl cos χ þ sin θl sin χ sinϕl; ð24Þ

where ϕl represents the local cardinal direction of the
magnetic field measured from the local East in a counter-
clockwise orientation. For instance, ϕl ¼ 0 corresponds to
the local East, and ϕl ¼ π=2 corresponds to the local North.
The angle θl measures the orientation relative to the local
vertical direction, where θl ¼ 0 indicates that the magnetic
field points towards the zenith and θl ¼ π=2 implies that it
is horizontal.
The SMI/LAC experiment was located at the Laboratoire

Aimé Cotton, located at the University of Paris-Saclay, with
a colatitude of approximately χ ≃ 41.3° [30]. The applied
magnetic field was horizontal, with θl ≃ π=2 and ϕl ≃ 84°.
Using (24), the angle between the magnetic field and the
Earth’s rotation axis is approximately ϑ ≃ 49°.
The transformation (22) reveals the time variation,

decomposed into harmonics of the Earth’s sidereal fre-
quency ω⊕ ≃ 2π=ð23 h 56 minÞ, of the laboratory-frame
coefficients. The local sidereal time TL serves as a practical
measure of the Earth’s local sidereal time, with TL ¼ 0
chosen as the time when the magnetic field is perpendicular
to Ŷ in the Sun-centered frame with a nonnegative X
component. This particular choice results in the relatively
straightforward expression (22). It is important to note that
TL is an offset from the time T in the Sun-centered frame by
an amount that depends on the orientation of the magnetic
field. Since we will be introducing another local sidereal
time later in this work, we will designate TL as the local
sidereal time adjusted to the orientation of the applied
magnetic field.

PROSPECTS FOR TESTING CPT AND LORENTZ SYMMETRY … PHYS. REV. D 109, 055001 (2024)

055001-7



Applying the transformation (22) to the coefficients contributing to the frequency shift (19), we find that

T w
NRð0BÞ
k10 ¼ cosϑT w

NRð0BÞ;Sun
k10 −

ffiffiffi
2

p
sin ϑRe½T w

NRð0BÞ;Sun
k11 � cosω⊕TL þ

ffiffiffi
2

p
sin ϑIm½T w

NRð0BÞ;Sun
k11 � sinω⊕TL;

Vw
NR
k20 ¼ −

ffiffiffi
3

2

r
sin 2ϑRe½Vw

NR;Sun
k11 � cosω⊕TL þ

ffiffiffi
3

2

r
sin 2ϑIm½Vw

NR;Sun
k11 � sinω⊕TL þ

ffiffiffi
3

2

r
sin2ϑRe½Vw

NR;Sun
k22 � cos 2ω⊕TL

−
ffiffiffi
3

2

r
sin2ϑIm½Vw

NR;Sun
k22 � sin 2ω⊕TL þ 1

4
ð1þ 3 cos 2ϑÞVw

NR;Sun
k20 ; ð25Þ

where T w
NRð1BÞ
k10 obeys the same equation than T w

NRð0BÞ
k10 .

Here, Re½Kw
NR
kj0� is the real part of the coefficient and

Im½Kw
NR
kj0� its imaginary part.

The general form of the frequency shift in the Sun-
centered frame at zeroth-boost order is obtained by replac-
ing the coefficients in the laboratory frame with the
coefficients in the Sun-centered frame using the relations
in (25). The final result has the form,

2πδνð0Þ ¼ Að0Þ
0 þ Að0Þ

c cos ðω⊕TLÞ þ Að0Þ
s sin ðω⊕TLÞ

þ Að0Þ
c2 cos ð2ω⊕TLÞ þ Að0Þ

s2 sin ð2ω⊕TLÞ: ð26Þ

Here, the superscript (0) is used to indicate that this
expression solely includes the zeroth-boost order contri-
bution to the frequency shift. The amplitudes in the

expression are linear combinations of the nonrelativistic
coefficients in the Sun-centered frame. The amplitude for
the constant term is

Að0Þ
0 ¼ cosϑ

2m0
F −mF

6
ffiffiffiffiffiffi
3π

p
X
w;k

hjpjki0BT w
NRð0BÞ;Sun
k10

− cosϑ
2m0

F −mF

6
ffiffiffiffiffiffi
3π

p
X
w;k

hjpjki1BT w
NRð1BÞ;Sun
k10

−
ð1þ 3 cos 2ϑÞ
4ð5 − 4m2

FÞ
ffiffiffiffiffiffi
5π

p
X
w;k

hjpjki0EVw
NR;Sun
k20 : ð27Þ

The amplitudes for the first harmonic of the sidereal
frequency are given by

Að0Þ
c ¼ − sinϑ

2m0
F −mF

3
ffiffiffiffiffiffi
6π

p
X
w;k

hjpjki0BRe½T w
NRð0BÞ;Sun
k11 � þ sinϑ

2m0
F −mF

3
ffiffiffiffiffiffi
6π

p
X
w;k

hjpjki1BRe½T w
NRð1BÞ;Sun
k11 �

þ sin 2ϑ
ð5 − 4m2

FÞ

ffiffiffiffiffiffiffiffi
3

10π

r X
w;k

hjpjki0ERe½Vw
NR;Sun
k21 �;

