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Starting with the polarization dependent Wigner function of vector mesons, we derive an expression
for the 00–component (ρ00) of spin density matrix in terms of the second order gradients of the vector
meson distribution functions. We further apply a thermal model to analyze the transverse momentum and
the azimuthal angle dependence of ρ00 for ϕ and K�0 mesons resulting from distribution gradients in
Au-Au collisions with

ffiffiffiffiffiffiffiffi
sNN

p ¼ 130 GeV at midrapidity. Our results for the transverse momentum
dependence indicate that the deviations of ρ00 from 1=3 as the signal for spin alignment are greatly
enhanced at large transverse momenta and have a strong centrality dependence while analysis of the
azimuthal angle (ϕq) dependence suggest that such deviations have a cosð2ϕqÞ structure with opposite

sign for ϕ and K�0. Our finding may be considered as a baseline for probing spin-alignment mechanisms
beyond hydrodynamic gradients.

DOI: 10.1103/PhysRevD.109.054038

I. INTRODUCTION

Strongly interacting matter created in noncentral colli-
sions of two heavy nuclei at relativistic beam energies
carries a huge amount of global orbital angular momentum
along the direction perpendicular to the reaction plane. A
fraction of such orbital angular momentum can get trans-
ferred into the spin degrees of freedom which in turn may
lead to the spin polarization of emitted particles [1–7] in a
way similar to the Barnett effect [8] and the Einstein–de
Haas effect [9] in materials. As a matter of fact, a nonzero
global and local spin polarization of hyperons has been
measured by the STAR Collaboration [10–13] at BNL, the
ALICE Collaboration at CERN [14], and the HADES
Collaboration at GSI [15]. Theoretically, relativistic hydro-
dynamics that makes use of the global thermodynamic
equilibrium formula, which connects the mean spin pseudo-
vector of a fermion with the thermal vorticity [16–20],
turned out be a successful tool in describing the exper-
imentally measured global polarization of Λ-hyperons
[18,19,21–25]. Surprisingly, the predictions for the local
spin polarization, i. e. the momentum dependence of the
longitudinal spin polarization [19,26], fails to agree with the
measured values [11]. This result has motivated further
theoretical developments, trying to clarify the origins of spin
polarization and spin transport phenomena in relativistic

heavy ion collisions [27–53] (see Refs. [54,55] for recent
reviews). Such developments include investigating the roles
of the symmetric gradients of hydrodynamic variables
(known as thermal shear) [27,29,30], gradients of chemical
potentials [27,28] and spin potentials [35]. Interestingly,
taking into account thermal shear corrections in local
equilibrium, theoretical results for the local spin polarization
of Λ hyperons agree with the experimental data only if the
effect of temperature gradients are neglected [56] or the Λ
hyperon mass is replaced with its constituent strange quark
mass [57,58].
Unlike hyperons, vector mesons decay via strong or

electromagnetic interactions in which parity is conserved.
Therefore, the spin polarization of vector mesons cannot be
measured directly as the direction of polarization is not
known. However, the spin alignment of vector mesons can
be studied by measuring the deviations from the equilibrium
value (1=3) of ρ00, which parametrizes the only independent
degree of freedom among the three diagonal elements (ρ00,
ρ11, ρ−1;−1) of the 3 × 3 Hermitian spin density matrix with
unit trace, assuming that parity is conserved [59,60].
Experimental measurements [61–64] indicate that the global
spin alignment of vector mesons is much larger than
theoretical predictions based on the assumption of thermal
equilibrium [6,65] and the spin coalescence model [1,66].
Furthermore, both quantitative and qualitative differences
exist between distinct flavors and different collision ener-
gies [61–64]. For example, at LHC energies, ρ00 < 1=3 is
observed for both ϕ and K�0 mesons with small transverse
momenta [61] while at RHIC energies, ρ00 > 1=3 for ϕ and
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ρ00 ≈ 1=3 for K�0 were globally found [64] (see also
Ref. [62] for some experimental results of J=ψ spin
alignments). Such results have motivated the development
of various theoretical mechanisms [67–83] but the issue
remains unresolved. We note especially that the treatment
of hydrodynamic gradients in this context has so far been
incomplete. Specifically, only a negligible contribution
from such gradients was estimated based on the small spin
polarization from the vorticity of strange quarks in the
coalescence model (see e.g. [69]). A similar result is
expected based on the shear-induced polarization (gov-
erned by the thermal shear tensor) [57] of strange quarks
in the coalescence model. The goal of this paper is to fill
this gap by providing a more rigorous estimation of the
effects of hydrodynamic gradients to the spin alignment of
vector mesons in heavy ion collisions. This will provide a
baseline for more exotic mechanisms such as the fluctu-
ating background fields stemming from the strong inter-
action [67–71,78–80] (see also Refs. [84–86] for related
studies in proton-proton and proton-nucleus collisions and
jet polarization).
In this paper, starting with the Wigner function of vector

mesons and its expansion up to the second order in ℏ,
equivalent to second order space-time gradients, we derive
an expression for the 00-component of the spin density
matrix (ρ00) in terms of the distribution functions of vector
mesons, for which the primary results are shown in
Eqs. (50)–(52). We further discuss the high momentum
and low momentum limits of ρ00 as shown in Eqs. (55)
and (60), respectively. In order to quantitatively estimate the
order of magnitude of ρ00 from such contributions, we adopt
a thermal model with single-freeze-out [87] to evaluate ρ00
for ϕ and K�0−mesons.
The paper is structured as follows. In Sec. II, we derive

the Wigner functions of polarized vector mesons up to
order ℏ2. In Sec. III, we derive a new equation for the ρ00-
component of the spin density matrix in terms of the
gradients of vector meson distributions and provide sim-
plified expressions in the high and low momentum limits.
In Sec. IV, we outline the main steps involved in the
calculation of various experimental observables related to
spin alignments of vector meson using the thermal model
with single freeze-out. In Sec. V, we discuss our numerical
results. In Sec. VI, we present a summary of this work and
an outlook. Some technical details are provided in the
Appendices.
Notation and conventions: Throughout this paper the

mostly minus signature of the Minkowski metric ημν ¼
diagð1;−1;−1;−1Þ is used. The notations AðμBνÞ ≡
AμBν þ AνBμ and A½μBν� ≡ AμBν − AνBμ are employed
to define symmetric and antisymmetric tensors respectively.
Greek letters (μ, ν etc) are used for space and time
components (indices take on values 0,1,2,3) while Latin
letters i, j etc stand for spatial components (taking on
values 1,2,3).

