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In this work, we investigate the gluon distribution functions for the pion and kaon, in addition to the
improved result of the valence-quark ones, in the gauge-invariant nonlocal chiral-quark model, in which the
momentum dependence of the quark interactions is properly taken into account. We then analyze the gluon
distribution functions, generated dynamically through the splitting functions in the Dokshitzer-Gribov-
Lipatov-Altarelli-Parisi QCD evolution. By comparing with the recent lattice QCD results and Jefferson
Lab angular momentum global analyses, it is found that the present numerical results for the gluon parton
distribution functions for the pion exhibit a good agreement and the valence up-quark distribution results
for the pion by reproducing the reanalyzed experimental data with a remarkable agreement. Our prediction
on the gluon distribution functions for the kaon is also consistent with the recent lattice data for the kaon
within the errors.
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I. INTRODUCTION

The parton distribution function (PDF) is one of the
excellent instruments to access the nonperturbative aspects
of the hadron structure, besides the elastic form factor
(EFF), transverse momentum dependent, parton distribu-
tion amplitude, fragmentation function, and generalized
parton distribution, and so forth [1]. Studying the PDF is
very crucial to characterize the structure of the pion and
kaon and to understand further dynamical chiral symmetry
breaking, which is one of the features of nonperturbative
QCD. Our knowledge and understanding of the quark and
gluon distribution functions (QDFs and GDFs) are insuffi-
cient compared to the nucleon ones, in particular for the
GDFs, because of the lack of meson targets in the experi-
ment. Nowadays, the situation has becomeworse because of
the current controversy on the pion PDF’s power-law
behavior at large x, which shows different predictions
and/or interpretations obtained among the theoretical models
and analyses, once they are compared with the existing
experimental data through the Drell-Yan process [2].

Therefore, more collections of data and theoretical studies
are really necessary to resolve the current controversy and to
understand the quark and gluon dynamics inside the light
mesons.
Recently, a few suggestions to access the pion and kaon

PDFs, as well as the corresponding form factors, through the
Sullivan process [3] in the electron-ion collider (EIC) [4]
and electron-ion collider in China (EicC) [5], have been
intensively discussed in the literatures [4–6]. For example,
in accessing the pion-EFF data, the Sullivan process has
provided a significantly larger value of momentum transfer
Q2 coverage [7]. Analogous to the pion EFF, they argued
that accessing the PDF also becomes feasible in the
Sullivan process [8]. This process is somewhat different
from the previous reaction process used to extract the pion
PDF, which was mostly taken from the pion-induced Drell-
Yan and J=ψ production processes to access the pion GDF
data. Also, the COMPASSþþ=AMBER experiment at
CERN [9] has been proposed to measure the pion-nucleus
Drell-Yan process cross section. This will allow us to access
more data in the large-x region and the pion GDF. An
accessible source of the kaon beam would allow us to collect
data for the kaon PDFs. Note that the pion and kaon GDFs
are one of the focus programs of future experiments of the
EIC [4], EicC [5], and COMPASSþþ=AMBER [9],
therefore the study of the present work will be relevant.
In addition to those future experiments, several theo-

retical studies and efforts have also been made to analyze
the pion and kaon PDFs [10–21], as well as lattice
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QCD [22,23] and global analyses [24–26], to understand
the relevant dynamics of the quarks and gluons [27] inside
the kaon and pion. Gluon dynamics are expected to be
closely related to the confinement and gluon saturation at
small x [28,29] and are very challenging and exciting topics
in nonperturbative QCD. However, these topics are out of
the scope of the present work, but they deserve further
investigation and study for future work. Many impressive
signs of progress have been made so far in understanding
the gluon momentum distributions in the kaon and pion.
Here, we emphasize again that more theoretical studies
with various approaches to studying the gluon distribution
are certainly required to support the experimental physics
programs since the gluon distributions to the pion and kaon
masses are significant and produce about (30–40)% of their
masses [26].
In this work, we first investigate the pion and kaon