Að0Þ
s ¼ sinϑ

2m0
F −mF

3
ffiffiffiffiffiffi
6π

p
X
w;k

hjpjki0BIm½T w
NRð0BÞ;Sun
k11 � − sinϑ

2m0
F −mF

3
ffiffiffiffiffiffi
6π

p
X
w;k

hjpjki1BIm½T w
NRð1BÞ;Sun
k11 �

−
sin 2ϑ

ð5 − 4m2
FÞ

ffiffiffiffiffiffiffiffi
3

10π

r X
w;k

hjpjki0EIm½Vw
NR;Sun
k21 �; ð28Þ

and the amplitudes for the second harmonic of the sidereal
frequency are

Að0Þ
c2 ¼ −sin2ϑ

ð5 − 4m2
FÞ

ffiffiffiffiffiffiffiffi
3

10π

r X
w;k

hjpjki0ERe½Vw
NR;Sun
k22 �;

Að0Þ
s2 ¼ sin2ϑ

ð5 − 4m2
FÞ

ffiffiffiffiffiffiffiffi
3

10π

r X
w;k

hjpjki0EIm½Vw
NR;Sun
k22 �: ð29Þ

Note that the contribution from the electron coefficients
was disregarded for the reasons discussed in the previous
section. Only the proton and neutron coefficients were
considered; thus the summation over the index w in the

expressions for the amplitudes can only take the values
w ¼ p or w ¼ n. Similarly, the summation over k is limited
to the values 0, 2, and 4.
In these expressions, the coefficient Vw

NR;Sun
02m must be

taken as zero for any value of m for the reasons explained
earlier. The angle ϑ represents the angle between the
applied magnetic field and the rotation axis of the Earth.
The quantum number m0

F corresponds to the F ¼ 1=2 state
involved in the transition, and mF represents the quantum
number for the F ¼ 3=2 state. The numerical values for the
relevant coefficients hjpjki0E, hjpjki0B, and hjpjki1B are
provided in Table I.
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The expression (26) for the frequency shift implies that
a signal for Lorentz violation is a sidereal variation of the
resonant frequency, arising from the Earth’s rotation
relative to a fixed inertial reference frame. This sidereal
variation may include contributions up to the second
harmonic of the sidereal frequency. Additionally, another
signal for Lorentz violation is a dependency of the resonant
frequency with the orientation of the applied magnetic field
in relation to the Earth’s rotation axis.

B. Frequency shift at linear-boost order

In this subsection, we derive the frequency shift in the
Sun-centered frame at the linear-boost order. We begin by
truncating the expansion of the observer Lorentz trans-
formation matrix Λμ

ν; ðθ; βÞ, in the small parameter
β ≃ 10−4, up to linear order instead of zeroth order. The
resulting transformation matrix is

Λ0
T ¼ 1; Λ0

J ¼ −βJ; Λj
T ¼ −Rj

JβJ;

Λj
J ¼ Rj

J; ð30Þ

where the lowercase and uppercase indices represent spatial
Cartesian coordinates in the laboratory frame and in the
Sun-centered frame, respectively.
The Earth-based laboratory-frame boost velocity β

within the Sun-centered frame is approximately given by

β ≃ β⊕ þ βL; ð31Þ

where β⊕ is the velocity of the Earth relative to the Sun and
βL is the velocity of the laboratory relative to Earth’s center
of mass.
Assuming the Earth’s orbit is circular, we find that the

expression for β⊕ in the Sun-centered frame is

β⊕ ¼ β⊕ sinΩ⊕TX̂ − β⊕ cosΩ⊕Tðcos ηŶ þ sin ηẐÞ: ð32Þ

Here, Earth’s orbital speed is denoted by β⊕ ≃ 10−4 and its
orbital angular frequency by Ω⊕ ≃ 2π=ð365.26dÞ. The
angle η ≃ 23.4° is the one between the XY plane and the
Earth’s orbital plane. The time T is the time coordinate in
the Sun-centered frame.
The expression for βL obtained by taking the Earth as a

sphere is

βL ¼ r⊕ω⊕ sin χð− sinω⊕T⊕X̂ þ cosω⊕T⊕ŶÞ; ð33Þ

where χ and ω⊕ represent, once again, the colatitude of
the experiment and the sidereal frequency, respectively.
The magnitude of βL can be estimated by using that

r⊕ω⊕ ≃ 10−6, where r⊕ is Earth’s radius. This implies
that βL is 2 orders of magnitude smaller than β⊕.
The time T⊕ represents another offset of the time

coordinate T, serving as a measurement of the local sidereal
time. This definition of the sidereal time simplifies the
expression (33) by absorbing any possible phase. The zero
value of T⊕ can be defined as any time when the boost
velocity βL is parallel to the Y-axis in the Sun-centered
frame. Equivalently, it is the time when the local East
direction, the direction of βL, is parallel to Ŷ. This
definition differs from that of TL, which is zero when
the magnetic field is perpendicular to the Y-axis with a
nonnegative X component. The relation between both local
sidereal times is determined by the equations,

cos ½ðT⊕ − TLÞω⊕� ¼
sin χ cos θl − cos χ sin θl sinϕl

sin ϑ
;

sin ½ðT⊕ − TLÞω⊕� ¼ −
sin θl
sin ϑ

cosϕl: ð34Þ

Here, χ is the colatitude of the experiment, and ϑ represents
the angle of the magnetic field with Earth’s rotation axis.
The angles θl and ϕl denote the magnetic field’s orientation
relative to the local zenith and local East, respectively.
Using that for the SMI/LAC experiment ϑ ≃ 49°, θl ≃ π=2,
χ ¼ 41.3°, and ϕl ¼ 84°, we obtain that

ðT⊕ − TLÞω⊕ ≃ −172°: ð35Þ

For the sake of completeness, the relationship between the
local sidereal time T⊕ and the time coordinate T can be
expressed as [34],

