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Using a simplified lattice version of the electroweak sector of the standard model, with dynamical
fermions excluded, we determine at fixed Weinberg angle the transition line between the confined phase
and the Higgs phase, the latter defined as the region where the global center subgroup of the gauge group is
spontaneously broken, and “separation of charge” confinement disappears. We then search, via lattice
Monte Carlo simulations, for possible neutral vector bosons in the Higgs region, apart from the photon and
Z. There are numerical indications of a “light Z” in the lattice data (along with the photon and the Z), but a
lack of the expected scaling of the light mass particle excludes any firm conclusions about the physical
spectrum.
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I. INTRODUCTION

The location of the Higgs phase of the Standard Model in
the space of couplings depends on what one means by the
Higgs phase. The earliest numerical work on the zero
temperature phase diagram that we are aware of was by
Shrock in [1], and a much later treatment was by Veselov
and Zubkov in [2,3]. Of course there have been a great
many lattice treatments of the electroweak phase transition
at finite temperature (mostly in the SU(2) gauge Higgs
model, e.g., [4]), as well as other topics in the electroweak
theory (such as vacuum stability [5]), but this article is
concerned with phase structure at zero temperature. If the
Higgs and confinement phases of the electroweak sector
were entirely separated by a boundary of thermodynamic
transition, then determination of the phase diagram at zero
temperature would be fairly straightforward. However, as
we know from the work of [6–8], this is generally not the
case in gauge Higgs theories with the Higgs field trans-
forming in the fundamental representation of the gauge
group. In the absence of such a boundary, it is necessary to
carefully define what is meant by the “spontaneous break-
ing” of a gauge symmetry, which for local symmetries is
actually ruled out by the Elitzur theorem [9]. Our view,
advocated in [10], is that the Higgs phase is distinguished
from the confinement and massless phases of a gauge
Higgs theory by the spontaneous breaking of the global
center subgroup (GCS) of the gauge group, e.g. the
spontaneous breaking of the global ZN subgroup of a local

SU(N) gauge group, and this global subgroup transforms
the matter fields of the theory, but does not affect the gauge
fields. While the breaking of this symmetry may or may not
be accompanied by a thermodynamic transition, it none-
theless is accompanied by physical effects, in particular
the disappearance of metastable flux tube states in the
Higgs phase, and corresponding absence of linear Regge
trajectories.
In this article we first map out the transition line, using

the above symmetry breaking criterion, in a simplified
SUð2Þ × Uð1Þ lattice gauge Higgs theory, with a unim-
odular Higgs field (corresponding to infinite Higgs mass),
and no dynamical fermions. Keeping the Weinberg angle
fixed, the Wilson coupling for the SU(2) lattice field and
a single parameter in the Higgs sector define a two-
dimensional parameter space, and the transition line we
compute lies in this plane.
A second objective is a search, via lattice Monte Carlo

simulations, for new vector boson particle states within the
Higgs phase whose boundary we have located. Here we
note that physical particles in the electroweak theory are, in
some sense, composite objects, and in any quantum theory
composite objects generally have a spectrum of excita-
tions. As ’t Hooft emphasized many years ago [11], weak
isospin is actually “confined” in the electroweak sector.
Certainly there is a distinction between electrons and
neutrinos, but the physical particles are actually compo-
sites, with weak isospin screened by the Higgs field. The
same point was made by Frohlich et al. [12] and by Banks
and Rabinovici [8]. So, nonperturbatively, excited fermion
states might exist. Simulations in SU(3) gauge Higgs
theory strongly suggest that this may be the case [13].
Unfortunately we have no reliable lattice formulation of a
chiral gauge theory, so the existence of such excitations in
the electroweak theory is not amenable to numerical
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investigation. But there is no such obstruction to a search
for new states with the quantum numbers of the photon and
the Z boson in a lattice formulation, providing dynamical
fermions are excluded. We will see that there is evidence,
in the simplified theory, for a new vector boson state, with
a mass significantly lighter than the Z boson, but unfortu-
nately that mass does not scale with lattice couplings in the
way one would expect. This prevents us from drawing
strong conclusions about the existence of such particles in
the actual electroweak sector.
In Sec. II we review for completeness some of the ideas

presented in [10] regarding the Higgs phase as a phase of
broken global center symmetry. These ideas are extended to
SUð2Þ × Uð1Þ gauge Higgs theory in Sec. III, where the
confinement to Higgs transition line, at fixed Weinberg
angle, is determined. Section IV describes the results of our
search for new Z boson-like excitations, and the last section
contains our conclusions.

