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This paper investigates the transverse Ising model on a discretization of two-dimensional anti–de Sitter
space. We use classical and quantum algorithms to simulate real-time evolution and measure out-of-time-
ordered correlators (OTOC). The latter can probe thermalization and scrambling of quantum information
under time evolution. We compared tensor network-based methods both with simulation on gate-based
superconducting quantum devices and analog quantum simulation using Rydberg arrays. While studying
this system’s thermalization properties, we observed different regimes depending on the radius of curvature
of the space. In particular, we find a region of parameter space where the thermalization time depends only
logarithmically on the number of degrees of freedom.
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I. INTRODUCTION

One of the most fruitful ideas in theoretical physics
developed over the last twenty-five years has been the
concept of holographic duality—that the physical content
of a gravitational theory in anti–de Sitter space can be
captured by a nongravitational conformal field theory
(CFT) living on the boundary of that space. Since the
duality maps strong coupling to weak coupling, it has
frequently been used to probe the strong coupling dynamics
of a CFT living at the boundary by solving a classical
gravity problem in the bulk [1,2]. To gain insight into
quantum gravity, one would like to invert the direction of
this logic and use the nonperturbative quantum dynamics of
the CFT to infer aspects of bulk quantum gravity.
As a first step in this direction, one performs a Wick

rotation on anti–de Sitter space to obtain hyperbolic
space, followed by a discretization of the latter to obtain
a lattice theory.
There have been recent efforts to perform classical

simulations of such theories using Monte Carlo methods
[3–6], tensor network methods [7–10] and other numerical
techniques [11]. However such studies cannot probe the
real-time dynamics of such systems, and in this manu-
script, we return to a simple toy model that can be
quantum simulated directly in anti-de Sitter space—the
transverse Ising model formulated in two-dimensional
anti–de Sitter space (AdS2).
This paper will study this model using exact diagonal-

ization, tensor network methods, noiseless quantum sim-
ulators, and simulation on superconducting quantum
devices. Since the boundary theory is conformal quantum
mechanics, a prime focus of our work will be time-
dependent correlation functions and, in particular, so-called

“out-of-time-ordered” correlators (OTOCs). These provide
information on how fast quantum information can propa-
gate through the lattice and how long thermalization takes
in such an interacting quantum system.
Contrary to naive expectation it is possible for a quantum

mechanical system to undergo thermalization locally
[12,13]. Indeed such thermalization has also been observed
experimentally [14].
The key idea is that one needs to focus on a subset A

of the composite system comprising A and its environ-
ment B. If A is entangled with B then one naturally
obtains a density matrix for A by tracing out the degrees
of freedom in the Hilbert space of B. If jψihψ j denotes a
pure state of the combined system, the density matrix of A
is given by

ρA ¼ TrHB
jψihψ j: ð1Þ

This density matrix corresponds to a mixed state if there
is entanglement between A and B, and this is manifested
by a nonzero entanglement entropy given by the von
Neumann formula:

S ¼ −TrHA
ρA ln ρA: ð2Þ

In this paper, we are particularly interested in mixed
states corresponding to thermal systems. One simple way to
construct a thermal density matrix for A is to start from a
composite system comprising two identical copies of A

jΨi ¼ 1

Z
1
2

X
n

e−
β
2
En jnAijnBi: ð3Þ
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In this case, tracing out B yields

ρA ¼ 1

Z

X
n

e−βEn jnihnj; ð4Þ

in the case where the quantum mechanical system corre-
sponds to a conformal field theory there is a holographic
interpretation of the density matrix as describing a black
hole in a dual geometry which contains the CFT on its
boundary. Indeed the entanglement entropy in this case can
then be shown to correspond to the Bekenstein-Hawking
entropy associated with the area of the event horizon of the
black hole [15–18].
The next most obvious question that arises is how long it

takes to realize this density matrix under Hamiltonian
evolution starting from some pure nongeneric state jψi.
In general, this process resembles classical chaotic dynam-
ics with initial states that differ only by small perturbations
yielding radically different states at large times. This
thermalization process is called scrambling and has been
the focus of many previous studies [19–29]. The scram-
bling time τS is determined by the speed at which
information can propagate across the system under time
evolution and is related to the dimensionality of the system
and the locality of the Hamiltonian. There are theoretical
bounds on the scrambling time τS which is bounded from
below by

τS ∼ β lnV;

where, V counts the number of microscopic degrees of
freedom. Attaining this bound depends on an exponentially
fast spread of information through the system [30–34].
It has been conjectured that CFTs with black hole duals

provide one example of a system capable of such “fast
scrambling” [35,36]. Systems that show fast scrambling
typically involve nonlocal Hamiltonians and all-to-all
interactions such as the SYK model [37–41]. In this paper
we will show that in certain regions of the parameter space
the transverse quantum Ising model with nearest neighbor
interactions living on a discretization of two dimensional
anti-de Sitter space appears to exhibit similar behavior.
However one should be careful with this interpretation—
the spatial boundary of our system is just two points and
our quantum spins populate the bulk space as well as the
boundary. So we are primarily looking at information
spread in the bulk. To understand the thermalization
properties better one would need to extend the model to
three dimensional anti–de Sitter space which possesses a
nontrivial spatial boundary.
We have performed both classical and quantum simu-

lations of this system. In Sec. II, we find the ground state of
this model using the density matrix renormalization
(DMRG) algorithm [42–44] and time-evolve it with the
time evolving block decimation (TEBD) algorithm using

the ITensor library [45–48]. In Sec. III, real time evolution
of the magnetization is discussed and implemented for a
thirteen qubit system and compared to the tensor method
results. We discuss the information propagation in this
model in Sec. IV. To study the scrambling properties of the
model we have used matrix product operator (MPO)
methods to calculate the OTOCs [49,50] in Sec. IVA. In
the next subsection IV B, the computation of OTOCS
using a protocol developed by Vermersch et al. [51] is
discussed and implemented for a model with seven qubits.
Successful implementation of the model on quantum
devices required applying some additional error mitigation
techniques. We discuss the influence of the mitigation
techniques on the results and other numerical aspects of the
digital quantum simulation in Appendix A. We also sketch
out how to implement this Hamiltonian via analog quantum
devices like Rydberg arrays and perform simulations of the
system on the Bloqade simulator developed by QuEra in
Appendix B. In Appendix C, we include some details of the
protocol used for the computation of the OTOC using a
quantum computer.

