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According to the preceding studies, the lattice SU(2) gauge-scalar model with a single scalar field in the
fundamental representation of the gauge group has a single confinement-Higgs phase where confinement
and Higgs regions are subregions of an analytically continued single phase and there are no thermodynamic
phase transitions, which is a well-known consequence of the Osterwalder-Seiler-Fradkin-Shenker theorem.
In this paper, we show that we can define new types of gauge-invariant operators by combining the original
fundamental scalar field and the so-called color-direction field which is obtained by change of field
variables based on the gauge-covariant decomposition of the gauge field due to Cho-Duan-Ge-Shabanov
and Faddeev-Niemi. By performing the numerical simulations on the lattice without any gauge fixing, we
reproduce the conventional thermodynamic transition line in the weak gauge coupling, and moreover we
find a new transition line detected by the new gauge-invariant operators which separates the confinement-
Higgs phase into two parts, confinement phase and the Higgs phase, in the strong gauge coupling. All
results are obtained in the gauge-independent way, since no gauge fixing has been imposed in the numerical
simulations. Moreover, we discuss a physical interpretation for the new transition from the viewpoint of the
realization of a global symmetry.
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I. INTRODUCTION

It is well known that the lattice SU(2) gauge-scalar
model with a single scalar field in the fundamental repre-
sentation of the gauge group has a single confinement-Higgs
phase, according to the Osterwalder-Seiler-Fradkin-Shenker
(OSFS) theorem [1–3]: Confinement and Higgs regions are
subregions of an analytically continued single phase and
there are no thermodynamic phase transitions between them.

However, physics to be realized in the confinement
region and the Higgs region are quite different. Therefore,
there have been some attempts to elucidate the distinction
between the two regions despite the absence of thermo-
dynamic transition. See, e.g., [4] for a review. Recently,
Greensite and Matsuyama [5,6] proposed that the two
regions can be discriminated by the symmetric or broken
realization of a global symmetry called the custodial
symmetry which is a global symmetry acting on the scalar
field alone: In the Higgs phase the custodial symmetry is
spontaneously broken, while in the confinement phase the
custodial symmetry is unbroken. Their proposal is quite
interesting. Therefore, it must be confirmed by the
independent research.
In this paper, we propose new types of gauge-invariant

composite operators which enable to discriminate bet-
ween the confinement phase and the Higgs phase in the
lattice SU(2) gauge-scalar model with the scalar field in
the fundamental representation. The new gauge-invariant
composite operators are constructed through the
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gauge-independent procedure by combining the original
fundamental scalar field and the color-direction field
which is obtained by change of field variables based on
the gauge-covariant decomposition of the gauge field due to
Cho-Duan-Ge-Shabanov [7–9] and Faddeev-Niemi [10]
(CDGSFN decomposition), see [11] for a review. This type
of operator was already introduced for investigating the
phase structure of the lattice SU(2) gauge-scalar model with
the scalar field in the adjoint representation to show the
existence of the transition linewhich divides the confinement
phase into two parts [12] in addition to the transition line
separating the Higgs phase from the confinement phase.
In order to give a complete understanding on the phase

separation, we must show how to characterize the Higgs
phase in the gauge-invariant manner. Here we recall the
conventional understanding of the Brout-Englert-Higgs
(BEH) mechanism [13,14]: The original continuous gauge
symmetry is spontaneously broken as a consequence of
nonvanishing vacuum expectation value of the scalar field.
In the case of the fundamental scalar field, the original
SU(2) gauge symmetry is completely broken spontane-
ously if the fundamental scalar field acquires a nonvanish-
ing vacuum expectation value. Then three massless
Nambu-Goldstone particles must appear according to the
Nambu-Goldstone theorem. Nevertheless, they are
absorbed into the original massless gauge bosons to make
them massive and consequently no massless Nambu-
Goldstone particles appear in the spectrum.
However, the conventional understanding of the BEH

mechanism has some difficulties. One is that the vacuum
expectation value of the fundamental scalar field vanishes
unless the gauge-fixing condition is imposed, because the
fundamental scalar field is not gauge invariant. This is a
consequence of the Elitzur theorem [15]: the vacuum
expectation value of the gauge noninvariant operator
vanishes and the gauge symmetry cannot be spontaneously
broken without gauge-fixing. In addition to this issue,
whether or not the vacuum expectation value of the scalar
field vanishes depend on the gauge choice even after the
gauge-fixing condition is imposed. Thus the conventional
understanding of the BEH mechanism is not given in the
gauge-invariant way.
To avoid these issues, one of the authors has proposed

the gauge-independent description of the BEH mechanism
in the gauge-invariant manner (for the fundamental scalar
field [16] and the adjoint scalar field [17]) which works
irrespective of the gauge choice by introducing neither the
spontaneous gauge symmetry breaking nor nonvanishing
vacuum expectation value of the scalar field. In this way the
Higgs phase can be characterized in the gauge-independent
way without any gauge-fixing. Under the new understand-
ing of the BEH mechanism, we can investigate both the
confinement mechanism and the BEH mechanism in the
gauge-fundamental scalar model in the gauge-independent
manner.

Based on these observations, we investigate the phase
structure for the above model by performing the numeri-
cal simulations on the lattice without any gauge fixing.
Then (i) we gauge-independently reproduce the conven-
tional thermodynamic transition line in the weak gauge
coupling region [1,2,18,19], and (ii) we find a new
transition line which separates the confinement-Higgs
phase into two different phases, the confinement phase
and the Higgs phase, in the strong gauge coupling region.
All of these results are obtained in the gauge-independent
way, since no gauge fixing has been imposed in
these numerical simulations to measure gauge-invariant
operators.
Moreover, we examine whether or not the two regions

are discriminated by the symmetric or broken realization of
a global symmetry as suggested by [5,6]: The global
symmetry is spontaneously broken in the Higgs phase,
while it is unbroken in the confinement phase.
At first glance the new transition line we found seems to

contradict with the OSFS theorem. As discussed in detail in
the text, indeed, our results are compatible with the
theorem. The existence of the transition line separating
the confinement and Higgs phases in the gauge-matter
model with the matter field in the fundamental representa-
tion will shed new light on the QCD phase diagram, e.g.,
quark-hadron continuity [20], see also [21]. Notice that the
SU(2) gauge-scalar model with the fundamental scalar has
no 1-form symmetry [22], in contrast to the adjoint scalar
model. Therefore, the spontaneous breaking of the 1-form
symmetry cannot be used to distinguish the phases in
this model.
This paper is organized as follows. In Sec. II, we define

the lattice SU(2) gauge-scalar model with a radially-fixed
scalar field in the fundamental representation. By intro-
ducing the lattice version [23,24] of the CDGSFN
decomposition for the gauge variable, we define the
color-direction field to construct new gauge-invariant
operators to be measured. In Sec. III, we explain our
method of numerical simulations and give the results of
numerical simulations. By measuring the gauge-invariant
composite operator composed of the fundamental scalar
field and the color-direction field, we finally find that the
confinement-Higgs phase is separated into two regions,
the confinement phase and the Higgs phase. In Sec. IV,
we discuss possible physical interpretation of the simu-
lation results. The last section is devoted to conclusion
and discussion.
In Appendix A, we give another formulation which

enables us to give a gauge-independent description of the
BEH mechanism for the SU(2) gauge-scalar model with a
radially-fixed scalar field in the fundamental representa-
tion. In Appendix B, we give some details on technical
points which guarantee that the order parameter we
proposed really takes the zero or nonzero value across
the new transition.
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II. SU(2) LATTICE GAUGE-SCALAR MODEL
WITH A SCALAR FIELD IN THE FUNDAMENTAL

REPRESENTATION

A. Lattice gauge-scalar action and global symmetry

We introduce the lattice SU(2) gauge-scalar model with a
single scalar field in the fundamental representation of the
gauge group where the radial degrees of freedom of
the scalar field is fixed (no Higgs modes). The action of
this model with the gauge coupling constant β and the
scalar coupling constant γ is given in the standard way by

S½U; Θ̂� ¼ SG½U� þ SH½U; Θ̂�;

SG½U� ¼ β

2

X
x;μ>ν

Re trð1 −Ux;μUxþμ;νU
†
xþν;μU

†
x;νÞ;

SH½U; Θ̂� ¼ γ

2

X
x;μ

Re trð1 − Θ̂†
xUx;μΘ̂xþμÞ; ð1Þ

whereUx;μ ∈SUð2Þ is a (group-valued) gauge variable on a
link hx; μi, and Θ̂x ∈SUð2Þ is a (matrix-valued) scalar
variable in the fundamental representation on a site xwhich
obeys the unit-length (or radially fixed) condition:

Θ̂†
xΘ̂x ¼ 1 ¼ Θ̂xΘ̂†

x: ð2Þ

This action is invariant under the local SUð2Þlocal gauge
transformation and the global SUð2Þglobal transformation

for the link variable Ux;μ and the site variable Θ̂x:

Ux;μ ↦ U0
x;μ ¼ ΩxUx;μΩ

†
xþμ; Ωx ∈SUð2Þlocal;

Θ̂x ↦ Θ̂0
x ¼ ΩxΘ̂xΓ; Γ∈SUð2Þglobal: ð3Þ

The expectation value of an operator O in this model is
defined by

hO½U; Θ̂�i ¼ 1

Z

Z
DUDΘ̂e−S½U;Θ̂�O½U; Θ̂�; ð4Þ

where the integration measures DU ¼ Q
x;μ dUx;μ and

DΘ̂ ¼ Q
x dΘ̂x are the invariant Haar measures for the

SU(2) group and the normalization h1i ¼ 1 is guaranteed
by introducing the partition function Z. Therefore, this
model has the SUð2Þlocal × SUð2Þglobal symmetry. Notice
that the global symmetry SUð2Þglobal is acting on the scalar
field alone.
In the naïve continuum limit, the action (1) reduces to the

continuum gauge-scalar model with a scalar field in the
fundamental representation with a gauge coupling constant
g and a fixed-length conditionΘ†

xΘx ¼ ΘxΘ
†
x ¼ v21, where

β ≔ 4=g2 and γ ≔ v2=2.

B. Color-direction field, the reduction condition,
and the field decomposition

In our investigations, the color-direction field defined
shortly plays the key role. This new field was introduced in
the framework of change of field variables [11] which is
originally based on the gauge-covariant decomposition of
the gauge field due to Cho-Duan-Ge-Shabanov [7–9] and
Faddeev-Niemi [10]. In what follows we give a very short
review on this framework to see the origin of the color-
direction field and its role played in understanding confine-
ment, see [11] for a thorough review.
The color-direction field on the lattice is a (Lie-algebra

valued) site variable:

nx ≔ nAx σA ∈ suð2Þ − uð1Þ ðA ¼ 1; 2; 3Þ; ð5Þ

where σA are the Pauli matrices. nx has the unit length
nx · nx ¼ 1. We require the transformation property of the
color-direction field nx as

nx ↦ n0x ¼ ΩxnxΩ
†
x: ð6Þ

For a given gauge field configuration fUx;μg, we
determine the color-direction field configuration fnxg
(as the unique configuration up to the global color rotation)
by minimizing the so-called reduction functional Fred½n;U�
under the gauge transformations:

Fred½fng; fUg� ≔
X
x;μ

1

2
tr½ðDμ½U�nxÞ†ðDμ½U�nxÞ�

¼
X
x;μ

trð1 − nxUx;μnxþμU
†
x;μÞ: ð7Þ

In this way, a set of color-direction field configurations
fnxg is obtained as the (implicit) functional of the original
link variables fUx;μg, which is written symbolically as

n� ¼ argmin
n

Fred½fng; fUg�: ð8Þ

This construction shows the nonlocal nature of the color-
direction field.
By introducing the color-direction field, we obtain the

deformed theory in which the expectation value of an
operator O including the color-direction field is calculated
according to

hO½U;Θ̂;n�i

¼ 1

Z

Z
DUDΘ̂e−S½U;Θ̂�

Z
Dnδðn−n�ÞO½U;Θ̂;n�; ð9Þ

where Dn ¼ Q
x dnx is the invariant measure for the color-

direction field and δðn − n�Þ is the Dirac delta function
which plays the role of replacing n by n� determined by (8).
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Notice that this definition reduces to the original one (4) if
the operator O does not include the color-direction field
O½U; Θ̂� because of

R
Dnδðn − n�Þ ¼ 1.

We specify the symmetry anew in the deformed
theory with nonlocality carried through the reduction
procedure. The deformed theory is invariant under the
local SUð2Þlocal gauge transformation and the globalgSUð2Þglobal transformation:

Ux;μ ↦ U0
x;μ ¼ ΩxUx;μΩ

†
xþμ; Ωx ∈SUð2Þlocal;

Θ̂x ↦ Θ̂0
x ¼ ΩxΘ̂xΓ; Γ∈ gSUð2Þglobal;

nx ↦ n0x ¼ ΩxnxΩ
†
x: ð10Þ

Therefore, the deformed theory with the color-direction

field has the SUð2Þlocal × gSUð2Þglobal symmetry. It should

be noticed that the global symmetry gSUð2Þglobal should be
discriminated from the global symmetry SUð2Þglobal of the
original theory.
By way of the color-direction field, the original link

variable Ux;μ ∈SUð2Þ is gauge-covariantly decomposable
into the product of two field variables Xx;μ; Vx;μ ∈SUð2Þ:

Ux;μ ¼ Xx;μVx;μ: ð11Þ

For this purpose, we require that Vx;μ has the transforma-
tion law in the same form as the original link variable Ux;μ:

Vx;μ ↦ V 0
x;μ ¼ ΩxVx;μΩ

†
xþμ; ð12Þ

and that Xx;μ has the transformation law in the same form as
the site variable nx:

Xx;μ ↦ X0
x;μ ¼ ΩxXx;μΩ

†
x: ð13Þ

This decomposition is uniquely determined by solving
the defining equations simultaneously (once the color-
direction field is given):

Dμ½V�nx ≔ Vx;μnxþμ − nxVx;μ ¼ 0; ð14Þ

trðnxXx;μÞ ¼ 0; ð15Þ

where Dμ½V� denotes the covariant derivative in the adjoint
representation.
Indeed, the exact solution is obtained in the following

form:

Vx;μ ¼ Ṽx;μ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
trðṼ†

x;μṼx;μÞ
r

Ṽx;μ ≔ Ux;μ þ nxUx;μnxþμ; ð16Þ

Xx;μ ¼ Ux;μV
†
x;μ: ð17Þ

Therefore, all components Vx;μ; Xx;μ of the decomposition
are obtained for a given gauge field configuration fUx;μg
and the color-direction field configuration fnxg to be
determined from fUx;μg. Finally, all components nx; Vx;μ;
Xx;μ of the decomposition are determined as the functional
of fUx;μg alone.
These new variables have been successfully used in

understanding confinement based on the dual supercon-
ductor picture. For example, it has been shown in the pure
gauge theory without the matter field that the restricted
field V gives the dominant part for quark confinement,
while the remaining field X corresponds to the massive
modes and decouple in the low-energy region. This gives
the gauge-independent version of the Abelian dominance
observed in the maximal Abelian gauge. See [11] for more
details and more applications of this reformulation of the
gauge theory.

C. Gauge-invariant operators

We proceed to investigate the phase structure of the
model using the framework explained in the above. First,
we measure the averages of the plaquette action density:

P ¼ 1

6V

X
x;μ<ν

trðUx;μUxþμ;νU
†
xþν;μU

†
x;νÞ; ð18Þ

and the scalar action density:

M ¼ 1

4V

X
x;μ

trðΘ̂†
xUx;μΘ̂xþμÞ; ð19Þ

where V is the total number of sites on the lattice.
In addition to these averages, we measure the suscep-

tibilities of these quantities to detect the transition line
more clearly:

χP ¼ hP2i − hPi2; ð20Þ

χM ¼ hM2i − hMi2: ð21Þ

These quantities are measured in the original theory
defined by (4).
Second, in the deformed theory defined by (9), it is

possible to define a new gauge-invariant operator rx, which
is constructed from the original fundamental scalar field Θ̂x
and the color-direction field nx. First we introduce a local
gauge-invariant scalar-color composite field rx:

rx ≔ Θ̂†
xnxΘ̂x ¼ r†x; ð22Þ
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which however transforms under the global transformation
in the covariant way:

rx ↦ r0x ¼ Γ†rxΓ: ð23Þ

Then we define the gauge-invariant scalar-color composite
field density R as the spacetime average of rx, which has the
same global transformation property as rx:

R ≔
1

V

X
x

rx ¼
1

V

X
x

Θ̂†
xnxΘ̂x ¼ R†; ð24Þ

R ↦ R0 ¼ Γ†RΓ: ð25Þ

It should be remarked that R is not contained in the original
action, in sharp contrast to the operators P and M.1

Notice that the matrix R is invariant under the gauge
transformation, therefore, every component of the matrix R
is gauge-invariant, but it is not invariant under the global
transformation. Therefore, in order to show gauge-
independently the spontaneous breaking of the global
symmetry, we have only to measure one of the component
of the matrix R. It is easy to show that R is written in the
form of the Lie-algebra su(2) valued matrix:

R ≔ RAσA ¼
�

R3 R1 − iR2

R1 þ iR2 −R3

�
∈ suð2Þ: ð26Þ

Therefore, the A-component RA (A ¼ 1, 2, 3) of R is
obtained from R as

RA ¼ 1

2
trðσARÞ: ð27Þ

In order to measure the average of the scalar-color
composite field density R, it is necessary to solve numeri-
cally the reduction condition (7) to obtain the color-
direction field configuration fnxg. However, there are
two types of ambiguity to determine uniquely the color-
direction field configuration.