T⊕ ≃ T −
ð66.25° − λÞ

360°
23.934 hr; ð36Þ

where λ is the longitude of the laboratory in degrees.
Applying the transformation (30) to the coefficients in

the expression for the frequency shift (19) is not straight-
forward. The nonrelativistic spherical coefficients are
specifically designed to have straightforward transforma-
tion rules under rotations, as discussed in the preceding
subsection. However, their transformations under a boost
are notably intricate. Transforming the coefficients neces-
sitates a departure from presenting them as components of
spherical tensors to portraying them as components of
Cartesian spacetime tensors. This process was thoroughly
explained in the Appendixes A and B of [22].
The expression for the frequency shift in the Sun-entered

frame at linear-boost order takes the form,
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2πδνð1Þ ¼ Að1Þ
0 þ Að1Þ

c cosω⊕TL þ Að1Þ
s sinω⊕TL þ Að1Þ

C cosΩ⊕T þ Að1Þ
S sinΩ⊕T

þ cosω⊕TLðAð1Þ
cC cosΩ⊕T þ Að1Þ

cS sinΩ⊕TÞ þ sinω⊕TLðAð1Þ
sC cosΩ⊕T þ Að1Þ

sS sinΩ⊕TÞ
þ cos 2ω⊕TLðAð1Þ

c2C cosΩ⊕T þ Að1Þ
c2S sinΩ⊕TÞ þ sin 2ω⊕TLðAð1Þ

s2C cosΩ⊕T þ Að1Þ
s2S sinΩ⊕TÞ

þ Að1Þ
c2 cos 2ω⊕TL þ Að1Þ

s2 sin 2ω⊕TL þ Að1Þ
c3 cos 3ω⊕TL þ Að1Þ

s3 sin 3ω⊕TL: ð37Þ

The coefficients Að1Þ
ξ [with the superscript (1)] differ

from the coefficients Að0Þ
ξ [with the superscript (0)] pre-

sented in the previous subsection. The latter represents the
amplitudes for the frequency shift δνð0Þ at the zeroth-boost
order, while the former represents the amplitudes for the
frequency shift δνð1Þ at the linear-boost order.
As previously demonstrated [23], the constraints on the

Lorentz-violating frequency shift at zeroth-boost order will
restrict a different set of SME coefficients than the ones at
linear order if the unperturbed states are parity states, as is
the case for deuterium. Consequently, the primary moti-
vation for extending the analysis beyond the zeroth-boost
order approximation is to gain access to more SME
coefficients.
Finally, the frequency shift in the Sun-centered frame, up

to the linear-boost order, is given by

δν ¼ δνð0Þ þ δνð1Þ; ð38Þ

where δνð0Þ is provided in (26) and δνð1Þ in (37). From these
equations, we can observe that the signals for Lorentz
violation include a sidereal variation up to the third
harmonic of the sidereal frequency, an annual variation
with the first harmonic of the annual frequency, and a
mixed variation that is the product of harmonics of the
annual and sidereal frequencies.
In this study, we will narrow our scope to corrections

solely related to the pure sidereal variation by disregarding
all the terms that contain an annual variation in the expres-
sion (37). Upon omitting these terms, the frequency shift is

2πδνð1Þ ¼ Að1Þ
0 þ Að1Þ

c cosω⊕TL þ Að1Þ
s sinω⊕TL

þ Að1Þ
c2 cos 2ω⊕TL þ Að1Þ

s2 sin 2ω⊕TL

þ Að1Þ
c3 cos 3ω⊕TL þ Að1Þ

s3 sin 3ω⊕TL: ð39Þ

The main consequence of excluding terms with annual
variation is to limit the number of SME coefficients that can
be constrained through a sidereal-variation study based on
the model presented in this work. Ideally, a time-variation
study of the transition frequency should consider these
annual-variation-dependent terms. However, in practice, it
is more feasible to conduct a sidereal-variation study than to
obtain a dataset for the more intricate time-variation signal
described by (37).

The amplitudes in the frequency shift (39) are more
involved than those presented in the previous subsection.
To enhance clarity, the expressions for the amplitudes are
presented in three layers. We can start by noting that the
amplitudes take the form,

Að1Þ
ξ ¼ −

X
w¼p;n

X
k;d

md−k−3
w

2

25 − 20m2
F
hjpjki0EGðdÞ0E

ξ;w;k

−
X
w¼p;n

X
k;d

md−k−3
w

2m0
F −mF

9
hjpjki0BGðdÞ0B

ξ;w;k

þ
X
w¼p;n

X
k;d

md−k−3
w

2m0
F −mF

9
hjpjki1BGðdÞ1B

ξ;w;k

þ 2
X
k;d

md−k−3
e

m0
F þmF

9
hjpejkiGðdÞ0B

ξ;e;k

þ 4
X
k;d

md−k−3
e

m0
F þmF

9
hjpejkiGðdÞ1B

ξ;e;k : ð40Þ

Here, the values for the momentum-dependent terms are
provided in Table I and (18). The angular momentum
quantum numbers correspond to those introduced in (19).
The mass of the nucleon is denoted as mw, and me for the
electron. The summation over k is restricted to the values 0,
2, and 4. The index ξ identifies the corresponding ampli-
tude in (37), while the index d represents the mass-
dimension of the Lorentz-violating operator contributing
to the frequency shift.
Following the convention from previous publications

[22,23], we will only consider the contribution at linear-
boost order from Lorentz-violating operators with mass
dimensions 3 ≤ d ≤ 8. This limitation does not alter the
general form of the frequency shift given by (19); it only
restricts the coefficients for Lorentz violation that our
model can constrain.

