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The reconstruction of spectral functions from Euclidean correlation functions is a well-known, yet ill-
conditioned inverse problem in the fields of many-body and high-energy physics. In this paper, we present
a comprehensive investigation of two recently developed analytic continuation methods, namely stochastic
pole expansion and Nevanlinna analytic continuation, for extracting spectral functions from mock lattice
QCD data. We examine a range of Euclidean correlation functions generated by representative models,
including the Breit-Wigner model, the Gaussian mixture model, the resonance-continuum model, and the
bottomonium model. Then, we apply the two methods to reconstruct spectral functions from charmonium
correlation functions computed using lattice QCD simulations at a finite temperature. Our findings
demonstrate that the stochastic pole expansion method, when combined with the constrained sampling
algorithm and the self-adaptive sampling algorithm, successfully recovers the essential features of the
spectral functions and exhibits excellent resilience to noise of input data. In contrast, the Nevanlinna
analytic continuation method suffers from numerical instability, often resulting in the emergence of
spurious peaks and significant oscillations in the high-energy regions of the spectral functions, even with
the application of the Hardy basis function optimization algorithm.
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I. INTRODUCTION

LatticeQCD(LQCD) is awell-established first-principles
and nonperturbative approach for studying strong inter-
actions [1–3]. It serves as a valuable tool in under-
standing the genesis and evolution of the quark-gluon
plasma (QGP) [4] and mapping out the phase diagram
of strong-interaction matter [5–7]. In LQCD, spectral
functions play a vital role in scrutinizing and elucidating
high-energy physical phenomena that involve quarks and
gluons, such as the melting of heavy quarkonium [8–15]
and the transport properties [16–18] of the QGP formed
through relativistic heavy-ion collisions. However, access-
ing the spectral functions and other dynamical properties of
the QCD medium from lattice simulations remains chal-
lenging due to LQCD’s typical formulation on a discrete
Euclidean space-time grid [1–3]. Therefore, researchers
must reconstruct the spectral functions from numerically

computed Euclidean correlation functions on the lattice to
understand the relevant physics and compare the theoretical
results with corresponding experimental data obtained from
the Relativistic Heavy Ion Collider (RHIC) and the Large
Hadron Collider (LHC).
Mathematically, the Euclidean correlators GðtÞ and the

correspondingly spectral functions ρðsÞ are connected
through a Fredholm equation of the first kind: GðtÞ ¼
Kðt; sÞ⊛ρðsÞ, whereKðt; sÞ represents a continuous kernel
function and⊛ signifies convolution. Mapping the spectral
functions to the Euclidean correlators is a straightforward
process that can be easily accomplished using numerical
integration. Nevertheless, extracting spectral functions from
Euclidean correlators through numerical analytic continu-
ation poses a formidable challenge [19]. We observe that
similar inverse problems are quite common in many-body
and high-energy physics [1,20]. They are considered ill
conditioned. There are two main reasons for this statement.
First, the Euclidean correlators are evaluated at a finite
number of points due to the space-time discretization in
LQCD [1–3]. Secondly, as LQCD simulations rely on
stochastic Monte Carlo sampling, the resulting Euclidean
correlators are inherently noisy [21]. Even small deviations
or fluctuations in the Euclidean correlators result in signifi-
cant uncertainties in the spectral functions. As a result, the
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majority of resulting spectral functions exhibit high oscil-
lations and lack physical significance, thereby inhibiting a
reliable comparison between the theoretical spectra and
experimental data. To address these issues, researchers have
developed a plethora of analytic continuation approaches in
the past decades. Next, wewill briefly introduce some of the
most commonly employed methods in LQCD simulations.
Maximum entropy method. The maximum entropy

method (MaxEnt) is perhaps the most popular analytic
continuation tool, and it has dominated this field for a long
time. In this method, the spectral density is interpreted as a
probability distribution [22–25]. The primary objective
is to extract the most probable spectral density ρ from
the correlation function G and maximize the posterior
probability Pr½ρjG�. According to Bayes’s theorem,
Pr½ρjG� ∝ Pr½Gjρ� Pr½ρ�, where Pr½Gjρ� is the likelihood
function and Pr½ρ� is the prior probability. It is important
to incorporate analytical knowledge related to spectral
properties in LQCD, such as positive definiteness or even
the presence of pole structures within the spectra, into the
probability distribution. A significant portion of the prior
information could be encoded within the prior probability
Pr½ρ�, which is proportional to exp ðαSÞ, where α is a
regulation parameter and S denotes entropy. It is worth
emphasizing that the entropic term αS is not unique and
typically takes the form of the generalized Shannon-Jaynes
entropy [22,23]. Another popular alternative is the Bayesian
reconstruction entropy [25,26].While theMaxEntmethod is
widely recognized for its efficiency and noise-tolerance, it
sometimes struggles to faithfully recover sharp, subtle, and
high-frequency features within the spectral functions.
Stochastic analytic continuation. In the past decade, the

stochastic analytic continuation method (SAC) and its
variants have emerged as formidable contenders to surpass
the MaxEnt method [27–37]. Unlike the MaxEnt method,
the SAC method treats all spectral functions equally instead
of selecting the most probable one. Initially, the spectral
functions are parametrized with hundreds or thousands of
δ-like functions. And then these parameters, such as the
amplitudes and locations of the δ functions, are stochas-
tically sampled at a fictitious temperature Θ using a
Boltzmann-like weight function, which essentially serves
as a likelihood function [27,28]. Finally, the gathered
spectral functions are filtered and averaged. We note that
Shao and Sandvik have proven the equivalence in a
generalized thermodynamic limit (large number of degrees
of freedom) of the average spectrum and the maximum
entropy solution [38]. Although the SAC method supple-
ments the MaxEnt method by enabling the resolution of
subtle structures in spectra, it requires significant computa-
tional resources [32].
Machine learning approaches. In recent years, several

machine learning aided methods have been developed to
address the analytic continuation challenges in LQCD
simulations. These methods include the deep neural

networks (DNN) [39,40], radial basis functions network
(RBFN) [41], entropy variational autoencoder (SVAE) [42],
kernel ridge regression (KRR) [43], automatic differentia-
tion (AD) [44], Gaussian processes regression (GPR) [45],
and many others. Although these methods may offer
improved performance in certain situations, their universal-
ity is not guaranteed. Furthermore, some studies have
adopted supervised approaches to train machine learning
network models, which incorporate prior knowledge from
specific physics insights into the training sets. However,
caution must be exercised as there is a risk of introducing
biases in the training data.
Recently, two new analytic continuation methods,

