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The single-particle inclusive fragmentation function and the particle multiplicity are observables of
fundamental importance in studying properties of quantum chromodynamics at colliders. It is well known
that at high energies the multiplicity distribution satisfies Koba-Nielsen-Olesen (KNO) scaling in which all
moments are proportional to powers of the mean multiplicity. We prove that, under weak assumptions, the
leading dependence of the fragmentation function on multiplicity is itself a kind of KNO scaling in which
all moments are inversely proportional to powers of the mean multiplicity. This scaling with multiplicity
additionally accounts for the dominant dependence on collision energy in the fragmentation function. The
proof relies crucially on properties of the fragmentation function conditioned on the total multiplicity and
application of the Stieltjes moment problem. In the process, we construct a novel basis of the fragmentation
function expressed as an overall exponential suppression times a series of Laguerre polynomials. We study
this scaling of the fragmentation function in experimental electron-position collision data and observe that
residual scale violations are significantly reduced.
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A quantity of central importance in understanding the
properties and behavior of the theory of the strong force,
quantum chromodynamics (QCD), is the distribution of a
particle’s energy fraction that was produced in a collision
event. A whole chapter is devoted to this single-particle
inclusive fragmentation function in the Particle Data
Group’s review of particle physics [1] and its features in
threshold limits, as a function of collision energy, and
sensitivity to hadron species reveals a rich and varied
structure and provides validation of the whole theoretical
framework. In the collisions of electrons and positrons,
eþe− → γ=Z → hþ X, as we study in this article, particle
h’s energy fraction zh is typically defined as [2,3]

zh ¼
2Ehffiffiffi
s

p ; ð1Þ

where
ffiffiffi
s

p
is the center-of-mass collision energy of the

events. This definition satisfies the energy conservation
sum rule

X
h∈ event

zh ¼ 2; ð2Þ

while momentum conservation restricts any individual
energy fraction in the range zh ∈ ½0; 1�.
With unit normalization, the so-called fragmentation

structure function in eþe− collisions,

FðzÞ ¼ 1

σ

dσh

dz
; ð3Þ

can be further factorized as a convolution of the standard
fragmentation functionsDh=iðzÞwith perturbative coefficient
functions [1]. Note that the fragmentation function Dh=iðzÞ
represents the probability that a particle h carries energy
fraction z of the fragmenting parton i [4]. In this paper,wewill
concentrate on studying the scaling behavior of the fragmen-
tation structure functionFðzÞ. Because of its close connection
to the standard fragmentation function, we will abuse the
terminology a bit below to often callFðzÞ just as the inclusive
fragmentation function. Clearly,FðzÞ is related to the particle
multiplicity N of the event as a larger multiplicity would
correspond to less energy per particle on average. This can be
made precise by introducing the fragmentation function
conditioned on the multiplicity N, FðzjNÞ [5]. The inclusive
fragmentation function is defined as

FðzÞ ¼
Z

dNFðzjNÞpðNÞ; ð4Þ
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wherepðNÞ is the probability distribution ofmultiplicity. The
mean of the conditional fragmentation function is fixed by the
multiplicity,

hziN ≡
Z

dzzFðzjNÞ ¼ 2

N
: ð5Þ

We will always use the subscript N to denote expectation
values of the conditional fragmentation function.
In this article, we establish general, robust properties of

FðzjNÞ that hold in the limit of large multiplicity, N → ∞.
With these results, we will show that the leading depend-
ence of the inclusive fragmentation function on multiplicity
is reminiscent of the Koba-Nielsen-Olesen (KNO) scaling
of particle multiplicity distribution [6,7], where

FðzÞ ¼ hNiΦðhNizÞ; ð6Þ

for a function ΦðxÞ that has no residual dependence on
the mean multiplicity. Despite the extensive precise theo-
retical analysis, formulation, and predictions of the frag-
mentation function over its greater than 50 year history,
including its perturbative scale evolution through the cel-
ebrated Dokshitzer-Gribov-Lipatov-Altarelli-Parisi equa-
tions [8–12], we are unaware of any study that provided
a quantitative, model-independent relationship between the
multiplicity and the energy fraction of a single particle
produced in a collision event. Along the way to this goal, we
construct a novel basis to represent the functional form of the
fragmentation function that can provide a foundation for
future theoretical studies, on which we can only briefly
comment here.
In the limit of large multiplicity, the probability distri-