II. WIGNER FUNCTIONS OF VECTOR MESONS

The spin-1 vector-meson field can be expanded as [75],

VμðxÞ ¼
X

λ¼�1;0

Z
d3k

ð2πÞ3 ffiffiffiffiffiffiffiffi
2Ek

p ½ϵμðλ; kÞaðλ; kÞe−ik·x

þ ϵ�μðλ; kÞb†ðλ; kÞeik·x�; ð1Þ

where k≡ ðEk; kÞ is the on-shell four-momentum with
Ek ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jkj2 þM2

p
being the energy, k the momentum and

M the mass of the considered vector meson. a†ðλ; kÞ and
aðλ; kÞ are the creation and annihilation operators for
particles while b†ðλ; kÞ and bðλ; kÞ are those for anti-
particles, which follow the respective mesonic commuta-
tion relations. In principle, for interacting vector mesons,
there could be further corrections to the wave functions
beyond the simple plane waves in the above mode
expansion. For our consideration, we focus on the sim-
plest case by ignoring such corrections and instead
absorbing the interaction-dependent corrections into the
creation and annihilation operators or more precisely the
distribution functions, in which the interaction depend-
ence is dictated by the kinetic equation after the Wigner
transformation. The four vector ϵμðλ; kÞ is the polarization
vector. Following Refs. [75,79], it can for a vector meson
be written as

ϵμðλ; kÞ ¼
�−kαϵαλ;⊥

M
; ϵμλ;⊥ −

kαϵαλ;⊥
MðEq þMÞ k

μ
⊥
�
; ð2Þ

where Vμ
⊥¼ΔμνVν with Δμν ¼ ημν − nμnν and nμ ¼ ð1; 0Þ.

The four-vector ϵαλ;⊥ ≡ ðϵ0λ;⊥; ϵiλ;⊥Þ satisfies the condition
ϵ0λ;⊥ ¼ 0 and reduces to ð0; ϵλÞ. The three vector ϵλ is the
spin-state vector, which depends on the spin quantization
axis and satisfies the following relation

ϵλ · ϵ�λ0 ¼ δλλ0 : ð3Þ

It can be shown that ϵμðλ; kÞ and ϵ�μðλ0; kÞ satisfy

ϵμðλ; kÞϵ�μðλ0; kÞ ¼ −ϵλ · ϵ�λ0 ¼ −δλλ0 ; ð4Þ

and

ϵμðλ; kÞkμ ¼ 0: ð5Þ

In the vector meson rest frame, we have ϵμðλ; 0Þ ¼ ð0; ϵλÞ.
The Wigner function for vector mesons in phase space

can be written as [88]
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W<μνðq; XÞ ¼
Z

d4Yeiq·YhV†νðX − Y=2ÞVμðX þ Y=2Þi

¼ π
X

λ;λ0¼�1;0

Z
d3k−
ð2πÞ3

e−ik−·X��
jqj2 þ jk−j2

4

�
2

− ðq · k−Þ2 þ 2M2

�
jqj2 þ jk−j2

4

�
þM4

�
1=4

×

�
ϵμ
�
λ; qþ k−

2

�
ϵ�ν

�
λ0; q −

k−
2

��
a†
�
λ0; q −

k−
2

�
a

�
λ; qþ k−

2

��
δðq0 − k0þÞ

þ ϵν
�
λ0;−qþ k−

2

�
ϵ�μ

�
λ;−q −

k−
2

��
b

�
λ0;−qþ k−

2

�
b†
�
λ;−q −

k−
2

��
δðq0 þ k0þ

��
; ð6Þ

where

k0þ ¼ 1

2

�
Eqþk−

2
þ Eq−k−

2

�
; k0− ¼

�
Eqþk−

2
− Eq−k−

2

�
: ð7Þ

For ϕmesons, aðλ; kÞ ¼ bðλ; kÞ. In order to carry out the integration over k−, we expand the integrand for small k− and keep
the terms up to Oðk2−Þ, which corresponds to the ℏ expansion up to Oðℏ2Þ. Thus,

k0þ ¼ 1

2

�
Eqþk−

2
þ Eq−k−

2

�
≈ ðM2 þ jqj2Þ1=2 þ ðM2 þ jqj2Þjk−j2 − ðq · k−Þ2

8ðM2 þ jqj2Þ3=2 þOðjk−j3Þ

¼ Eq þ ΔEq; ð8Þ

where ΔEq ¼ E2
qjk−j2−ðq·k−Þ2

8E3
q

. Furthermore,

δðq0 − k0þÞ ¼ δðq0 − Eq − ΔEqÞ
¼ 2ðEq þ ΔEqÞδðq2 −M2 − 2EqΔEqÞ
≈ 2Eqδðq2 −M2Þ þ 2ΔEqδðq2 −M2Þ − 4E2

qΔEqδ
0ðq2 −M2Þ; ð9Þ

and

��
jqj2 þ jk−j2

4

�
2

− ðq · k−Þ2 þ 2M2

�
jqj2 þ jk−j2

4

�
þM4

�
−1=4

≈
1

ðjqj2 þM2Þ1=2 þ
ð−M2 − jqj2 þ 2jqj2 cos½θ�2Þjk−j2

8ðjqj2 þM2Þ5=2

¼ 1

Eq

�
1 −

ΔEq

Eq
þ ðq · k−Þ2

8E4
q

�
: ð10Þ

We shall consider only the presence of diagonal spin components by postulating

�
a†
�
λ0; q −

k−
2

�
a

�
λ; qþ k−

2

��
∝ δλλ0 ð11Þ

and similarly for antiparticles. Now, the polarization-related structure appearing in the Wigner function can be
approximated as

ϵμ

�
λ; qþ k−

2

�
ϵ�ν

�
λ; q −

k−
2

�
≈ Πð0Þ

μν ðλ; qÞ þ kα−
2
Πð1Þ

μναðλ; qÞ þ 1

2!

kα−
2

kβ−
2
Πð2Þ

μναβðλ; qÞ ð12Þ

up to Oðk2−Þ, where

Πð0Þ
μν ðλ; qÞ≡ ϵμðλ; qÞϵ�νðλ; qÞ; ð13Þ
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Πð1Þ
μναðλ; qÞ≡ ð∂qαϵμðλ; qÞÞϵ�νðλ; qÞ − ϵμðλ; qÞð∂qαϵ�νðλ; qÞÞ;