PDFs in the gauge-invariant nonlocal chiral-quark model
(NLχQM), taking the momentum dependence into account.
However, in the present work, we will concentrate on the
pion and kaon GDFs. The NLχQM has been widely applied
to compute the QDFs [14], quasiparton distribution ampli-
tudes [30], and EFFs for the pion and kaon [31]. In
computing the pion and kaon GDFs, we employ the next-
to-leading-order Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
(NLO DGLAP) QCD evolution [32] to dynamically gen-
erate the GDFs at a specific factorization scale value of Q2,
which is chosen based on experiments. We then compare
our results with the existing data [2] and recent lattice QCD
calculation for the pion and kaon PDFs [22,23]. We
observed that the present numerical results for the pion
and kaon PDFs are in excellent agreement with the
reanalysis data [2] as well as the recent lattice QCD [22,23].
This paper is organized as follows: In Sec. II, we briefly

introduce and elaborate on the formalism of the gauge-
invariant NLχQM for the PDFs. Section III presents our
numerical results of the QDFs and GDFs for the pion and
kaon with detailed discussions. Finally, the summary and
conclusion are given in Sec. IV.

II. NONLINEAR CHIRAL-QUARK MODEL AND
PARTON DISTRIBUTION FUNCTION

In this section, we briefly present a generic expression of
the valence QDF for the pion and kaon. Also, we describe
how to generate the GDF for the pion and kaon via the NLO
DGLAP QCD evolution. A generic expression for the
twist-2 QDF for the SU(3) flavor-octet pseudoscalar (PS)
meson field ϕ is defined by

fϕðxÞ ¼
i
4π

Z
dη exp½iðxpÞ · ðηnÞ�

× hϕðpÞjq̄fðηnÞ=nqfð0ÞjϕðpÞi: ð1Þ

The momentum fraction of the struck quark in the PS
meson is defined by x ¼ ðk · nÞ=ðp · nÞ, where n, k, and p
are respectively the lightlike vector, the parton momentum,
and the PS meson momentum. Note that we have n · v ¼
vþ for instance in the light-cone frame. Further details of
the light-cone variables will be described in what follows.
Now we are in a position to explain the NLχQM briefly.

The effective chiral action (EχA) for the NLχQM reads

SNLχQM
eff ½ϕ; mf; Vμ; μ�

¼ −iSpc;f;γ ln
�
i=∂ − m̂f −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mfði=∂Þ

q
U5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mfði=∂Þ

q �
; ð2Þ

where Spc;f;γ represents the functional trace over the quark
color (c), flavor (f), and Lorentz indices (γ). m̂f indicates
the current quark mass diagðmu;md;msÞ. In this work, we
consider the isospin symmetry mu ¼ md and the SU(3)
flavor symmetry breaking explicitly ms > mu;d. Mf is the
constituent quark mass for the given quark flavor and is
considered a function of momentum transfer, whereas μ
stands for the renormalization scale of the model. The
nonlinear expression for the PS meson field ϕ is defined by

U5 ¼ exp

�
iγ5λ · ϕffiffiffi

2
p

Fϕ

�
;

λ · ϕ ¼

0
BBB@

1
2
π0 þ 1ffiffi

6
p η πþ Kþ

π− − 1ffiffi
2

p π0 þ 1ffiffi
6

p η K0

K− K̄0 − 2ffiffi
6

p η

1
CCCA; ð3Þ

where Fϕ and λ are respectively the weak-decay constants
for the PS meson and the Gell-Mann matrix.
The effective Lagrangian density for the q − q − ϕ

interaction vertex that is obtained from the EχA is
defined by

LNLχQM
qqϕ ¼ i

Fϕ
q̄

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mfði=∂Þ

q
γ5ðλ · ϕÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mfði=∂Þ

q �
q: ð4Þ

As expected, by turning off the momentum dependence of
the Mf in Eq. (4), it simply turns into the well-known
pseudo-scalar-type effective chiral Lagrangian density as
follows:

Llocal
qqϕ ¼ igqqϕq̄½γ5ðλ · ϕÞ�q; ð5Þ

where gqqϕ is the q-q-ϕ coupling constant, which is a
similar quantity obtained in the generic Nambu–Jona-
Lasinio (NJL) model. For conserving the gauge invariance
of the EχA in Eq. (2), we simply apply the minimal
substitution ∂μ → Dμ ¼ ∂μ − iVμ where V is the external
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vector field and has the following:

SNLχQM
eff ½ϕ; mf; Vμ; μ�

¼ −Spc;f;γ ln
�
i =D − m̂f −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mfði =DÞ

q
U5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mfði =DÞ

q �
: ð6Þ

Using the gauge-invariant EχA in Eq. (6), we evaluate
the QDFs through a three-point functional derivative to ϕ
and V, resulting in

δ3Seff ½ϕ; mf; Vμ; μ�
δϕαðxÞδϕβðyÞδVμð0Þ

����
ϕðα;βÞ;V¼0

; ð7Þ

where the superscripts ðα; βÞ for the PS meson fields stand
for their isospin indices. Analytically, we simply perform
the expansion of the nonlinear meson field U5 in the EχA
up to the order of Oðϕ2Þ. The expression for the QDF for
the f-flavored quark inside the ϕ in the NLχQM is then
obtained by

fϕðxÞ ¼ −
iNc

2F2
ϕ

Z
d4k
ð2ϕÞ4 δðk · n − xp · nÞ

× Trγ
h ffiffiffiffiffiffiffi

Mb

p
γ5

ffiffiffiffiffiffiffi
Ma

p
Sa=nSa

ffiffiffiffiffiffiffi
Ma

p
γ5

ffiffiffiffiffiffiffi
Mb

p
Sb

þ � ffiffiffiffiffiffiffi
Mb

p
· n

�
γ5

ffiffiffiffiffiffiffi
Ma

p
Sa

ffiffiffiffiffiffiffi
Ma

p
γ5

ffiffiffiffiffiffiffi
Mb

p
Sb

−
ffiffiffiffiffiffiffi
Mb

p
γ5
� ffiffiffiffiffiffiffi

Ma

p
· n

�
Sa

ffiffiffiffiffiffiffi
Ma

p
γ5

ffiffiffiffiffiffiffi
Mb

p
Sb
i
: ð8Þ

The relevant momenta are defined by ka ¼ k and kb ¼
k − p in the quark propagators for the flavors f ¼ ða; bÞ.
The second and third terms of Eq. (8), containing
(

ffiffiffiffiffiffiffi
Mb

p
· n) and (

ffiffiffiffiffiffiffi
Ma

p
· n), only appear when the momen-

tum dependence of the effective quark mass is taken into
account. These terms are the so-called “nonlocal” or
“derivative” interaction terms that are obtained from the
functional derivative of the gauge-invariant EχA to the Vμ.
The quark propagator Sa ¼ SaðkaÞ for given flavor a is
expressed by

SaðkaÞ≡ =ka þ ðma þMaÞ
k2a − ðma þMaÞ2 þ iϵ

¼ =ka þ M̃a

k2a −M2
a þ iϵ

; ð9Þ

where M̃a ¼ ðma þMaÞ is the effective quark mass with
the current quark mass ma. The momentum-dependent
mass functions,Ma andMaμ, are parameterized as follows:

Ma ¼ M0

�
μ2

k2a − μ2 þ iϵ

�
2

;
ffiffiffiffiffiffiffiffiffi
Maμ

p ¼ −
2

ffiffiffiffiffiffiffi
Ma

p
kaμ

ðk2a − μ2 þ iϵÞ :

ð10Þ

Note that M0 is the constituent quark mass at zero
momentum transfer.