namely the stochastic pole expansion (SPX) [46] and the
Nevanlinna analytic continuation (NAC) [47,48], have been
proposed. The SPX method inherits the spirit of the SAC
method, where the Matsubara Green’s function is initially
parametrized with hundreds or thousands of poles.
Subsequently, the amplitudes and positions of these poles
are optimized using a stochastic algorithm that based on
stimulated annealing [49]. The SPXmethod is applicable to
fermionic and bosonic systems. It has been extended to
support analytic continuation of matrix-valued Green’s
functions [46]. On the other hand, similar to the Padé
approximation (PA) [50–53], the NAC method aims to
interpolate the Matsubara data in the complex plane using
some form of continued fraction expansion [47,48]. It takes
the “Nevanlinna” analytic structure of the Matsubara
Green’s function into consideration, ensuring that the
calculated spectral functions are inherently positive and
normalized. However, this method is highly sensitive to the
noise level in the raw Matsubara data. With noiseless data
as input, it can successfully resolve complex spectral
functions across a wide energy range with unprecedented
accuracy. Unfortunately, when the Matsubara data contains
noise, the Nevanlinna interpolants may not exist, and the
resulting spectral functions are not guaranteed to be causal.
Both the SPX and NAC methods have not yet been

employed in addressing the issue of analytic continuation
in the LQCD simulations, and it remains uncertain whether
they are applicable for the analytic continuation of
Euclidean correlation functions. Therefore, the purpose
of this study is to fill this knowledge gap and expand the
potential applications of these methods. We at first generate
noisy Euclidean data using four representative models: the
Breit-Wigner model, the Gaussian mixture model, the
resonance-continuum model, and the bottomonium model.
These synthetic datasets are then processed using the SPX,
NAC, and MaxEnt methods. We also test these methods
using the realistic LQCD data, namely the charmonium
correlation functions. Finally, we conduct a comprehensive
comparison between the calculated spectra and the exact
solutions if available. The results suggest that the SPX
method manifests comparable or even superior perfor-
mance in comparison to the commonly used MaxEnt
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method. On the other hand, the NAC method tends to suffer
from numerical instability, even in the absence of noise in
the input data.
The structure of the remaining sections of this paper is as

follows: Sec. II provides an introduction to the basic
formulations of Euclidean correlation functions and offers
a brief overview of the SPX and NAC methods. In Sec. III,
we present the computational setups, demonstrate, and
discuss five representative examples. Section IV explores
the robustness of the SPX method and numerical instability
of the NACmethod in the presence of noisy Euclidean data.
Additionally, we analyze the effects of the constrained
sampling algorithm and the self-adaptive sampling algo-
rithm on the SPX method, along with the impact of the
Hardy basis function optimization algorithm on the NAC
method. Finally, our findings are summarized in Sec. V.

II. METHOD

A. Euclidean correlation function

At finite temperature, the Euclidean correlation function
GðτÞ is related to the spectral function ρðωÞ through [19]

GðτÞ ¼
Z

∞

0

dωρðωÞ cosh ½ωðτ − β=2Þ�
sinh ðβω=2Þ : ð1Þ

Here β ¼ 1=T represents the inverse system temperature,
and τ represents the Euclidean (imaginary) time interval
(τ∈ ½0; β�). In momentum space, the expression for the
Euclidean correlation function is [54]

GðpÞ ¼
Z

∞

0

dωρðωÞ ω

ω2 þ p2
; ð2Þ

where p represents the Euclidean (Matsubara) frequency,
the value of GðpÞ can be derived by performing a discrete
Fourier transform onGðτÞ. In the references, Eq. (2) is also
known as the Källén-Lehmann (KL) spectral representa-
tion [55]. By applying the process of analytic continuation,
the retarded propagator GRðωÞ can be attained, enabling
the extraction of the spectral function through the follow-
ing expression:

ρðωÞ ¼ −
1

π
ImGRðωÞ; ð3Þ

where ω ¼ −ip. It is important to note that ρðωÞ must be
an odd function for bosonic system, i.e., ρð−ωÞ ¼ −ρðωÞ.

B. Stochastic pole expansion

According to the textbooks of many-body physics,
the Lehmann representation of the finite temperature
many-body Green’s functions is given by the following
formula [20,56]:

GðzÞ ¼ 1

Z

X
m;n

hnjdjmihmjd†jni
zþ En − Em

�
e−βEn � e−βEm

�
: ð4Þ

In this expression, d and d† represent the annihilation
and creation operators, respectively. jni and jmi are the
eigenstates of the Hamiltonian Ĥ, and En and Em are
the corresponding eigenvalues. Z ¼ P

n expð−βEnÞ is the
partition function. z∈CnR. The positive sign corresponds
to fermions, while the negative sign corresponds to bosons.
By introducing Amn ¼ hnjdjmihmjd†jniðe−βEn � e−βEmÞ=Z
and Pmn ¼ Em − En, Eq. (4) can be simplified as:

GðzÞ ¼
X
m;n

Amn

z − Pmn
: ð5Þ

It is evident that only terms where Amn ≠ 0 can be present.
The indices m and n can also be compressed as γ, resulting
in the following expression:

GðzÞ ¼
XNp

γ¼1

Aγ

z − Pγ
: ð6Þ

Equation (6) is referred to as the pole representation of the
many-body Green’s functions [20]. In this representation,
Np denotes the number of poles, and Aγ and Pγ mean the
amplitude and position of the γth pole. For the Euclidean
correlation in momentum space, its pole representation can
be reformulated as follows:

GðpÞ ¼
XNp

γ¼1

Ξðp; PγÞÃγ: ð7Þ

Here, Ξ represents the kernel matrix, which is calculated
using the following equation:

Ξðp;ωÞ ¼ −
Gð0Þω
p − ω

: ð8Þ

Ãγ is the renormalized amplitude of the γth pole, given by:

Ãγ ¼ −
Aγ

Gð0ÞPγ
: ð9Þ

It can be easily proven that Ãγ and Pγ must satisfy the
following constraints:

∀ γ; 0≤ Ãγ ≤ 1;
X
γ

Ãγ ¼ 1; and Pγ∈R: ð10Þ

We assume that the input Euclidean correlation function
is denoted as GðpnÞ, and the input data consists of N
frequency points. We then utilize Eq. (7) to approximate the
Euclidean data. To assess the discrepancy between GðpnÞ
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and GðpnÞ, we introduce the so-called goodness-of-fit
function χ2. Its definition is as follows:

χ2
h
fÃγ; PγgNp

γ¼1

i
¼ 1

N

XN
n¼1

����GðpnÞ −
XNp

γ¼1

Ξðpn; PγÞÃγ

����
2

F

;

ð11Þ

where k·kF represents the Frobenius norm. Hence, the
objective of the analytic continuation is to solve the
subsequent multivariate optimization problem:

arg min
fÃγ ;PγgNp

γ¼1

χ2
h
fÃγ; PγgNp

γ¼1

i
: ð12Þ

Once the optimized parameters Np, Ãγ, and Pγ are
determined, evaluating the retarded Green’s function is
straightforward by substituting p with ωþ i0þ in Eq. (7).
Additionally, the spectral function ρðωÞ is computed using
Eq. (3). It is important to note that this optimization
problem [i.e., Eq. (12)] is highly nonconvex. Traditional
gradient-based optimization methods typically fail to iden-
tify the global minimum unless the initial solution is of high
quality [57]. Therefore, in the SPX method, we employ
the simulated annealing algorithm [49] to optimize the Ãγ

and Pγ parameters subject to the constraints defined by
Eq. (10). For technical details regarding the possible
Monte Carlo random walking rules in the configuration
space C ¼ fÃγ; Pγg, please refer to Ref. [46]. The advan-
tages of the SPX method include its ability to derive
approximate expressions for correlation functions and its
ease of extension to support the analytic continuation of
bosonic systems, two-particle Green’s functions, matrix-
valued Green’s functions, and so on. Applications to noisy
Matsubara data suggest that the SPXmethod can accurately
resolve both continuum spectra for condensed matter cases
and multiple δ-like peaks for molecule cases. Notably, it
performswell in reproducing sharp high-frequency features.

C. Nevanlinna analytic continuation

It is well known that the retarded Green’s function,
denoted as GRðωþ i0þÞ, and the Matsubara Green’s
function, denoted as GðiωnÞ, can both be consistently
represented as GðzÞ, where z∈CnR. The NAC method
utilizes the fact that the negative fermionic Green’s func-
tion, denoted as fðzÞ ¼ −GðzÞ, belongs to the class of
Nevanlinna functions. By applying the invertible Möbius
transform hðzÞ ¼ ðz − iÞ=ðzþ iÞ to the function value of
fðzÞ, the Nevanlinna function is mapped in a one-to-one
fashion to a contractive function θðzÞ ¼ h½fðzÞ�. This
contractive function θðzÞ can be expressed in the form
of a continued fraction expansion, and an iterative algo-
rithm can be constructed accordingly [47]. The recursion
relation between two steps θjðzÞ and θjþ1ðzÞ is given by:

θjðzÞ ¼
θjþ1ðzÞ þ γj

γ�jhjðzÞθjþ1ðzÞ þ 1
: ð13Þ

In this equation, hjðzÞ ¼ ðz − YjÞ=ðzþ YjÞ, Yj ¼ iωj

represents the jth Matsubara frequency used, and γj ¼
θjðYjÞ represents the function value of the jth contractive
function at the point Yj. The final expression of the
recursive function θðzÞ can be written as [58]:

θðzÞ½z; θNsþ1ðzÞ� ¼
aðzÞθNsþ1ðzÞ þ bðzÞ
cðzÞθNsþ1ðzÞ þ dðzÞ ; ð14Þ

where

�
aðzÞ bðzÞ
cðzÞ dðzÞ

�
¼

YNs

j¼1

� hjðzÞ γj

γ�jhjðzÞ 1

�
; ð15Þ

with j increasing from left to right. Here Ns is the overall
iteration step, which is equivalent to the number of data
points. After obtaining θðzÞ, one can immediately get the
Green’s function by an inverse Möbius transform as
GðzÞ ¼ −h−1½θðzÞ�. Note that the Pick criterion [59] should
be fulfilled for the existence of the Nevanlinna interpolation.
Additionally, it is worth noting that there is flexibility in

choosing θNsþ1ðzÞ, which can be used to select the most
desirable spectral function. In Ref. [47], θNsþ1ðzÞ is
expanded in the Hardy basis and chosen in such a way that
it achieves the smoothest possible spectral function [60].
The loss function employed in this selection process is
given by:

L ¼
����1 −

Z
dω
2π

ρθNsþ1
ðωÞ

����2 þ λ

����
���� d

2ρθNsþ1
ðωÞ

dω2

����
����2
F
: ð16Þ

This loss function consists of two terms. The first term
enforces the proper sum rule, while the second term
incorporates the smoothness condition. λ is an adjustable
parameter. By preserving the “Nevanlinna” analytic struc-
ture of Green’s functions, the NAC method automatically
generates positive and normalized spectral functions [47].
However, it is important to emphasize that the method is
sensitive to noise, and either a large number of data pointsN
or a high Hardy order H can potentially lead to numerical
instabilities.
Although the NAC method has been extended to support

the analytic continuation of matrix-valued Green’s func-
tions [48], it cannot be directly applied to bosonic systems
in its original formalism [61]. Quite recently, Nogaki et al.
suggest an ingenious trick to work around this limitation.
Their basic idea is to introduce an auxiliary fermionic
function [62]. Let us start with a bosonic Green’s function
GðτÞ that satisfies the periodic condition Gðτ þ βÞ ¼ GðτÞ.
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One can construct an artificial antiperiodic fermionic
Green’s function G̃ðτÞ as follows:

G̃ðτÞ ¼
(
GðτÞ ð0 < τ < βÞ
−Gðτ þ βÞ ð−β < τ < 0Þ ð17Þ

Clearly, this auxiliary fermionic Green’s function exhibits
the same value as the bosonic Green’s function in the range
0 < τ < β. It is easy to prove that the relation between the
bosonic spectral function ρðωÞ and the auxiliary fermionic
spectral function ρ̃ðωÞ is as follows:

ρðωÞ ¼ ρ̃ðωÞ tanhðβω=2Þ: ð18Þ

Furthermore, the sum rule for ρ̃ðωÞ is given by:Z
∞

−∞
dω ρ̃ðωÞ ¼ Gðτ ¼ 0þÞ þ Gðτ ¼ β − 0−Þ: ð19Þ

Given G̃ðτÞ, it is easy to construct G̃ðiνnÞ via direct Fourier
transformation, where νn ¼ ð2nþ 1Þπ=β are the fermionic
Matsubara frequencies. Since

G̃ðiνnÞ ¼
Z

∞

−∞
dω

ρ̃ðωÞ
iνn − ω

; ð20Þ

one can perform analytic continuation for G̃ðiνnÞ via the
standard NAC method to get ρ̃ðωÞ. And then the bosonic
spectral function ρðωÞ can be derived according to Eq. (18).
This procedure has been outlined in Fig. 1 in Ref. [62].