The coefficients GðdÞ0E
ξ;w;k and GðdÞqB

ξ;w;k , where q is either 0 or
1, depends on the particle type w, the momentum power k
and mass-dimension d. The expressions for these coeffi-

cients corresponding to the amplitude Að1Þ
ξ specified by ξ

are provided in Table II. The first column of the table
displays the coefficients, while the second column contains
their expressions. For simplicity, the sine and cosine
functions in the table are abbreviated as sx ¼ sin x
and cx ¼ cos x.
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In the expressions within the table, χ, ω⊕, and r⊕
represent the colatitude of the experiment, the sidereal
frequency, and Earth’s radius, respectively. The angle ϕ is
the phase shift between our two definitions of local sidereal
time, TL and T⊕. It is defined as

ϕ ¼ ω⊕ðT⊕ − TLÞ; ð41Þ

and given by (34). The angle takes the values ϕ ≃ −172° for
the case of the SMI/LAC experiment.

The quantities Vw
ðdÞJ
k2 , Vw

ðdÞJJ1J2
k2 , Tw

ðdÞJJ1
0B;k1 , and Tw

ðdÞJJ1
1B;k1 ,

appearing in Table II, represent specific linear combina-
tions of effective Cartesian coefficients defined in
Appendix B of [22]. Here, the indices J, J1, and J2
correspond to spatial components X, Y, and Z within the
Sun-centered frame.
To simplify the expressions in the table, we used that

components enclosed by brackets indicate antisymmetriza-
tion, as in

TZ½XY� ¼ 1

2!
ðTZXY − TZYXÞ; ð42Þ

while those enclosed by parentheses imply symmetrization,
as in

TZðXYÞ ¼ 1

2!
ðTZXY þ TZYXÞ: ð43Þ

All the relevant linear combinations of effective SME
coefficients for this work can be found in the aforemen-
tioned Appendix and are replicated in Tables III–V for
convenience. The only relevant coefficients missing from

the tables are the Tw
ðdÞJ
1B;01 coefficients that are equal to the

Tw
ðdÞJ
0B;01 in the Table IV. The effective SME coefficients,

marked with a subscript eff, differ from the conventional
Cartesian SME coefficients. They are the smallest linear
combination of SME coefficients that effectively can be
observed in experiments involving the propagation of free
fermions in the presence of Lorentz violation, and they are
thoroughly explained in [7]. As the usual SME Cartesian
coefficients, they transform as Lorentz tensors under
observer transformations. Another relevant property of
these coefficients is that the c-type and a-type coefficients
are entirely symmetric tensors. Meanwhile, the H̃ and g̃
coefficients exhibit antisymmetry in the first two indices
and symmetry upon exchange between the others.
In the expressions for the linear combinations in the

tables, the symbol δLK denotes the Kronecker delta, which
equals 1 when K ¼ L and 0 otherwise. Any repeated Latin
index, such as K or L, implies a summation over the spatial

TABLE II. Expressions for the coefficients GðdÞ0E
0;w;k , G

ðdÞ0B
0;w;k , and GðdÞ1B

0;w;k in Eq. (40).