II. TRANSVERSE ISING MODEL ON A
HYPERBOLIC SPACE

In this section, we describe the transverse field Ising
(TFI) model formulated on a one dimensional hyperbolic
space. Themodel is an analog of the classical Isingmodel on
a two dimensional tessellation of hyperbolic space [4,52].
The Hamiltonian that describes this Ising chain can be
represented as a sum of local terms [53–55]

Ĥ ¼ −J
4

X
i

coshðliÞ þ coshðliþ1Þ
2

σziσ
z
iþ1

þ h
2

X
i

coshðliÞσxi þ
m
2

X
i

coshðliÞσzi : ð5Þ

Here, σpi is a local Pauli operator at site i with p ¼
fx; y; zg. The first term corresponds to a nearest neighbor
interaction term coupling neighboring sites. The deforma-
tion factors ηi ¼ cosh li arise from the metric of Euclidean
AdS2 given in Eq. (6) and give rise to a site-dependent
coupling for the Ising chain

ds2 ¼ l2ðcosh2ðρÞdt2 þ dρ2Þ: ð6Þ

For an N site lattice the site-dependent deformation scale li
is given by

li ¼ −lmax þ i
2lmax

N − 1
; ð7Þ

where lmax denotes a length scale that determines the degree
of deformation. In the limit of lmax → 0, the planar trans-
verse Ising model is recovered. In the rest of the paper we
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will be using system sizes where N is a odd number. This
ensures that there is a true middle point where the
coupling is symmetrical which ensures the dynamics of
propagation are same toward to the left and right of this
middle point. Obviously, for infinite chain limit N → ∞,
the distinction between choosing odd or even number of
site will disappear.
We start the discussion of our numerical results with the

von Neumann entropy Eq. (2) calculated from the reduced
density matrix obtained by dividing the spin chain in two
and tracing out one half. Fig. 1 shows a plot of the half
chain entropy and Fig. 2 shows the magnetic susceptibility
at lmax ¼ 3.0, h ¼ 3.0 andm ¼ 0.25 using N ¼ 37 spins as
a function of J.
For our DMRG calculation we used 50 sweeps of the

chain with a cutoff of order ϵ ¼ 10−12 which resulted in a
bond dimension of order χ ¼ 10 on average. We see that
there are peaks in the entropy and the susceptibility
signaling a possible phase transition in the model. In our
later work on OTOCs we will always tune our couplings to
be close to their critical values.

III. TIME EVOLUTION
OF THE MAGNETIZATION

In this section, we show results on the time evolution of
the magnetization hSzi ¼ 1

2
hσzi computed using tensor

methods compared with simulation on quantum devices.

We start by time evolving the system using the time
evolving blocked decimation (TEBD) algorithm [56].
Historically, TEBD was adapted from the Suzuki-
Trotter approximation for the matrix product state
(MPS) [57]. In Fig. 3, the Trotter evolution of the
magnetization hSzi ðtÞi is plotted at each lattice site i for
a lattice chain with N ¼ 37 sites, and lmax ¼ 3.0, h ¼ 2.0,
J ¼ 2.0, and m ¼ 0.25 starting with all spins in the
down state. Clearly, the dynamics of the magnetization
shows warping effects in the bulk due to the curved
background. One can think of this warping effect as due to
time dilation effects in the bulk.
Next, we attempt to investigate the model using a

quantum platform—namely the IBM Guadalupe machine.
Currently, quantum devices experience both large coherent
and incoherent noise in any given computation. Thus,
we have attempted to investigate a system with modest
system size of N ¼ 13 spins where there is limited device
noise and the warping effects can be observed.1 We have
computed the time-dependent expectation value of the
magnetization hSzi ðtÞi ¼ h0jU†ðtÞSziUðtÞj0i, in the mass-
less limit m ¼ 0, using a first order Trotter approximation
for the time evolution operator

UðtÞ ¼ expð−iHtÞ ≃
�YN−2

j¼0

Rj
zzðϕjÞ

YN−1

i¼0

Ri
xðθiÞ

�n

: ð8Þ

Using first order trotter evolution we can measure observ-
ables at discrete steps δt of time. The quantum circuit
representation for the time-evolution operator for one
Trotter step is shown in Fig. 4. We need to repeat the
circuit n times to obtain time evolution operator at time
t ¼ nδt. Thus, n denotes the number of Trotter steps in the
calculation. In general, the quantum circuit representation
for the computation of observables involves initial state

FIG. 1. von Neumann Entropy versus J for N ¼ 37,
lmax ¼ 3.0; h ¼ 3.0; m ¼ 0.25.

FIG. 2. Magnetic susceptibility versus J for N ¼ 37,
lmax ¼ 3.0; h ¼ 3.0; m ¼ 0.25.

FIG. 3. hSzi for a lattice with N ¼ 37 spins and parameters set
at J ¼ 2.0; h ¼ 2.0; m ¼ 0.25; lmax ¼ 3.0.