bution of multiplicity pðNÞ obeys KNO scaling, where

pðNÞ ¼ 1

hNiψ
�

N
hNi

�
; ð7Þ

where ψðxÞ is a universal function. KNO scaling, and its
violation, is well established experimentally, e.g., at LEP
[13–20] and the LHC [21–25], and specific functional
forms of ψðxÞ have been proposed, e.g., Refs. [26–29].
This result of Eq. (5) then implies that the mean of the
fragmentation function is

hzi ¼
Z

dzzFðzÞ ¼ 2hN−1i: ð8Þ

With KNO scaling, the mean of the fragmentation function
scales inversely proportional to the mean multiplicity,
hzi ∝ hNi−1. Without scaling properties of the conditional
fragmentation function FðzjNÞ, we cannot establish general
relationships between higher moments of the fragmentation
function and the multiplicity distribution.
While one could establish properties of FðzjNÞ through

its perturbative scale evolution for example, here we will

instead start from a set of weak assumptions and employ
consistency relations and enforce qualities required of all
probability distributions. This procedure will result in a
useful framework and functional form for calculations of
the fragmentation function, which we leave to future work.
The assumptions that we employ here are as follows.
(1) The number of particles in the event N is

large, N → ∞.
(2) The distribution of particles is sufficiently smooth

away from the boundaries of phase space.
(3) Only particle energies are measured so all particles

are treated as identical and indistinguishable.
The conditional fragmentation function FðzjNÞ can then

be calculated from

FðzjNÞ ¼ lim
N→∞

Z
0

YN
i¼1

½dzi�fðz1;…; zNÞδ
�
2 −

XN
i¼1

zi

�
;

× δðz − z1Þ; ð9Þ
where fðz1; z2;…; zNÞ is a positive semidefinite, integrable
and appropriately normalized function that is permutation
symmetric in the particle energy fractions zi. The lower
bound on the integration symbol means that all energy
fractions are non-negative, zi ≥ 0, but are not constrained
from above except by total energy conservation. Exploiting
permutation symmetry, we select particle 1 to measure the
energy fraction z. We also slightly abuse notation and
employ limN→∞ to mean taking the leading functional
dependence on N as N → ∞. That is, as N → ∞, the ratio
of the left- and right-hand sides of this equation approaches
unity. We will take limits of the right-hand side in parts, and
so we hope that the notation limN→∞ reminds the reader
where limits still need to be taken.
Performing the integral over z1 and introducing the

variables zi ≡ xið2 − zÞ, we then have

FðzjNÞ¼ lim
N→∞

ð2−zÞN−2
Z
0

YN
i¼2

½dxi�

×fðz;x2ð2−zÞ…;xNð2−zÞÞδ
�
1−

XN
i¼2

xi

�
: ð10Þ

We note that there areN − 1 factors of 2 − z that come from
the Jacobians dzi=dxi and then one inverse factor of 2 − z
from pulling it out of the argument of the energy con-
servation δ function. Taking the N → ∞ limit of the factor
outside the integrals produces an exponential, where

FðzjNÞ ¼ e−
N
2
z lim
N→∞

Z
0

YN
i¼2

½dxi�

× fðz; x2ð2 − zÞ;…; xNð2 − zÞÞδ
�
1 −

XN
i¼2

xi

�
:

ð11Þ
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In this and expressions that follow, we ignore overall
z-independent factors as they will always be fixed by
normalization anyway. The overall exponential factor
restricts the region where there is significant support to
z ∼ 2=N ≪ 1, so, to leading order in 1=N, we set 2 − z → 2
in the argument of the function f:

FðzjNÞ ¼ e−
N
2
z lim
N→∞

Z
0

YN
i¼2

½dxi�fðz; 2x2;…; 2xNÞ

× δ

�
1 −

XN
i¼2

xi

�
: ð12Þ

Note that the remaining δ function restricts the xi variables
to lie in an N − 2 simplex.
If the function fðz; 2x2;…; 2xNÞ were analytic in its

arguments about the origin, we could Taylor expand and
ignore terms at linear order and beyond because they would
be suppressed by powers of z ∼ 2=N. That is, in the large-N
limit, the conditional fragmentation function would reduce to