Coefficient Expression

GðdÞ0E
0;w;k

1
4
r⊕ω⊕sχs2χ

h
cϕ
�
2Vw

ðdÞXYZ
k2 þ Vw

ðdÞXZY
k2 þ Vw

ðdÞYZX
k2

�
þ 2sϕ

�
Vw

ðdÞXðXZÞ
k2 − Vw

ðdÞYðYZÞ
k2

�i

GðdÞ0E
c;w;k r⊕ω⊕sχcϕ

h
Vw

ðdÞYYZ
k2 c2χ þ 1

4

�
Vw

ðdÞXXY
k2 þ 4Vw

ðdÞXYX
k2 þ Vw

ðdÞYYY
k2

�
s2χ þ Vw

ðdÞY
k2

i

þr⊕ω⊕sχsϕ
h
Vw

ðdÞXZZ
k2 c2χ þ 1

4

�
3Vw

ðdÞXXX
k2 − Vw

ðdÞYYX
k2

�
s2χ þ Vw

ðdÞX
k2

i

GðdÞ0E
s;w;k r⊕ω⊕sχcϕ

h
Vw

ðdÞXZZ
k2 c2χ þ 1

4

�
Vw

ðdÞYYX
k2 þ 4Vw

ðdÞXYY
k2 þ Vw

ðdÞXXX
k2

�
s2χ þ Vw

ðdÞX
k2

i

−r⊕ω⊕sχsϕ
h
Vw

ðdÞYZZ
k2 c2χ þ 1

4

�
3Vw

ðdÞYYY
k2 − Vw

ðdÞXXY
k2

�
s2χ þ Vw

ðdÞY
k2

i

GðdÞ0E
c2;w;k

1
4
r⊕ω⊕sχs2χ

h�
Vw

ðdÞYZX
k2 − Vw

ðdÞXZY
k2

�
cϕ þ 2

�
Vw

ðdÞXðXZÞ
k2 þ Vw

ðdÞYðYZÞ
k2

�
sϕ
i

GðdÞ0E
s2;w;k

1
4
r⊕ω⊕sχs2χ

h
2
�
Vw

ðdÞXðXZÞ
k2 þ Vw

ðdÞYðYZÞ
k2

�
cϕ −

�
Vw

ðdÞYZX
k2 − Vw

ðdÞXZY
k2

�
sϕ
i

GðdÞ0E
c3;w;k − 1

4
r⊕ω⊕s3χ

h�
Vw

ðdÞXXY
k2 þ Vw

ðdÞYYY
k2

�
cϕ −

�
Vw

ðdÞXXX
k2 þ Vw

ðdÞYYX
k2

�
sϕ
i

GðdÞ0E
s3;w;k

1
4
r⊕ω⊕s3χ

h�
Vw

ðdÞXXX
k2 þ Vw

ðdÞYYX
k2

�
cϕ þ

�
Vw

ðdÞXXY
k2 þ Vw

ðdÞYYY
k2

�
sϕ
i

GðdÞqB
0;w;k

1
2
r⊕ω⊕s2χ

h
2Tw

ðdÞðXYÞ
qB;k1 cϕ þ

�
Tw

ðdÞXX
qB;k1 − Tw

ðdÞYY
qB;k1

�
sϕ
i

GðdÞqB
c;w;k

1
2
r⊕ω⊕s2χ

�
Tw

ðdÞYZ
qB;k1cϕ þ Tw

ðdÞXZ
qB;k1 sϕ

�

GðdÞqB
s;w;k

1
2
r⊕ω⊕s2χ

�
Tw

ðdÞXZ
qB;k1 cϕ − Tw

ðdÞYZ
qB;k1 sϕ

�

GðdÞqB
c2;w;k r⊕ω⊕s2χ

h
Tw

ðdÞ½YX�
qB;k1 cϕ þ 1

2

�
Tw

ðdÞXX
qB;k1 þ Tw

ðdÞYY
qB;k1

�
sϕ
i

GðdÞqB
s2;w;k r⊕ω⊕s2χ

h
1
2

�
Tw

ðdÞXX
qB;k1 þ Tw

ðdÞYY
qB;k1

�
cϕ þ Tw

ðdÞ½XY�
qB;k1 sϕ

i
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components X, Y, and Z. Lastly, components enclosed by
parentheses imply that they are symmetrized, as previously
mentioned.
Finally, the reason for including electron coefficients at

linear-boost order, after being disregarded at zeroth-boost
order, is because the model tested in the hydrogen-maser
experiment [11] was limited to zeroth-boost order and
predicted a sidereal variation with the first harmonic of the
sidereal frequency—the signal investigated in the experi-
ment. As discussed in [23], signals that emerged at linear-
boost order in hydrogen’s experiments, such as sidereal
variation with the second harmonic of the sidereal fre-
quency, remain unexplored. Even if hydrogen is potentially
more sensitive to the electron coefficients that contribute to

GðdÞqB
ξ;e;k in (40), they remain unconstrained, and we cannot

disregard them as we did at zeroth-boost order.

IV. PROSPECTS FOR THE SMI/LAC
EXPERIMENT

This section investigates the potential of using deuterium
ground-state transitions F ¼ 1=2 → F ¼ 3=2, with
ΔmF ¼ 0, to detect signals for Lorentz violation. To
differentiate between the two transition frequencies, we
designate the one with mF ¼ 1=2 as νσ1 and the other with
mF ¼ −1=2 as νσ2 . From the results of the preceding

TABLE III. Expressions for Vw
ðdÞJ
k2 and Vw

ðdÞJJ1J2
k2 in terms of

the effective SME coefficients with 5 ≤ d ≤ 8.

VðdÞJK…M
kj Combination

Vw
ð5ÞJ
22 2aw

ð5ÞTTJ
eff þ aw

ð5ÞKKJ
eff

Vw
ð6ÞJ
22 −4cw

ð6ÞTTTJ
eff − 4cw

ð6ÞTKKJ
eff

Vw
ð7ÞJ
22

10
3

�
2aw

ð7ÞTTTTJ
eff − 3aw

ð7ÞTTKKJ
eff

�

Vw
ð8ÞJ
22 −10cw

ð8ÞTTTTTJ
eff − 20cw

ð8ÞTTTKKJ
eff

Vw
ð7ÞJ
42

10
7

�
aw

ð7ÞLLKKJ
eff þ 4aw

ð7ÞTTKKJ
eff

�

Vw
ð8ÞJ
42 − 60

7

�
cw

ð8ÞTLLKKJ
eff þ 2cw

ð8ÞTTTKKJ
eff

�

Vw
ð5ÞJJ1J2
22 −3aw

ð5ÞJJ1J2
eff − 6δJJ1aw

ð5ÞTTJ2
eff

Vw
ð6ÞJJ1J2
22 12cw

ð6ÞTJJ1J2
eff þ 12δJJ1cw

ð6ÞTTTJ2
eff

Vw
ð7ÞJJ1J2
22 −30aw

ð7ÞTTJJ1J2
eff − 20δJJ1aw

ð7ÞTTTTJ2
eff

Vw
ð8ÞJJ1J2
22 60cw

ð8ÞTTTJJ1J2
eff þ 30δJJ1cw

ð8ÞTTTTTJ2
eff

Vw
ð7ÞJJ1J2
42 − 60

7

�
aw

ð7ÞTTJJ1J2
eff þ δJJ1aw

ð7ÞTTLLJ2
eff

�
− 30

7
awð7ÞLLJJ1J2

Vw
ð8ÞJJ1J2
42

180
7

�
cw

ð8ÞTTTJJ1J2
eff þ cw

ð8ÞTKKJJ1J2
eff

�
þ 180

7
δJJ1cw

ð8ÞTTTKKJ2
eff

TABLE IV. Expressions for Tw
ðdÞJJ1
0B;k1 in terms of the effective SME coefficients with 3 ≤ d ≤ 8.