Now the expression of the QDF in Eq. (8) can be
rewritten in the light-cone coordinate using the light-cone
variable which is defined by

k · n ¼ kþ ¼ xPþ; k2 ¼ kþk− − k2⊥; p2 ¼ m2
ϕ;

k · p ¼ 1

2

�
pþk− þ kþp−

�
: ð11Þ

Applying the above light-cone variable definitions after
employing the trace in the numerator, we then arrive at the
final expression for the QDF of the PS meson in the
NLχQM,

fϕðxÞ ¼
iNc

4F2
ϕ

Z
dk−d2k⊥
ð2πÞ3

�
FLðk−; k2⊥Þ þ FNL;aðk−; k2⊥Þ

þ FNL;bðk−; k2⊥Þ
	þ ½x ↔ ð1 − xÞ�; ð12Þ

where FL, FNL;a, and FNL;b are defined in Appendix in
detail. It is worth mentioning that QDF in Eq. (12) should
preserve the normalization condition

Z
1

0

dxfϕðxÞ ¼ 1; ð13Þ

and the moments of the QDF for the PS meson can be
calculated by

hxnifϕ ¼
Z

1

0

dxxnfϕðxÞ; ð14Þ

where n ¼ 0; 1; 2;… is an integer number. It is seen that,
for n ¼ 0, it will reproduce the normalization condition
in Eq. (13).
Now, we evolve the QDF to a higher factorization scale

and generate the GDF using the NLO DGLAP QCD
evolution. First, the nonsinglet QDF distribution can be
obtained by

fNSϕ ðxÞ ¼ fϕðxÞ − f̄ϕðxÞ; ð15Þ

where the (anti)QDFs are respectively represented by fϕðxÞ
and f̄ϕðxÞ. In the DGLAP QCD evolution, the nonsinglet
QDF can be generated at a higher factorization scale Q2 by
convoluting the splitting function as follows:

∂fNSϕ ðx;Q2Þ
∂ lnðQ2Þ ¼ Pff½x; αsðQ2Þ� ⊗ fNSϕ ðx;Q2Þ: ð16Þ

Here, the convolution reads

Pff ⊗ fNSϕ ¼
Z

1

x

dz
x
P

�
x
z

�
fNSϕ ðz;Q2Þ: ð17Þ
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The splitting functions can be perturbatively expanded
in terms of the strong coupling αsðQ2Þ as Pðz;Q2Þ ¼P

n¼1 ðαs2πÞnPðnÞðzÞ. For the singlet QDF, one has

fSϕðxÞ ¼
X
f

½fϕðxÞ þ f̄ϕðxÞ�: ð18Þ

Similarly, the DGLAP evolution of the singlet QDF can be
done with the GDF for the ϕ, i.e., gϕðx;Q2Þ as follows:

∂

∂ lnðQ2Þ

"
fSϕðx;Q2Þ
gϕðx;Q2Þ

#
¼

"
Pff Pfg

Pgf Pgg

#
⊗

"
fSϕðx;Q2Þ
gϕðx;Q2Þ

#
:

ð19Þ

In Eq. (19), it is clearly shown that the GDF can be obtained
in the DGLAP evolution. It is worth noting that the NNLO
contribution provides only negligible effects on the
DGLAP evolution of the PDFs.

III. NUMERICAL RESULT

Here, we present the numerical results for the pion and
kaon QDFs as well as their GDFs with detailed discussions.
The constituent quark mass is determined to satisfy the
QDF normalization condition in Eq. (13) with the model
scale μ ¼ 1 GeV, resulting in M0 ¼ 300 MeV. Here, we
use the empirical values for the PS meson weak-decay
constants as Fπ ¼ 93.2MeV and FK ¼ 113.4 MeV [14].
The current quark masses are chosen to be mu ¼ md ¼
5 MeV and ms ¼ 100 MeV.
In Fig. 1(a), we depict the numerical results for xuπðxÞ in