1IBM Guadalupe is a 16 qubit machine, where the longest
possible chain of Ising spin that can be constructed without
additional SWAP gates is of 13 qubits due to the connectivity
constraints.
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preparation, time-evolution, and measurement. Due to our
choice of a simple initial state (vacuum state j0i ¼ j0i⊗N)
and simple operator Sz ¼ σz

2
we do not need any additional

quantum operations for the initial state preparation and the
measurements.
Different orderings of the operators can be used for this

approximation, see the discussion in the Appendix A 2. In
this section, all the results presented use what we denote as
“odd-even” ordering in the Appendix.
Local magnetization results are shown for three different

sites in the Fig. 5 and compared against classical simulation
results obtained from TEBD. The parameters used were
J ¼ 2.0, h ¼ 1.05 and lmax ¼ 3.0. The gate cost of such a
circuit is similar to that of the Ising spin chain on a flat
lattice [58]. The difference in our Trotter evolution of the
deformed Hamiltonian lies in the site dependent phase
factors of the rotation and entangling gates. This brings an
inherent complication to the problem of selecting the
optimal Trotter step δt. Previous studies have shown that
theoretical bounds of the first-order Trotter approximation
can be relaxed for observing time evolution with current
NISQ-era machines [58–60]. The phases (θi, ϕi) of the
rotation and entangling gates are of the form Ci × δt and
the optimal choice for the Trotter step is different for local
operators hSizi at different sites. Thus, one constraint for
choosing the optimal Trotter step ðδtÞoptimal comes from the
local couplings Ci. In NISQ-era devices, the other con-
straint comes from the maximum possible circuit depth
dmax that can be simulated before the noise swamps the
signal. Naively, we can use a maximum of dmax number of
q-qubit gate before the information is completely lost

dmax ¼
lnð1=2qÞ
lnðϵÞ ;

due to the accumulation of gate errors of size ϵ. In
practice, the practical circuit depth dpractical ≪ dmax due
to different sources of noise other than the gate errors.
Hence we cannot go beyond a maximum number
of nmax Trotter steps in current devices. We found that

a value of ðδtÞoptimal ∼ 0.2 and tmax ∼ 1.2 is a good choice
for time evolution of the magnetization. To see key
features of an observable the optimal choice of the trotter
step can depend on the type of the observable, and the
parameters ðJ; h;m; lmaxÞ. For the computation of the local
magnetization, the number of shots used is Nshots ¼ 1000.
See Appendix. A 1 for a discussion of the statistical noise
associated with different Nshots.
In Fig. 5, classical simulation results of the local

magnetization with the TEBD algorithm are compared
with the mitigated results obtained from the Guadalupe
machine. The error-bars in the figures represent statis-
tical errors associated with six different measurements.
The measurements were performed on different days to
demonstrate reliable systematic error on the current devi-
ces. Various error mitigation techniques were applied to
obtain the results. Dynamical Decoupling (DD) [61,62]
was applied to reduce the coherent noise and the M3
method [63] was used to reduce readout errors. We also
created noise-scaled circuits with three-fold and five-fold
amplification of the noise in comparison to the original
circuit and applied the zero noise extrapolation (ZNE)
mitigation technique to reduce the incoherent noise [64,65].
We used the built-in features of the IBM runtime system to
apply DD and M3 while noise-scaled circuits were created
by inserting an appropriate number of identity operators for
each CNOT gate. This choice is justified for current IBM
devices, where two-qubit gates have significantly larger
errors than single-qubit rotation gates.2 See Appendix. A 3
for the discussion of how different error mitigation tech-
niques improved our results.
After post-processing the data with different error

mitigation techniques, we found that the magnetization
results obtained from the Guadalupe machine Fig. 7 show
good evidence of the warping expected for this geometry.
For comparison purposes, the TEBD results are plotted in
Fig. 6. The CNOT gate cost for computing time-evolution
with first order Trotter approximation of aN-qubit quantum
spin chain is 2ðN − 1Þ per Trotter-step and the circuit depth
at Trotter step n ¼ 6 is d ¼ 48. The results from the QPU
track the peak of the local magnetization quite well. The
QPU results also demonstrate that the initial state with all-
down spins is disrupted by the boundary at a slower rate as
we move from the edge to the center of the lattice chain.
While the quantum simulation results align qualitatively
with tensor methods, it is clear that larger numbers of qubits
would be needed to identify the warping effects in a greater
detail. We have also explored a possible implementation
of the real-time magnetization evolution on QuEra’s
analog quantum computers based on Rydberg arrays.
See Appendix. B for the discussion of the analog compu-
tation of the local magnetization.

FIG. 4. Trotter evolution circuit for the first Trotter step for a 5-
Qubit spin chain in the hyperbolic lattice. Here, θi ¼ − Jδt

4
ðηi þ

ηiþ1Þ and ϕi ¼ hδtηi.

2For the Guadalupe machine, the ratio of the median-errors for
the two-qubit and single-qubit gates is ϵCNOT

ϵ1qubit−gate ∼ 25.
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IV. OUT-OF-TIME-ORDERED CORRELATORS

We now turn to the question of how information spreads
in the model. To answer that, we computed an out-of-time-
ordered-correlator (OTOC). This observable is known to
capture information spread and scrambling in quantum
systems [66–69] and can be thought of as a quantum
mechanical counterpart of the Loschmidt echo [70]. To
construct the OTOC, we use two operators WiðtÞ and Vj

where WðtÞ ¼ expiHtWð0Þexp−iHt. From these we con-
struct the commutator of these operators

CðtÞ ¼ hjj½WiðtÞ; Vj�jj2i ¼ 2ð1 − Re½FijðtÞ�Þ; ð9Þ

where FijðtÞ is the required out of time ordered correlator
(OTOC)

FijðtÞ ¼ hWiðtÞ†Vjð0Þ†WiðtÞ:Vjð0Þi: ð10Þ

This equality is obtained under the assumption thatW and
V are unitary and that terms that correspond to local
observables thermalize to a constant after a short time
and hence can be omitted. The connection between FijðtÞ

and the information spread can be made clear by con-
sidering W as a simple local perturbation. Under time
evolution this perturbation becomes more and more
nonlocal. The growth of these nonlocal effects can be
captured by calculating the commutator of WðtÞ with
another local operator V. When the operators commute,
C vanishes and F is one. So by measuring the double
commutator or the OTOC we can track the propagation of
WðtÞ along the system.
The relationship between the double commutator and

operator growth can be made clear by considering a simpler
setup. Let us start by representing a unitary time evolution
operator out of local two qubit unitaries. Using this
representation we can obtain the Heisenberg time evolution
for a local operator AðtÞ ¼ U†AU.
Where in Fig. 8 blue and red boxes represent U† and U

while the green circle represents the operator A. One can
clearly see from the above figure that any contraction that
does not involve the operator A will be the identity so we
can ignore those and focus on the contractions that involve

FIG. 5. Local magnetization hSizðtÞi at site i for TFI model on hyperbolic lattice chain with 13 lattice sites. Parameters: J ¼ 2.0,
h ¼ 1.05, lmax ¼ 3.0. We took advantage of the symmetry of the lattice Hamiltonian to find the average magnetization:
hSzi i → ðhSzi i þ hSzN−iiÞ=2. This played an important role since some of the physical qubits of the Guadalupe machine have smaller
energy relaxation (T1) and dephasing(T2) times.