FðzjNÞ ∝ e−
N
2
z; ð13Þ

the maximally entropic distribution with a fixed mean
hziN ¼ 2=N. We should expect that the function
fðz; 2x2;…; 2xNÞ is nonanalytic at the boundaries of phase
space so this Taylor expansion about the origin will in
general not be valid. However, we can instead expand around
the mean value of hziN ¼ 2=N, which, while small, is
displaced from the boundary of phase space. Generically,
distributions should be smooth on the interior of phase space
unless there were resonances or other new states, which here
we do not consider.
The exponential form of the conditional fragmentation

function has effectively been considered in related contexts
previously, e.g., Ref. [30]. However, this was studied within
a particular model for multiparticle production, with explicit
choices for the distributions of particle energies and multi-
plicity. This and other studies therefore lacked a general
framework or clear separation between fundamental hypoth-
eses and constraints imposed by the form of model.
To perform the expansion away from the boundary, we

introduce the variables

xi ≡ 1

N
þ ϵi; ð14Þ

and so the conditioned fragmentation function becomes

FðzjNÞ ¼ e−
N
2
z lim
N→∞

Z
−1=N

YN
i¼2

½dϵi�f

×

�
z;
2

N
þ 2ϵ2;…;

2

N
þ 2ϵN

�

× δ

�
1

N
−
XN
i¼2

ϵi

�
: ð15Þ

Now, by permutation symmetry and the remaining δ
function, the expectation value of any of the ϵi variables
is hϵiiN → 1=N2, in the large-N limit. Thus again, to
leading order in 1=N, we can set 1

N þ ϵi →
1
N. Therefore,

to leading order in 1=N, the conditioned fragmentation
function can be expressed as

FðzjNÞ ¼ e−
N
2
zf
�
z;

2

N
;…;

2

N

�

≡ e−
N
2
zf

�
N
2
z

�
: ð16Þ

At right, we have concatenated the function into a function
of a single argument, fðNz=2Þ. The argument must be of
the form Nz ∼ 1; otherwise, we could expand the function
about z ∼ 2=N and ignore terms that depend on the
displacement from 2=N to leading order in 1=N.
However, there may be additional dependence on the
multiplicity N in the function fðNz=2Þ, which we address
as follows.
The conditioned fragmentation function can be

expanded in terms of Laguerre polynomials as

F̃ðxjNÞ≡ 2

N
FðzjNÞ ¼ e−x

�
1þ

X∞
n¼2

cnLnðxÞ
�
; ð17Þ

where x ¼ Nz=2, is unit normalized and has unit mean,
hxiN ¼ 1. The Laguerre polynomials are familiar as the
radial energy eigenstate wave functions of the hydrogen
atom, are defined to be

LnðxÞ ¼
Xn
k¼0

�
n

k

� ð−1Þk
k!

xk; ð18Þ

and are orthonormal with respect to the exponential kernel

δmn ¼
Z

∞

0

dxe−xLmðxÞLnðxÞ: ð19Þ

In general, it might seem that the coefficients cn in
Eq. (17) can have dependence on multiplicity N, but we
will show that any dependence in the N → ∞ limit leads to
a pathological expansion. By the orthogonality of the
Laguerre polynomials, the coefficients cn can be isolated
by taking moments of F̃ðxjNÞ. These moments can be
evaluated to find

hxliN ¼ l!

�
1þ

Xl

n¼2

ð−1Þn
�
l

n

�
cn

�
: ð20Þ

To ensure that F̃ðxjNÞ is a probability distribution, namely,
positive and integrable on x∈ ½0;∞Þ, there are strong
constraints imposed on the moments, as established by
the Stieltjes moment problem [31]. This was also recently
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exploited to establish positivity constraints on general
effective Lagrangians [32].
The solution to the Stieltjes moment problem is that the

Hankel matrix of moments must be completely positive.
For brevity here, we will only explicitly consider the lowest
dimension nontrivial Hankel matrices and just comment on
generalization to higher dimensions that include more
moments. To ensure positivity, the 2 × 2 Hankel matrices

Δ1 ≡
� hx0iN hx1iN
hx1iN hx2iN

�
ð21Þ

and

Δð1Þ
1 ≡

� hx1iN hx2iN
hx2iN hx3iN

�
ð22Þ

must have positive determinants detΔ1 > 0 and

detΔð1Þ
1 > 0.