NLχQM from the total (solid), local, and nonlocal (thin
solid) contributions, in addition to the Bethe Salpeter
Equation (BSE)-NJL result (dashed) [16], at Q2 ¼
27 GeV2 which is DGLAP evolved from the initial scale
Q2

0 ¼ 0.18 GeV2. Note that the local contribution makes
about 70% of the total one for xuπðxÞ as usual in nonlocal
chiral quark model 1 (NLχQMl) [14]. The empirical data
are taken from Refs. [2,33]. It is worth mentioning that the
curve of Ref. [33] (square) is the new reanalysis of the data
of Ref. [2] (circle). We note that the reanalyzed empirical
data are reproduced excellently via NLχQM, whereas the
BSE-NJL model fits well with the old curve of Ref. [2].
Considering that the momentum dependencies of the quark
interactions are properly taken into account in NLχQM, we
can conclude that the reanalyzed data are more reliable
indicating the relevant physics corresponding to the non-
trivial quark interactions in the instanton vacuum for
instance [14]. The end point behaviors of the two theo-
retical models are quite distinguishable in the vicinity of
x ¼ 1. This observation may explain the long-standing
puzzle of the power-law behavior of QDF at x → 1.
To see the large-x behavior of QDFs clearly, we fit the

numerical result of NLχQM for x ¼ ½0.8; 1.0� using the

power-law form ð1 − xÞr, where r denotes a real number.
By doing this, we find that xuπðxÞ has the power-law
behavior of ð1 − xÞ1.85 in the vicinity of x ¼ 1. This
observation is consistent with the theoretical result of
Ref. [18], which also considers the momentum-dependent
interactions. Similarly, the power-law behavior for the
BSE-NJL model is given by ð1 − xÞ1.23. For practical
purpose, we present the parameterizations of xuπðxÞ at a
factorization scale as follows:

xuπðxÞ ¼ x0.60ð1 − x2.00Þ2.74 at Q2 ¼ 27 GeV2: ð20Þ

In Fig. 1(b), we show the numerical results for the kaon,
i.e., xuKðxÞ (solid) and s̄KðxÞ (dotted) in the same manner
as that for the pion case. For reference and comparison,
xuπðxÞ in NLχQM (thin solid) and the experimental data
for the pion (shades) are given as well. Because of the
considerable mass difference between the light and strange
quarks inside the kaon, it is obvious that the peak positions
of the kaon QDFs deviate from that for the pion. The peak
position for the strange quark is shifted to the larger
momentum fraction and this behavior can be well under-
stood because the heavier one carries more momentum than
the light one. The power-law behavior for the xuKðxÞ is
given by ð1 − xÞ2.30, being different from that of xuπðxÞ.
Similar to the pion case, we also provide the parameter-
izations for the kaon QDFs for practical purposes as
follows:

xuKðxÞ ¼ x0.59ð1 − x2.58Þ5.18;
xs̄KðxÞ ¼ x0.64ð1 − x2.86Þ3.87 at Q2 ¼ 27 GeV2: ð21Þ

We also compute the various moments of QDFs at Q2 ¼
27 GeV2 for the pion and kaon, which are summarized in
Table I. As shown in the table, the quark inside the PS
meson carries about 20% of the longitudinal momentum of
the meson by seeing the first moments (n ¼ 1). In Figs. 1(a)
and 1(b), we show the up-quark distributions of the kaon
and pion at an initial scale and the ratio of the-up quark
distribution in the pion to that in the pion for Q2 ¼
ð4; 20; 27Þ GeV2, respectively.
Now, we are in a position to provide the numerical