III. BENCHMARKS

A. Computational setups

To benchmark the SPX and NAC methods, we consider
five typical models, namely the Breit-Wigner model, the
Gaussian mixture model, the resonance-continuum model,
the bottomonium model, and the charmonium correlation
function in the present investigation. The first three models
provide analytic formulas for generating the exact spectral
functions, denoted as ρðωÞ. For the bottomonium model,
we take the “exact” spectral function from Ref. [63] as
input. Using these spectral functions, one can create clean
Euclidean data, denoted as Gclean, using Eq. (2) [64].
The charmonium correlation function is extracted from
Ref. [15]. Note that the raw data is in time domain. Thus,
they have to be interpolated into a denser grid and then
converted into frequency domain using Fourier trans-
formation. To mimic the noise present in LQCD simu-
lations [21], we manually add multiplicative Gaussian
noises to the clean Euclidean data. The formula we use is
as follows:

Gnoisy ¼ Gclean½1þ δNCð0; 1Þ�; ð21Þ

where δ measures the noise level of the input data and
NCð0; 1Þ represents complex-valued normal Gaussian
noise [65]. In our subsequent analysis, unless explicitly
stated, we set δ ¼ 10−4 for the SPX method and δ ¼ 0.0
for the NAC method. We then supply the noisy Euclidean
data, denoted as Gnoisy, into the SPX and NAC codes to
extract the spectral functions. Finally, we compare the
calculated spectral functions with the corresponding exact
solutions.
The SPX method has been implemented within the

ACFlow package [66]. In this study, the number of poles
(Np) is fixed to 2000. For each test, we perform a total of
2 × 103 individual SPX runs. Each SPX run consists of
2 × 105 Monte Carlo sampling steps. The spectral functions
generated in all SPX runs are gathered and the correspond-
ing χ2 values are recorded. Assuming the mean value of the
collected χ2 is denoted as hχ2i, we only retain the solutions
whose χ2 values are smaller than hχ2i=αgood, and collect
them to calculate the averaged spectrum. Here, αgood is an
adjustable parameter (αgood ≥ 1.0). Its optimal value is
about 1.2. In order to obtain smoother spectra, one can
further increase the number of Monte Carlo sampling steps
and number of indvidual SPX runs, or decrease αgood.
Regarding the NAC method, we utilize another open-

source toolkit, namely the Nevanlinna.jl package [67]. In the
present calculations, the lowest 100 Matsubara frequen-
cies are kept as input. In order to avoid breaking the Pick
criterion [59], the optimal number of data points is
automatically determined, which is denoted as Nopt,
through a “Pick selection” procedure in the algorithm.
Usually a typical value for Nopt is 10. During the
simulated process, the Hardy basis function optimization
algorithm is always enabled. The highest Hardy order,
denoted as Hmax, is set to be 50. To ensure numerical
stability, the cutoff value of Hardy order, denoted as Hcut,
should be determined automatically on a case-by-case
basis. The λ parameter, as seen in Eq. (16), is set to
be 10−6.
In addition to the SPX and NAC methods, the classic

MaxEnt method [24] is also employed to yield analytic
continuation results for comparison. We again utilize the
ACFlow package, which provides a state-of-the-art imple-
mentation of the MaxEnt method [66]. For the MaxEnt
simulations, we usually choose a flat default model and
calibrate the regularization parameter α by using the χ2-
kink algorithm [68]. The starting and ending values of α are
1016 and 101, respectively. The ratio between two succes-
sive α parameters, i.e., αi=αiþ1, is 10. For the prior
probability (the entropic term), we adopt the generalized
Shannon-Jaynes entropy [22,23], but the Bayesian
reconstruction entropy [25,26] is also examined. The
simulated results are in good agreement with each other.
Thus, we only present results obtained with the generalized
Shannon-Jaynes entropy in the following discussions.
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B. Breit-Wigner model

The Breit-Wigner spectral function, obtained from a
parametrization derived directly from one-loop perturbative
quantum field theory [19,39], is expressed as follows:

ρðωÞ ¼ 4AΓω
ðM2 þ Γ2 − ω2Þ2 þ 4Γ2ω2

; ð22Þ

whereM represents the mass of the corresponding state, Γ is
the width, and A is a positive constant. We start with a
superposed collection of Breit-Wigner peaks. Specially, two
typical scenarios are investigated in the present work:
(1) Single Breit-Wigner peak (dubbed 1BW model) with
M ¼ 2.0 GeV, Γ ¼ 0.5 GeV, and A ¼ 1.0 GeV. (2) Two
Breit-Wigner peaks (dubbed 2BW model) with M1 ¼
1.0 GeV, M2 ¼ 3.0 GeV, Γ1 ¼ Γ2 ¼ 0.5 GeV, A1 ¼
0.8 GeV, and A2 ¼ 1.0 GeV. The system temperature T
is fixed to be 0.02GeV. The synthetic Euclidean data (Gnoisy)
consists of 50 frequency points for both the SPXmethod and
the MaxEnt method, and 100 frequency points for the NAC
method. The analytical continuation results obtained by the
SPX, NAC, and MaxEnt methods are illustrated in Fig. 1.
Overall, the SPX method demonstrates better perfor-

mance for the 1BW model. It captures precisely not only
the height, but also the position of the Breit-Wigner peak.
In comparison, the NAC and MaxEnt methods tend to
overestimate the width and underestimate the height of the
Breit-Wigner peak. Furthermore, the NAC method leads to
an obvious oscillation phenomenon around 0.5 GeV. For
the 2BWmodel, all three methods are able to reproduce the
low-energy peak around 1.0 GeV, but encounter difficulty
in resolving the high-energy peak near 3.0 GeV. Although
the SPX method successfully identifies the position of the
high-energy peak, its weight is not accurately resolved. The
spectrum obtained by the NAC method is quite sensitive to

the λ parameter in this case. If λ ¼ 10−4 (it is the default
choice of the code), the high-energy peak is shifted toward
a higher energy (∼4.5 GeV) and broadened significantly.
Only when λ ¼ 10−6, the high-energy peak is well repro-
duced. The spectrum obtained by the MaxEnt method is
also not ideal. The high-energy peak is smeared out and
replaced with a shoulderlike feature.