The determinants of the Hankel matrices and the Stieltjes
constraints, using Eq. (20), are then

detΔ1 ¼ 2c2 þ 1 > 0 ð23Þ

and

detΔð1Þ
1 ¼ 6þ 18c2 − 6c3 − 4ð1þ c2Þ2 > 0: ð24Þ

If the coefficient c2 has dependence on N as any function
that diverges asN → ∞, for example, powers such asNa or
logarithms loga N for a > 0, then the constraints imposed
by the Stieltjes moment problem cannot be satisfied while
maintaining sufficient smoothness of the fragmentation
function. Specifically, if we assume that c2 ¼ gðNÞ such
that gðN → ∞Þ → ∞, then the constraint on Δ1 can easily
be satisfied. However, with this assumption, the constraint

on Δð1Þ
1 then requires, in the large-N limit,

detΔð1Þ
1 → −6c3 − 4c22 > 0 ð25Þ

or that

c3 ≲ −gðNÞ2: ð26Þ

Therefore, to ensure that F̃ðxjNÞ is a probability distribu-
tion, the expansion coefficient c3 must scale with multi-
plicity N parametrically larger than c2 as N → ∞. One
finds that c4 must correspondingly scale parametrically
larger with N than c3, and this pattern continues to higher
coefficients. Such an expansion is terribly nonconvergent,
which violates our assumption that distributions on the
interior of phase space are sufficiently smooth. Therefore,
there can be no explicit dependence on the multiplicity N
in the conditioned fragmentation function of Eq. (17);
in the large-N multiplicity limit, the coefficients cn are

independent of N. These coefficients may still depend on
other, suppressed, parameters, like the collision energy or
particle masses, but we leave that study for future work.
This result implies that this conditional fragmentation

function satisfies a KNO-like scaling, where

FðzjNÞ ¼ 1

hziN
F
�

z
hziN

�
¼ N

2
F
�
N
2
z

�
ð27Þ

and the function F ðxÞ is independent of multiplicity N
in the limitN → ∞. This result enables direct calculation of
the leading dependence of the fragmentation function on
the multiplicity distribution. In this limit, we have estab-
lished the scaling properties of the conditional fragmenta-
tion function FðzjNÞ, and the multiplicity distribution pðNÞ
satisfies KNO scaling. We have

FðzÞ →
Z

dN
N
2
F
�
N
2
z

�
1

hNiψ
�

N
hNi

�

¼ hNi
2

Z
dyyF

�
hNiz y

2

�
ψðyÞ

≡ hNiΦðhNizÞ; ð28Þ
for a function ΦðxÞ that has no residual dependence on
mean multiplicity hNi. ΦðxÞ may still depend on the
collision energy but only in a way that is independent of
hNi. Additionally, KNO scaling is violated beyond leading-
logarithmic accuracy, and so we expect that there are
corrections to this rescaling of the inclusive fragmentation
function at higher perturbative orders. However, the
assumptions we employ here are sufficiently general that
the scaling of the conditional fragmentation function in the
large multiplicity limit should hold to any perturbative
order. We leave further study of the consequences of this
scaling on the perturbative aspects of the fragmentation
function to future work.
We can observe this scaling of the fragmentation

function in simulated data. We generated eþe− → hadrons
collision events in Pythia 8.309 [33] at center-of-mass colli-
sion energies of

ffiffiffi
s

p ¼ 22, 55, 91, 206 GeV. We start by
establishing KNO scaling within this simulated data in
Fig. 1. As the energy increases, the particle multiplicity
correspondingly increases, but when the distributions are
rescaled by their respective means, they collapse to a nearly
identical, universal, distribution.
We focus on validation of the main result of the article,

that the conditioned fragmentation function FðzjNÞ is
purely a function of zN in the large multiplicity N limit

lim
N→∞

FðzjNÞ ¼ N
2
F
�
N
2
z

�
; ð29Þ

where F ðxÞ with x ¼ Nz=2 is independent of N. This
relationship implies that all moments in z of FðzjNÞ are
inversely proportional to powers of multiplicity N:
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hzniN ¼
Z

dzznFðzjNÞ ∝ N−n; ð30Þ

for any n. To test this, we will study the scaled moments
hxniN , which should be independent of N at sufficiently
high multiplicity.
In the simulated eþe− → hadron event samples from