(i) One ambiguity comes from the existence of the
Gribov copies which give the local minimum of
the reduction functional. In order to resolve this
issue, namely, to avoid the local minima and to
obtain the global minima, the reduction func-
tional is minimized under the random initial
configurations.

(ii) The other ambiguity comes from the invariance of
the reduction functional under the global sign flip
fnxg ↦ f−nxg. Consequently, the average of the
operator including the color field can vanish due to
cancellations between a configuration fnxg and
the flipped one f−nxg. To avoid this issue we
propose to measure the average hjRAji using the
absolute value:

jRAj ¼
���� 12 trðσARÞ

���� ¼
���� 1V

X
x

1

2
trðσARxÞ

����
¼
���� 1V

X
x

1

2
trðσAΘ̂†

xnxΘ̂xÞ
����; ð28Þ

which is invariant under the sign flip of fnxg.
In particular, jR3j is rewritten into the form:

jR3j ¼
���� 1V

X
x

1

2
trðnxΘ̂xσ

3Θ̂†
xÞ
����

¼
���� 1V

X
x

1

2
trðnxϕxÞ

����; ϕx ≔ Θ̂xσ
3Θ̂†

x: ð29Þ

Here ϕx can be identified with a composite adjoint scalar
field constructed from the fundamental scalar field Θ̂x. In
fact, ϕx transforms according to the adjoint representation
under the gauge transformation: ϕx≔ Θ̂xσ

3Θ̂†
x↦ΩxϕxΩ

†
x.

Consequently, jR3j has the same form as the gauge-
invariant composite operator jQj introduced for investigat-
ing the lattice SU(2) gauge-scalar model with the adjoint
scalar field ϕ to show the existence of the transition line
which divides the confinement phase into two parts [12] in
addition to the transition line separating the Higgs phase
from confinement phase.
The gauge-invariant quantity RA as a component of

the gauge-invariant matrix R transforms under the global
transformation as

RA ¼ 1

2
trðσARÞ

↦ RA0 ¼ 1

2
trðσAR0Þ

¼ 1

2
trðσAΓ†RΓÞ ¼ 1

2
trðΓσAΓ†RÞ: ð30Þ

1Even if the operator to be measured is restricted to the original
field variables, we can construct the other operators which are
gauge-invariant, but transform according to the adjoint repre-
sentation of the global group Γ∈ gSUð2Þglobal. For example, for
any positive integer n ¼ 1; 2;…, we have

OP
x ≔ Θ̂†

xðUPx
ÞnΘ̂x ↦ Γ†OP

xΓ;

where UPx
is the plaquette gauge variable starting at the site x and

ending at the same site x, e.g., UPx
¼ Ux;μUxþμ;νU

†
xþν;μU

†
x;ν. In

order to make the operator OP
x invariant under the Lorentz

transformation or the Euclidean rotation invariant, we must
sum up all the possible directions of the plaquette Px specified
by two indices μ and ν.
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Therefore, RA is invariant RA0 ¼ RA under the continuous

subgroup gUð1ÞAglobal of the global group gSUð2Þglobal,
because

ΓσAΓ† ¼ σA

⇔ Γ ¼ expðiθAσAÞ∈ gUð1ÞAglobal ⊂ gSUð2Þglobal
ðno sum over AÞ: ð31Þ

This means that, if hjRAji has a nonvanishing value, the

global group gSUð2Þglobal is spontaneously broken togUð1ÞAglobal. However, this partial breaking does not give
the true spontaneous symmetry breaking, because this
breaking depends on the specific choice A in the Lie
algebra and there are no common subgroups for allgUð1ÞAglobal for A ¼ 1, 2, 3.
Thus, we need to take into account all the components on

equal footing simultaneously to examine the spontaneous
breaking of the global symmetry correctly. From this
viewpoint, we define the naïve gauge-invariant norm as
an order parameter:

kRkn ≔
�X3

A¼1

jRAjn
�1=n

; ð32Þ

which is expected to reflect the correlation between the
color-direction field nx and the fundamental scalar field Θ̂x,
and detect the spontaneous breaking of the global sym-

metry gSUð2Þglobal.
The n ¼ 1 case is just the sum of all the components:

kRk1 ¼
X3
A¼1

jRAj: ð33Þ

This operator is not invariant under any continuous sub-

group of the global group gSUð2Þglobal, and hence can be
used to show the complete spontaneous breaking of the

global symmetry gSUð2Þglobal.
The n ¼ 2 case is written as

kRk2 ¼
�X3

A¼1

jRAj2
�1=2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR1Þ2 þ ðR2Þ2 þ ðR3Þ2

q
¼

ffiffiffiffiffiffiffiffiffiffi
R · R

p
: ð34Þ

This is equivalent to consider the scalar-color composite
density norm kRk2 defined by

kRk2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
trðR†RÞ

r
; ð35Þ

which is invariant under both the local gauge and global
transformations:

kRk2 ↦ kR0k2 ¼ kRk2: ð36Þ

The ambiguity of the global sign flipping is automatically
avoided for hkRk2i by virtue of the invariance of kRk2
under the global sign flipping, due to the fact that kRk2 is
quadratic in nx:

kRk2 ¼
�
1

2
tr

��
1

V

X
x
Θ̂†

xnxΘ̂x

�†�1

V

X
y

Θ̂†
ynyΘ̂y

��	
1=2

:

ð37Þ

To see the meaning of kRk2, we obtain the eigenvalues of R
by solving the characteristic equation for the eigenvalue
problem:

0 ¼ detðR − λ1Þ ¼
����R3 − λ R1 − iR2

R1 þ iR2 −R3 − λ

����
¼ λ2 − ½ðR1Þ2 þ ðR2Þ2 þ ðR3Þ2�
¼ ðλ − λþÞðλ − λ−Þ;

λ� ¼ �
ffiffiffiffiffiffi
R2

p
≔ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR1Þ2 þ ðR2Þ2 þ ðR3Þ2

q
: ð38Þ

Therefore, the scalar-color density R can be transformed
into the diagonal form and the norm kRk2 consists of two
eigenvalues of the scalar-color density R: λ¼ λ�≔�

ffiffiffiffiffiffi
R2

p
,

which reproduces, e.g., �R3 by a global rotation.
Moreover, we define the susceptibilities of the scalar-

color average norm to detect the new transition line:

χkRkn ≔ hkRk2ni − hkRkni2: ð39Þ

III. NUMERICAL SIMULATION

A. Settings for the lattice simulation

We performed the Monte Carlo simulations on the 84 and
164 lattice with the periodic boundary condition. In each
Monte Carlo sweep, the configuration of link variables
fUx;μg and site variables fΘ̂xg were updated alternately by
the pseudo heat bath method (with Kennedy-Pendleton
method [25] for large β, γ). For a measurement with a set of
couplings ðβ; γÞ, we discarded first 5000 sweeps for
thermalization and sampled configurations per 100 sweeps
and stored 100 configurations.
For each link field configuration fUx;μg, we obtained

numerically the resulting color-direction field configuration
fnxg by using the iterative method with over-relaxation to
solve the reduction condition.
The above simulations were performed for 9 × 16 ¼ 144

sets of couplings ðβ; γÞ.
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B. Averages for P and M

For the purpose of scanning the transition line on the
phase diagram, we performed the measurement for the
expectation value hOi of the gauge-invariants O on various
β ¼ const and γ ¼ const lines. We identified the transition
lines by detecting gaps or rises of the plots for hOi.
First we measured the plaquette action density P and the

scalar action density M to determine the thermodynamic
transition line which is expected to reproduce the well-
known transition line originally found by numerical sim-
ulations in [18].
First, we determine the transition line from the plaquette

action density hPi. Figure 1 shows the measurement results
of hPi in the β-γ phase plane. The left panel is the plots of
hPi as functions of γ on various β ¼ const lines, while the
right panel is the plots of hPi as functions of β on various
γ ¼ const lines. In these plots, error bars are omitted
because errors are too small to be indicated.