C. Gaussian mixture model

Just as its name implies, the spectral function of the
Gaussian mixture model [24] is a superposition of some
Gaussian peaks. It can be expressed by the following
equation:

ρðωÞ ¼
X
i

Ai exp

�
−
ðω −MiÞ2

Γi

	
; ð23Þ

where Ai,Mi, and Γi represent the amplitude, position, and
broadening of the ith Gaussian peak. In this example, we
consider a three Gaussian peaks model. The specific values
for the model parameters are as follows: A1 ¼ 1.0 GeV,
A2¼0.4GeV, A3¼0.2GeV,M1¼0.5GeV,M2¼2.5GeV,
M3 ¼ 6.5 GeV, Γ1 ¼ 0.01 GeV, Γ2 ¼ 0.2 GeV, and
Γ3 ¼ 1.5 GeV. The mock Euclidean data consists of 100
points, and T ¼ 0.02 GeV. In the simulations, we have
enhanced the SPX method by utilizing the self-adaptive
sampling algorithm, which we refer to as SA-SPX [46].
The results of the analytical continuation are presented
in Fig. 2.
It is expected that the true spectrum will exhibit three

well-defined peaks. We find that all three methods are
successful in recovering the low-energy sharp peak at M1.
However, resolving the two high-energy peaks presents
some challenges. Specifically, for the SA-SPX method, it is

FIG. 1. Analytic continuations of the Breit-Wigner models. For the NAC method, the Hardy basis function optimization algorithm is
enabled. (a) Single Breit-Wigner peak. Nopt ¼ 13. (b) Two Breit-Wigner peaks. Nopt ¼ 14. In panel (b) the spectra are scaled by a factor
of 0.5 for a better view.
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able to roughly resolve the peak at M2, but it tends to
overestimate thewidth of the peak atM3. In order to save the
computational resources, the iteration number of the self-
adaptive sampling algorithm is fixed to 10. Nevertheless, it
should be emphasized that increasing the iteration number
could further reduce the peak’swidth atM3. In Sec. IV B,we
will delve into the combination of the self-adaptive sampling
algorithm with the SPX method and discuss the usefulness
of the SA-SPXmethod in resolving complex LQCD spectral
functions. As for the NAC method, it produces a sharp peak
around 2.1 GeVand a broad peak around 4.5 GeV, which are
both in incorrect positions. More specifically, this method
underestimates the energies of the two high-energy peaks.
We also adjust the λ parameter, but it does not help.
Regarding the MaxEnt method, it can recover the peak
at M2, although with a larger width. However, it fails to
resolve the peak at M3, instead exhibiting a broad hump
around 7.0� 3.0 GeV.

D. Resonance-continuum model

The resonance-continuum model is a physics-motivated
model borrowed from Refs. [37,44]. The spectral function
of the resonance-continuum model can be regarded as a
nonlinear combination of the resonance part (ρr) and the
continuum part (ρc):

ρðωÞ ¼ ξ1ðωÞρrðωÞ þ ξ2ðωÞρcðωÞ: ð24Þ

Here, ξ1 and ξ2 are the mixing coefficients. Their defi-
nitions are as follows:

ξ1ðωÞ ¼ ξðω;Mr;ΓÞ½1 − ξðω;Mr þ Γ;ΓÞ�; ð25Þ

and

ξ2ðωÞ ¼ ξðω;Mc þ Γ;ΓÞ; ð26Þ

where ξ is a cutoff function:

ξðω;M;ΔÞ ¼
�
1þ exp

�
M2 − ω2

ωΔ

�	−1
: ð27Þ

It is used to smooth out the constructed spectral function.
The resonance part of the spectral function is given by:

ρrðωÞ ¼ Crω
2

�ðM2
r − ω2Þ2
M2

rΓ2
þ 1

	−1
; ð28Þ

which follows a relativistic Breit-Wigner form. The con-
tinuum part of the spectral function is expressed as:

ρcðωÞ¼
3Cc

8πω
tanh

�
ω

4T

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2−4M2

c

q
ð2ω2þ4M2

cÞ: ð29Þ

In this example, the model parameters areMr ¼ 0.10 GeV,
Mc ¼ 0.05 GeV, Cr ¼ 2.0 GeV, Cc ¼ 2.10 GeV, and
Γ ¼ 0.06 GeV. The synthetic Euclidean data consist of
100 frequency points, and T ¼ 0.02 GeV. In this study, we
consider three different cases: (i) the resonance-continuum
model, (ii) the resonance model, and (iii) the continuum
model. The analytic continuation results are shown
in Fig. 3.
For the resonance-continuum model [see Fig. 3(a)], it is

evident that the resonance peak at Mr is approximately
reproduced. However, both the SPX and MaxEnt methods
exhibit moderate oscillations in the continuum part
(ω > 0.4 GeV). These oscillations will decay when ω is
increased. The NAC method results in huge oscillations,
especially when ω is large. This unphysical feature cannot
be eliminated or suppressed by the Hardy basis function
optimization algorithm. This fact suggests that the three
analytic continuation methods do not accurately describe
the continuum part. In the case of the resonance model [see
Fig. 3(b)], all three methods successfully recover the
location, width, and height of the resonance peak. As
for the continuum model [see Fig. 3(c)], all three methods
produce oscillating spectra. In particular, the NAC method
leads to more pronounced oscillations. Even worse, these
oscillations are enhanced with the increment of ω. The only
useful information that can be extracted from the calculated
spectra is the location of the band edge.

FIG. 2. Analytic continuations of the Gaussian mixture model.
The spectra are scaled by a factor of 0.8 for a better view. As for
the SPX method, the self-adaptive sampling algorithm is enabled
to obtain a more reasonable spectrum. Once the self-adaptive
sampling algorithm is turned off, the obtained spectrum by the
SPX method will resemble the one by the MaxEnt method. The
spectrum should become smoother and almost featureless in
the high energy region (ω > 4.0 GeV). The NAC method is
enhanced by the Hardy basis function optimization algorithm and
Nopt ¼ 11. Please see the main text for more details.
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E. Bottomonium spectral functions