Pythia, we generate 50 million events at each center-of-mass
collision energy

ffiffiffi
s

p ¼ 22, 55, 91, 206 GeV. On these
events, we measure the moments hxniN for n ¼ 1, 2, 3, 4, 5,
6, 7 and bin them in multiplicity N. The result of this
analysis is presented in Fig. 2. At all energies, there is a
steep rise in the moments at small multiplicity, but then the
moments plateau, demonstrating to very good approxima-
tion that they do indeed lose dependence on multiplicity N
at sufficiently large multiplicity. Some residual N depend-
ence is observed; at the very highest multiplicities, the
value of the moments decrease slightly, but this is a small
effect over a wide range of multiplicities. Therefore, these
simulated data exhibit behavior with multiplicity N that are
consistent with the scaling of the conditioned fragmenta-
tion function FðzjNÞ established above.
In Fig. 3, we plot the single-particle inclusive fragmen-

tation function multiplied by the energy fraction zFðzÞ at
left. As anticipated, at higher energies and therefore higher
average multiplicities, the fragmentation function becomes
more and more strongly peaked near z ¼ 0. However, by
instead plotting the rescaled fragmentation function of
Eq. (28), at right in Fig. 3, the broad spread between the
distributions at different energies is dramatically reduced,
especially at small values of the parameter x ¼ hNiz,
denoted as “scaled energy fraction” in the figure.
Sample dependence is observed at the upper limits, where
the rescaled fragmentation function is most sensitive to the
deviations from the asymptotic N → ∞ limit.

With data from eþe− collider experiments, we can test
this leading scaling behavior of the fragmentation function
directly. To do this comparison, we use four datasets at
collision energies comparable to the energies used in
simulated data. The datasets we use here are, with their
measured average charged particle multiplicities:

(i) TASSO at
ffiffiffi
s

p ¼ 22 GeV [34,35], hNchi ¼ 11.22�
0.07,

(ii) AMY at about
ffiffiffi
s

p ¼ 55 GeV [36,37], hNchi ¼
16.82� 0.22,

(iii) DELPHI at
ffiffiffi
s

p ¼ 91 GeV [38], hNchi ¼ 21.21�
0.2, and

(iv) OPAL at
ffiffiffi
s

p ¼ 206 GeV [39], hNchi ¼ 27.75�
0.67.

Assuming that isospin (or flavor symmetry) is approxi-
mately conserved, the mean charged particle multiplicity
just differs by a constant factor from the mean total
multiplicity, independent of energy scale. The fragmenta-
tion functions measured in these data are plotted in Fig. 4.
At left, are the raw fragmentation functions that exhibit a
structure that peaks more sharply near z ¼ 0 as collision
energy or multiplicity increases. At right, we rescale the
fragmentation function by the mean charged particle
multiplicity and observe that the scale dependence is
reduced as multiplicity or collision energy increases,
experimentally demonstrating this scaling relation of the
fragmentation function.
We have established the leading scaling law for the

single-particle inclusive fragmentation function with the
mean particle multiplicity. The proof of this scaling
required construction of a systematic expansion of the
fragmentation function conditioned on multiplicity in terms
of Laguerre polynomials and constraints imposed on its
coefficients by the Stieltjes moment problem. Residual
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FIG. 1. The particle multiplicity distributions (left) in simulated eþe− → hadron events and the corresponding KNO-rescaled
distributions (right) at four different center-of-mass energies.
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dependence on collision energy is then largely uncorrelated
with the mean multiplicity and enables isolation of other
physical effects that control the features of the fragmenta-
tion function. This general analysis and dependence on
multiplicity may provide insight into features of the
fragmentation function, from the Gaussian peak’s depend-
ence on energy in the distribution of log 1=z [1,3,40] to the
observed transition between recombination and fragmen-
tation of partons in high-multiplicity heavy ion collisions
[41,42]. We look forward to explorations and refinements
of this analysis in the future.
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tiques, Vol. 8 (1894), pp. J1–J122.

[32] Nima Arkani-Hamed, Tzu-Chen Huang, and Yu-tin Huang,
The EFT-hedron, J. High Energy Phys. 05 (2021) 259.

[33] Christian Bierlich et al., A comprehensive guide to the
physics and usage of Pythia 8.3, SciPost Phys. Codeb. 2022, 8
(2022).