results for the pion and kaon GDFs in NLχQM at
Q2 ¼ 4 GeV2. In Fig. 2, we present those for xgπðxÞ with
mπ ¼ 140 (solid) and 310 MeV (dotted). The latter value of
mπ corresponds to that considered in the lattice-QCD
(LQCD) simulation data [23] (shade). We also show the
results from the BSE-NJL model for comparison (dashed).
The fitting curve from the Jefferson Lab angular momen-
tum (JAM) global analysis is depicted in shade as well [26].
We observe a similar tendency for the local and nonlocal
contributions in NLχQM to that for QDF. Note that the two
theory curves are almost consistent showing small devia-
tions in the region of x ¼ 0.2 and x ¼ 1. As the pion mass
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increases, the NLχQM curve approaches the Lattice QCD
data as expected. Qualitatively, the present result from
NLχQM reproduces the JAM analysis for x≳ 0.2 as shown
in the figure. As for x≲ 0.2, one needs more statistics from
experiments to pin down the correct behavior of GDF.

In Fig. 2(b), the numerical results for xgKðxÞ are given in
the same manner as Fig. 2(a). For reference and compari-
son, we also draw the curve for xgπðxÞ (thin solid). Being
different from QDF, GDF does not show significant
differences between the pion and kaon cases, since the
gluons are blind to the quark flavors. Moreover, the pion-
mass dependence is considerably weak, since there is a
heavier mass scale ms ¼ 100 MeV for the kaon case.
Interestingly, the difference between the BSE-NJL model
and NLχQM results becomes more obvious than the pion
case, and the latter one qualitatively underestimates the
LQCD data [23]. For a better understanding of the kaon
GDF, future experiments such as the EIC, EicC, and
COMPASSþþ=AMBER are required to confront these
theoretical results. The power law of xgπðxÞ behaves as

0 0.2 0.4 0.6 0.8 1
x

0

0.1
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(x

)

Quark distribution functions for pion at Q  = 27 GeV
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1
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x
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(x
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FIG. 1. (a) Numerical results for xuπðxÞ in NLχQM from the total (solid), local, and nonlocal (thin solid) contributions, in addition to
the BSE-NJL result (dashed) [16], at Q2 ¼ 27 GeV2. The experimental data are taken from Refs. [2,33], (b) Those for xuKðxÞ (solid)
and s̄KðxÞ in the same manner. For reference, xuπðxÞ in NLχQM (thin solid) and the experimental data for the pion (shades) are depicted
as well. (c) Up-quark distributions in the kaon (dotted line) and pion (solid line) at initial scale, and (d) ratio of up-quark distribution in
the kaon to that in the pion for Q2 ¼ ð4; 20; 27Þ GeV2 and the experimental data are taken from Ref. [34–36].

TABLE I. Various moments for the pion and kaon QDFs at
Q2 ¼ 27 GeV2.

n ¼ 1 n ¼ 2 n ¼ 3 n ¼ 4 n ¼ 5 n ¼ 6

hxniuπ 0.207 0.077 0.037 0.020 0.012 0.008
hxniuK 0.192 0.065 0.028 0.014 0.007 0.005
hxnis̄K 0.227 0.087 0.041 0.022 0.013 0.008
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ð1 − xÞ3.06 at the large-x region, whereas ð1 − xÞ3.17 for xgKðxÞ at Q2 ¼ 4 GeV2. Similar to the QDFs, we parameterize the
GDFs for the pion and kaon as follows:

xgπðxÞ ¼ 1.49x−0.35
�
1 − 2.06x0.5 þ 3.46x

�ð1 − xÞ3.88 at Q2 ¼ 4 GeV2; ð22Þ

xgKðxÞ ¼ 1.48x−0.35
�
1 − 2.13x0.5 þ 3.97x

�ð1 − xÞ4.45 at Q2 ¼ 4 GeV2: ð23Þ

The moments of the pion and kaon GDFs are listed in
Table II. From the table, it is found that the gluon carries
about 60% of the longitudinal momentum of the PS meson.
Next, we investigate GDFs for the pion (solid) and kaon