ð14Þ

and

Πð2Þ
μναβðλ; qÞ≡ ð∂qα∂qβ ϵμðλ; qÞÞϵ�νðλ; qÞ

þ ϵμðλ; qÞð∂qα∂qβ ϵ�νðλ; qÞÞ
− ðð∂qαϵμðλ; qÞÞð∂qβϵ�νðλ; qÞÞ
þ ð∂qβ ϵμðλ; qÞÞð∂qαϵ�νðλ; qÞÞÞ: ð15Þ

For simplicity, we will hereafter neglect the contribution
for antiparticles. That is, we do not show the similar
derivation for Wigner functions associated with hb†bi.
For the ϕ meson, which is its own antiparticle, such a
contribution automatically vanishes. The Wigner function
for vector mesons accordingly takes the form

W<μνðq; XÞ ¼
X

λ¼�1;0

W<μνðλ; q; XÞ; ð16Þ

where

W<μνðλ; q; XÞ ¼ π

Z
d3k−
ð2πÞ3 e

−ik−·X
1

Eq

�
1 −

ΔEq

Eq
þ ðq · k−Þ2

8E4
q

���
Πμν

ð0Þðλ; qÞ þ
k−α
2

Πμνα
ð1Þ ðλ; qÞ þ

1

2!

k−α
2

k−β
2

Πμναβ
ð2Þ ðλ; qÞ

�

× ð2ðEq þ ΔEqÞδðq2 −M2Þ − 4E2
qΔEqδ

0ðq2 −M2ÞÞ
�
a†
�
λ; q −

k−
2

�
a

�
λ; qþ k−

2

���
: ð17Þ

For our purpose, we are interested in the on-shell Wigner
function,

W<μνðλ; q; XÞ ¼
Z

dq0
ð2πÞW

<μνðλ; q; XÞ; ð18Þ

from which we introduce

W<μνðq; XÞ ¼
X

λ¼�1;0

W<μνðλ; q; XÞ; ð19Þ

for its polarization averaged component. Keeping all the
terms up toOðk2−Þ and carrying out the integration over k−,
one arrives at

W<μνðλ; q; XÞ ∼ 1

2Eq

�
Πμν

ð0Þðλ; qÞ þ
iℏ
2
Πμνα

ð1Þ ∂αðλ; qÞ

−
ℏ2

8
Πμναβ

ð2Þ ðλ; qÞ∂α∂β
�
f̃λðq; XÞ; ð20Þ

where we have introduced the polarization dependent
distribution functions,

f̃λðq;XÞ ¼
�
1þ ℏ2

8M2

�
∇2−

ðq ·∇Þ2
E2
q

�
1þM2

E2
q

���
fλðq;XÞ

ð21Þ

stemming from the expectation values of number operators

fλðq;XÞ ¼
Z

d3k−
ð2πÞ3 e

−ik−·X
�
a†
�
λ;q−

k−
2

�
a

�
λ;qþ k−

2

��
:

ð22Þ

The custom of redefining distribution functions within the
ℏ expansion is commonly adopted in the Wigner-function
approach for constructing quantum kinetic theories [45,89].
Given our expression of the Wigner function, one may

further utilize the Kadanoff-Baym equation in the real-time
formalism to derive the quantum kinetic equations for
tracking the phase-space evolution of f̃λðq; XÞ [55,90].
However, such a derivation would be complicated, with a
realistic collision term depending on the details of the
interaction. In practice, it is even technically challenging
to numerically solve a classical kinetic equation for spin-
averaged vector mesons. Instead of seeking a precise value
of ρ00, the purpose of this work is to estimate the order of
magnitude of the effect that the second order gradients have
on ρ00. It will hence here be sufficient to adopt the
polarization-averaged distribution function obtained from
classical transport equations to calculate ρ00 from theWigner
function up to second order gradients as will be discussed in
the subsequent sections.

III. SPIN DENSITY MATRIX

Diagonal elements of the spin density matrix are defined
by the formula [77]

ρλλðqÞ ¼
R
dΣX · qϵμðλ; qÞϵ�νðλ; qÞW<μνðq; XÞR

dΣX · q
P

λ0¼�1;0ϵμðλ0; qÞϵ�νðλ0; qÞW<μνðq; XÞ ;

ð23Þ
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where dΣXμ denotes a freeze-out hyper-surface. The 00-component of the spin density matrix can further be expressed as

ρ00ðqÞ ¼
R
dΣX · q½Πð0Þ

μν ð0; qÞW<μνðq; XÞ�R
dΣX · q½Πð0Þ

μν ð0; qÞ þ Πð0Þ
μν ð−1; qÞ þ Πð0Þ

μν ðþ1; qÞ�W<μνðq; XÞ
: ð24Þ

We can further decompose the Wigner function into symmetric and antisymmetric components,

W̃<μν ¼ W̃<μν
S þ iW̃<μν

A ; ð25Þ

where

W̃<μν
S ≡ 1

2
ðW̃<μν þ W̃<νμÞ; W̃<μν

A ≡ −i
2
ðW̃<μν − W̃<νμÞ: ð26Þ

Here, W̃<μν
S and W̃<μν

A are both real functions since W̃<μν by definition is Hermitian.
Thus, ρ00 can then be written as

ρ00ðqÞ ¼
R
dΣX · qðϵðμð0; qÞϵ�νÞð0; qÞW<μν

S ðq; XÞ þ iϵ½μð0; qÞϵ�ν�ð0; qÞW<μν
A ðq; XÞÞR

dΣX · q
P

λ¼�1;0ðϵðμðλ; qÞϵ�νÞðλ; qÞW<μν
S ðq; XÞ þ iϵ½μðλ; qÞϵ�ν�ðλ; qÞW<μν

A ðq; XÞÞ : ð27Þ

We may next reexpress the distribution functions for λ ¼
�1 in terms of f̃�1 ¼ fV � fA=2, where fA ¼ f̃1 − f̃−1 ≠
0 characterizes a nonzero spin polarization of vector
mesons. When averaging over the spin polarization, we
may set f̃λ ¼ fV with fA ¼ 0. In principle, as briefly
explained in the previous section, we should work out the
quantum kinetic equations for each f̃λ with ℏ corrections in
the presence of collisions. W̃μνðλ; q; XÞ may furthermore
possibly involve ℏ corrections pertinent to interactions.
However, for simplicity, we here only consider the quantum
correction induced by the spacetime-derivative terms in
Eq. (20) obtained in the collisionless limit and incorporate
collisional effects in f̃λðq; XÞ only from polarization-
averaged transport theory. Consequently, we will simply
consider the case of f̃λ ¼ fV and vanishing Wμν

A at Oðℏ0Þ.
Note that the essential source of spin alignment consid-

ered in this work is led by ∂αfV and ∂α∂βfV . Since ρ00 is a
normalized quantity, an overall factor of the Wigner
function should not matter. To obtain a more concrete
expression of ρ00, we shall further compute the coefficients
associated with the momentum derivatives on the polari-
zation vectors explicitly.