II. THE SYMMETRIC/HIGGS PHASE
DISTINCTION

Our view, as just mentioned, is that Higgs phase is
distinguished from the confinement and Coulomb phases of
a gauge Higgs theory by the spontaneous breaking of the
global center subgroup (GCS) of the gauge group, and this
breaking is accompanied by physical effects. In the case of a
massless to Higgs transition, this is simply the appearance
of a mass gap. The effect in the confinement to Higgs
transition is more subtle; it is the loss of metastable color
electric flux tubes which would be associated with linear
Regge trajectories. This is a transition between confinement
types, which were termed, in [10], “separation of charge”
(Sc) confinement and color (C) confinement, and it is not
necessarily accompanied by a thermodynamic phase tran-
sition. The GCS is a subgroup of the gauge group which
transforms matter fields but not gauge fields, and should not
be confused with a different center symmetry which trans-
forms gauge fields but not matter fields, with Polyakov lines
as an order parameter for symmetry breaking.1

We define a “charged” state to be a physical state,
satisfying the Gauss Law constraint, which transforms
covariantly under an unbroken GCS. The simplest illus-
tration of a charged state in an infinite volume, and the
motivation for this definition, is a state containing a single
static fermion coupled to the quantized Maxwell field (no
dynamical matter fields), presented long ago by Dirac [14].
In A0 ¼ 0 gauge the charged state is

Ψchrg ¼ ψ̄ðxÞρðx;AÞΨ0; ð1Þ

where Ψ0 is the ground state, ψ̄ creates a static fermion,
with

ρðx;AÞ ¼ exp

�
−i

e
4π

Z
d3zAiðzÞ

∂

∂zi

1

jx − zj
�

ð2Þ

and [15]

Ψ0½A� ¼ exp

�
−
Z

d3x
Z

d3y
∇×AðxÞ ·∇×AðyÞ

16π3jx−yj2
�
: ð3Þ

Let gðxÞ ¼ eiθðxÞ be an arbitrary U(1) gauge transformation.
The ground state is obviously invariant under this trans-
formation, while ψ̄ðxÞ → e−iθðxÞψ̄ðxÞ transforms cova-
riantly. The field ρðxÞ, however, is almost but not quite
covariant under the gauge transformation. Let θ0 be the
zero mode of θðxÞ, i.e. θðxÞ ¼ θ0 þ θ̃ðxÞ. Then it is easy to
see that

ρ½x;A� → eiθ̃ðxÞρ½x;A�; ð4Þ

and therefore, under an arbitrary gauge transformation

Ψchrg → e−iθ0Ψchrg: ð5Þ

In other words, a charged state in U(1) gauge theory is
almost but not entirely gauge invariant. It transforms
covariantly under the global center subgroup of the gauge
group, consisting of transformations gðxÞ ¼ eiθ0 . If there is
a dynamical matter (e.g., scalar) field ϕ in the theory which
transforms in the same way as the static fermion, then one
can also construct neutral states containing the static
fermion, such as

Ψneutral ¼ ψ̄ðxÞϕðxÞΨ0; ð6Þ

which is invariant under the full gauge group. However, this
sharp distinction between charged and neutral states breaks
down if, upon inclusion of dynamical matter, the GCS is
spontaneously broken, as in the Higgs phase of the Abelian
Higgs model. In situations of that kind, states which
transform covariantly under the GCS are not necessarily
orthogonal to neutral states such as Ψneutral above.
All of this extends directly to non-Abelian gauge Higgs

theories. The operator ρðx;AÞ is one example of what has
been called a “pseudomatter” operator [10], defined to be a
functional of the gauge field which transforms like a matter
field in the fundamental representation of the gauge group,
except under gauge transformations belonging to the global
center subgroup of the gauge group. Examples in non-
Abelian lattice gauge theories include gauge transforma-
tions to physical gauges, and eigenstates ξanðx;UÞ of the
covariant lattice Laplacian on a time slice

1In the case of SU(2) gauge Higgs theory there is a larger
global SU(2) symmetry, generally known as “custodial” sym-
metry, which transforms the Higgs but not the gauge fields, and it
was the SU(2) gauge group that was mainly considered in [10].
But SU(2) is a special case, and the relevant symmetry in the
general case is the global center subgroup of the gauge group.
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−Dab
xy ½U�ξbðy;UÞ ¼ λnξ

a
nðx;UÞ; ð7Þ

where

Dab
xy ¼

X3
k¼1

h
2δabδxy−Uab

k ðxÞδy;xþk̂−U†ab
k ðx− k̂Þδy;x−k̂

i
ð8Þ

is the lattice Laplacian, and superscripts are color indices.
Note that since the lattice gauge field UμðxÞ is unaffected
by the global center subgroup of the gauge group, so are the
ξn. Using the pseudomatter operators ξn, or any other
pseudomatter operators, we can construct physical states in
gauge Higgs theories such as