(dotted) evolved to the factorization scale atQ2 ¼ 27 GeV2,
shown in Fig. 3(a). For comparison, we also show the
LQCD data and JAM global analysis for the pion case in
shades, in addition to the pion at GDF Q2 ¼ 4 GeV2 (thin
solid). It turns out that, as the factorization scale gets larger,
the GDFs decrease more stiffly as functions of x, i.e.,
manifesting the weaker nonperturbative gluon contribu-
tions. Also, we found that the first moment of the GDF
decreases as the Q2 increases, which is consistent with
results in Ref. [24], but it is opposite the result of Ref. [37].
This opposite result is because, in our model, we did not
consider the dynamical gluon as in Ref. [37]. Again, to

verify the Q2-dependent behavior of the GDF, one needs
more experimental data.
Finally, we compute the ratio of the pion and kaon GDFs

which is defined by

RðxÞ ¼ gKðxÞ
gπðxÞ

; ð24Þ

to see the difference between them quantitatively. The
numerical results are depicted in Fig. 3(b). The NLχQM
curves are given for Q2 ¼ 4 GeV2 (solid) and Q2 ¼
27 GeV2 (dotted). The difference between the PS mesons
becomes obvious as x increases over x ≈ 2, whereas the
difference depending on the Q2 values is marginal. Since
the gluon dynamics dominate at the small-x region, the
flavor dependence of the PS mesons does not make a
significant difference there as shown in the figure. As the x
increases, the quark dynamics in addition to the gluon
contribution inside the PS mesons becomes significant,
resulting in the smaller RðxÞ than unity. Interestingly, there
appear bump structures at x ≈ 0.8 and it can be understood
by the delicate interplay between the gluon and quark
contributions in the DGLAP evolution of the singlet PDFs.
On the contrary, the BSE-NJL model curve does not show
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FIG. 2. (a) Numerical results for xgπðxÞ in NLχQM from the total (solid), local, and nonlocal (thin solid) contributions with mπ ¼
140 MeV at Q2 ¼ 4 GeV2. We also show the results of the present model with mπ ¼ 310 MeV (dotted) and BSE-NJL one (dashed).
The shaded areas represent the JAM global analysis [26] and lattice QCD data [23]. (b) Those for xgKðxÞ in the same manner. The thin
solid line denotes the pion GDF for reference.

TABLE II. Various moments for GDFs for the pion and kaon at
Q2 ¼ 4 GeV2.

n ¼ 1 n ¼ 2 n ¼ 3 n ¼ 4 n ¼ 5 n ¼ 6

hxnigπ 0.590 0.083 0.025 0.011 0.005 0.003
hxnigK 0.562 0.074 0.021 0.008 0.004 0.002

PARADA. T. P. HUTAURUK and SEUNG-IL NAM PHYS. REV. D 109, 054040 (2024)

054040-6



the bump and decreases monotonically as a function of x. In
other words, the momentum-dependent quark interaction,
which is manifested in NLχQM, is crucial to produce the
bump structure in RðxÞ.

IV. SUMMARY

In the present work, we have investigated the gluon
distribution functions gϕ as well as the quark ones fϕ for
the PS meson (ϕ ¼ π, K) in the framework of the gauge-
invariant NLχQM, which properly considers the momen-
tum dependence of the quark interactions. We then
dynamically generate the GDF via the splitting functions
in the NLO DGLAP QCD evolution using the singlet QDF.
We find that the numerical result for xgπðxÞ at Q2 ¼