A. Decomposition of Πμν
ð0Þðλ;qÞ, Πμνα

ð1Þ ðλ;qÞ and Πμναβ
ð2Þ ðλ;qÞ

in symmetric and antisymmetric parts

We first decompose Πμν
ð0Þ in symmetric and antisymmet-

ric components such that Πμν
ð0Þðλ; qÞ ¼ 1

2
ðΠðμνÞ

ð0Þ ðλ; qÞ þ
Π½μν�

ð0Þ ðλ; qÞÞ where

ΠðμνÞ
ð0Þ ðλ; qÞ≡ ϵðμðλ; qÞϵ�νÞðλ; qÞ; ð28Þ

and

Π½μν�
ð0Þ ðλ; qÞ≡ ϵ½μðλ; qÞϵ�ν�ðλ; qÞ: ð29Þ

Similarly, Πð1Þ
μναðλ; qÞ and Πð2Þ

μναβðλ; qÞ can be decomposed in
symmetric and antisymmetric parts as

Π½μν�α
ð1Þ ðλ; qÞ ¼ ð∂αqϵ½μðλ; qÞÞϵ�ν�ðλ; qÞ þ c:c:; ð30Þ

ΠðμνÞα
ð1Þ ðλ; qÞ ¼ ð∂αqϵðμðλ; qÞÞϵ�νÞðλ; qÞ − c:c:; ð31Þ

Π½μν�αβ
ð2Þ ðλ;qÞ≡

	
ð∂αq∂βqϵ½μðλ;qÞÞϵ�ν�ðλ;qÞ

− ðð∂αqϵ½μðλ;qÞÞð∂βqϵ�ν�ðλ;qÞÞÞ


− c:c:; ð32Þ

ΠðμνÞαβ
ð2Þ ðλ;qÞ≡

	
ð∂αq∂βqϵðμðλ;qÞÞϵ�νÞðλ;qÞ

− ðð∂αqϵðμðλ;qÞÞð∂βqϵ�νÞðλ;qÞÞÞ


þ c:c:; ð33Þ

where c.c. represents the complex conjugate. We choose
the y direction as the spin quantization axis, in which case
the corresponding spin state vectors read [75]

ϵ0 ¼ ð0; 1; 0Þ; ð34Þ

ϵþ1 ¼ −
1ffiffiffi
2

p ði; 0; 1Þ; ð35Þ

ϵ−1 ¼
1ffiffiffi
2

p ð−i; 0; 1Þ; ð36Þ
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which satisfy the relation

X
λ¼�1;0

ϵmλ ϵ
�n
λ ¼ δmn: ð37Þ

Using Eqs. (34)–(36), one can show that the polarization
tensor ϵμ [see Eq. (2)] satisfies

ϵμð0; qÞ ¼ ϵ�μð0; qÞ; ð38Þ

ϵμð1; qÞ ¼ −ϵ�μð−1; qÞ: ð39Þ

Based on the above properties, we have

ΠðμνÞ
ð0Þ ð1; qÞ ¼ ΠðμνÞ

ð0Þ ð−1; qÞ; ð40Þ

Π½μν�
ð0Þ ð1; qÞ ¼ −Π½μν�

ð0Þ ð−1; qÞ; ð41Þ

and

ΠðμνÞα
ð1Þ ð1; qÞ ¼ ð∂αqϵðμð1; qÞÞϵ�νÞð1; qÞ − c:c:

¼ −ΠðμνÞα
ð1Þ ð−1; qÞ; ð42Þ

Π½μν�α
ð1Þ ð1; qÞ ¼ ð∂αqϵ½μð1; qÞÞϵ�ν�ð1; qÞ þ c:c:¼ Π½μν�α

ð1Þ ð−1; qÞ;
ð43Þ

ΠðμνÞαβ
ð2Þ ð1; qÞ≡

	
ð∂αq∂βqϵðμð1; qÞÞϵ�νÞð1; qÞ

− ðð∂αqϵðμð1; qÞÞð∂βqϵ�νÞð1; qÞÞÞ


þ c:c:

¼ ΠðμνÞαβ
ð2Þ ð−1; qÞ; ð44Þ

Π½μν�αβ
ð2Þ ð1; qÞ≡

	
ð∂αq∂βqϵ½μð1; qÞÞϵ�ν�ð1; qÞ

− ðð∂αqϵ½μð1; qÞÞð∂βqϵ�ν�ð1; qÞÞÞ


− c:c:

¼ −Π½μν�αβ
ð2Þ ð−1; qÞ: ð45Þ

Moreover, using Eq. (38), we can show that

Π½μν�
ð0Þ ð0; qÞ ¼ 0; ð46Þ

ΠðμνÞα
ð1Þ ð0; qÞ ¼ 0; ð47Þ

Π½μν�αβ
ð2Þ ð0; qÞ ¼ 0: ð48Þ

Making use of Eqs. (40)–(48) for Eq. (20) and substituting
f̃0;�1 ¼ fV , we obtain

W<μνðq; XÞ ¼ 1

2Eq

�
1

2
ΠðμνÞ

ð0Þ ðqÞ þ
iℏ
4
ðΠ½μν�α

ð1Þ ð1; qÞ þ Π½μν�α
ð1Þ ð−1; qÞ þ Π½μν�α

ð1Þ ð0; qÞÞ∂α

−
ℏ2

16
ðΠðμνÞαβ

ð2Þ ð1; qÞ þ ΠðμνÞαβ
ð2Þ ð−1; qÞ þ ΠðμνÞαβ

ð2Þ ð0; qÞÞ∂α∂β
�
fVðq; XÞ; ð49Þ

where ΠðμνÞ
ð0Þ ðqÞ ¼

P
λ¼�1;0Π

ðμνÞ
ð0Þ ðλ; qÞ ¼ 2ðqμqνM2 − ημνÞ.