FIG. 7. Trotter evolution of local magnetization hSzi ðtÞi com-
puted using guadalupe quantum processing unit (QPU). Param-
eters: N ¼ 13, J ¼ 2.0, h ¼ 1.05, lmax ¼ 3.0. Magnetization data
on the edges of the lattice chain are omitted due to the large
Trotter-error associated with it. Note that the deformation
strength is stronger on the edges.

FIG. 6. Trotter evolution of local magnetization hSzi ðtÞi with
exact diagonalization. Parameters: N ¼ 13, J ¼ 2.0, h ¼ 1.05,
lmax ¼ 3.0.
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the operator. This clearly shows us the light cone for the
operator growth in the Heisenberg picture and demonstrates
that the OTOCs capture the characteristics of the operator
spread in the system.
However, this general form of the OTOC is not the

easiest to deal with in our simulations. Instead, we choose
the following form for the OTOC operator which can be
seen from Eq. (11) [51,71]

OiðtÞ ¼
TrðρWðtÞNþ1

2
V†
i WðtÞNþ1

2
ViÞ

TrðρWðtÞ2V†VÞ : ð11Þ

In our calculations, we take WðtÞ ¼ σzðtÞ, V ¼ σz and
fix the position of WðtÞ operator at the center of the lattice
chain. To see the effect of the interaction of two local
operators, we then place the operator V at different lattice
sites i. We have focused on the infinite temperature limit
which corresponds to taking a density matrix ρ ∼ I in
Eq. (11). Infinite-temperature OTOCs bear the signature of
entanglement growth after a quench is applied to an energy
eigenstate [72] and are easier to compute. Furthermore,
many of the protocols used in finite-temperature-OTOCs
can be developed from the corresponding protocols used
in the infinite temperature case [51,73]. Additionally, the
exponents computed from the infinite-temperature OTOCs
are insensitive to slightly different OTOC definitions that
exist in the literature, see the appendix in [73].

A. Classical simulations of OTOCs

For computing the OTOC using classical methods,
we utilize a matrix product operator (MPO) represen-
tation of the operators W and V. We consider Heisenberg
time evolution representation of the W operator to obtain
WðtÞ ¼ expðiHtÞW expð−iHtÞ through the time-evolving
block decimation (TEBD) algorithm. Figure 9 illustrates
the application of Heisenberg time evolution to a generic
operator W for one Trotter step. In this figure, the blue
blocks denote the MPO representation of the operator
W, while the green blocks constitute the MPO represen-
tation of unitary evolution operator eiHijδt, where i and j
represent the neighboring site indices. Then the resulting

time evolved operatorWðtÞ can be plugged into the OTOC
calculation.
In the absence of deformation of the coupling paramters,

the flat space transverse Ising model is recovered and a
linear light cone is observed (Fig. 10). If we turn on the
hyperbolic deformation by tuning lmax to a nonzero value,
we observe that the system develops a warped light cone. In
Figs. 10 and 11 and the rest of the plots of OTOCs, the red
dots in the out of time ordered correlator plots represent the
times where the OTOC at that lattice site first deviates from
1.0 by some amount ϵ ¼ 0.25. These resultant points trace

FIG. 8. Heisenberg time evolution for a local operator.
FIG. 9. Heisenberg time evolution for an operator WðtÞ.

FIG. 10. OTOC [OiðtÞ] for the planar Ising model can be
obtained by setting the deformation scale lmax to zero. Param-
eters: J ¼ 6.0, h ¼ 3.05, m ¼ 0.25.

FIG. 11. OTOC [OiðtÞ] in the hyperbolic Ising model. Param-
eters: lmax ¼ 3.0, J ¼ 6.0, h ¼ 3.05, m ¼ 0.25.
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out the light cone shown in the plot. The purple line which
is shown to guide the eye corresponds to a curve of the form

t ¼ log

����x − N þ 1

2

����þ B;

where, B is a constant.
We found that to access the logarithmic regime of the

model the physical couplings J and h need to be tuned to be
close to their critical values. The remaining physical
coupling m then controls the thermalization dynamics. In
Fig. 13 we plot the time evolution of the half-chain von
Neumann entropy which shows how m controls the
thermalization. We can also look at the site-averaged
OTOCs which are plotted in Fig. 12. This clearly show
a power-law dependence on t as the system thermalizes.
Note that the value of m does not affect the structure of

the light cone and only controls the thermalization time. In
fact the shape of the light cone is determined by the value of
lmax. For N ¼ 37 we found four distinct behaviors for the
light cone. For 0.0 < lmax < 1.0 we find a linear light cone.
Then for 1.0 < lmax < 2.0 we see a power-law behavior
while for 2.0 < lmax ≤ 3.0 the light cone takes on a
logarithmic behavior. Finally for lmax > 4.0 the system
confines and an excitation that has been initialized in the

bulk never reaches the boundaries of the chain. We
summarize this structure in the cartoon of the OTOC
phase diagram of the model in Fig. 14 and more figures
that show these distinct propagation patterns can be seen in
Appendix. D.
The dependence on lmax can be clearly seen in Fig. 15

where we plot the local light-cone time obtained from
OTOC calculations vs the lattice site, starting from the
middle of the chain and ending at the first site. The black
curves show the logarithmic fits for l ≥ 3.0. Error bars on
the points are obtained by taking multiple cutoff values and
averaging over them.
Even though we focused solely on the choice of WðtÞ ¼

σzðtÞ and V ¼ σz for the OTOC calculations, it is possible
to choose other combinations of operators. One such choice
corresponds to taking σx operators for both WðtÞ and V
operators which results in the plot shown in Fig. 16. We
observe the shell-like structure of the XX-OTOC which is
similar in behavior with the flat-space transverse Ising
model analyzed by Lin and Motrunich in [67]. As can be
seen from the Fig. 16, the points inside the light cone
are significantly less prominent as compared to their
ZZ-OTOC counterparts. The authors attributed this behav-
ior to the commutation structures of the time evolved
operators [67].