4 GeV2 shows an excellent agreement with the JAM global
analyses [26]. This satisfactory description of the data is
followed by the fact that the numerical result for xuπðxÞ at
Q2 ¼ 27 GeV2, which is used to generate xgπðxÞ, repro-
duces the reanalyzed experimental data [33] qualitatively
very well for the wide range of x. Note that xuπðxÞ from
the BSE-NJL model without momentum-dependent inter-
actions fails to describe the reanalyzed data, whereas it is
consistent with the old experimental data [2]. These results
may provide good reasoning for the long-standing puzzle
of the power-law behavior at x ≈ 1.
We also provide the numerical results for the kaon, i.e.,

xuKðxÞ and xs̄KðxÞ at Q2 ¼ 4 and 27 GeV2, and they are
consistent with the recent lattice data within the errors [23].
Although no data are available for the kaon at the moment,
the present results for the kaon will be useful for possible
future experiments, similar to the QDFs from the NLχQM,
local and nonlocal contributions, and kaon, where the

nonlocal effect is small but contributes significantly to
reproducing the data.
Results for ratios of the gluon PDFs in the kaon and the

pion atQ2 ¼ 4 GeV2 show that the gluon PDFs in the pion
are larger than that in the kaon, which is consistent with the
Dyson-Schwinger equation (DSE) result [18], which also
considers momentum dependence in the model. However,
the ratio increases a bit around x ≃ 0.9 and it then decreases
again. It is expected due to the transition region from the
soft to hard scales, as also found in the DSE model, where
such behavior could not be found in the BSE-NJL model.
Overall, one can conclude that the gluon PDFs for the
pion are larger than those in the kaon, which is consistent
with other theoretical findings. Furthermore, for practical
purposes, we also do a parameterization for the pion and
kaon gluon and quark PDFs, which are useful for other
calculations.
Our findings, in the present work, on the gluon distri-

bution functions for the pion and kaon are needed to be
confronted by future modern facilities of the EIC [4],
EicC [5], and AMBER-SPS COMPASS [9] experiments.
Also, our results for the quark and gluon PDFs with local
and nonlocal contributions would be interesting guidance
and information for the lattice QCD.
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APPENDIX

The relevant functions in Eq. (12), i.e., FLðk−; k2⊥Þ, FNL;aðk−; k2⊥Þ, and FNL;bðk−; k2⊥Þ are defined as follows:

FLðk−; k2⊥Þ ¼
4pþη2D4

b

�
N 1 þN 2 þN 3

	
D1D2

; FNL;aðk−; k2⊥Þ ¼
4pþη2

�
N 4 þN 5 þN 6

	
D1D2

�
x
D2

a

�
;

FNL;bðk−; k2⊥Þ ¼
4pþη2

�
N 4 þN 5 þN 6

	
D1D2

�
x
D2

b

�
; ðA1Þ

where the N 1∼6 are given by

N 1 ¼
�
D4

aD8
b

�ð2 − xÞk2⊥ þ ð1 − xÞ2k−pþ�	; N 2 ¼
�
2ð1 − xÞD4

b

�
D4

bmb þ η
��
D4

ama þ η
�	
;

N 3 ¼
�
xD4

a

�
D4

bmb þ η
�
2
	
; N 4 ¼

�
η
�
D4

bmb þ η
�	
; N 5 ¼

�
D4

aðmaηÞ
	
;

N 6 ¼
�
D4

aD4
b

�
2k2⊥ þ ð1 − 2xÞk−pþ þmamb þ xm2

ϕ

�	
; ðA2Þ

and D1;2 read

D1 ¼
�
D8

aðζa − αk−Þ þ 2maηD4
a þ η2

	
a; D2 ¼

�
D8

bðζb − βk− þ δÞ þ 2mbηD4
b þ η2

	
2
b: ðA3Þ

We also introduce the following notations and expressions for simplicity:

α ¼ xpþ; β ¼ −ð1 − xÞpþ; γ ¼ k2⊥ þ μ2; δ ¼ −ð1 − xÞm2
ϕ; η ¼ M0μ

4;

ζa ¼ k2⊥ þm2
a; ζb ¼ k2⊥ þm2

b; D2
a ¼ γ − αk− þ δ; D2

b ¼ γ − βk−; p2 ¼ m2
ϕ ¼ pþp− − p2⊥: ðA4Þ
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