Tw
ðdÞJJ1
0B;k1 Combination

Tw
ð3ÞJJ1
0B;01 −H̃w

ð3ÞJ1J
eff

Tw
ð4ÞJJ1
0B;01 2g̃w

ð4ÞJ1ðJTÞ
eff

Tw
ð5ÞJJ1
0B;01 −3H̃w

ð5ÞJ1ðJTTÞ
eff

Tw
ð6ÞJJ1
0B;01 4g̃w

ð6ÞJ1ðJTTTÞ
eff

Tw
ð7ÞJJ1
0B;01 −5H̃w

ð7ÞJ1ðJTTTTÞ
eff

Tw
ð8ÞJJ1
0B;01 6g̃w

ð8ÞJ1ðJTTTTTÞ
eff

Tw
ð5ÞJJ1
0B;21

1
5

�
3H̃w

ð5ÞJðJ1KKÞ
eff þ 4H̃w

ð5ÞTðJ1JÞT
eff þ2H̃w

ð5ÞTKTK
eff δJJ1

�

Tw
ð6ÞJJ1
0B;21 − 3

5

�
3g̃w

ð6ÞJðJ1KKÞT
eff þ 4g̃w

ð6ÞTðJ1JÞTT
eff þ 3g̃w

ð6ÞTðJ1KKÞJ
eff þ 2g̃w

ð6ÞTKTTK
eff δJJ1

�

Tw
ð7ÞJJ1
0B;21

6
5

�
3H̃w

ð7ÞJðJ1KKÞTT
eff þ 6H̃w

ð7ÞTðJ1KKÞTJ
eff þ 4H̃w

ð7ÞTðJ1JÞTTT
eff þ 2H̃w

ð7ÞTKTTTK
eff δJJ1

�

Tw
ð8ÞJJ1
0B;21 −2

�
3g̃w

ð8ÞJðJ1KKÞTTT
eff þ 9g̃w

ð8ÞTðJ1KKÞTTJ
eff þ 4g̃w

ð8ÞTðJ1JÞTTTT
eff þ 2g̃w

ð8ÞTKTTTTK
eff δJJ1

�

Tw
ð7ÞJJ1
0B;41

3
35

�
16H̃w

ð7ÞTðJ1JKKÞT
eff þ 5H̃w

ð7ÞJðJ1KKLLÞ
eff þ 4H̃w

ð7ÞTKKLLT
eff δJJ1

�

Tw
ð8ÞJJ1
0B;41 − 3

7

�
16g̃w

ð8ÞTðJ1JKKÞTT
eff þ 5g̃w

ð8ÞJðJ1KKLLÞT
eff þ 5g̃w

ð8ÞTðJ1KKLLÞJ
eff þ 4g̃w

ð8ÞTKKLLTT
eff δJJ1

�
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section applied to the case of mF ¼ 1=2 and mF ¼ −1=2
with m0

F ¼ mF, we can derive the respective frequency
shifts, δνσ1 and δνσ2 , in the Sun-centered frame.
Within the context of the perturbation (10), the V-type

nonrelativistic coefficients are referred to as the spin-
independent coefficients, while the T -type coefficients
are regarded as the spin-dependent ones. This distinction
arises from associating the latter with terms containing the
Pauli matrices in (10). From (19) with m0

F ¼ mF, we can
observe that the contributions of the spin-independent
coefficients to the frequency shift are even functions of
mF, while the spin-dependent ones are odd functions.
Given that the only distinction between the transition
frequencies νσ1 and νσ2 is the sign of mF, the difference,

νσ1−σ2 ¼ νσ1 − νσ2 ; ð44Þ

is solely sensitive to the spin-dependent coefficients, while

νσ1þσ2 ¼ νσ1 þ νσ2 ð45Þ

is sensitive to the spin-independent ones.
At zeroth-boost order, the expected signal for Lorentz

violation manifests as a first-harmonic sidereal variation of
the frequency difference νσ1−σ2 . Meanwhile, the variation in
νσ1þσ2 contains contributions up to the second harmonic of
the sidereal frequency. The reason why νσ1−σ2 contains only
contributions from the first harmonic of ω⊕ is that the
amplitudes associated with the second harmonic of ω⊕
depend solely on the spin-independent coefficients, as
depicted in (29).
We will assess the potential of the SMI/LAC experiment

for testing Lorentz and CPT symmetry by assuming that
the experiment reaches a feasible sensitivity of 10 Hz on
any of the amplitudes for the sidereal variation of the fre-
quencies νσ1−σ2 and νσ1þσ2 [30]. For now, we will limit our
focus to the zeroth-boost order terms with Table VI con-
taining our estimates for the SMI/LAC-experiment sensi-
tivity to the nonrelativistic coefficients. The coefficients

listed represent proton and neutron coefficients, as our
model does not distinguish between the contributions from
both. Additionally, the limits are on the coefficients
associated with CPT-odd or CPT-even operators as intro-
duced in the decomposition presented in (11).
The most stringent constraints on nonrelativistic nucleon

coefficients stem from four experiments. These include
time-variation studies conducted using a 129Xe-3He comag-
netometer [12–15], a 21Ne-Rb-K comagnetometer [18], an
optical hydrogen transition [19], and the aforementioned
hydrogen maser [11]. The limits derived from the first two
systems are in [22], while the rest are in [23].
Among these experiments, both the hydrogen maser and

the 129Xe-3He comagnetometer experiments are sensitive
only to the spin-dependent coefficients. According to the
Schmidt model, the Xe-He experiment can exclusively
access neutron coefficients. Independently of any model,
the hydrogen experiment can solely detect proton ones,
besides the electron coefficients, as hydrogen does not
contain neutrons.

TABLE V. Expressions for Tw
ðdÞJJ1
1B;k1 in terms of the effective SME coefficients with 5 ≤ d ≤ 8.