The “exact” bottomonium spectrum utilized in this study
is taken directly from Refs. [63,69]. It is generated by a
Nf ¼ 2þ 1 LQCD calculation. The temperature employed
in the LQCD simulation is 201 MeV, which exceeds the
deconfinement crossover temperature (Tc). The spectrum is
specifically for the ϒ channel. Initially, we synthesize the
Euclidean data by Eq. (2) for the first 100 Matsubara
frequencies. Then, random Gaussian noises are added by
Eq. (21). In this example, we adopt the combination of the
SPX method with the constrained sampling algorithm
(dubbed C-SPX) [46] to improve the performance.
Specifically, locations for the randomly generated poles
(Pγ) are restricted to the energy range: ω∈ [9.5 GeV,
16.0 GeV] [70]. For the NAC method, the Hardy optimi-
zation trick is applied [47]. Regarding the MaxEnt method,
its default model is a shifted Gaussian function [71]. The
analytic continuation solutions, together with the “exact”
bottomonium spectrum, are illustrated in Fig. 4.
As is seen in Fig. 4, the ideal bottomonium spectrum

consists of a single resonance peak at approximately
9.6 GeV and a “rise-and-decay” feature with two sizable
bumps around 10.8 GeV and 12.0 GeV. By employing the
constrained algorithm, the SPX method successfully
resolves the left boundary of the resonance peak and
captures the long tail of the “rise-and-decay” feature.
However, it falls short in resolving the resonance peak
and the two bumps. In Sec. IV B, we will demonstrate the
application of the self-adaptive sampling algorithm to cure
this problem partly [46]. For the NAC method, it accurately
reproduces the resonance peak. But it fails to recover the
desired “rise-and-decay” feature, which is instead replaced
by two distinct peaks located at approximately 11.3 GeV
and 14.0 GeV. According to our experience, though the
spectrum obtained by the NAC method is not accurate
enough, it can provide some hints about the energy range of

the true spectrum (such as the position of the resonance
peak in this case). We can use this information to refine
subsequent simulations by imposing more reasonable
constraints for the C-SPX method and more appropriate
default models for the MaxEnt method. By employing the
MaxEnt method, the resonance peak and the “rise-and-
decay” pattern are smoothed out. Such that the calculated
spectrum only features a Gaussian-like peak centered
around 11.5 GeV. In addition to the shifted Gaussian
model, we also benchmark alternative default models, such
as the flat model, the shifted Lorentzian model, and the two
Lorentzians model, etc. However, they do not contribute to
improving the results.

FIG. 3. Analytic continuations of the resonance-continuum model, the resonance model, and the continuum model. The NAC method
is enhanced with the Hardy basis function optimization algorithm. (a) Spectra of the resonance-continuummodel.Nopt ¼ 12. (b) Spectra
of the resonance model. Nopt ¼ 10. (c) Spectra of the continuum model. Nopt ¼ 13.

FIG. 4. Analytic continuations of the bottomonium correlation
function. Here, the terminology “C-SPX” implies that the posi-
tions of the poles are restricted in the SPX simulations [46,70].
The Hardy basis function optimization algorithm is enabled for
the NAC method and Nopt ¼ 8. A shifted Gaussian function,
instead of a constant, is used as the default model for the MaxEnt
method [71]. See main text for more details.
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F. Charmonium spectral functions

Next let us turn to a realistic example: extracting spectral
functions from charmonium correlation functions.
The Euclidean data is extracted from Ref. [15]. The

original correlation functions are obtained by LQCD
calculations using clover-improved Wilson fermions on
large, fine, isotropic lattices (i.e. 1283 × 96) at T ¼ 0.73
Tc, where Tc being the deconfinement transition temper-
ature of a pure gluon plasma. Only the charmonium
correlation function in the pseudoscalar (ηc) channel is
considered. It is converted into the frequency domain at
first. Then the random Gaussian noises are supplemented.
The final input data contains 100 points. In this example,
the standard SPX method without any constraints is used.
For the MaxEnt method, the default model is flat. The
analytic continuation results are shown in Fig. 5.
Note that the NAC method fails in this example.

Therefore, only the spectra obtained by the SPX method
and the MaxEnt method are shown in Fig. 5. In addition,
the original paper provides a reference spectral function,
which is calculated by the MaxEnt method with a physics-
motivated default model [15]. It is also extracted and shown
in this figure for comparison. The reference spectrum
covers a very wide range of frequency (0.0 < ω < 75.0).
Besides the resonance peak (at 3.31 GeV), the reference
spectrum features three peaks (around 7.0 GeV, 17.0 GeV,
and 43.0 GeV) and a long tail until ω > 70.0 GeV. The
SPXmethod can roughly reproduce the resonance peak, the
fourth peak at 43.0 GeV, and the long tail. But it fails to
distinguish the two peaks at intermediate frequency. The

MaxEnt output just resembles the characteristics of the
spectrum obtained by the SPX method. We find that the
resonance peak (the first peak) remains stable and robust in
SPX analyses, and in MaxEnt analyses performed with
quite different default models (see the dashed lines in
Fig. 5). This peak can be interpreted as the bound state
peak. Similar behaviors can be seen in the peak around
43.0 GeV (the fourth peak in the reference spectrum) and
the long tail. However, the peaks at intermediate frequency
(the second and the third peaks in the reference spectrum)
exhibit strong default model dependence. They could be a
mixture of higher excited states or artifacts due to the finite
lattice spacing and limited number of correlator points.
Anyway, we believe the SPX method can capture the
“stable” features of the spectral functions.

IV. DISCUSSIONS

A. Robustness with respect to noisy data

In the previous work, the robustness of the SPX method
in the presence of noisy data from quantum Monte Carlo
simulations has been demonstrated [46]. This study aims to
reexamine the noise resilience of the SPX method when
applied to noisy LQCD data. Let us take the 1BWmodel as
an example (please refer to Sec. III B for the model
parameters) to address this issue. The noise level is
varied from δ ¼ 10−8 to δ ¼ 10−2. The analytic continu-
ation results are displayed in Fig. 6. Just as expected,
the SPX method is highly robust to variations in noise
levels of the input Euclidean data. For low noise levels
(10−4 ≤ δ ≤ 10−8), the calculated spectra closely approxi-
mate the exact solution and manifest minimal deviation. At
a moderate noise level (δ ¼ 10−3), the calculated spectrum
shows a light fluctuation around ω ¼ 0.5 GeV, and the
main peak is shifted slightly (approximately 0.1 GeV)
toward the lower energy region. For a high noise level
(δ ¼ 10−2), three sharp peaks emerge in the calculated
spectrum. Apart from the peak at 1.8 GeV, the other peaks
at 0.5 GeV and 3.0 GeVare unphysical. In Fig. 6(h), a plot
of logðhχ2iÞ against logðδ−1Þ is shown. Initially, logðhχ2iÞ
decreases linearly as logðδ−1Þ increases from 2.0 to 5.0.
Subsequently, it approaches to a constant value (approx-
imately −8.1) when logðδ−1Þ ≥ 6.0. This benchmark sug-
gests that the SPX method remains robust when applied to
noisy LQCD data, even with a moderately elevated noise
level. Nonetheless, minimizing the noise level can enhance
the performance of the SPX method.
Fei et al. have pointed out that the NAC method

requires high-precision input data to ensure the Pick
criterion is not violated and the existence of the
Nevanlinna interpolants [47,65]. Thus, in the previous
calculations, we just assume that the input Euclidean data
are noiseless for the NAC method (δ ¼ 0.0). Now let us
examine the noise resilience of the NAC method for
synthetic LQCD data. For the sake of simplicity, the 2BW