Eventually, ρ00 reads

ρ00ðqÞ ¼
R
dΣX · q

h
1 − ℏ2

32
Πð0Þ

ðμνÞð0; qÞΠðμνÞαβ
ð2Þ ðqÞ∂α∂β

i
fVðq; XÞR

dΣX · q
h
3 − ℏ2

32
Πð0Þ

ðμνÞðqÞΠðμνÞαβ
ð2Þ ðqÞ∂α∂β

i
fVðq; XÞ

; ð50Þ

where Πð0Þ
ðμνÞð0; qÞΠðμνÞαβ

ð2Þ ðqÞ∂α∂β and Πð0Þ
ðμνÞðqÞΠðμνÞαβ

ð2Þ ðqÞ∂α∂β, can be written as

Πð0Þ
ðμνÞð0; qÞΠðμνÞαβ

ð2Þ ðqÞ∂α∂β ¼
�
2ðqyÞ2
M2

A1 −
4ðqyÞ2Eq

M2
B2

�
∂α∂

α þ ð4ðB3 þ C3ÞEq − 4ðA2 þ C2ÞÞ

×

�
qy

M

�
∂
y þ qyðqi∂iÞ

MðEq þMÞ
��

qα∂α þ
�
4ðqyEqÞ2

M2
E3 −

4ðqyÞ2
M

Eq

M
D2

�
ðqα∂αÞ2

þ 4A3

�
ð∂yÞ2 þ 2qy

MðEq þMÞ ðq
i
∂
iÞ∂y þ ðqyÞ2

M2ðEq þMÞ2 ðq
i
∂
iÞ2

�
ð51Þ

and
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Πð0Þ
ðμνÞðqÞΠðμνÞαβ

ð2Þ ðqÞ∂α∂β ¼ 2

���
E2
q

M2
− 1

�
A1 −

2jqj2
M2

EqB2

�
∂α∂

α þ 2A3ð∂i∂iÞ þ
2

M2
A3ðqi∂iÞ2

þ Eq

M2
ð2EqðB3 þ C3Þ − 2ðA2 þ C2ÞÞðqi∂iÞðqβ∂βÞ þ Eq

�jqj2
M2

�
ð2EqE3 − 2D2Þðqβ∂βÞ2

�
: ð52Þ

The coefficients A1−3, B2−3, C2−3, D2, and E3 are listed in
Appendix B. We shall in the next section examine the large-
momentum and low-momentum limits, in which ρ00
assumes a greatly simplified form.

B. Large-momentum limit

At large momentum, jqj ≫ M and we have Eq ∼ jqj,
which leads to

Πð0Þ
ðμνÞð0;qÞΠðμνÞαβ

ð2Þ ðqÞ∂α∂β ≈−
4ðqyÞ2
M4jqj2

h
3jqj2ð∂tÞ2 − jqj2ð∂iÞ2

− 4ðqi∂iÞqα∂α
i
; ð53Þ

and

Πð0Þ
ðμνÞðqÞΠðμνÞαβ

ð2Þ ðqÞ∂α∂β ≈ −
�

4

M4

�h
3jqj2ð∂tÞ2 − jqj2ð∂iÞ2

− 4ðqi∂iÞqα∂α
i
: ð54Þ

Using Eqs. (53) and (54), we can simplify Eq. (50) to

ρ00ðqÞ ¼
R
dΣX · q

�
1þ ℏ2

8

ðqyÞ2
M4 =□

�
fVðq; XÞ

R
dΣX · q

�
3þ ℏ2

8

�
jqj2
M4

�
=□
�
fVðq; XÞ

; ð55Þ

where

=□ ¼
�
3ð∂tÞ2 − ð∂iÞ2 − 4

jqj2 ðq
i
∂
iÞqα∂α

�
: ð56Þ

The above result shows that ρ00 − 1=3 at large momentum
could be substantially enhanced when Oðjqj2∂2fV=
ðM4fVÞÞ ∼Oð1Þ.

C. Small-momentum limit

In the small momentum limit, jqj ≪ M, we have
Eq ∼M, giving

Πð0Þ
ðμνÞð0; qÞΠðμνÞαβ

ð2Þ ðqÞ∂α∂β ≈ 4A3ð∂yÞ2 ¼ 2ð∂yÞ2=M2; ð57Þ

and

Πð0Þ
ðμνÞðqÞΠðμνÞαβ

ð2Þ ðqÞ∂α∂β ≈ 4A3ð∂iÞ2 ¼ 2ð∂iÞ2=M2: ð58Þ

Thus, ρ00ðqÞ for this case becomes

ρ00ðqÞ ¼
R
dΣX · q

�
1 − ℏ2

4

ð∂yÞ2
M2

�
fVðq; XÞ

R
dΣX · q

�
3 − ℏ2

4

ð∂iÞ2
M2

�
fVðq; XÞ

; ð59Þ

which can be further approximated as

ρ00ðqÞ¼
1

3
−

ℏ2

12M2

R
dΣX ·qð2ð∂yÞ2−ð∂xÞ2−ð∂zÞ2ÞfVðq;XÞR

dΣX ·qfVðq;XÞ
;

ð60Þ

when Oð∂2fV=ðM2fVÞÞ ≪ 1.

IV. SPIN ALIGNMENT OBSERVABLES WITHIN
A THERMAL MODEL WITH SINGLE

FREEZE OUT

In order to estimate ρ00, we assume the vector
mesons to follow the Jüttner distribution, (fVðq; XÞ ¼
exp½−qμβμðxÞ − ξðxÞ� where, βμ ¼ uμ=T and ξ ¼ μ=T
are ratios of the four fluid velocity and the chemical
potential to the temperature) and use a thermal model with
single-freeze-out [87] which has been used in the past to
describe various features of soft hadron production (particle
yields, transverse-momentum spectra, elliptic flow, HBT
radii) for Auþ Au collisions at the top RHIC energies
(

ffiffiffiffiffiffiffiffi
sNN

p ¼ 130 GeV) [91–95]. In its standard formulation, it
uses two thermodynamic parameters (temperature T, baryon
chemical potential μB) and two geometric parameters
(proper time τf and system size rmax) which characterize
the freeze-out hypersurface (defined through the conditions:
τ2f ¼ t2 − x2 − y2 − z2 and x2 þ y2 ≤ r2max) and hydrody-
namic flow (which is assumed to have a Hubble-like form,
uμ ¼ xμ=τ). The thermodynamic parameters T, μB are
obtained by fitting the ratios of hadronic abundances to
experimental data while the geometric ones (τf and rmax) are
determined by fits to experimental transverse-momentum
spectra. In this work, we use the extended thermal model
with a single freeze out, in which phenomena such as
elliptic flow are included by taking into account the elliptic
deformations of both the emission region in the transverse
plane and the transverse flow [96] in terms of two new
parameters ϵ and δ. To include the elliptical asymmetry in
the transverse plane, the transverse region is modeled by the
parametrization
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x ¼ rmax