Similarly, we determine the transition line from the
scalar action density hMi. Figure 2 shows the measurement
results of hMi in the β-γ phase plane. The left panel is the
plots of hMi as functions of γ on various β ¼ const lines,
while the right panel is the plots of hMi as functions of β on
various γ ¼ const lines.
By observing gaps in these plots, we obtained the transition

lines in the left panel of Fig. 3 determined from the plaquette
actiondensity hPi, and that in the right panel ofFig. 3 from the
scalar action density hMi. The neighboring two observed
points represent the pieces of the transition lines, and the error
bars with the observed points were determined due to the
interval of the simulation points. Notice that these transition
lines obtained from hPi and hMi agreewith each other within
the errors. Then we can conclude that we reproduced gauge-
independently the transition line which was obtained in the
specific gauge by the preceding studies [18,19], by perform-
ing the gauge-independent numerical simulations.

FIG. 1. Average of the plaquette action density hPi on the 164 lattice: (left) hPi vs. γ on various β ¼ const lines, (right) hPi vs. β on
various γ ¼ const lines.

FIG. 2. Average of the scalar action density hMi on the 164 lattice: (left) hMi vs. γ on various β ¼ const lines, (right) hMi vs. β on
various γ ¼ const lines.
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C. Susceptibilities for P and M

We performed more measurements of gauge-invariants:
the susceptibilities (specific heat) χP of the plaquette action
density P and χM of the scalar action density M. We
identified the transition lines by detecting peaks of the plots
for these susceptibilities.
We determine the transition line from the plaquette

susceptibility χP ≔ hP2i − hPi2 and the scalar susceptibil-
ity χM ≔ hM2i − hMi2. Figure 4 shows the measurement
results of χP in the β-γ phase plane. The left panel is the
plots of χP as functions of γ on various β ¼ const lines,
while the right panel is the plots of χP as functions of β on
various γ ¼ const lines.
Moreover, Fig. 5 shows the measurement results of χM in

the β-γ phase plane. The left panel is the plots of χM
as functions of γ on various β ¼ const lines, while the
right panel is the plots of χM, as functions of β on various
γ ¼ const lines.
Figure 6 shows the transition lines obtained by observing

the peaks in these plots. The transition line in the left panel

of Fig. 6 is determined from the plaquette susceptibility χP
and that in the right panel of Fig. 6 from the scalar
susceptibility χM. Notice that both transition lines obtained
from χP and χM are consistent each other and coincide with
the transition lines determined from hPi and hMi given in
Fig. 3 within the errors.
These results reproduce the results obtained in the

preceding studies [18,19].

D. Average for kRk1
In the previous section, we have introduced the

operator kRkn and proposed to measure the average
hkRkni to search the new transition. The global symmetrygSUð2Þglobal is unbroken if hkRkni → 0 in the infinite
volume limit V → ∞. On the other hands, the global

symmetry gSUð2Þglobal is broken if hkRkni → const > 0

as V → ∞.
When the lattice volume is finite, however, hkRkni takes

the nonzero value hkRkni ≠ 0 even in the unbroken phase.

FIG. 3. Transition lines γ ¼ γcðβÞ determined by the action densities on the 164 lattice: (left) P, (right) M.

FIG. 4. Susceptibility χP of the plaquette action density P on the 164 lattice: (left) χP vs. γ on various β ¼ const lines, (right) χP vs. β
on various γ ¼ const lines.
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In the finite volume V, we denote the value of hkRkni in the
unbroken phase by hkR0kni.
Let r0;x be the random field variable on the surface S2

which has the same global transformation property as rx:
r0;x ↦ Γ†r0;xΓ. Then we introduce another gauge-invariant
field density R0 which is constructed in a way similar to R:

R0 ≔
1

V

X
x

r0;x ¼ R†
0; R0 ↦ Γ†R0Γ: ð40Þ

We can estimate the volume dependence of hkR0kni as
hkR0kni ∝ 1ffiffiffi

V
p which yields hkR0kni → 0 as V → ∞. See

Appendix B for more details. In order to detect the

spontaneous breaking of the global symmetry gSUð2Þglobal
in the finite volume V, therefore, we redefine the average of
the gauge-invariant operator norm hkRknisub by

hkRknisub ≔ hkRkni − hkR0kni: ð41Þ

hkRknisub is the well-defined order parameter: hkRknisub ¼
0 in the gSUð2Þglobal unbroken phase, and hkRknisub ≠ 0 in

the gSUð2Þglobal broken phase.
Following the above procedure, we first measured the

1-norm of the scalar-color composite field density hkRk1isub.
To determine the transition line, we observed the

position at which the value of hkRk1isub as a function of
the parameters β and γ changes from zero hkRk1isub ¼ 0 to
a nonzero value hkRk1isub > 0 as the results of numerical
simulations.
Figure 7 gives the measurement results of hkRk1isub in

the β-γ phase plane. The upper panels are the plots of
hkRk1isub as functions of γ on various β ¼ const lines,
while the lower panels are the plots of hkRk1isub, as
functions of β on various γ ¼ const lines.
Figure 8 is the transition line determined from the

modified 1-norm of the scalar-color composite field density
hkRk1isub, by observing the results of Fig. 7. It is

FIG. 5. Susceptibility χM of the scalar action densityM on the 164 lattice: (left) χM vs. γ on various β ¼ const lines, (right) χM vs. β on
various γ ¼ const lines.

FIG. 6. Transition lines γ ¼ γcðβÞ determined by the susceptibilities on the 164 lattice: (left) χP (right) χM.
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remarkable that this new transition line divides the single
Higgs-confinement region into two separated regions: the
confinement region and the Higgs region. Notice that this
transition line was obtained in the gauge-independent
manner, since any gauge fixing has not been imposed in
the procedure of numerical simulations.2

E. Susceptibility for kRk1
Moreover, we measured the susceptibility (specific heat)

χkRk1 ≔ hkRk21i − hkRk1i2 of the modified 1-norm of the
scalar-color composite field density kRk1. We identified the
transition lines by detecting the position at which χkRk1
changes from a constant value χkRk1 ¼ χkRk1;0 ¼ const to
increasing the value χkRk1 > χkRk1;0 ¼ const.
Figure 9 gives the measurement results of the suscep-

tibility χkRk1 in the β-γ phase plane. The left panel is the

plots of χkRk1 as functions of γ on various β ¼ const lines,
while the right panel is the plots of χkRk1 as functions of β
on various γ ¼ const lines.

FIG. 7. Average of the 1-norm of the scalar-color composite field density hkRk1isub on the 164 lattice: (upper) hkRk1isub vs. γ on
various β ¼ const lines, (lower) hkRk1isub vs. β on various γ ¼ const lines.

FIG. 8. Transition lines γ ¼ γcðβÞ determined by the 1-norm of
the scalar-color composite field density kRk1 on the 164 lattice.

2Incidentally, it should be mentioned that the new transition
line dividing the confinement phase in the case of the adjoint
scalar field has been found quite recently in [12], by performing
gauge-independent numerical simulations in the similar way.
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Figure 10 is the transition line determined from the
susceptibility of the modified 1-norm of the scalar-color
composite field density χkRk1, by observing the results of
Fig. 9. This new transition line also divides the single
Higgs-confinement region into the confinement region and
the Higgs region. Notice that this transition line obtained
from χkRk1 agrees with that given in Fig. 8 within the errors.

F. Average for kRk2
To confirm the existence of the new transition line in the

phase diagram, we also measured the modified 2-norm
of the scalar-color composite field density kRk2 defined
in (41). To determine the transition line, we observed the
position at which hkRk2isub as a function of the parameters
β and γ changes from zero hkRk2isub ¼ 0 to nonzero
hkRk2isub > 0 as the results of numerical simulations.
Figure 11 gives the measurement results of hkRk2isub

in the β-γ phase plane. The upper panels are the plots of

hkRk2isub as functions of γ on various β ¼ const lines,
while the lower panels are the plots of hkRk2isub, as
functions of β on various γ ¼ const lines.
Figure 12 is the transition line determined from the

modified 2-norm of the scalar-color composite field
density hkRk2isub by observing the results of Fig. 11.
This new transition line divides the single Higgs-
confinement region into two separated regions: the
confinement region and the Higgs region. Notice that
this transition line was also obtained in the gauge-
independent manner. It is notable that the location of
the transition line determined from the modified 2-norm
of the scalar-color composite field density hkRk2isub
agrees with that determined from the modified 1-norm
of the scalar-color composite field density hkRk1isub.