Ψchrg ¼ ψ̄aðxÞξaðx;UÞΨ0½U;ϕ�; ð9Þ

which transform covariantly under the GCS, and are
charged providing that this symmetry is not spontaneously
broken. A gauge Higgs theory, or any gauge theory with
matter in the fundamental representation of the gauge
group, is in the separation of charge (Sc) confining phase
if the energy expectation value of any state of this kind,
above the vacuum energy, is infinite. In a finite volume one
can construct finite energy states by creating separated
charges

Ψ ¼ ψ̄aðxÞξaðx;UÞξb†ðy;UÞψbðyÞΨ0½U;ϕ�: ð10Þ

In the Sc phase the energy of such states tends to infinity as
jx − yj → ∞ for any pseudomatter operator ξ. In fact the
statement holds for any state of this form

Ψ ¼ ψ̄aðxÞVabðx; y;UÞψbðyÞΨ0½U;ϕ�; ð11Þ

where Vabðx; y;UÞ is any functional of the gauge field only,
transforming bicovariantly at the points x, y. Sc confine-
ment exists only when the GCS symmetry is unbroken. In
the Higgs phase, where the GCS symmetry is broken, it can
be shown that there are always some choices for Vðx; y;UÞ
which result in finite energy states as jx − yj → ∞ [10].
The question is how to construct a gauge-invariant order
parameter for the symmetry breaking.
Of course it is nonsense to regard hϕi as an order

parameter. In the absence of gauge fixing this quantity
is zero regardless of the couplings; in a unitary gauge
it is nonzero regardless of the couplings, and in other
gauges it may be zero or nonzero in various regions of
coupling constant space, depending on the choice of
gauge [16]. Following [10], we construct an order
parameter starting from

e−H½U;ϕ�=kT ¼
Z

DU0½DUkDϕ�t≠0e−S

¼
X
n

jΨn½U;ϕ�j2e−En=kT

Z½U� ¼
Z

Dϕe−H½U;ϕ�=kT; ð12Þ

where it is understood that U, ϕ on the left-hand side of
this equation are defined as the spatial links and scalar
field on a three-dimensional time slice at t ¼ 0, and kT, in
lattice units, is the inverse of the lattice extension in the
time direction. We then ask whether the GCS [ZN for
SU(N)] is spontaneously broken, for a given background
U in the system described by the partition function Z½U�.
For this purpose we introduce

ϕ̄ðx;UÞ ¼ 1

Z½U�
Z

DϕϕðxÞe−H½U;ϕ�=kT; ð13Þ

The global ZN symmetry is spontaneously broken if
ϕ̄ðx;UÞ is nonzero throughout the lattice. In general this
quantity is not the same at each position since the
background U breaks translation invariance, and typically
the spatial average of ϕ̄ðx;UÞ is negligible. It is then
convenient to define the spatial average of the modulus in
the spatial volume V3 of the time slice

Φ½U� ¼ 1

V3

X
x

jϕ̄ðx;UÞj ð14Þ

which is zero in the unbroken phase, and nonzero is the
broken phase for a given background. Having derived an
order parameter for global symmetry breaking at a given
U, we can now determine whether this symmetry is
broken in the full theory by taking the expectation value

Φ≡ hΦ½U�i: ð15Þ

in the usual e−S probability measure. If Φ > 0, then the
global center subgroup of the gauge group is broken in
every relevant configuration generated by that measure,
and this is the precise meaning of the statement that
global center symmetry is spontaneously broken in the
Higgs phase. The order parameter Φ is very closely
analogous to the Edwards-Anderson order parameter for a
spin glass [17], as emphasized in [10].
Here we have glossed over an important technicality.

Strictly speaking, symmetries cannot be spontaneously
broken in a finite volume. It is necessary to add a small
term to H½U;ϕ�, proportional to some constant h, which
breaks the global symmetry explicitly. Then the symmetry
is broken if Φ > 0 after taking first the thermodynamic and
then the h → 0 limit. It is possible to construct this term in
a way which does not break the local gauge symmetry.
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For details the reader is referred to [10]; but for the
numerical calculations discussed in the next section these
formalities will not be necessary.
Usually the breaking of a symmetry is associated with a

thermodynamic phase transition, and this is true providing
that there is a local order parameter associated with that
symmetry, whose nonanalyticity at the transition is tied to a
nonanalyticity in the free energy. But there is no local order
parameter for the breaking of the GCS symmetry; the order
parameter Φ is highly nonlocal, and nonanalytic behavior
in nonlocal observables is not necessarily associated with a
nonanalyticity in the free energy. An example is the
expectation value of the Higgs field in certain gauges,
e.g., Coulomb and Landau, where the breaking of a
remnant global symmetry in these gauges is not always
accompanied by a thermodynamic transition. It is the gauge
fixing which renders the order parameter in these cases
nonlocal, and the remnant symmetry breaking line is not
everywhere a thermodynamic transition line, cf. [16]. The
question, however, is whether a nonanalyticity in a nonlocal
order parameter, which is not associated with a thermo-
dynamic transition, is nonetheless a transition to a physi-
cally distinct phase. In fact this is sometimes the case. The
classic example is the Kertesz line in Ising models [18],
which is precisely a nonthermodynamic transition of that
sort. Our transition line from the Sc to C confinement
phases is another example of this type.