ffiffiffiffiffiffiffiffiffiffi
1 − ϵ

p
cosϕ;

y ¼ rmax

ffiffiffiffiffiffiffiffiffiffiffi
1þ ϵ

p
sinϕ; ð61Þ

where ϕ is the azimuthal angle, while rmax and ϵ are the
model parameters. ϵ > 0 indicates that the system formed in
the collision is elongated in the y direction.
Flow asymmetry is included by parametrizing the flow

velocity as

uμ ¼ 1

N
ðt; x ffiffiffiffiffiffiffiffiffiffiffi

1þ δ
p

; y
ffiffiffiffiffiffiffiffiffiffi
1 − δ

p
; zÞ; ð62Þ

where the parameter δ characterizes the anisotropy of the
transverse flow. δ > 0, indicates that there is more flow in
the reaction plane (elliptic flow). The constant N can
be obtained from the normalization condition uμuμ ¼ 1,
yielding

N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2 − ðx2 − y2Þδ

q
; ð63Þ

where the proper time τ is given by

τ2 ¼ t2 − x2 − y2 − z2: ð64Þ

The adopted parameter values for ϵ, δ, τf, and rmax are
listed in Table I. These values have been used in the past to
describe the PHENIX data for the centrality classes
c ¼ 0–15%, c ¼ 15%–30% and c ¼ 30%–60% at beam
energy

ffiffiffiffiffiffiffiffi
sNN

p ¼ 130 GeV and freeze-out temperature Tf ¼
0.165 GeV [97,98]. We furthermore assume that the freeze-
out takes place at a constant value of the proper time, i.e., at
τ ¼ τf. In this case, the element of the freeze-out hyper-
surface, dΣXλ, can be expressed as

dΣXλ ¼ nλdxdydη; ð65Þ

where

nλ ¼
	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

τ2f þ x2 þ y2
q

cosh η; x; y;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2f þ x2 þ y2

q
sinh η



;

ð66Þ

with nλnλ ¼ τ2f and η ¼ 1
2
ln ½ðtþ zÞ=ðt − zÞ� being the

space-time rapidity.
The particle four momentum reads

qμ ¼ ðEq; qx; qy; qzÞ ¼ ðmT cosh yp; qx; qy;mT sinh ypÞ;
ð67Þ

where mT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ q2T

p
is the transverse mass, qT ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2x þ q2y
q

and m being the transverse momentum and

mass of the particle, respectively. yp ¼ 1
2
ln ½ðEq þ qzÞ=

ðEq − qzÞ� is the particle rapidity. Using Eqs. (62) and (67)
we can write,

qμβμ ¼ R1 coshðyp − ηÞ þ R2; ð68Þ

where

R1 ¼
mTðcoshðypÞt − sinhðypÞzÞ

Tf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − x2 − y2 − z2 − ðx2 − y2Þδ

p ; ð69Þ

R2 ¼ −
ðx ffiffiffiffiffiffiffiffiffiffiffi

1þ δ
p

qx þ y
ffiffiffiffiffiffiffiffiffiffi
1 − δ

p
qyÞ

Tf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − x2 − y2 − z2 − ðx2 − y2Þδ

p : ð70Þ

Accordingly, we have

dΣX · q ¼ ðG1 coshðyp − ηÞ þ G2Þdx dy dη; ð71Þ

where

G1 ¼ mT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2f þ x2 þ y2

q
; ð72Þ

G2 ¼ −ðxqx þ yqyÞ: ð73Þ

At the top RHIC energies we can neglect effects of the
baryon number density and calculate the contribution from
temperature gradients using the hydrodynamic equations
within the perfect fluid approximation (see Appendix A of
Ref. [99] for details). In such a situation, using Eqs. (51)
and (52), we can easily carry out the freeze-out integration
in (50) and plot δρ00ðqx; qyÞ ¼ ρ00ðqx; qyÞ − 1

3
as a function

of qx and qy. The azimuthal angle dependence ρ00ðϕpÞ
(at fixed particle rapidity yp ¼ 0) can be obtained by taking
the momentum average of ρ00ðqÞ weighted by the momen-
tum spectrum of the considered meson [73,80],

hρ00ðϕqÞi ¼
R
qTdqT ½ρ00ðqÞN �R

dqTqTN
; ð74Þ

where N ¼ R
dΣX · qfVðq; XÞ. One can also look at ρ00 as

a function of qT at yp ¼ 0. In this case, we perform the
azimuthal-angle integrals in both the numerator and

TABLE I. Values of the parameters previously used to describe
the PHENIX data at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 130 GeV for different centrality
classes [97,98]. The freeze-out temperature used in the calcu-
lation is Tf ¼ 165 MeV.

c% ϵ δ τf [fm] rmax [fm]

0–15 0.055 0.12 7.666 6.540
15–30 0.097 0.26 6.258 5.417
30–60 0.137 0.37 4.266 3.779
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denominator, keeping the transverse momentum fixed,
namely

hρ00ðqTÞi ¼
R
dϕp½ρ00ðqÞN �R

dϕpN
: ð75Þ

Finally, one can also obtain the rapidity dependence of ρ00
from the formula

hρ00ðypÞi ¼
R
qTdqT

R
dϕp½ρ00ðqÞN �R

qTdqT
R
dϕpN

: ð76Þ

V. RESULTS AND DISCUSSIONS

In this section we present the numerical results for ϕ and
K�0 mesons, making use of the thermal model parameters
of Table I.
In Fig. 1, we show the contour plot of δρ00 for K�0 (left