G. Susceptibility for kRk2
Lastly, we measured the susceptibility (specific heat)

χkRk2 ≔ hkRk22i − hkRk2i2 of the modified 2-norm of the
scalar-color composite field density kRk2. We identified
the transition lines by detecting the position at
which χkRk2 changes from χkRk2 ¼ χkRk2;0 ¼ const to
χkRk2 > χkRk2;0 ¼ const.
Figure 13 gives the measurement results of χkRk2 in the

β-γ phase plane. The left panel is the plots of χkRk2 as a
function of γ on various β ¼ const lines, while the right
panel is the plots of χkRk2 as a function of β on various
γ ¼ const lines.
Figure 14 is the transition line determined from the

susceptibility of the modified 2-norm of the scalar-color
composite field density χkRk2, by observing the results of
Fig. 13. This new transition line also divides the single
Higgs-confinement region into the confinement region and
the Higgs region. It is remarkable that this transition line
obtained from χkRk2 approximately agrees with that given in
Fig. 12 within the errors.

FIG. 9. Susceptibility χkRk1 of the 1-norm of the scalar-color composite field density on the 164 lattice: (left) χkRk1 vs. γ on various
β ¼ const lines, (right) χkRk1 vs. β on various γ ¼ const lines.

FIG. 10. Transition lines γ ¼ γcðβÞ determined by the suscep-
tibility χkRk1 of the 1-norm of the scalar-color composite field
density kRk1 on the 164 lattice.
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H. Volume dependence of the new transition line

In the numerical simulations on the lattice with a
finite volume, it is well known that there exists an issue
coming from the finite volume effects, as reported for

the gauge-scalar model in [19]. For the purpose of
examining the volume dependence of the new transition
line, we performed the measurement of hkRknisub on 84

and 164 lattices.
Figure 15 exhibits the transition lines determined from

the modified 2-norm of the scalar-color composite field
density hkRk2isub on 84 and 164 lattices. These new
transition lines divide the single Higgs-confinement region
into two separated regions: the confinement region and the
Higgs region. The location of the transition line determined
on the 164 lattice is shifted upward in γ, compared with the
transition line determined on the 84 lattice. In fact, the small
β region, especially, β ¼ 0 case is very sensitive to the finite
volume effect. Therefore, we cannot conclude whether the
transition line reaches β ¼ 0 line at a certain finite value of
γ or not.3

FIG. 11. Average of the 2-norm of the scalar-color composite field density hkRk2isub on the 164 lattice: (upper) hkRk2isub vs. γ on
various β ¼ const lines, (lower) hkRk2isub vs. β on various γ ¼ const lines.

FIG. 12. Transition lines γ ¼ γcðβÞ determined by the 2-norm
of the scalar-color composite field density kRk2 on the 164 lattice.

3In our simulations, indeed, we adopted the very small positive
value β ¼ 10−14 and γ ¼ 10−14 instead of β ¼ 0 and γ ¼ 0 which
means excluding the gauge action and the scalar action respec-
tively from the beginning.
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However, the results do not excludes the transition line
which terminates at the horizontal axis γ ¼ ∞, although
our data of numerical simulations available are not suffi-
cient to conclude the precise position of the transition line.
Indeed, it is shown in Appendix A that the spontaneous

symmetry breaking of the global symmetry gSUð2Þglobal can
occur at γ ¼ ∞ based on another reformulation of this
model. See Fig. 16 for the schematic phase diagram.

IV. UNDERSTANDING THE NEW PHASE
STRUCTURE

According to our numerical simulations for the
deformed theory, the phase diagram is divided into confine-
ment phase (I) γ < γcðβÞ (hkRk2isub ¼ 0) and Higgs
phase (II) γ > γcðβÞ (hkRk2isub ≠ 0) as shown schemati-
cally in Fig. 16.

FIG. 13. Susceptibility χkRk2 of the 2-norm of the scalar-color composite field density kRk2 on the 164 lattice: (left) χkRk2 vs. γ on
various β ¼ const lines, (right) χkRk2 vs. β on various γ ¼ const lines.

FIG. 14. Transition lines γ ¼ γcðβÞ determined by the suscep-
tibility χkRk2 of the 2-norm of the scalar-color composite field
density kRk2 on the 164 lattice.

FIG. 15. Transition lines γ ¼ γcðβÞ determined by the 2-norm
of the scalar-color composite field density hkRk2isub on the 84

and 164 lattice.

FIG. 16. The schematic phase diagram: (I) confinement phase
and (II) Higgs phase. The red area describes the possible
locations of the new transition line due to finite volume effects.
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In what follows we discuss why the above phase
structure does not contradict with the conventional wis-
doms and how the respective phase is characterized from
the physical point of view.
First, we discuss why the above phase structure does not

contradict with the conventional wisdoms.
According to the Elitzur theorem [15], the local gauge

symmetry cannot be spontaneously broken, or there are no
(local) order parameters for detecting the spontaneous
breaking of local gauge symmetry. On the other hand, if
there exists a global symmetry, there also exists a corre-
sponding local order parameter. However, there can exist
no local order parameter for the symmetry which enable to
discriminate between the confinement phase and the Higgs
phase [4]. Therefore, the new transition detected by the
nonlocal order parameter hkRknisub defined by (41) is not
related to the original global symmetry SUð2Þglobal and it is
not identified with the actual thermodynamic transition
line. In order to show the separation between confinement
and Higgs regions, we must temporarily deform the theory
such that it has a certain nonlocal character which invalid-
ates the OSFS theorem.

(i) Confinement phase (I) and Higgs phase (II) can be
respectively characterized by the absence or pres-
ence of spontaneous breaking of the global sym-

metry gSUð2Þglobal.
Notice that R is a Hermitian matrix. Therefore, R

can be diagonalized by a unitary matrix and can be
expressed using the real-valued eigenvalues λ�
defined in (38) as

R ¼
�

R3 R1 þ iR2

R1 − iR2 −R3

�
¼ Γ�

�
λþ 0

0 λ−

�
Γ†�;

Γ� ∈ gSUð2Þglobal; ð42Þ

where Γ� represents a certain matrix of gSUð2Þglobal
which realizes the diagonalization. To obtain the
nonvanishing average avoiding the cancellations
between λþ and λ− (λþ ¼ −λ− > 0), we use only
λþ > 0.
Higgs phase (II) is characterized by

hkRk2isub ≠ 0. In this phase, a specific rotation

matrix Γ� ∈ gSUð2Þglobal is chosen to realize the
diagonalization of the matrix R with nonzero eigen-
value λ ¼ λ� ≠ 0. Therefore, Higgs phase (II) is
interpreted as an ordered phase with the sponta-

neously broken global symmetry gSUð2Þglobal.
Confinement phase (I) is characterized by

hkRk2isub ¼ 0. In this phase, any specific rotation
matrix Γ� is not needed. Therefore, confinement
phase (I) is interpreted as a disordered phase with the

unbroken global symmetry gSUð2Þglobal.

Notice that the above argument has nothing to do
with the local gauge symmetry SUð2Þlocal for R.
Therefore, the local symmetry SUð2Þlocal is unbroken
in both phases. Therefore, confinement phase (I) is
the phase where both the local gauge symmetry

SUð2Þlocal and the global symmetry gSUð2Þglobal being
unbroken (hkRk2isub ¼ 0), while Higgs phase (II) is
the phase where the local gauge symmetry SUð2Þlocal
is unbroken but the global symmetry gSUð2Þglobal is
spontaneously broken (hkRk2isub ≠ 0).

(ii) The existence of a new transition line we found does
not contradict with the OSFS analyticity theorem.

The gauge-scalar model discussed in Osterwalder-
Seiler [1] and Fradkin-Shenker [2] has the same
symmetry as that of our original model, although the
symmetry is realized nonlinearly in Osterwalder-
Seiler model, while it is realized linearly in our
original model. Therefore, the OSFS theorem is
applicable to the original gauge-scalar model.

However, the operator such as the intrinsically
nonlocal operator R in the deformed theory (9) is not
supposed in the proof of the OSFS theorem which
states the analyticity between confinement and Higgs
regions in the phase plane ðβ; γÞ of the original theory.
R includes the color-direction field obtained accord-
ing to (8) through the reduction procedure which
involves the gauge field configurations over thewhole
lattice. In the proof of analyticity [1], a convergent
cluster expansion used for the expectation value of a
local operator is valid only if the operator has a finite
support. Therefore, the OSFS theorem is not appli-
cable to R in the deformed theory (9). Thus, the
existence of the new transition line detected byR does
not contradict with the OSFS theorem.