FIG. 12. Site averaged OTOC for J ¼ 6; h ¼ 3.05;
m ¼ 0.25; lmax ¼ 3.0.

FIG. 13. von Neumann entropy for J ¼ 6; h ¼ 3.05;
lmax ¼ 3.0.

FIG. 14. OTOC phase diagram for N ¼ 37 lattice spins.

FIG. 15. Curvature dependence of the propagation behavior of
OTOC for N ¼ 37; J ¼ 6.0; h ¼ 3.05; m ¼ 0.25.
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B. Quantum simulation of OTOCs

In this subsection, the computation of the OTOC with
digital quantum computers is discussed. First, let us write
down an alternative definition of the OTOC for a N-qubit
system

Oeig
i ðtÞ ¼

hψ jðWðtÞNþ1
2
V†
i WðtÞNþ1

2
ViÞjψi

hψ jðWNþ1
2
ðtÞ2V†

i ViÞjψi
; ð12Þ

where jψi represents an arbitrary state. The schematic
circuit diagram to compute this quantity is shown in the
Fig. 17. From this schematic diagram and the discussion
of the Trotter evolution in the previous section, it is
evident that to compute the OTOC with Trotterized
evolution operator requires 8nðN − 1Þ CNOT gates for
the nth Trotter step. In our work we considered a spin chain
of length N ¼ 7, and used a trotter step δt ¼ 0.5 up to a
maximum time tmax ¼ 3.5. This indicates that a quantum
computation of the OTOC with a quantum circuit like
that of Fig. 17 would require more that 200 CNOT gates
in just four Trotter steps. Hence extracting any useful
results would become impossible at early times due to
coherent and incoherent noise in the device. Using a
weaved Trotterization technique, similar circuits were

implemented to compute OTOCs for a small system of
four qubits in [74].
Our goal in this section is to investigate if we can extract

the scrambling time at infinite temperature (ρ ∝ I) with the
current IBM devices for a system with 7 spins. As for tensor
network simulations we position the W operator at the
center of the lattice chain and vary the position i of the V
operator. Our choice for theW and V operators remains the
same as that of the previous section. With quantum
simulation, we also would like to see if the simulation
can identify the difference in the scrambling time as we
vary the position of the V operator. Many protocols for
computing OTOCs have been proposed [51,75–79] and
many authors have also suggested some modified quantities
that also contain scrambling information [74,77]. For
example, to reduce the computational cost the magni-
tude-squared of OTOC (jFj2, see Eq. (10) for definition
of F) can be computed ignoring the phases [77]. In this
paper, we have used the protocol proposed by Vermersch
et al. to compute both the OTOC and the modified
OTOC [80]. The gate cost per circuit for computing the
modified OTOC of zeroth order using this protocol is
∼2nðN − 1Þ, which is significantly lower than the gate-
count needed in the straightforward evaluation presented by
Fig. 17. Also the protocol we have chosen does not require
any ancilla qubits unlike some other OTOC computation
protocols.
Vermersch et. al. [81] discussed a “global protocol” to

compute the OTOC and a ‘local protocol’ for computing
modified OTOCs. Both protocols require state preparation
of random states created from random unitary operators.
The idea is to sample enough random states to mimic a
thermalized scenario for the computation of the OTOC.
Mathematically, the global protocol relies upon the follow-
ing equation

Tr½WðtÞV†WðtÞV� ¼ 1

DðDþ1ÞhWðtÞiu;k0hV†WðtÞViu;k0 ;

ð13Þ
where, D is the dimension of the Hilbert space. On the
right hand side, the overline denotes an ensemble average
of measurements over a set U ¼ fu0; u1; � � �uNU

g of
random unitary operators and k0 is an arbitrary initial
state. Each unitary in the set U is a N-qubit unitary.
Implementation of the global protocol requires creating a
N-qubit random unitary operator that is applied to an input
state of N qubits. Decomposition of an N-qubit unitary is
costly in terms of the entangling gates. Moreover, for
a specific precision, the local protocol needs a smaller
number of measurements [51]. As a result, we have found it
convenient to implement the local protocol in Fig. 18 which
requires just N random unitaries per run. Depending on the
number of initial states jkii ¼ fk0; k1; � � � k2ng being used,
the modified OTOCs of different orders n can be computed.
The larger the order n of the modified OTOC, the better

FIG. 16. XX-OTOC for N ¼ 37; J ¼ 6.0; h ¼ 3.05; m ¼ 0.25.

FIG. 17. Schematic circuit diagram of OTOC using the defi-
nition at Eq. (12).
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it approximates the original OTOC while the specific n
needed is model dependent. Indeed, there is evidence that
the modified OTOCs contain the needed information on
entanglement spreading [51].
For numerical justification of the Eq. (13) and for the

connection of the different OTOC definitions, readers are
advised to consult Appendix C. Here, for completeness, we
outline the steps to compute the modified OTOC of
zeroth order:

(i) We prepare an arbitrary initial state jk0i [position 1
in Fig. 18(a)]. The initial state preparation step can
be avoided if the all-zero state j0i ¼ j0000000i is
chosen as the starting quantum state. Then, a set
of unitary gates ui ¼ fUi

0; U
i
1;…; Ui

N; g are applied
to each qubit, which results in a random state
jψ1i ¼ Ui

0 ⊗ Ui
1 ⊗ � � � ⊗ Ui

N j0i at position 2 in
the Fig. 18(a).