panel from top to bottom) and ϕ (right panel from top to
bottom) as a function of qx and qy for the three centrality
classes c ¼ 0–15%, c ¼ 15%–30%, and c ¼ 30%–60% at
yp ¼ 0. For K�0 mesons we observe a significant quadru-
pole structure for δρ00 which changes sign as a function of
qx and qy. At smaller qx, qy (in the domain
qx ∈ ð−1.5; 1.5Þ GeV and qy ∈ ð−1.5; 1.5Þ GeV) when
jqyj ≫ jqxj we have δρ00 < 0 while for jqyj ≪ jqxj such
that 0.5 < jqxj < 1.5 we have δρ00 > 0. On the other hand,
at higher momentum (jqxj; jqyj > 1.5 GeV) when
jqxj ≫ jqyj, we see δρ00 < 0 while for jqyj ≫ jqxj,
δρ00 > 0. A similar pattern for the ϕ meson with slightly
different ranges of qx and qy is observed. We note that,
albeit the complicated structures, the difference in the
results for K�0 and ϕ interestingly only stem from their
mass difference.
In Fig. 2, we present the numerical results for the

azimuthal angle (ϕq) (left panel) and the transverse
momentum (qT) dependence (right panel) of ρ00 as defined
in Eqs. (74) and (75) for K�0 and ϕ. The azimuthal angle
dependence is obtained by integrating over qT in the range
1.2–5.4 GeV. The corresponding plots indicate that
hρ00ðϕqÞi can be accurately parametrized as hρ00ðϕqÞi ¼
a cosð2ϕqÞ þ b with b ≃ 1=3, while a < 0 for K�0 and a >
0 for ϕ. Our estimate for the values of the coefficients a and
b obtained by fitting the above defined function hρ00ðϕqÞi
to the numerical data for three different centrality classes
are listed in the Table II. Such values can be probed in
future RHIC and LHC experiments. The sign change of a
for K�0 and ϕ might be inferred from their dependence on
qx;y for δρ00. As shown in Fig. 1, for qy ¼ 0 and
equivalently ϕq ¼ 0, one finds that δρ00 is mostly negative
for K�0 despite being positive in a marginal region for
q̄x ∼ 0, where q̄x ¼ jqxj − 1.2 GeV, while for ϕ, δρ00 is
mostly positive in a larger region around q̄x ∼ 0, which is

more prominently weighted compared to the large-q̄x
region. When integrating over qT (more precisely q̄x), it
turns out that δρ00 at ϕq ¼ 0may thus become negative and
positive for K�0 and ϕ, respectively. Analogously, one finds
the opposite patterns for ϕq ¼ π=2. We hence observe the
opposite oscillatory pattern of hρ00ðϕqÞi for K�0 and ϕ.
Since N is suppressed by larger m, the overall deviation of
hρ00ðϕqÞi from 1=3 (if nonzero) is more prominent for K�0

as shown in Fig. 2. Overall, our finding shows that the
azimuthal-angle dependence of ρ00 is rather sensitive to the
mass values of the considered vector mesons.
Our results of hρ00ðqTÞi for K�0 and ϕ indicate that in

different momentum ranges the values to ρ00 can be ≤ 1=3
as well as ≥ 1=3. At small transverse momentum
(qT < 1.7 GeV) one notices that for both particles ρ00 is
roughly 1=3 for all the three centrality classes. At higher
momenta of the order of qT ∼ 4 GeV, ρ00 can be larger than
1=3 for the lowest centrality class of c ¼ 0–15%, but
decreases considerably below 1=3 with increasing qT for
higher centralities.
In Fig. 3, we depict the rapidity dependence of ρ00 for

K�0 and ϕ. In the case of K�0, one notes that ρ00 decreases
with increasing rapidity yp and centrality c. In contrast, ρ00
for the ϕ initially increases with respect to yp then
decreases rapidly below 1=3 at larger yp for all centrality
classes with more prominent decrease at higher centrality.
Since ρ00 for the ϕ is close to 1=3 in the region of jypj≲ 1,
it can be expected that its global value by further integrating
over yp is also close to 1=3. For the global spin alignment
of K�0, the deviation from 1=3may be larger than that of ϕ,
but still rather small.

VI. SUMMARY AND OUTLOOK

In this paper, expanding the Wigner function of vector
mesons up to Oðℏ2Þ, we have derived an expression for ρ00
in terms of their distribution functions. We further dis-
cussed the large-momentum and small-momentum limits of
ρ00. As a result, we find that the second-order space-time
gradients of the vector-meson distribution functions can
trigger spin alignment, leading to a deviation of ρ00 from
1=3. Next, by considering the Jüttner type equilibrium
distribution and using a thermal model with single freeze-
out, we computed several spin alignment observables for
Au-Au collisions with

ffiffiffiffiffiffiffiffi
sNN

p ¼ 130 GeV. Studying the
dependence of ρ00 on the azimuthal angle ϕq at midrapidity,
we found a hρ00ðϕqÞi ¼ a cosð2ϕqÞ þ b pattern, with b ≃
1=3 for both K�0 and ϕ, but a < 0 for K�0 and a > 0 for ϕ.
For hρ00ðqTÞi at midrapidity, our results indicate that the
deviations of ρ00 from 1=3 could be greatly enhanced at
large transverse momenta for different collision centralities.
We furthermore studied the rapidity dependence of ρ00 for
K�0 and ϕ at different centralities, obtaining a rather
different behavior for the two particles, as shown in
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FIG. 1. The contour plots of δρ00 ¼ ρ00 − 1=3 as a function of qx and qy for K�0 (left panels) and the ϕ meson (right panels) for the
centrality classes c ¼ 0–15%, c ¼ 15%–30% and c ¼ 30% − 60% (top to bottom) with freeze-out temperature Tf ¼ 165 MeV and
collision energy

ffiffiffiffiffiffiffiffi
sNN

p ¼ 130 GeV at yp ¼ 0.
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Fig. 3. For more accurate and versatile estimates, that go
beyond the simple model used in this work, we will in the
future conduct hydrodynamic simulations with broader
ranges of collision energies.
As mentioned in the discussion of our setup in Sec. II, we

have neglected dynamical contributions to ρ00 from the
polarization dependent f̃λðq; XÞ. For example, early-time
effects could exist, which lead to further Oðℏ2Þ corrections
to f̃λðq; XÞ, such as glasma fields [78,79], turbulent color

FIG. 3. Rapidity dependence of the ρ00 component of the spin density matrix for K�0 (left panel) and ϕ mesons (right panel)
for the centrality classes c ¼ 0–15%, c ¼ 15%–30%, and c ¼ 30%–60% with freeze-out temperature Tf ¼ 165 MeV and collision
energy

ffiffiffiffiffiffiffiffi
sNN

p ¼ 130 GeV.