III. TRANSITION LINE IN SUð2Þ × Uð1Þ
GAUGE HIGGS THEORY

The electroweak gauge group has a special feature: both
the confined and the Higgs phases have charged states
which couple to a massless particle.2 An example of a state
of this kind is the following:

Ψchrg ¼ ψ̄aðxÞϕaðxÞρðx;VÞΨ0½U;V;ϕ�; ð16Þ

while a neutral state can have the form

Ψneutral ¼ ψ̄aðxÞσab1 ϕb�ðxÞΨ0½U;V;ϕ�: ð17Þ

and the σi are the Pauli matrices. Proposals of this kind
(for electron and neutrino states) were made long ago
in [8,11,12]. Here U, V are the SU(2) and U(1) lattice
gauge fields respectively, and ρðx;VÞ is a pseudomatter
field, analogous to (2). We take the static fermion operator
ψ and the Higgs field ϕ to both transform in the funda-
mental representation of SU(2), but with opposite weak

hypercharge� 1
2
. ThusΨchrg transforms under a global U(1)

symmetry with weak hypercharge −1.
In the Higgs phase, the global center symmetry Z2 ×

Uð1Þ is spontaneously broken. Nevertheless, in the Higgs
phase, an operator which transforms as a singlet under
global SU(2), and with hypercharge −1 under global U(1),
can also be regarded as transforming covariantly under a
certain global U(1) transformation which is unbroken in the
Higgs phase. The symmetry can be identified by going to a
physical gauge defined by the gauge rotating ϕ̄ such that
upper component of ϕ̄ vanishes, i.e.,

ϕ̄1ðx;UÞ ¼ 0; ð18Þ

and in this gauge there is a remnant local U(1) symmetry
consisting of transformations

gðxÞ ¼ eiαðxÞσ3=2eiαðxÞ=2: ð19Þ

Under a global transformation αðxÞ ¼ α of this type,
Ψchrg → eiαΨchrg in the Higgs phase. In the confined phase,
where the global GCS is unbroken and the gauge (18) is ill
defined, we still have Ψchrg → eiαΨchrg under a Z2 ×Uð1Þ
transformation gðxÞ ¼ ð�1Þeiα=2.
The procedure for finding the confinement toHiggs trans-

ition in SU(2) gauge theories has been described in [10], and
this procedure is unchanged for SUð2Þ × Uð1Þ. The lattice
action is

S ¼ −β
X
plaq

�
1

2
Tr½UUU†U†� þ 1

tan2ðθWÞ
Re½VVV†V†�

�

− γ
X
x;μ

Re½ϕ†ðxÞUμðxÞVμðxÞϕðxþ μ̂Þ�; ð20Þ

with SU(2) gauge fieldUμðxÞ and U(1) gauge fieldVμðxÞ ¼
eiθμðxÞ and, for simplicity, we have imposed the unimodular
condition jϕj ¼ 1. For the lattice versions of the W, Z and
photon fields in terms of U, V in unitary gauge, cf. Veselov
and Zubkov [2]. The gauge and scalar fields are updated in
the usual way, but each data-taking sweep actually consists
of a set of nsym sweeps in which the spacelike linksUiðx; 0Þ,
Vðx; 0Þ are held fixed on the t ¼ 0 time slice. Let ϕðx; t ¼
0; nÞ be the scalar field at site x on the t ¼ 0 time slice at the
nth sweep. Then we compute ϕ̄ðx; U; VÞ from the average
over nsym sweeps

ϕ̄ðx; U; VÞ ¼ 1

nsym

Xnsym
n¼1

ϕðx; 0; nÞ; ð21Þ

and the order parameter ΦnsymðU;VÞ from (14). Here it is
important to indicate the dependence on nsym. Then the
procedure is repeated, updating links and the scalar field
together, followed by another computation of Φðnsym; UÞ

2It is likely, however, that at sufficiently strong couplings there
is a transition within the confinement phase to a phase in which
all vector particles are massive. At least, this is known to be true
in other gauge theories such as the Abelian Higgs model, which
also contains a U(1) gauge symmetry.
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from a simulation with spatial links at t ¼ 0 held fixed, and
so on. Averaging the Φðnsym; UÞ obtained by these means
results in an estimate for hΦnsymðUÞi. SinceΦnsymðUÞ is a sum
of moduli, it cannot be zero. Instead, on general statistical
grounds, we expect3

hΦnsymðU;VÞi ¼ Φþ κffiffiffiffiffiffiffiffiffinsym
p ; ð22Þ

where κ is some constant. By computing hΦnsymðU;VÞi in
independent runs at a range of nsym values, and fitting the
results to (22), we obtain an estimate forΦ at any point in the
β, γ plane of lattice couplings.