(ii) Next the time evolution of the random state is
computed using the Trotterized evolution operator
UðnÞ¼½expð−iĤδtÞ�n. This yields jψ2i ¼ UðnÞjψ1i
at position 3 in the Fig. 18(a).

(iii) The necessary gates are then applied to compute the
observable W in the computational basis. In our
case, since W ¼ σzi , projective measurements of
qubit i allows us to compute hWðtÞi ¼ p0 − p1,
where p0ð1Þ is the probability of measuring the qubit
in the zero (one) state. We use Nshots ¼ 200 for
computing the expectation value of the operator.

(iv) In a similar fashion, if we include the V operator
after creating the random state jψ1i [Fig. 18(b)],
the previous two steps can be applied to compute
hV†WðtÞVi.

(v) The process is repeated NR ¼ 180 times. Thus,
measuring hWi (or hVWVi) requires generating a
total ofNU ¼ NR × N unitary matrices of size 2 × 2,
with each unitary matrix drawn randomly from the

circular unitary ensemble (CUE) [82]. CUE(n)
represents a uniform distribution over the unitary
square matrices of dimension n—the Haar measure
of the unitary group UðnÞ.

(vi) Finally, an ensemble average of the quantity
hWðtÞiu;k0

hVWðtÞViu;k0
is computed which is a

measure of the modified OTOC of the zeroth order.
With the proper normalization, the modified OTOC of
the zeroth order O0ðtÞ, can be described by the following
equation

O0ðtÞ ¼
hWðtÞiu;k0

hVWðtÞViu;k0

hWðtÞiu;k0
hWðtÞiu;k0

: ð14Þ

Using the steps described above, operator expectation
values hWðtÞi and hVWðtÞVi are computed with the same
set of unitaries. Figure 19 shows measurements of these
operators. Initially the operators are correlated [Fig. 19(a)]
while over time due to operator spreading the operators
become decorrelated [Fig. 19(c)] which signifies a loss of
memory of the initial state. As the resources required for the
computation of higher order OTOCs is large we have only
computed the zeroth order OTOC in this study correspond-
ing to the plot in Fig. 20. NU ¼ 180 × N unitaries were
used for this simulation and each measurement required
NM ¼ 200 shots. These numbers were chosen carefully
using a noise model simulation so as to minimize the
overall cost for implementing the protocol with current
quantum devices. From the figure, it is seen that mitigated
results with the IBM Sherbrooke machine compare well
with results from exact diagonalization. Dynamical
decoupling (DD) was used to compensate coherent noise
and M3 was used for the readout error mitigation. Our
studies show that applying noise mitigation techniques is
important in recovering scrambling information with
current NISQ-era devices.

Arbitrary
State

1 2 3

Arbitrary
State

FIG. 18. Modified OTOCs are computed from the correlation of the measurement of two different operators (a) hWðtÞi and
(b) hV†WðtÞVi. The same set of unitaries are required to find the correlation between the measurements. The process is repeated for
many different sets of unitaries.
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The dependence of the speed of information spread on
the position of the V operator can be seen in Fig. 21 where
it is compared with classical Python-Trotter simulations.
The error bars in the simulation indicate the jackknife error
due to the choice of different sets of random unitaries. For a
fixed number of unitaries NU, the error can be reduced

at the expense of increased computational resources, that
is, by increasing the number of shots Nshots. On the other
hand, increasing the number of unitaries NU also reduces
the error, allowing us to better approximate the trace in
Eq. (13) with the ensemble average on the right-hand side.
Clearly, the measured values obtained with the IBM device
without mitigation deviate from the ideal Python Trotter
results, indicating the presence of different sources of noise
in the device. The mitigated results agree rather well
and can depict the difference in speed due to the varied
distance d ¼ jj − ij of theWi and Vj operators. It would be
intriguing to see in the future whether we can use more
computational resources to compute higher-order modi-
fied OTOCs.
Additionally, investigating the scrambling time and

quantum Lyapunov exponents with quantum computers
could be an exciting avenue for the future research.

V. CONCLUSION

In this paper, we have investigated the transverse
quantum Ising model discretized on two dimensional
anti–de Sitter space. In practice this is implemented by
using site dependent couplings which mock up the metric
factors corresponding to a one dimensional hyperbolic
space. We computed the time evolution and OTOCs of the
model using both tensor network methods and quantum
simulations using both gate based quantum computers as
well as simulation on analog quantum computers that use
Rydberg arrays. We showed that the time evolution and
OTOCs obtained from the quantum simulations agree well
with the tensor network calculations.
The use of new publicly available universal quantum

computers and new mitigation techniques allowed reliable
time-evolution calculations with up to 13 qubits. In
previous work on related real time evolution of systems
of comparable difficulty [58,60,83,84], reliable 4 qubit
calculations were reported but extensions to 8 qubits were
unsuccessful. Additionally, to the authors’ best knowledge,
this is the first time a protocol to compute OTOCs has been
implemented for a seven qubit system using an IBM QPU,

FIG. 19. Change in correlation of the operators hWðtÞi ¼ hσz3ðtÞi and hVWðtÞVi ¼ hσz2σz3ðtÞσz2i over time. Parameters:
lmax ¼ 3.0; J ¼ −0.5, h ¼ −0.525, WðtÞ ¼ σz3ðtÞ, and V ¼ σz2.

FIG. 20. Modified OTOC of the zeroth order, O0ðtÞ for
lmax ¼ 3.0; J ¼ −0.5, h ¼ −0.525, WðtÞ ¼ σz3ðtÞ, and V ¼ σz2.