Tw
ðdÞJJ1
1B;k1 Combination

Tw
ð5ÞJJ1
1B;21 − 1

5

�
15H̃w

ð5ÞJ1ðJTTÞ
eff þ 2H̃w

ð5ÞTðJ1JÞT
eff þ 6H̃w

ð5ÞJ1ðJKKÞ
eff − 2H̃w

ð5ÞKðJ1JÞK
eff þ 6H̃w

ð5ÞTKTK
eff δJJ1

�

Tw
ð6ÞJJ1
1B;21

1
10

�
60g̃w

ð6ÞJ1ðJTTTÞ
eff þ 12g̃w

ð6ÞTðJ1JÞTT
eff þ 48g̃w

ð6ÞJ1ðTJKKÞ
eff − 18g̃w

ð6ÞKðJ1JTÞK
eff þ 21g̃w

ð6ÞTKTTK
eff δJJ1

�

Tw
ð7ÞJJ1
1B;21 − 2

5

�
25H̃w

ð7ÞJ1ðTTTTJÞ
eff þ 6H̃w

ð7ÞTðJ1JÞTTT
eff þ 30H̃w

ð7ÞJ1ðTTJKKÞ
eff − 12H̃w

ð7ÞKðTTJJ1ÞK
eff þ 8H̃w

ð7ÞTKTTTK
eff δJJ1

�

Tw
ð8ÞJJ1
1B;21

1
2

�
30g̃w

ð8ÞJ1ðJTTTTTÞ
eff þ 8g̃w

ð8ÞTðJ1JÞTTTT
eff þ 48g̃w

ð8ÞJ1ðTTTJKKÞ
eff − 20g̃w

ð8ÞKðJ1JTTTÞK
eff þ 9g̃w

ð8ÞTKTTTTK
eff δJJ1

�

Tw
ð7ÞJJ1
1B;41 − 3

35

�
70H̃w

ð7ÞJ1ðJTTKKÞ
eff − 4H̃w

ð7ÞKðJJ1ÞKLL
eff þ 15H̃w

ð7ÞJ1ðJLLKKÞ
eff þ 8H̃w

ð7ÞTðJJ1LLÞT
eff þ 16H̃w

ð7ÞTKKLLT
eff δJJ1

�

Tw
ð8ÞJJ1
1B;41

3
7

�
18g̃w

ð8ÞJ1ðJTKKLLÞ
eff − 2g̃w

ð8ÞKðJJ1TÞKLL
eff þ 8g̃w

ð8ÞTðKKJ1JÞTT
eff þ 42g̃w

ð8ÞJ1ðJLLTTTÞ
eff þ 9g̃w

ð8ÞTKKLLTT
eff δJJ1

�

TABLE VI. Potential sensitivity of the SMI/LAC experiment
on the nonrelativistic coefficients.

Coefficient K Constraint on jReKj; jImKj
Hw

NRð0BÞ;Sun
011 ; gw

NRð0BÞ;Sun
011

<4 × 10−22 GeV

Hw
NRð1BÞ;Sun
011 ; gw

NRð1BÞ;Sun
011

<2 × 10−22 GeV

Hw
NRð0BÞ;Sun
211 ; gw

NRð0BÞ;Sun
211

<3 × 10−20 GeV−1

Hw
NRð1BÞ;Sun
211 ; gw

NRð1BÞ;Sun
211

<6 × 10−20 GeV−1

Hw
NRð0BÞ;Sun
411 ; gw

NRð0BÞ;Sun
411

<7 × 10−20 GeV−3

Hw
NRð1BÞ;Sun
411 ; gw

NRð1BÞ;Sun
411

<2 × 10−19 GeV−3

cw
NR;Sun
221 ; aw

NR;Sun
221

<4 × 10−20 GeV−1

cw
NR;Sun
222 ; aw

NR;Sun
222

<6 × 10−20 GeV−1

cw
NR;Sun
421 ; aw

NR;Sun
421

<2 × 10−19 GeV−3

cw
NR;Sun
422 ; aw

NR;Sun
422

<4 × 10−19 GeV−3
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The limits derived from the Xe-He experiment on the
neutron spin-dependent coefficients are contained in
Table VI of [22]. They are in the order of 10−33 GeV for
k ¼ 0, 10−31 GeV−1 for k ¼ 2, and 10−29 GeV−3 for k ¼ 4.
Therefore, they exceed our estimates for the deuterium
experiment by around 10 orders of magnitude.
Table III of [23] contains the hydrogen-maser limits

on the spin-dependent proton coefficients; they are in the
order of 10−27 GeV for k ¼ 0, 10−16 GeV−1 for k ¼ 2, and
10−6 GeV−3 for k ¼ 4. For the k ¼ 0 coefficients, the
prospects for the deuterium experiment are unfavorable
as the current limits from the hydrogen-maser experiment
remain approximately 7 orders of magnitude superior to our
estimates. The situation is different for the ones with k ¼ 2
and k ¼ 4. The deuterium experiment could improve the
limits on the coefficients k ¼ 2 by 4 orders of magnitude
and to the ones with k ¼ 4 by 14 orders of magnitude.
The reported constraints from the remaining two experi-

ments exclusively pertain to the spin-independent coeffi-
cients. However, the discussion concerning the annual
variation study of the 1S-2S transition in hydrogen [19]
will be postponed until we move to the prospects for the
deuterium experiment at linear-boost order.
The 21Ne-Rb-K experiment has access limited to neutron

nonrelativistic spin-independent coefficients according
to the Schmidt model [22]. Constraints on these non-
relativistic coefficients, obtained from this experiment, are
in Table X of [22]. These limits are in the order of
10−29 GeV−1 for k ¼ 2 and 10−27 GeV−3 for k ¼ 4.
Therefore, they exceed our estimates for the SMI/LAC
experiment by at least 7 orders of magnitude. The proton
spin-independent coefficients in Table VI are uncon-
strained. Consequently, the SMI/LAC experiment holds
the potential to establish first bounds on these coefficients.
Moving on to the prospects at linear-boost order, the