(iii) The massless Nambu-Goldstone particles do not
appear in the Higgs phase even if the continuous

global symmetry gSUð2Þglobal is spontaneously broken
in the deformed theory (9). According to the conven-
tional understanding, if the scalar field Θ̂x acquires a
nonvanishing vacuum expectation value (VEV)
hΘ̂xi ¼ vffiffi

2
p 1 in the unitary gauge, the symmetry

SUð2Þlocal × gSUð2Þglobal of the action is spontane-
ously broken down to a diagonal global subgroup

SUð2Þdiag: SUð2Þlocal × gSUð2Þglobal→SUð2Þdiag such

that the VEV of Θ̂x is preserved under the trans-
formation Ωx ¼ Γ† ¼ G:

Ux;μ ↦ ΩxUx;μΩ†
xþμ ⇒ Ux;μ ↦ GUx;μG†;

Θ̂x ↦ ΩxΘ̂xΓ ⇒ Θ̂x ↦ GΘ̂xG†: ð43Þ

In order to introduce the new gauge-invariant
composite operator rx ≔ Θ̂†

xnxΘ̂x to detect the
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spontaneous symmetry breaking, we need to obtain
the color-direction field nx. However, the color-
direction field nx is obtained by minimizing the
reduction functional which involves the gauge con-
figurations fUx;μg over the whole lattice and given as
an integral over the whole the lattice volume. There-
fore, the resulting color-direction field nx is intrinsi-
cally nonlocal despite its appearance, which violates
one of the assumptions, i.e., locality in proving the
Nambu-Goldstone theorem.
This is the reason why there are no massless

particles (gapless excitations) in the Higgs phase,

although the continuous global symmetry gSUð2Þglobal
is spontaneously broken.

Next, we discuss how the respective phase is charac-
terized from the physical point of view.

(i) First, we consider the confinement phase (I) γ <
γcðβÞ below the new critical line γ ¼ γcðβÞ where
hkRk2isub takes the vanishing value hkRk2isub ¼ 0.
In the limit γ → 0, especially, the SU(2) gauge-

scalar model reduces to the pure compact SU(2)
gauge model which is expected to have a single
confinement phase with no phase transition and has
a mass gap on the whole β axis in four spacetime
dimensions [26].
Confinement is expected to occur due to vacuum

condensations of appropriate topological defects,
e.g., magnetic monopoles for non-Abelian gauge
theory [27]. Here such topological defect should be
carefully defined gauge-independently using the
gauge-invariant method, which is actually realized
by extending the gauge-covariant decomposition of
the gauge field, see [11] for a review.
Even in a finite γ region: 0 < γ < γcðβÞ, the effect

of the scalar field would be relatively small and
confinement would occur in the way similar to the
pure SU(2) gauge model, which we call confinement
phase (I) from the belief that the original gauge
symmetry SU(2) would be kept unbroken and not
spontaneously broken.
Confinement phase (I) is regarded as a disordered

phase in which all the symmetries are restored. In
confinement phase (I), therefore, the color-direction
field nx takes various possible directions with no
specific direction (isotropic configuration) in color
space. This can be estimated through hkRk2isub in
relation to the direction of the fundamental scalar
field Θ̂x. The vanishing of the average hkRk2isub ¼ 0
is caused by the very small correlation between the
color-direction field nx and the fundamental scalar
field Θ̂x. Therefore, a single phase with a mass gap is
expected to exist in the region (I). The gauge fields
become massive due to self-interactions among
themselves.

(ii) Next, we consider the Higgs phase (II) γ > γcðβÞ
above the new critical line where hkRk2isub takes the
nonvanishing value hkRk2isub ≠ 0.

In the Higgs phase (II) the gauge fields become
massive due to different mechanism from that in
the confinement phase (I). According to the conven-
tional BEH mechanism, this phenomenon is
understood as a consequence of the (complete)
spontaneous symmetry breaking SUð2Þ → f1g.
Note that the gauge-independent description of
the BEH mechanism [16] provides the new inter-
pretation without introducing the spontaneous gauge
symmetry breaking. Therefore, the Higgs phase (II)
with massive gauge fields is also expected to exist
due to the absence of massless gauge mode through-
out this phase. In the limit γ → ∞, all components
of the gauge field become infinitely heavy and
decouple from the physical modes and there is no
remaining massless diagonal gauge field unlike the
lattice gauge-scalar model with the adjoint scalar
field [12].

This phase is characterized by the nonvanishing
value hkRk2isub ≠ 0, which means that the color-
direction field nx correlates strongly with the given
fundamental scalar field Θ̂x which tends to align to
an arbitrary but a specific direction as expected from
the spontaneous symmetry breaking in an ordered
phase. The Higgs phase (II) is regarded as an ordered
phase in which the color-direction field nx takes the
anisotropic configuration in color space together
with the fundamental scalar field Θ̂x.

V. CONCLUSIONS AND DISCUSSIONS

In this paper, we reexamined the phase structure of the
lattice SU(2) gauge-scalar model with the scalar field in
the fundamental representation of the gauge group by
introducing the new type of gauge-invariant operators.
According to the preceding studies [1,2,18,19], this model
has a single confinement-Higgs phase composed of ana-
lytically continued confinement and Higgs subregions, and
therefore there are no thermodynamic phase transitions
between the two regions.
We constructed gauge-invariant composite operators

composed of the fundamental scalar field and the color-
direction field constructed from the gauge field which can
be obtained from change of field variables [11] based on the
gauge-covariant decomposition of the gauge field due to
Cho-Duan-Ge-Shabanov [7–9] and Faddeev-Niemi [10].
We found the gauge-independent separation between the
confinement phase and the Higgs phase without any
specific gauge fixing.
We performed the gauge-fixing-free numerical simula-

tions. We reproduced the conventional thermodynamic
transition line in the weak gauge coupling region [18,19].
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Moreover, we confirmed that there exists a new transition
line divides a single confinement-Higgs phase into the
confinement phase and the Higgs phase in the strong gauge
coupling region. We provided a possible physical interpre-
tation of the new transition and the resulting separated
phases as a symmetric and spontaneously broken realization

of a global continuous symmetry gSUð2Þglobal of the deformed
theory which should be discriminated from the global
symmetry SUð2Þglobal of the original theory. Notice that
the SUð2Þglobal symmetry of the original theory is not broken
anywhere in the phase diagram, in accord with the OSFS
theorem. In other words, the new transition line separating
confinement and Higgs phases appears only when the theory
is deformed so as to have a certain nonlocality which
invalidates the OSFS theorem.
Finally, we can say something about confinement or

deconfinement in this model. In the confinement phase (I)
there would occur magnetic monopole condensations
which will play the dominant role in realizing quark
confinement based on the dual superconductor picture. In
fact, the magnetic monopole can be constructed only from
the gauge degrees of freedom through the color-direction
field and the magnetic monopole dominance in quark
confinement has been confirmed in the pure gauge case in
the gauge-invariant way [11]. In the Higgs phase (II), on
the other hand, there would be no magnetic-monopole
condensations and confinement would not occur. This
issue is to be clarified in the next work. In subsequent
papers, we will give more detailed theoretical and
numerical investigations to confirm the new transition
line, then discuss physical implications of the new
transition including confinement or deconfinement in
view of [28,29] and also the extension to the gauge-
fundamental scalar model with the gauge group SU(3)
with a different global symmetry [30].
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APPENDIX A: ANOTHER FORMULATION FOR
THE GAUGE-INDEPENDENT BEH MECHANISM

AND SPONTANEOUS GLOBAL
SYMMETRY BREAKING

In this Appendix, we give another formulation of the
SU(2) gauge-scalar model with a single radially-fixed
fundamental scalar field. It turns out that the new

formulation enables to give the gauge-independent descrip-
tion of the BEH mechanism and its relation to the
spontaneous global symmetry breaking.
First of all, we introduce the new link variable W̃x;μ by

4

W̃x;μ ≔ Θ̂†
xUx;μΘ̂xþμ

⇔ Ux;μ ¼ Θ̂xW̃x;μΘ̂
†
xþμ: ðA1Þ

This link variable W̃x;μ is gauge invariant:

W̃x;μ ↦ W̃0
x;μ ¼ W̃x;μ ðA2Þ

under the local gauge transformation Ωx ∈SUð2Þlocal for
the link variable Ux;μ and the site variable Θ̂x as the
fundamental scalar field:

Ux;μ ↦ U0
x;μ ¼ ΩxUx;μΩ

†
xþμ;

Θ̂x ↦ Θ̂0
x ¼ ΩxΘ̂x; Ωx ∈SUð2Þlocal: ðA3Þ

Then we find that the gauge-invariant lattice action of the
gauge-scalar model with the fundamental scalar field can
be rewritten in terms of the new gauge-invariant variable
W̃x;μ alone:

S½U; Θ̂� ¼ SG½U� þ SH½U; Θ̂� ¼ S̃G½W̃� þ S̃H½W̃�; ðA4Þ

SG½U� ¼ S̃G½W̃�

¼ β

2

X
x;μ>ν

Re trð1 − W̃x;μW̃xþμ;νW̃
†
xþν;μW̃

†
x;νÞ;

ðA5Þ
SH½U; Θ̂� ¼ S̃H½W̃�

¼ γ

2

X
x;μ

Re trð1 − W̃x;μÞ: ðA6Þ

Moreover, we pay attention to the integration measure. It is
shown thatY

x;μ

dUx;μ

Y
x

dΘ̂x ¼
Y
x;μ

dW̃x;μ

Y
x

dΘ̂x; ðA7Þ

which follows from the fact that the Jacobian associated
with change of variables ðUx;μ; Θ̂xÞ → ðW̃x;μ; Θ̂xÞ is essen-
tially equal to one.
Thus, the two theories: the original theory of the action

SG½U� þ SH½U; Θ̂� with the measure
Q

x;μ dUx;μ
Q

x dΘ̂x

and the new theory of the action S̃G½W̃� þ S̃H½W̃� with the
measure

Q
x;μ dW̃x;μ

Q
x dΘ̂x are equivalent.

4The authors would like to thank Professor Jun Nishimura for
calling our attention to the importance of the new link variable to
understand some aspects of our results, and subsequent discus-
sions on the related issues.
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The characteristic properties and advantages of the new
formulation are as follows.5

(1) [local gauge symmetry SUð2Þlocal and gauge-
invariant massive gauge boson]
The link variable W̃x;μ is the lattice version of the

gauge-invariant massive gauge boson field W̃μ

introduced in the continuum formulation as
Eq. (81) in [16]:

W̃μðxÞ≔ ig−1Θ̂ðxÞ†Dμ½A�Θ̂ðxÞ
¼ ig−1Θ̂ðxÞ†ð∂μΘ̂ðxÞ− igAμðxÞΘ̂ðxÞÞ: ðA8Þ

Indeed, S̃H½W̃� is reduced to the gauge-invariant
mass term 1

2
M2

WW̃μðxÞW̃μðxÞ for the gauge boson
field W̃μðxÞ in the continuum limit as shown by
expanding the new link variable W̃x;μ ¼
expðigϵW̃μðxÞÞ with a lattice spacing ϵ in powers
of the Lie-algebra valued field W̃μðxÞ. Hence, γ is
set to be proportional to the bare gauge boson mass
squared M2

W : γ ∝ M2
W .

Therefore, the action of the SU(2) gauge-scalar
model can be completely written in terms of the
gauge-invariant massive modes if the scalar field is
fundamental. According to the conventional BEH
mechanism, the fundamental scalar field causes
complete spontaneous breaking of the original gauge
symmetry SUð2Þlocal and thereby all the components
of the gauge field become massive by absorbing all
(would-be) massless Nambu-Goldstone particles
appearing according to the Nambu-Goldstone theo-
rem associated to the spontaneous symmetry break-
ing. This fact suggests that the new formulation is
more suitable than the original one to discuss the
Higgs phase in contrast to the confinement phase
which can be well described in the original formu-
lation. The new formulation can give the gauge-
invariant (independent) description of the BEH
mechanism in the case of the fundamental scalar
field initiated in [16].
This should be compared with the SU(2) gauge-

scalar model with the adjoint scalar field which
exhibits the partial spontaneous symmetry breaking
in the sense that the original gauge symmetry SU(2)
is broken into the nontrivial subgroup U(1) which
corresponds to the massless gauge mode. Therefore,
in this model the theory cannot be rewritten in terms
of the massive modes alone even after the BEH
phenomenon occurs [17].

(2) [global symmetry Γ∈SUð2Þglobal]
Although the link variable W̃x;μ is gauge-invariant,

it transforms under the global transformation
Γ∈SUð2Þglobal for the site variable Θ̂x according to
the adjoint representation:

Θ̂x ↦ Θ̂0
x ¼ Θ̂xΓ ⇒ W̃x;μ ↦ W̃0

x;μ ¼ Γ†W̃x;μΓ;

Γ∈SUð2Þglobal: ðA9Þ

Under this global transformation, the original lattice
action of the gauge-scalar model with the fundamen-
tal scalar field is invariant. Therefore, this is also the
case for the new action:

S̃G½W̃�¼β

2

X
x;μ>ν

Retrð1−W̃x;μW̃xþμ;νW̃
†
xþν;μW̃

†
x;νÞ

⇒SG½W̃0�¼SG½W̃�; ðA10Þ

S̃H½W̃�¼ γ

2

X
x;μ

Retrð1−W̃x;μÞ

⇒ S̃H½W̃0�¼ S̃H½W̃�: ðA11Þ

In the conventional standpoint, this can be understood
that the original gauge symmetry is explicitly broken
by the mass term and the symmetry of the theory
reduces to the global SUð2Þglobal symmetry with no
local gauge symmetry, since all the gauge fields
become massive and there are no massless mode
which respect the local gauge symmetry.

(3) [no thermodynamic phase transition in the phase
diagram]
At γ ¼ ∞, all the variables W̃x;μ are fixed:

W̃x;μ ¼ 1. Therefore, the theory loses the β depend-
ence and hence no transition occurs at γ ¼ ∞. This
result is reasonable because the gauge bosons have
the infinite mass at γ ¼ ∞ and decouple from the
spectrum and the theory becomes trivial.
At β ¼ 0, namely, on the γ axis, the variables W̃x;μ

on the links become mutually independent. There-
fore, the average of the operator obtained by product
of the operators defined on the respective link show
no “thermodynamic” phase transition as far as we
use the operator with the support consisting of a
finite number of links or sites on the lattice. This
results is consistent with the Osterwalder-Seiler-
Fradkin-Shenker (OSFS) result. Indeed, they
adopted the unitary gauge Θ̂x ¼ 1 to show the
analyticity. The theory at β ¼ 0 represents an ultra-
local theory of the gauge boson which has no kinetic
term with only a mass term.

(4) [new reduction and new color-direction field to
study the spontaneous global symmetry]

5Numerical simulations of SU(2) gauge-fundamental scalar
model based on the new formulation have been done by
Montvay [31].
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In the new theory, the reduction functional is
rewritten into

Fred½n;U� ¼
X
x;μ

trð1 − nxUx;μnxþμU
†
x;μÞ

¼
X
x;μ

trð1 − ñxW̃x;μñxþμW̃
†
x;μÞ

≔ F̃red½ñ; W̃�; ðA12Þ

where we introduced a new color-direction field ñx
defined by

ñx ≔ Θ̂†
xnxΘ̂x ≡ rx: ðA13Þ

It should be remarked that the new color-direction
field ñx is invariant under the local gauge
transformation, while it transforms according to
the adjoint representation under the global
transformation (10),

ñx ↦ ñ0x ¼ Γ†ñxΓ; Γ∈ gSUð2Þglobal; ðA14Þ

because it is identical to the local gauge-invariant
scalar-color composite field rx in the original
formulation: rx ≔ Θ̂†

xnxΘ̂x ¼ r†x. Therefore, the
new color-direction field configuration fñxg is
determined from a given massive gauge boson
field configuration fW̃x;μg obtained by the new
formulation by minimizing the reduction functional
F̃red½ñ; W̃� under the (enlarged) gauge transforma-
tions. Notice that the new reduction functional

F̃red½ñ; W̃� respects the global symmetry gSUð2Þglobal.
We examine the spontaneous breaking of the global

symmetry gSUð2Þglobal which is signaled by the nonlocal
operator ¯̃n constructed from the new color-direction field ñx
associated with the massive gauge field W̃x;μ:

¯̃n ≔
1

V

X
x

ñx ¼
1

V

X
x

Θ̂†
xnxΘ̂x ¼ ¯̃n†;

¯̃n ↦ ¯̃n0 ¼ Γ† ¯̃nΓ: ðA15Þ

Consider the γ → ∞ limit. In this limit W̃x;μ reduces to the
unit matrix: W̃x;μ → 1. Even after the global transformation