FIG. 2. Azimuthal angle (left panel) and transverse momentum dependence (right panel) of the ρ00 component of the spin density
matrix for K�0 (upper panels) and ϕ mesons (lower panels) for the centrality classes c ¼ 0–15%, c ¼ 15–30%, and c ¼ 30–60% with
freeze-out temperature Tf ¼ 165 MeV and collision energy

ffiffiffiffiffiffiffiffi
sNN

p ¼ 130 GeV at yp ¼ 0.

TABLE II. Values of the coefficients a and b obtained by fitting
the function hρ00ðϕqÞi ¼ a cosð2ϕqÞ þ b to our numerical data
for different centrality classes.

c% a (K�0–meson)a (ϕ–meson)b (K�0–meson)b (ϕ–meson)

0–15 −0.0223 0.0013 0.3399 0.3329
15–30 −0.0295 0.0017 0.3406 0.3327
30–60 −0.0498 0.0028 0.3453 0.3321
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fields in the QGP phase [70,71], and fluctuating meson
fields before hadronization [67,68,80], which interact with
the constituent quark and antiquark forming the vector
meson in the quark coalescence scenario [100,101]. In
addition, in the hadron phase, polarization dependent
interactions could further modify f̃λðq; XÞ, which have to
be treated within the quantum kinetic theory of vector-
mesons with proper collision terms as noted in Sec. II. All
these dynamical contributions should be combined with the
nondynamical contribution led by the second-order gra-
dients upon f̃λðq; XÞ with a proper choice of the freeze-out
hypersurface found in this work to address experimental
observations.
On the other hand, since the effect we considered is only

related to the final state of vector-meson distribution
functions, it is independent of detailed mechanisms for
hadronization such as the quark coalescence or fragmenta-
tion. As a result, Eq. (50) is applicable to all types of vector
mesons with arbitrary momenta and not subject to just K�0

and ϕ. In the future, given f̃λðq; XÞ at certain freeze-out
points obtained from prescribed transport models, it will
become possible to study this effect for J=ψ and D�þ at the
LHC or K�0 and ϕ in low-energy nuclear collisions.
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APPENDIX A: DIFFERENT COMPONENTS
OF ΠðμνÞð0;qÞ= ϵðμð0;qÞϵ�νÞð0;qÞ

We start by writing Eq. (2) as

ϵμðλ; qÞ ¼
�−qαϵαλ;⊥

M
; ϵμλ;⊥ −

qαϵαλ;⊥
MðEq þMÞ q

μ
⊥
�
: ðA1Þ

The spin vectors ϵiλ;⊥ ¼ ϵiλ appearing in the above equation
are given by Eqs. (34)–(36) and satisfy the condition
Eq. (37) and ϵ0λ;⊥ ¼ 0.

Using Eq. (A1) along with Eq. (34) one obtains

Πð00Þð0; qÞ ¼ ϵð0ð0; qÞϵ�0Þð0; qÞ ¼ 2ðqyÞ2
M2

ðA2Þ

Similarly, using Eq. (A1) with Eqs. (34)–(36) on finds

Πð0iÞð0; qÞ ¼ ϵð0ð0; qÞϵ�iÞð0; qÞ ¼ 2qy

M

�
ϵi0 þ

qyqi

MðEq þMÞ
�
;

ðA3Þ

and

ΠðijÞð0; qÞ ¼ ϵðið0; qÞϵ�jÞð0; qÞ

¼ 2ϵi0ϵ
j
0 þ

2qyðqiϵj0 þ qjϵi0Þ
MðEq þMÞ þ 2ðqyÞ2qiqj

M2ðEq þMÞ2 :

ðA4Þ

APPENDIX B: DIFFERENT COMPONENTS
OF ΠðμνÞαβ

ð2Þ ðqÞ
The tensor, ΠðμνÞαβ

ð2Þ ðqÞ is defined as

ΠðμνÞαβ
ð2Þ ðλ; qÞ≡ ðð∂αq∂βqϵðμðλ; qÞÞϵ�νÞðλ; qÞ

− ðð∂αqϵðμðλ; qÞÞð∂βqϵ�νÞðλ; qÞÞÞÞ þ c:c: ðB1Þ

Using Eq. (A1) on can easily show

Πð00Þαβ
ð2Þ ðqÞ ¼ A1η

αβ; ðB2Þ

with

A1 ¼
2

M2
; ðB3Þ

where the factor 2 comes from the complex conjugate.
Now, using Eqs. (37) and (A1) one can write

Πð0iÞαβ
ð2Þ ðqÞ ¼ A2η

αiqβ þ B2η
αβqi þ C2qαηβi þD2qαqiqβ;

ðB4Þ

where

A2 ¼ −2
1

M2ðEq þMÞ
�
1þ jqj2

EqðEq þMÞ
�

¼ −
2ð2Eq −MÞ

M2EqðEq þMÞ ;

B2 ¼ 2
1

M2ðEq þMÞ
�
2 −

jqj2
EqðEq þMÞ

�
¼ þ 2

M2Eq
;

C2 ¼
2

M2ðEq þMÞ ;

D2 ¼ 2
1

M2EqðEq þMÞ2
�ð3Eq þMÞjqj2

E2
qðEq þMÞ

�
¼ 2ð3Eq þMÞðEq −MÞ

M2E3
qðEq þMÞ2 : ðB5Þ
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Similarly, one can write

ΠðijÞαβ
ð2Þ ðqÞ ¼ ½A3η

αðiηβjÞ þ B3qðiηβjÞqα þ C3qðiηαjÞqβ þD3η
αβqðiqjÞ þ E3qαqβqðiqjÞ�; ðB6Þ

where

A3 ¼ 2
1

MðEq þMÞ
�
2 −

jqj2
MðEq þMÞ

�
¼ 2

1

MðEq þMÞ
�
3 −

Eq

M

�
;

B3 ¼ −2
1

MEqðEq þMÞ2
�
1 −

jqj2
MðEq þMÞ

�
¼ −2

1

MEqðEq þMÞ2
�
2 −

Eq

M

�
;

C3 ¼ −2
1

MðEq þMÞ2
�

2

Eq

�
;

D3 ¼ 2
1

MðEq þMÞ2
�
1

M
−

1

Eq

�
1þ jqj2

MðEq þMÞ
��

¼ 0;

E3 ¼ 2
1

MEqðEq þMÞ3
�ð3Eq þMÞ

E2
q

þ 1

M

�
2þ ð3Eq þMÞjqj2

E2
qðEq þMÞ

�
−

1

M

�
2þ jqj2

EqðEq þMÞ
��

¼ 4

M2E2
qðEq þMÞ2 : ðB7Þ
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