observable signals for Lorentz violation regarding the
frequency difference νσ1−σ2 at this order include a sidereal
variation with contributions up to the second harmonic of
the sidereal frequency. For νσ1þσ2, the observable signals
comprise variations extending from the first to the third
harmonic of ω⊕. The type of SME coefficients that can be
constrained by studying these signals are the effective
Cartesian coefficients mentioned in the previous section.
Existing constraints on these coefficients are from the
Xe-He experiment and an annual variation study of the
1S-2S transition with hydrogen.
For the sake of the discussion, we can estimate the

sensitivity of the SMI/LAC experiment to the effective

Cartesian coefficient KðdÞμ1…μd−2
eff to be in the order of

10−14 GeV4−d or less. Comparing this value to the limits
on the neutron g- andH-type effective coefficients obtained
from the Xe-He experiment, in Table IX of [22], we
conclude they are superior to our estimates for the SMI/
LAC experiment by more than 10 orders of magnitude.

The prospects for the proton a- and c-type coefficients
are promising. The constraints on the proton coefficients
obtained from the hydrogen experiment, see Table of [23],
could be improved from 6 to 16 orders of magnitude by
the SMI/LAC experiment. Finally, all the neutron spin-
independent and the proton spin-dependent effective coef-
ficients accessible by the deuterium experiment remain
unconstrained, presenting the SMI/LAC experiment with
an opportunity to establish first bounds on these co-
efficients.
As previously mentioned, the electron coefficients con-

tributing at linear-boost order are unconstrained, presenting
an opportunity for the SMI/LAC experiment to establish
first bounds on these coefficients. It is important to note that
these electron coefficients exclusively contribute to the
frequency combination νσ1−σ2 , given that only electron
spin-dependent coefficients contribute to the Lorentz-
violating frequency shifts.
It is worth noting that the transitions from F0 ¼ 1=2 to

F ¼ 3=2 with ΔmF ¼ 0, considered in this section, may
not necessarily exhibit the highest sensitivity to the SME
coefficients. For instance, transitions such asmF ¼ −m0

F ¼
1=2 are thrice as sensitive to the spin-dependent nucleon
coefficients as the case where m0

F ¼ mF. Similarly, tran-
sitions such as mF ¼ 3m0

F ¼ 3=2 are twice as sensitive to
the electron spin-dependent terms. We must be careful
about these statements as they follow the strong assumption
that the experimental constraint on the Lorentz-violating
frequency shifts for all transitions are the same.
Before concluding this section, it is worthwhile to

compare our estimates for the SMI/LAC experiment with
a proposed, in [22], reanalysis of the data used in a 133Cs-
fountain-clock experiment [16,17]. This reanalysis of the
Cs experiment could impose constraints that might surpass
our estimated SMI/LAC limits on the spin-independent
proton coefficients by at least 3 orders of magnitude based
on the potential sensitivities reported in Table V of [22].
Based on the discussion in this section, it is evident that

the prospects for the SMI/LAC experiment are promising,
as they hold the potential to enhance current limits on
nonminimal SME coefficients and establish initial limits on
many of them.

V. SUMMARY

This study improves a previous model for testing Lorentz
and CPT symmetry using time-variation studies of the
hyperfine-Zeeman transition within the ground state of
deuterium. It begins by obtaining the Lorentz-violating
correction to deuterium’s spectrum under the influence of a
weak magnetic field by using a well-established para-
metrization of the deuteron ground-state wave function. It
is worth noting that this is the first time, within the
nonminimal SME context, that a nuclear model beyond
the Schmidt model was used to obtain the nucleon con-
tribution to the Lorentz-violating energy shift.
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We determined the Lorentz-violating frequency shift
for the transitions within the ground state of deuterium
in terms of the laboratory frame SME coefficients.
Subsequently, we described the transformation from the
laboratory to the Sun-centered frame. The Lorentz trans-
formation matrix was expanded as a power series of the
laboratory-frame boost velocity within the Sun-centered
frame and truncated to linear order. Applying the approxi-
mated transformation matrix, we obtained a general expres-
sion for the frequency shift at zeroth- and linear-boost
orders.
From the expression for the frequency shift in terms of

the Sun-centered frame coefficients, this study identified
the signals for Lorentz violation revealed as time-variations
of the transition frequency induced by the motion of the
Earth-based experiment within the Sun-centered frame.
When the frequency shift is limited to zeroth-boost order,
the signal is a sidereal variation entailing contributions up
to the second harmonic of the sidereal frequency, and if we
include the linear-boost order term, the third harmonic of
the sidereal frequency contributes. This work also identi-
fied annual variation and more complex types of variation
as signals for Lorentz violation accessible via deuterium

ground-state spectroscopy. However, this study provides
explicit expressions solely for the sidereal-variation
amplitudes.
Using the model developed in this work, we estimated

the sensitivity of the ongoing SMI/LAC deuterium experi-
ment to the relevant SME coefficients to compare them to
all current best limits on Lorentz violation. We concluded
that the SMI/LAC experiment holds considerable potential
to establish more stringent bounds than the existing ones on
most proton nonrelativistic spin-dependent coefficients and
first-time limits on all proton spin-independent ones. It can
impose first-time limits on a- and c-type neutron coeffi-
cients and on a g- and H-type electron ones.
In summary, the SMI/LAC deuterium experiment can

impose first-time or improved limits on many proton,
neutron, and electron SME coefficients.
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