A. Numerical results

We work throughout at fixed Weinberg angle θW ¼
0.5002 radians. In this section we allow both β and γ to vary
and use the approach just described to compute the
confinement to Higgs transition line in the β − γ plane.
It is understood that in both phases there exists a massless
vector boson, so not all charges are confined in either
phase. But in the confined phase, at least the non-Abelian
charge is confined according to the Sc criterion. In the next
section, for the computation of vector boson masses, we set
β ¼ 10.1, which should be close to the physical value
corresponding to the usual fine structure constant.
In Fig. 1 we display the extrapolation of hΦnsymðU;VÞi to

nsym → ∞ at β ¼ 10.1 on a 164 lattice volume. For γ ≤ 0.6,
the data extrapolates to Φ ¼ 0, and the system is in the
confined phase. At γ ¼ 0.65 and above, Φ > 0, and the
system is in the Higgs phase. The transition is for γ
somewhere between 0.6 and 0.65. Figure 2 shows the
transition line obtained by this method, up to β ¼ 11,
on V ¼ 164 lattice volumes.4

As noted in the Introduction, the first results for the
SUð2Þ × Uð1Þ phase diagram with a fixed modulus Higgs
were obtained by Shrock [1], who in fact presented phase
boundary surfaces in the full three dimensional phase
volume (two gauge couplings and γ). In this early work
the criterion for a transition was thermodynamic, i.e.,
nonanalytic behavior of the plaquette and the Higgs action
density φ defined below, and results were obtained by a
combination of series expansions around soluble limits, and
the numerical tools and methods available in the mid-1980s
(the latter included estimation of transition points from

hysteresis curves on very small lattices). We are calculating
essentially a slice of the phase diagram in the three volume,
and although it is difficult to make a precise comparison,
our transition line, derived using a different criterion for the
Higgs phase, appears to roughly agree with the results
reported by Shrock. Our transition line is also very similar,
but perhaps not exactly the same, as the line obtained in
much later work by Veselov and Zubkov [2]. Those
authors, however, used slightly different parameters for
the (renormalized) fine structure constant and the Weinberg
angle, so some modest deviation is to be expected. Their
criterion for a transition is also different from ours, and has
to do with a drop in monopole density.

FIG. 2. Transition line from the symmetric to the broken
phase of global center symmetry, corresponding to the transition
from the confinement to the Higgs phase, in the β − γ plane at
fixed θW .

FIG. 1. Computation of the order parameter hΦnsymi vs 1=
ffiffiffiffiffiffiffiffiffinsym

p
where nsym is number of Monte Carlo sweeps (see text). Also
shown is the extrapolation to nsym ¼ ∞. Data was taken at β ¼
10.1 for the set of γ shown. Extrapolation to hΦi ¼ 0 indicates
that the system is in the Sc confined phase, while extrapolation to
hΦi > 0 means that the system is in the Higgs phase.

3One must keep in mind that at finite V3, hΦi would actually
vanish at nsym → ∞, since a symmetry cannot break in a finite
volume. The proper order of limits is first V3 → ∞, then
nsym → ∞. Nevertheless, for nsym not too large, (22) is a good
fit to the data, and the extrapolation should be reliable.

4It is possible that the sudden change in slope of the transition
line around β ¼ 2 is associated with a transition to a fully massive
phase in the region of unbroken GCS. A similar effect was seen in
SU(2) gauge theory in five dimensions, cf. Ward [19].
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Since our criterion for a transition to the Higgs phase is
nonthermodynamic, and the transition may or may not be
accompanied by a thermodynamic transition, the next
question is whether the confinement to Higgs transition
line is also a line of thermodynamic transition. The answer
appears to be similar to the SU(2) case: the symmetry
breaking transition is a thermodynamic transition at large β,
but not at small β. Define the “gauge-invariant link” as the
spacetime average of the Higgs action

φ ¼ 1

4V4

X
x;μ

Re½ϕ†ðxÞUμðxÞVμðxÞϕðxþ μ̂Þ� ð23Þ

where V4 is the lattice 4-volume. In Fig. 3 we plot the
expectation value of φ vs γ at various β on a V4 ¼ 84

volume, and we see that while the curve is smooth at small
β, it seems to develop a “kink,” i.e., a discontinuity in the
slope ∂φ=∂γ at larger β. In Fig. 4 we show the same data for
β ¼ 10.1 on a 164 lattice volume. Precisely this type of
nonanalyticity has been seen before in the transition to the
Higgs phase in the Abelian Higgs model [20]. It is also
useful to study the susceptibility,

χφ ¼ 4V4

�hφ2i − hφi2� ð24Þ

at β ¼ 10.1, vs γ at various volumes, as seen in Fig. 5. Note
that the data point for the 124 volume at the transition point
lies well above the data points at lower volumes. All of this
suggests a thermodynamic transition or, at least, a very
sharp crossover around γ ¼ 0.62 at β ¼ 10.1, which is
consistent with our estimate of the location of the GCS
breaking transition, somewhere between γ ¼ 0.60 and
γ ¼ 0.65.