FIG. 21. Modified OTOC as the position i of the V operator
varies. Parameters: lmax¼3.0;J¼−0.5,h¼−0.525,WðtÞ¼ σz3ðtÞ,
and V ¼ σzi .
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superseding a previous attempt with four qubits. From this
perspective, the results presented here give a sense of the
progress in quantum hardware and software in the last few
years. Nevertheless, this remains a relatively small number
of qubits and the boundary effects are significant. These
boundary effects are of potential interest [85–87] and could
be studied in more detail for their own sake.
We found that depending on the parameters of the model

it is possible to have different profiles for the light cones
that describe the propagation of information in the system.
Perhaps most intriguingly we find a regime of the critical
system where the direction of the light cones in global
coordinates displays a logarithmic dependence on bulk
distance. This behavior implies that the scrambling time
characterizing thermalization in this system depends only
logarithmically on the number of degrees of freedom. Such
a behavior is usually seen in models with long or even
infinite range interactions while our model has only nearest
neighbor interactions. We believe that this makes this
model a very interesting candidate for future studies of
scrambling in quantum spin models.
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APPENDIX A: DIGITAL QUANTUM
SIMULATION OF THE MAGNETIZATION

In this appendix, we present some observations of the
simulation with digital quantum computing processors
which would be useful for investigation of quantum field
theories with quantum computers for interested readers.

1. Statistical error

In this subsection, we discuss statistical errors asso-
ciated with different number of shots. Figure 22 shows

FIG. 22. Shot noise analysis at Guadalupe machine is presented with local magnetization data. Shot noise associated for each trotter
step is demonstrated in the bottom panel for the better visualization. The number in the labels denote the number of shots applied for
measurements. Gap between the corresponding classical TEBD simulation results and QPU results indicate the presence of other
coherent and incoherent sources of noise. Parameters: J ¼ 2.0, h ¼ 1.05, lmax ¼ 3.0.
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magnetization results obtained from the Guadalupe quan-
tum computer with 200, 500, and 1000 shots. With our
choice of the parameters, we find that the information about
the magnetization is completely lost after ∼7 Trotter steps
for some of the cases. As a result, for the followup
discussion, we considered data up-to the sixth trotter step.
Varying the number of shots (Nshots) reduces the statistical
error (ϵstat) and is roughly consistent with the relation
ϵstat ∝ 1=

ffiffiffiffiffiffiffiffiffiffiffi
Nshots

p
. Statistical errors were computed from

data obtained from the six measurement sessions at differ-
ent times. It is noteworthy that we do not see significant
differences in the central value of the measurements. The
central value stabilizes with the increase in the number of
sessions. From our analysis, we find that the systematic
error is much larger than the shot noise error. Hence, it is
necessary to develop error-correction routines to recover
correct results. With the NISQ-era devices, fault-tolerant
computation is not feasible due to conflicting requirements
of low fidelity of the qubits and the large qubit overhead for
error-correction protocols. However, different error miti-
gation techniques can be applied to scale up the number of
qubits for simulation in the current NISQ-devices. In the
following section, we discuss the application of the differ-
ent error mitigation techniques to improve results obtained
from the quantum processing units.

2. Operator ordering

Fig. 23 demonstrates how the local magnetization of
N ¼ 13 qubit lattice chain obtained from the Guadalupe
QPU compares with different operator-ordering. To address
the question of the operator-ordering we exclude mitigation
techniques and circuit optimization techniques. Each data
point was obtained from the average of six experiments
each with 200 shots. Here, the label “sequential” implies
that the continuum evolution operator is approximated as

Useq ¼
Y
l

hlint
Y
k

hkx; ðA1Þ

whereas, the following ordering of operator denotes “odd-
even” ordering of operators

Uodd-even ¼
Y
l;even

hlint
Y
l;odd

hlint
Y
k

hkx: ðA2Þ

Local operators are defined as hkx ¼ expð−i h
2
ηkσ

x
kÞ and

hlint ¼ expði J
4

ðηlþηlþ1Þ
2

σzlσ
z
lþ1Þ.

We did not find a particular choice of the operator
ordering to be an important factor in the noisy Guadalupe
device. Indeed, it is likely that the systematic errors will
much larger than the differences in measurements associ-
ated with different choices of operator ordering in the
current NISQ devices.

3. Error mitigation

In this subsection, we discuss the importance of differ-
ent error mitigation techniques in the context of compu-
tations of the real time evolution of the magnetization
of our model. We first analyze results obtained with
dynamical decoupling (DD), then with a combination
of dynamical decoupling and M3 (DDþM3) mitigation
techniques, and finally with a combination of dynamical
decoupling, M3 and zero noise extrapolation (DDþ
M3þ ZNE) techniques.
Further observation on the combined cases of error

mitigation revealed that for some cases like hSz3ðtÞi in
Fig. 24(a), local magnetization data did not improve the
results much. In contrast, for some cases like Fig. 24(b),
the results were significantly improved and for the rest
[Fig. 24(c)], it is found that the results were improved only
for large trotter steps.
On top of the dynamical decoupling and readout error

correction technique, we applied zero noise extrapolation
(ZNE) to mitigate incoherent noise. The first step in the
process is to scale up the noise systematically by generating
unitary gate-folding or pulse-stretching.3 We used unitary
folding by mapping a two-qubit operator U → UU†U. For
pair of CX gates that are added one increases the noise-
level by a factor of three. The second step is to perform

FIG. 23. Comparison of Trotter evolution of magnetization results with different operator ordering. Parameters: J ¼ 2.0, h ¼ 1.05,
lmax ¼ 3.0.

3Pulse stretching needs pulse level access to device where the
amount of noise introduced is controlled by the duration of the
pulse applied to implement different gates.

ASADUZZAMAN, CATTERALL, MEURICE, and TOGA PHYS. REV. D 109, 054513 (2024)

054513-12



measurements in the folded circuits and finally use these
measurements with different noise levels to extrapolate a
zero noise limit of the observables. Fig. 25 clearly
demonstrates that increasing the noise by adding more
unitaries causes the experimental values to deviate further
away from the classically computed results with TEBD.
The noise scaled values that are obtained for local mag-
netization hSzi i at a time t0 are then used to extrapolate zero-
noise value by linear extrapolations [Figs. 26(a) and 26(b)].
Extrapolated values obtained at different trotter step are
then combined to produce the time dependent magnetiza-
tion curve Fig. 26(c).