Γ∈ gSUð2Þglobal this configuration is preserved: W̃0
x;μ → 1,

because W̃0
x;μ ¼ Γ†W̃x;μΓ → Γ†1Γ ¼ Γ†Γ ¼ 1. This means

that the spontaneous breaking of gSUð2Þglobal cannot be seen
by using W̃x;μ. However, this does not mean that the

spontaneous breaking of gSUð2Þglobal does not occur. We
can find an appropriate operator which plays the role of the
order parameter. Indeed, we can adopt ¯̃n constructed from

the new color-direction field ñx for this purpose. If a
specific configuration ¯̃n� of ¯̃n is preserved, it must
satisfy ¯̃n0� ≔ Γ† ¯̃n�Γ ¼ ¯̃n� which is equivalent to ¯̃n�Γ ¼
Γ ¯̃n� ⇔ ½ ¯̃n�;Γ� ¼ 0, namely, ¯̃n� must commute with any

Γ∈ gSUð2Þglobal. Therefore, ¯̃n� must be proportional to the
unit matrix. However, this is impossible because ¯̃n� is a Lie-
algebra valued and traceless, and hence cannot be propor-
tional to the unit matrix although ¯̃n� is a two by two matrix,
in contrast to W̃x;μ which is a group-valued matrix. Thus, ¯̃n
can be an order parameter to see the spontaneous breaking

of the global gSUð2Þglobal symmetry. In the limit γ → ∞ the
reduction functional reduces to

F̃red½ñ; W̃� →
X
x;μ

trð1 − ñxñxþμÞ; ðA16Þ

and a constant color-direction field ñ� becomes the solution
of the reduction condition.
Therefore, ¯̃n� resulting from the constant configuration

ñ� indeed breaks the gSUð2Þglobal symmetry in the limit
γ → ∞. Thus, ¯̃n can be used to construct the order

parameter for the spontaneous breaking of gSUð2Þglobal.
The OSFS results cannot be applied to the “nonlocal”

operator with the support including infinite number of links
or sites over the whole lattice.
It is important to remark that the spontaneous breaking of

the global continuous symmetry can be searched by
measuring the nonlocal operator with the support over
all the sites on the lattice in the sense explained in the
above. In other words, the new transition line does not
represent a simple thermodynamics transition.
This operator was measured by obtaining the eigenvalues

of the operator obtained by the diagonalization, which is
achieved by applying the specific global rotation Γ�. This
specific choice of the global rotation realizing the diago-
nalization of the nonlocal operator corresponds to breaking
the global symmetry spontaneously. Thus the new formu-
lation guarantees that the resulting spontaneous breaking
of the global symmetry is gauge-invariant (gauge-
independent) phenomenon, which also justifies the result
obtained by taking the unitary gauge.

APPENDIX B: EVALUATION OF hkR0k1i
AND hkR0k2i

Let r0 be the random variable on the surface S2 para-
metrized by the two angles θ;ϕ:

r0 ¼ ðr10; r20; r30Þ ¼ ðsin θ cosϕ; sin θ sinϕ; cosϕÞ: ðB1Þ

The two angles θ;ϕ follow the uniform distributions
θ ∼ Uð0; πÞ;ϕ ∼Uð0; 2πÞ.
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Then we can calculate the expected values E½rA0 � and
variances V½rA0 � ¼ E½ðrA0 Þ2� − E½rA0 �2 for A ¼ 1, 2, 3:

E½rA0 � ¼
1

4π

Z
2π

0

dϕ
Z

1

−1
dðcos θÞrA0 ðθ;ϕÞ ¼ 0; ðB2Þ

V½rA0 � ¼
1

4π

Z
2π

0

dϕ
Z

1

−1
dðcos θÞrA0 ðθ;ϕÞ2 ¼

1

3
; ðB3Þ

and E½RA
0 � and V½RA

0 � for R0 ¼ 1
V

P
x r0;x:

E½RA
0 � ¼

1

V

X
x

E½rA0 � ¼ 0;

V½RA
0 � ¼

1

V2

X
x

V½rA0 � ¼
1

3V
: ðB4Þ

According to the standard argument, it is shown that RA
0

follows a normal distribution N ðμ; σ2Þ: RA
0 ∼N ðμ ¼ 0;

σ2 ¼ 1
3VÞ due to the central limit theorem.

We represent the components as ðx; y; zÞ ≔ R0 ¼
ðR1

0; R
2
0; R

3
0Þ, and the Gaussian distribution as

gðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p exp

�
−

x2

2σ2

�
ðB5Þ

in the subsequent evaluations. gðyÞ; gðzÞ are also defined in
a similar way.

(i) Evaluation of hkR0k1i
For the 1-norm kR0k1 ¼ jxj þ jyj þ jzj, the ex-

pected value E½kR0k1� and variance V½kR0k1� can be
evaluated as

E½kR0k1� ¼
Z

dxdydzðjxj þ jyj þ jzjÞgðxÞgðyÞgðzÞ

¼ 3

Z
∞

−∞
dxjxjgðxÞ

¼ 3

ffiffiffi
2

π

r
σ ¼

ffiffiffi
6

π

r
1ffiffiffiffi
V

p ≡ μ1; ðB6Þ

V½kR0k1�¼E½kR0k21�−μ21

¼
Z

dxdydzðjxjþjyjþjzjÞ2gðxÞgðyÞgðzÞ−μ21

¼3

Z
∞

−∞
dxx2gðxÞþ6

�Z
∞

−∞
dxjxjgðxÞ

�
2

−μ21

¼3 ·σ2þ6

� ffiffiffi
2

π

r
σ

�2

−
�
3

ffiffiffi
2

π

r
σ

�2

¼3

�
1−

2

π

�
σ2¼

�
1−

2

π

�
1

V
≡σ21: ðB7Þ

For the sampling average hkR0k1i¼
1
N

P
N
i¼1kR0k1;i based on N samples, the expected

value E½hkR0k1i� and mean squared error
δ2½hkR0k1i� are evaluated as

E½hkR0k1i� ¼
1

N

XN
i¼1

E½kR0k1;i� ¼ μ1

¼
ffiffiffi
6

π

r
1ffiffiffiffi
V

p ; ðB8Þ

δ2½hkR0k1i� ¼ E½ðhkR0k1i − μ1Þ2� ¼
�

σ1ffiffiffiffi
N

p
�

2

¼
� ffiffiffiffiffiffiffiffiffiffiffi

1 −
2

π

r
1ffiffiffiffi
V

p 1ffiffiffiffi
N

p
�2

: ðB9Þ

(ii) Evaluation of hkR0k2i
For the 2-norm kR0k2 ¼ ðx2 þ y2 þ z2Þ1=2, the

expected value E½kR0k2� and variance V½kR0k2� can
be evaluated as

E½kR0k2� ¼
Z

dxdydzðx2þ y2þ z2Þ1=2gðxÞgðyÞgðzÞ

¼ 1

ð2πσ2Þ3=2
Z

2π

0

dφ
Z

1

−1
dðcosθÞ

×
Z

∞

0

drr3e−r
2=2σ2

¼
ffiffiffi
8

π

r
σ ¼

ffiffiffiffiffiffi
8

3π

r
1ffiffiffiffi
V

p ≡μ2; ðB10Þ

V½kR0k2�¼E½kR0k22�−μ22

¼
Z

dxdydzðx2þy2þz2ÞgðxÞgðyÞgðzÞ−μ22

¼3

Z
∞

−∞
dxx2gðxÞ−μ22

¼3

�
1−

8

3π

�
σ2¼

�
1−

8

3π

�
1

V
≡σ22;

ðB11Þ

For the samplingaverage hkR0k2i¼ 1
N

P
N
i¼1kR0k2;i

based on N samples, the expected value E½hkR0k2i�
and mean squared error δ2½hkR0k2i� are evaluated as

E½hkR0k2i� ¼
1

N

XN
i¼1

E½kR0k2;i� ¼ μ2

¼
ffiffiffiffiffiffi
8

3π

r
1ffiffiffiffi
V

p ; ðB12Þ
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δ2½hkR0k2i� ¼ E½ðhkR0k2i − μ2Þ2� ¼
�

σ2ffiffiffiffi
N

p
�

2

¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −
8

3π

r
1ffiffiffiffi
V

p 1ffiffiffiffi
N

p
�2

: ðB13Þ

It should be noticed that the above expected values
vanish in the limit V → ∞:

lim
V→∞

E½hkR0k1i�¼0; lim
V→∞

E½hkR0k2i�¼0: ðB14Þ

Moreover, we can give the evaluation for the case
V ¼ 84; N ¼ 100 as

hkR0k1i ¼ ð2.16� 0.09Þ × 10−2;

hkR0k2i ¼ ð1.44� 0.06Þ × 10−2; ðB15Þ

and for the case V ¼ 164; N ¼ 100 as

hkR0k1i ¼ ð5.40� 0.24Þ × 10−3;

hkR0k2i ¼ ð3.60� 0.15Þ × 10−3: ðB16Þ
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