IV. NEW WEAK VECTOR BOSONS?

We search for neutral vector bosons in our simplified
SUð2Þ × Uð1Þ gauge theory by studying correlation func-
tions of gauge invariant operators which, operating on the
vacuum, would create physical states corresponding to
neutral vector bosons. Photons and physical Z bosons are
states of this type, and we would like to know if there are
any more in the spectrum. Define ŨμðxÞ ¼ UμðxÞVμðxÞ,
with the lattice Laplacian operator Dab

xy ½Ũ� covariant under
the SUð2Þ × Uð1Þ group. Let ζiðxÞ, i ¼ 1; 2…; N be the
lowest N eigenstates of the Laplacian operator, with
ζNþ1ðxÞ ¼ ϕðxÞ the Higgs field.
Now we use the ζ fields to construct gauge-invariant

operators which, when operating on the vacuum, will
construct physical states with the quantum numbers of
the physical photon and Z. Define

ρðxÞeiAi
μðxÞ ¼ ζ†i ðxÞŨμðx; tÞζiðxþ μ̂Þ; ð25Þ

and

Ai
μðxÞ ¼ sinðAi

μðxÞÞ

Qi
μ ¼

1

L3

X
x

Ai
μðxÞ

jΦi
μi ¼ Qi

μjΨ0i; ð26Þ

FIG. 3. Expectation value hφi of the gauge invariant link (23) vs
γ at several β values on an 84 lattice volume.

FIG. 4. Same as Fig. 3 for β ¼ 10.1 on a 164 lattice volume.

FIG. 5. Link susceptibility (24) vs γ at β ¼ 10.1 and various
lattice volumes V ¼ L4.
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where index μ ¼ 1, 2, 3 are spatial directions, and i (which
is labels the choice of pseudomatter (or Higgs) field ζi.
Let T ¼ e−Ha be the transfer matrix, E0 the vacuum

energy, and

τ ¼ TeE0a ¼ e−ðH−E0Þa ð27Þ

a modified transfer matrix. Consider two states jAi ¼
AjΨ0i and jBi ¼ BjΨ0i. Then

hAjτtjBi≡ hAje−ðH−E0ÞtjBi ¼ hA†ðtÞBð0Þi: ð28Þ

We look for states Ψn
μ which diagonalize τ in the

subspace of Hilbert space spanned by the jΦi
μi such that

hΨm
μ jΨn

μi ¼ δmn

hΨm
μ jτjΨn

μi ¼ λnδmn: ð29Þ

To achieve this, we compute the ðNþ1Þ×ðNþ1Þmatrices
Oab ¼ hΦa

μjΦb
μi

Tab ¼ hΦa
μjτjΦb

μi: ð30Þ

Then we solve numerically the generalized eigenvalue
equation

Tabvnb ¼ λnOabvnb; ð31Þ

or

½T�vn ¼ λn½O�vn: ð32Þ

There will be N þ 1 vectors vn which satisfy this equation,
and then

jΨn
μi ¼

X
a

vnajΦa
μi ð33Þ

are the eigenstates of τ in the subspace. Now we evolve
these states in Euclidean time, and define

GnðtÞ ¼ hΨn
μjτtjΨn

μi
¼

X
vn�a vnbhΦa

μjτtjΦb
μi: ð34Þ

Since, on general grounds,

jΨn
μi ¼

X
i

cniμ jii; ð35Þ

where the jii are energy eigenstates (i.e., exact eigenstates
of the Hamiltonian), it follows that

GnðtÞ ¼
X
i

jcniμ j2e−Eit; ð36Þ

where Ei is the energy of state jii above the vacuum energy
(i.e., it is the energy minus E0).
By construction all states are zero momentum, so for the

one-particle states these are particles at rest. In that case,
their masses correspond to the Ei. If each of the Ψn

μ were
exact eigenstates of the transfer matrix in the full Hilbert
space, then

GnðtÞ ¼ ae−Eqt; ð37Þ
where Eq is one of the energy eigenvalues; in our case one
of the particle masses. But that seems unlikely; we do not
expect that the fΨn