[34] W. Braunschweig et al. (TASSO Collaboration), Global jet
properties at 14-GeV to 44-GeV center-of-mass energy in
eþe− annihilation, Z. Phys. C 47, 187 (1990).

[35] M. Althoff et al. (TASSO Collaboration), Jet production and
fragmentation in eþe− annihilation at 12-GeV to 43-GeV,
Z. Phys. C 22, 307 (1984).

[36] Y. K. Li et al. (AMY Collaboration), Multi—hadron event
properties in eþe− annihilation at

ffiffiffi
s

p ¼ 52 GeV to 57-GeV,
Phys. Rev. D 41, 2675 (1990).

[37] H.W. Zheng et al. (AMY Collaboration), Charged hadron
multiplicities in eþe− annihilations at

ffiffiffi
s

p ¼ 50 GeV—
61.4 GeV, Phys. Rev. D 42, 737 (1990).

[38] P. Abreu et al. (DELPHI Collaboration), Measurement of
the quark and gluon fragmentation functions in Z0 hadronic
decays, Eur. Phys. J. C 6, 19 (1999).

[39] G. Abbiendi et al. (OPAL Collaboration), Scaling violations
of quark and gluon jet fragmentation functions in eþe−

annihilations at
ffiffi
s

p ¼ 91.2-GeV and 183-GeV to 209-GeV,
Eur. Phys. J. C 37, 25 (2004).

[40] Yuri L. Dokshitzer, Victor S. Fadin, and Valery A. Khoze,
Double logs of perturbative QCD for parton jets and soft
hadron spectra, Z. Phys. C 15, 325 (1982).

[41] R. J. Fries, Berndt Muller, C. Nonaka, and S. A. Bass,
Hadronization in heavy ion collisions: Recombination
and fragmentation of partons, Phys. Rev. Lett. 90, 202303
(2003).

[42] V. Greco, C. M. Ko, and P. Levai, Parton coalescence and
anti-proton/pion anomaly at RHIC, Phys. Rev. Lett. 90,
202302 (2003).

KANG, KAO, and LARKOSKI PHYS. REV. D 109, 054039 (2024)

054039-8

https://doi.org/10.1007/BF01559731
https://doi.org/10.1007/BF01559731
https://doi.org/10.1016/0370-2693(96)00134-7
https://doi.org/10.1016/0370-2693(96)00134-7
https://doi.org/10.1016/S0370-1573(97)00045-8
https://doi.org/10.1016/S0370-1573(97)00045-8
https://doi.org/10.1016/S0370-2693(97)01248-3
https://doi.org/10.1016/S0370-2693(97)01248-3
https://doi.org/10.1007/s100520000528
https://doi.org/10.1007/s100520000528
https://doi.org/10.1007/s100520200922
https://doi.org/10.1140/epjc/s10052-010-1339-x
https://doi.org/10.1140/epjc/s10052-010-1339-x
https://doi.org/10.1007/JHEP01(2011)079
https://doi.org/10.1140/epjc/s10052-012-1947-8
https://doi.org/10.1140/epjc/s10052-016-4571-1
https://doi.org/10.1140/epjc/s10052-017-5412-6
https://doi.org/10.1140/epjc/s10052-017-5412-6
https://doi.org/10.1016/0370-2693(83)91190-5
https://doi.org/10.1016/0550-3213(88)90426-9
https://doi.org/10.1103/PhysRevD.108.034017
https://doi.org/10.1103/PhysRevD.108.034017
https://arXiv.org/abs/2302.01380
https://doi.org/10.1142/S0217751X18300089
https://doi.org/10.1142/S0217751X18300089
https://doi.org/10.1007/JHEP05(2021)259
https://doi.org/10.21468/SciPostPhysCodeb.8
https://doi.org/10.21468/SciPostPhysCodeb.8
https://doi.org/10.1007/BF01552339
https://doi.org/10.1007/BF01547419
https://doi.org/10.1103/PhysRevD.41.2675
https://doi.org/10.1103/PhysRevD.42.737
https://doi.org/10.1007/s100529801013
https://doi.org/10.1140/epjc/s2004-01964-4
https://doi.org/10.1007/BF01614423
https://doi.org/10.1103/PhysRevLett.90.202303
https://doi.org/10.1103/PhysRevLett.90.202303
https://doi.org/10.1103/PhysRevLett.90.202302
https://doi.org/10.1103/PhysRevLett.90.202302