APPENDIX B: MAGNETIZATION RESULTS
FOR A RYDBERG SYSTEM

In this appendix, we report on quantum simulations of
this model using Rydberg arrays. The Hamiltonian that
governs the Rydberg simulator can be written as,

ĤRðtÞ ¼
X
j

ΩjðtÞ
2

ðeiϕjðtÞjgjihrjj þ e−iϕjðtÞjrjihgjjÞ

−
X
j

ΔjðtÞn̂j þ
X
j<k

Vjkn̂jn̂k; ðB1Þ

FIG. 24. Comparison of magnetization results with different mitigation techniques and their combinations. Parameters: J ¼ 2.0,
h ¼ 1.05, lmax ¼ 3.0.

FIG. 25. Comparison of Trotter evolution of magnetization results in different noise scaled circuits. Noise scale ¼ n indicates n-fold
noise compared to the original circuit for the Trotter evolution of the local magnetization. Parameters: J ¼ 2.0, h ¼ 1.05, lmax ¼ 3.0.

FIG. 26. (a–b) Example of the extraction of the zero noise extrapolated data (red cross) at the second and the sixth trotter step, obtained
from the measurements of the noise-scaled-circuits at Guadalupe machine. (c) Extrapolated values are obtained for all trotter steps to
plot ZNE data of the local magnetization. Parameters: J ¼ 2.0, h ¼ 1.05, lmax ¼ 3.0, δt ¼ 0.2.
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where, ΩjðtÞ is the Rabi frequency, ϕjðtÞ denotes the laser
phase, ΔjðtÞ the detuning parameter at site j. Van der Walls
interaction Vjk ¼ C6=jrj − rkj6 is known as the Rydberg
interaction term with C6¼ 2π×862690MHzμm6 [88–90].
Different operators in the hyperbolic Ising Hamiltonian

can be mapped to different operators of the Rydberg
Hamiltonian with the choice of zero laser phase ϕjðtÞ at
all sites,

ĤRðtÞ ¼
X
j

ΩjðtÞ
2

ðjgjihrjj þ jrjihgjjÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
σxj

−
X
j

ΔjðtÞ n̂j|{z}
ð1−σzjÞ

þ
X
j<k

Vjk n̂jn̂k|ffl{zffl}
ð1−σzjÞð1−σzkÞ

: ðB2Þ

The Rydberg interaction potential, Vjk determines the
position of the atoms to quantum simulate the hyperbolic
Hamiltonian. Due to the hyperbolic deformation, it is
expected that we need to position the atoms nonuniformly.
This is achieved by placing the atoms starting at location
(0, 0) and using Eq. (B3) to find the distances between
successive spins:

δiþ1 ¼ ðA=ηiÞ1=6 þ ri: ðB3Þ

This equation is just the rearranged form of A
ðriþ1−riÞ6 ¼

cosh li which is the form of the Rydberg potential.
Here, A ¼ 2π × 512 is a constant for adjusting the scale,
ηi ¼ J coshðliÞ is the hyperbolic deformation and ri is the
location for the ith site. We set J ¼ 1 for the rest of our
discussion of Rydberg simulations.
Using this procedure we get the following locations for

the Rydberg atoms for lmax ¼ 3.0 where the resulting
distances between atoms range from 12.13 μm, to
17.72 μm with the furthest atom located at 180.77 μm
from the origin.
The form of Δj and Ωj is then given by equating the

coefficients to the form of the Rydberg potential between
the atoms

Δj ¼ Ωj ¼
10 × C6

ðrjþ1 − rjÞ6
: ðB4Þ

However, currently commercially available Rydberg
machines are constrained to have only global laser param-
eters. Hence we have turned to the Bloqade Simulator
developed by QuEra to perform simulations [91]. Figure 27
shows a picture of the time evolution of the Rydberg
density (essentially hSzi). Notice that Fig. 27 exhibits
similar warping effects to those seen in the TEBD simu-
lations of the model. This shows us that our model can be
simulated with Rydberg Arrays. We hope that in the future
with advancements in the Rydberg array technologies, we
will be able to probe information propagation in this model
with Rydberg simulators. However even with a local
detuning it might not be possible to probe the whole
spectrum of the model due to limitations in chain length
and largeness of the Rabi and detuning term.

APPENDIX C: DIGITAL QUANTUM
SIMULATION: OTOC

In this section of the appendix, we will discuss some of
the details of the OTOC computation with quantum
simulators and quantum processing units.
Just like the magnetization, we need to pick a suitable

Trotter step to observe physics with current NISQ era
machines. Figure 28 demonstrates that δt ¼ 0.5 is a
suitable choice. As the OTOC drops from one to zero in
four Trotter steps, the entangling gate-cost for the mea-
surements of hWi and hVWVi (see Fig. 18 in the main text)
is manageable with current NISQ devices and a comparison
of the Trotterized version (without shot noise) of the results
and the exact-diagonalized results reveal that the Trotter
error associated with the trotter step is not large enough to
obscure the physics we are interested in (Fig. 28).
We conclude this section of the appendix by justifying

Eq. (13) numerically. In Fig. 29, we compared the
OTOC computed from the trace definition with the results
obtained from the global protocol developed by Vermersch
et. al. [51] with numerics. For a mathematical proof of the

FIG. 27. Time evolution of the Rydberg density.
FIG. 28. Choice of the Trotter step δt ∼ 0.5 seems a good
choice for the OTOC computation with our choice of parameters.
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identity, please see the appendix in [92]. Higher order
modified OTOCs computed from the local protocol yields
the same result as that of global protocol [81].

APPENDIX D: EXAMPLES OF DIFFERENT
PROPAGATION PATTERNS OF OTOCs

As shown in the cartoon phase diagram for the OTOCs in
Fig. 14 there are many distinct characteristics for the
propagation of the OTOCs. Here we give more examples
for these different behaviors starting from the power law
spreading which can be seen in Fig. 30.
And finally we also give an example for the confined

behavior which can be seen in Fig. 31 of the OTOC
propagation.
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