μg are exact eigenstates of the
Hamiltonian. In general it is difficult to fit data to a sum
of exponentials, unless the data is extraordinarily accurate.
However, in our case we actually know for sure one of the
masses, which is the mass of the photon, and that mass is
zero. If we are fortunate, it may be enough to fit each of the
GnðtÞ to the simple form

GnðtÞ ¼ ae−bt þ c; ð38Þ
where b is a nonzero particle mass, and c ¼ ce−0t is
coming from an admixture of the massless photon state.
Numerically we compute

hΦj
μjτtjΦi

μi ¼ hQj†
μ ðtÞQi

μð0Þi ð39Þ
by lattice Monte Carlo. Note that t ¼ 0 corresponds to
matrix Oab and t ¼ 1 gives us Tab. This provides the
necessary information to determine the correlators GnðtÞ
described above.

A. Numerical results

We work on a 163 × 36 lattice at θW ¼ 0.5002 radians
and β ¼ 10.1. At tree-level, as in the continuum theory,
there are two neutral vector bosons: a massless photon, and
the Z boson. Setting the physical value mphys

Z ¼ mZ=a ¼
91.2 GeV determines the lattice spacing, and hence γ in
physical units

ffiffiffiffiffiffiffiffiffi
γphys

q
¼

ffiffiffi
γ

p
mZ

91.2 GeV ð40Þ

In the electroweak sector of the Standard Model, with a
finite Higgs mass and dynamical fermions, the known value
is γphys ¼ 246 GeV. The Z mass at tree level is

mpert
Z ¼

ffiffiffi
γ

β

r
1

cos θW
ð41Þ

In Fig. 6 we show our data for GnðtÞ at n ¼ 1, 2, 3 and
γ ¼ 2, 4, 6, 8, β ¼ 10.1, obtained using N ¼ 3 Laplacian
eigenstates and the Higgs field as described above. It is clear
that the state Ψ1

μ is mostly the massless photon state, with
only a small admixture of higher energy densities, given the
fact that G1ðtÞ asymptotes to a flat line with G1ðtÞ > 0.9.
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Because the falloff over a range of 1 ≤ t ≤ 18 is so small, it is
difficult for us to reliably extract the admixture of highermass.
So this mainly photon state will be excluded in the following
logarithmic plots. The n ¼ 2 state also has a substantial
admixture of a photon state, but for n ¼ 2 and n ¼ 3 the

situation is more favorable for extracting masses, as we will
see. Since our truncated Hilbert space is spanned by four
states, there is also data for n ¼ 4, but here the data is rather
noisy, and not favorable for curve fitting.
At each γ value we have run 20 independent lattice

Monte Carlo simulations consisting of 250,000 sweeps
each, with 20,000 sweeps for thermalization, and data
taking separated by 100 update sweeps. Each independent
run supplies data for

hΦa
μjτtjΦb

μi ð42Þ
with a, b ¼ 1, 2, 3, 4. The linear algebra required to
computeGnðtÞ is carried out by a MATLAB program. To plot
the data we simply average the 20 values of GnðtÞ at each t,
and compute ΔGðtÞ from the standard deviation. Masses
can be extracted from a fit to

GnðtÞ ¼ aðe−mnt þ e−mnð36−tÞÞ þ c ð43Þ
where we have allowed for periodicity in the time direction.
However, ΔGnðtÞ cannot be interpreted as an error bar,
because the chi-square of the curve fit is far too low. It is
better to think of these as indicating an envelope which
contains 20 separate smooth curves. An alternative pro-
cedure is to fit each of the twenty datasets to the form (43),
resulting in 20 values for mn. This gives us an average and
an error bar for the mn, which are the values shown in
Table I. The masses mn are in good agreement with the
masses obtained by the first method, although we regard the
second method as the appropriate procedure for obtaining
error estimates on the mass values.
In Figs. 7 and 8 we plot the data for G2ðtÞ − c and

G3ðtÞ − c respectively with the fitting constant c subtracted
from both the data. Having subtracted the photon compo-
nent represented by the constant c from the data, we display
the subtracted data compared to the previous fit also with c
subtracted, i.e.,

aðe−mnt þ e−mnð36−tÞÞ ð44Þ
The data appears to fit a straight line on a log plot, at least
for the smaller T values. Deviations at larger T values may
be attributed to the fact that when the fitting constant c is
quite small, which is generally the case for n ¼ 3, then
small fluctuations in the GnðtÞ data result in seemingly
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FIG. 6. GnðtÞ vs t at β ¼ 10.1 and different γ in each subfigure
as follows: (a) γ ¼ 2; (b) γ ¼ 4; (c) γ ¼ 6; (d) γ ¼ 8.

TABLE I. Masses in lattice units of the intermediate mass
vector boson, extracted from G2ðtÞ, and the Z boson, extracted
from G3ðtÞ, for several values of γ at β ¼ 10.1.