FIG. 5. Analytic continuations of the charmonium correlation
functions (pseudoscalar channel, T ¼ 0.73Tc) from LQCD
simulations. There is no exact solution. The reference spectrum
is taken from Ref. [15]. Here, the dashed line “model1” denotes
the default model (a physics-motivated model) used by the
MaxEnt method to generate the reference spectrum, while the
dashed line “model2” denotes the default model (a flat model)
used in the MaxEnt simulation in the present work. See main text
for more details.
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model is taken as a test bed. The model parameters are
presented in Sec. III B. The noise level δ is fixed to be 10−8.
For each NAC run, the noisy part of the mock Euclidean
data is always refreshed.We repeat theNAC simulations for
100 times with and without Hardy basis function optimi-
zation [60]. Then we collect the calculated spectra and
evaluate their arithmetic average. The analytic continuation
results are shown in Fig. 7. We confirm again that the NAC
method is extremely sensitive to noise, irrespective of the
Hardy basis function optimization algorithm. Small fluc-
tuations in the input Euclidean data can lead to huge
variations in the resulting spectra. Even though the noise
level is quite small, the performance of the NAC method is
not good. It fails to capture the major characteristics of the
2BWmodel, and produces some spurious peaks. If the noise
level is further increased, its performance should deteriorate
ulteriorly (not shown in Fig. 7).

B. Self-adaptive sampling algorithm
for the SPX method

In the SPX method, the poles should be placed in a very
dense frequency grid. In general, such a frequency grid can
be either uniform or nonuniform. So, some prior knowl-
edge about the spectrum and the physical system could be
encapsulated in the form of the grid to improve the
performance and usefulness of the SPX method. This
has led to the development of the C-SPX method [46].
Previous works have suggested that by modifying boun-
daries and grid interval distribution of the grid, the SPX
method is capable of capturing complicated features in the
spectra. However, it can be observed in Fig. 4 that the
C-SPX method, as well as the NAC and MaxEnt methods,
fail to resolve the major characteristics of the bottomonium
spectrum [63,69]. It implies that simple constraints on the
spectral boundaries (or limitations on scopes of the poles)

FIG. 6. Robustness of the SPX method with respect to the noisy LQCD data. Here we just consider the Breit-Wigner model (1BW
model). The noise level δ is varied from 10−8 to 10−2. The other model parameters can be found in Sec. III B. (a)–(g) Dependence on
noise level δ of calculated spectral functions. (h) The goodness-of-fit function χ2 as a function of the noise level δ. The horizontal bar
indicates the asymptotic value of logðhχ2iÞ.
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are not enough. We have to figure out a systematic way to
refine the probability distribution of the poles to approxi-
mate the true spectrum. Next, we will demonstrate how to
achieve this goal by a combination of the self-adaptive
sampling algorithm and the SPX method (dubbed
SA-SPX) [46].
The main principle behind the SA-SPX method is to

iteratively adjust the grid interval distribution. In conse-
quence, the probability distribution of the poles is coordi-
nated to approximate the true spectral density, and the
corresponding goodness-of-fit functional [see Eq. (11)] is
automatically minimized. This can be achieved by using
the spectral density obtained from a previous SPX run or
from other analytic continuation methods to update the
grid. Now let us concentrate on the bottomonium model
again [63,69]. Its parameters can be found in Sec. III E.
Initially, we generate the first frequency grid for the poles
using the spectral functions obtained by the NAC and
MaxEnt methods. From the calculated spectra, one can
conclude that there is likely a sharp resonance peak around
ω ¼ 9.6 GeV (with a band edge at approximately 9.5 GeV)
and a broad feature ranging from 10.0 to 16.0 GeV (see
Fig. 4). Keeping these hints in mind, we try to design a
pseudospectrum consisting of two Gaussian peaks:

ρpseudoðωÞ ¼
X2
i¼1

Ai exp

�ðω −MiÞ2
Γi

	
; ð30Þ

where A1 ¼ 5.0, A2 ¼ 1.80, M1 ¼ 9.60, M2 ¼ 11.5,
Γ1 ¼ 0.01, and Γ2 ¼ 5.0. This pseudospectrum is illus-
trated in Fig. 8(a). The first peak at M1 originates from the
resonance peak identified by the NAC method, while the
second peak at M2 is inspired by the spectrum obtained by
the MaxEnt method. It is worth noting that these spectral

parameters can be further adjusted to mimic more accu-
rately the results obtained by the NAC and MaxEnt
methods. This pseudospectrum serves as a reference model.
To generate the frequency grid for the poles, we execute the
following steps: (1) Calculate the integrated spectral
function ϕðϵÞ via the equation:

ϕðϵÞ¼
Z

ϵ

ωmin

ρpseudoðωÞdω; ϵ∈ ½ωmin; ωmax�: ð31Þ

Here, ωmin and ωmax are the left and right boundaries of the
spectrum, respectively. And ϵ represents a point within the
interval ½ωmin;ωmax�. (2) Evaluate the new frequency grid fi
by using the equation:

fi ¼ ϕ−1ðλiÞ; i ¼ 1;…; Nf; ð32Þ

where λi is a linear mesh in the interval ½ϕðωminÞ;ϕðωmaxÞ�,
and Nf is the number of grid points. Now the boundaries
for the grid are set as ωmin¼9.5GeV and ωmax¼16.0GeV.
The resulting new grid, as displayed in Fig. 8(b), is
compared with the standard linear grid. Next, the newly
generated grid is utilized to perform a SPX simulation from
scratch. The calculated spectrum is then used to generate a
newer frequency grid [at this time, the ρpseudoðωÞ in Eq. (31)
should be replaced with the newly calculated spectrum
ρðωÞ], and the SPX simulation is repeated. This iterative
procedure is carried out until the obtained spectrum and
frequency grid are converged. In our experience, 5–10
iterations are typically sufficient for achieving conver-
gence. Figure 8(c) shows the results obtained by using
the C-SPX and SA-SPX methods, as well as the exact
spectrum. It is evident that the spectrum obtained with the
SA-SPX method comes closer to the exact spectrum than