Mass in lattice units

γ Intermediate boson n2 Z boson (n3)

2 0.1914� 0.0048 0.4612� 0.0028

4 0.1709� 0.0072 0.6975� 0.0036

6 0.1705� 0.0052 0.8458� 0.0053

8 0.1714� 0.0053 0.9810� 0.0066
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large deviations in GnðtÞ − c from a straight line fit on a
logarithmic plot.
In Fig. 9 we show the ratio of the mass of the n ¼ 3 state,

determined from a fit to the G3ðtÞ data, divided by the
lattice tree level value mpert

Z in (41), and we see that the
ratio, especially for γ > 2, is quite close to unity, which

gives us confidence in identifying the n ¼ 3 mass as the
mass of the Z boson obtained in our simulations. Using
these values for mZ, we obtain a lattice spacing and a
corresponding value for

ffiffiffiffiffiffiffiffiffi
γphys

p
for each lattice coupling γ.

These results (Fig. 10) come out close to the experimental
value of

ffiffiffiffiffiffiffiffiffi
γphys

p
≈ 246 GeV. All of this, together with the

appearance of a zero mass (photon) state in the data, gives
us some confidence that our procedure is delivering the
results expected from perturbation theory.
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FIG. 8. Same as the previous figure, but for G3ðtÞ. Results for
various γ values are shown in the subfigures at: (a) γ ¼ 2;
(b) γ ¼ 4; (c) γ ¼ 6; (d) γ ¼ 8.
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FIG. 7. Logarithmic plot of G2ðtÞ with the photon contribution
(the constant c) subtracted from the data and the fitting function,
and the fitting function. Results for various γ values are shown in
the subfigures at: (a) γ ¼ 2; (b) γ ¼ 4; (c) γ ¼ 6; (d) γ ¼ 8.
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But what do we make of the intermediate mass m2? The
data supporting the existence of such a state, shown in Fig. 7,
seems just as solid as the data for mZ ¼ m3, and if we take
this data seriously, it appears that the lattice regularized
SUð2Þ × Uð1Þ theory contains an extra vector boson state, in
addition to the photon and Z boson states that we have
already seen, that is invisible in perturbation theory. The
problem, however, is that m2 in lattice units is almost
insensitive to γ, and as a result the mass ratio m2=mZ is
γ-dependent, as seen in Fig. 11. A first thought, since this is
by construction a zero totalmomentum state, is thatm2might
represent two photons of opposite momenta. But for a lattice
of 16 units in spatial extent, this would be a state of energy
≥0.79 in lattice units, which is far above m2. Moreover, we
have checked our results on a smaller lattice of volume
123 × 36, with results for masses consistent (to within a few
percent) with the results shown in Table I. It seems that the
data insists thatm2 is themass of a staticmassive one-particle
state. But this implies nonuniversality of the lattice action, at
least so far as this intermediatemass particle is concerned.As
for reasons, we can only speculate that it might be related to
our unimodular condition on the Higgs field, or to the
triviality of lattice ϕ4 theories in general.

V. CONCLUSIONS

In this article we have considered an SUð2Þ × Uð1Þ
gauge Higgs theory with a unimodular Higgs field, fixed
Weinberg angle, and no dynamical fermions. In this
simplified theory we have located the transition line
between the confinement and Higgs phases, as determined
from the spontaneous breaking of the global center sym-
metry of the gauge group. Then, in the Higgs phase, we
have found at each parameter γ, with fixed Weinberg angle
and fine structure constant, a set of three neutral vector
bosons. One of these is the massless photon, and a second
can be identified, because of the proximity of its mass to the
tree level Z boson mass, as the Z boson. But we have also
found another massive particle state, well below the mass of
the Z, which seems to be entirely nonperturbative in origin.
However, the ratio of the mass of this “light Z” particle to
the Z mass varies with γ, which indicates a nonuniversality
in the lattice formulation. If we had obtained results in
which this ratio were fixed, then we would be able to quote
a value of m2 in physical units, and go on to wonder why
such a state has not (yet?) been seen in the collider data.
However, in view of the nonuniversality of this ratio, such
phenomenological considerations seem premature. We
speculate that this nonuniversality might be associated
with either our unimodular constraint on the Higgs field,
or perhaps the triviality of ϕ4 theories. In any case, because
of this nonuniversality, we cannot offer any predictions
about the existence of a light Z in the physical spectrum of
the electroweak theory. Indeed, if the lattice regularized
theory is not an adequate representation of the physics of
SUð2Þ × Uð1Þ gauge Higgs theory, then we cannot rule out
the possibility that the light Z state is a lattice artifact. It
would be interesting to repeat the calculation with a
realistic Higgs potential, and we hope to report on the
results in a future publication.
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