FIG. 7. Robustness of the NAC method with respect to the noisy LQCD data. Here we just consider the Breit-Wigner model (2BW
model). The noise level δ ¼ 10−8. The other model parameters can be found in Sec. III B. The darker shaded region denotes the window
for the reconstructed spectral functions. The blue and yellow solid lines mean the exact spectrum and the averaged spectrum,
respectively. (a) Without Hardy basis function optimization. (b) With Hardy basis function optimization.
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the one obtained with the C-SPX method. The sharp
resonance peak, the small bump near 12.0 GeV, and the
long tail of the rise-and-decay feature arewell reproduced by
using the SA-SPX method. The only missing characteristic
is the bump near 10.8 GeV. Additionally, an error analysis
about the reconstructed Euclidean data is presented in
Fig. 8(d). The goodness-of-fit function of the NAC method
is the largest (χ2 ≈ 0.01 to 0.1), while those of the MaxEnt,
C-SPX, and SA-SPXmethods are comparable (χ2 ≈ 10−6 to
10−4). This indicates that the spectrum obtained by the NAC
method for this particular case is not reliable.

C. Hardy basis function optimization
for the NAC method

As mentioned before, the iterative interpolation algo-
rithm for the NAC method allows for the selection of an

arbitrary contractive function, denoted as θNsþ1, at the final
step. In the literature, Fei et al. proposed an optimized
approach [47], in which θNsþ1 is expanded using the Hardy
basis and its conjugate generate functions [60], and the
coefficients for the expansion are determined by minimiz-
ing a smoothness norm [see Eq. (16)]. They demonstrated
that using a constant value for θNsþ1 is apt to yield spectral
functions with oscillations, whereas the optimized algo-
rithm is useful for eliminating these oscillations and
generating smoother spectral functions. Until now we just
employ the optimized NAC approach for analytic contin-
uations. However, we wonder whether the Hardy basis
optimization is always better than the standard option. In
order to answer this question, we perform additional tests
for the Breit-Wigner model by using the NAC method. We
compare the analytic continuation results obtained with a

FIG. 8. Analytic continuations of the bottomonium correlation function. (a) Spectra obtained by the MaxEnt and optimized NAC
methods. The information extracted from the two spectra is used to construct a reference model [the pseudospectrum ρpseudoðωÞ, see the
solid blue line]. (b) Standard linear grid and nonuniform grid used in the C-SPX and SA-SPX simulations, respectively. Note that the
nonuniform grid is constructed from the reference model via Eqs. (31) and (32). (c) Spectra obtained by the C-SPX and SA-SPX
methods. (d) Error analysis for the reconstructed Euclidean data from the MaxEnt, optimized NAC, C-SPX, and SA-SPX methods.
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constant θNsþ1 and the optimized θNsþ1 (see Fig. 9). As
anticipated, the optimized θNsþ1 suppresses oscillations in a
large degree and yields smoother spectra, especially for the
2BW model. However, we also notice that the performance
of the Hardy basis function optimization algorithm strongly
depends on the value of the λ parameter. The optimized
NAC method tends to make a wrong estimation about the
location of the high-energy peak if the λ parameter is not
reasonable. Therefore, if we know nothing about the basic
features of the spectra, perhaps a constant θNsþ1 is a much
safer choice.

V. CONCLUSION

In the present work, we conduct a systematic inves-
tigation of two newly developed methods, namely the SPX
method and the NAC method, for analytically continuing
for the mock and realistic LQCD data. We treat four exact
spectral functions, which are derived from physically
motivated models or realistic LQCD simulations, including
the Breit-Wigner model, the Gaussian mixture model, the
resonance-continuum model, and the bottomonium model.
We use the exact spectral functions to build clean Euclidean
data by numerical integration. And later the statistical
noises are added. We also examine true Euclidean data.
The charmonium correlation functions in the pseudoscalar
channel obtained in LQCD calculations are extracted from
literature. All the synthetic Euclidean correlators are used
as input and then transformed back to the real axis using
different analytic continuation methods. By comparing the
results with the exact spectra, we are able to assess the
accuracy of these methods.
The SPX method is generally capable of resolving the

major features of the spectral functions involved in this

study. However, it encounters difficulties when dealing
with spectra that exhibit a wide platform, such as the
continuum model (see Sec. III D), or when two features are
too close together, such as the bottomonium spectrum (see
Sec. IV B). We believe that these difficulties can be
partially overcome with the help of the constrained sam-
pling algorithm and the self-adaptive sampling algorithm.
The SPX method demonstrates good noise tolerance and
exhibits robustness with respect to moderate noise levels.
Overall, the performance of the SPX method is comparable
to that of the commonly used MaxEnt method. In cases
where the spectral function is complicated, the SPXmethod
could outperform the MaxEnt method due to its ability to
incorporate prior information about the spectrum into the
frequency grid for the poles. This grid could be iteratively
refined to obtain better spectrum.
As for the NAC method, it is found to be numerically

unstable even for input Euclidean data with extremely low
noise level (δ ¼ 10−8). This drawback greatly limits the
application of the NAC method in the LQCD simulations.
Additionally, we observe that the Hardy basis optimization
for θNsþ1 sometimes produces worse results when com-
pared to those obtained with constant θNsþ1. Although the
Hardy basis optimization can suppress possible oscillations
in the spectrum, it tends to yield incorrect estimations for
the positions of the high-energy peaks if the λ parameter is
not optimal. Therefore, better basis functions for expanding
θNsþ1 are highly desirable. Or else we need a smart
algorithm to determine the optimal λ. Nonetheless, the
NAC method still proves its usefulness in analytic contin-
uations of LQCD simulation data, as it allows for quick yet
accurate estimations of the positions of the low-energy
band edges and the resonance peaks. These important clues
can then be used to construct a reference model for the

FIG. 9. A comparison for the NAC and optimized NAC methods. The Breit-Wigner model is used and the model parameters are
the same as those presented in Sec. III B. The input Euclidean data are noiseless. (a) Results for the 1BW model. (b) Results for
the 2BW model.
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probability distribution of the poles, which is subsequently
utilized by the C-SPX and SA-SPX methods.
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