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We present a detailed study of the finite momentum dynamics of the Oð4Þ critical point of QCD, which
lies in the dynamic universality class of “model G.” The critical scaling of the model is analyzed in multiple
dynamical channels. For instance, the finite momentum analysis allows us to precisely extract the pion
dispersion curve below the critical point. The pion velocity is in striking agreement with the predictions
relation and static universality. The pion damping rate and velocity are both consistent with the dynamical
critical exponent ζ ¼ 3=2 of model G. Similarly, although the critical amplitude for the diffusion coefficient
of the conservedOð4Þ charges is small, it is clearly visible both in the restored phase and with finite explicit
symmetry breaking, and its dynamical scaling is again consistent with ζ ¼ 3=2. We determine a new set of
universal dynamical critical amplitude ratios relating the diffusion coefficient to a suitably defined order
parameter relaxation time. We also show that in a finite volume simulation, the chiral condensate diffuses
on the coset manifold in a manner consistent with dynamical scaling, and with a diffusion coefficient that is
determined by the transport coefficients of hydrodynamic pions. Finally, the amplitude ratios (together with
other nonuniversal amplitudes also reported here) compile all relevant information for further studies of
model G both in and out of equilibrium.
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I. INTRODUCTION

High-multiplicity reactions in colliders are a unique tool
to explore the phase diagram of QCD. Their ability to probe
different phases and phase transitions crucially relies on a
precise understanding of its dynamics in a hot and dense
state. Arguably one of the most impactful results of the
scientific program of the Relativistic Heavy-Ion Collider
(RHIC) was the discovery of a very short thermalization
time after which the quark-gluon plasma created in the
collision exhibits collective behavior, faithfully reproduced
by hydrodynamics. This phenomenon is key to the pre-
dictive power of heavy-ion collisions.
This work is a direct continuation of [1] and touches on

the nature of the appropriate hydrodynamic theory required

by heavy-ion collisions. Away from a phase transition,
the hydrodynamics of a system is fully characterized by
symmetries and conserved charges. At criticality, the
dynamics of the order parameter and its coupling to the
conserved charges also needs to be considered [2]. This is
crucial to the dynamics of two-flavor QCD in the chiral
limit, close to its second order phase transition [3]. In the
chiral limit, the hydrodynamic theory above Tc is specified
by an unbroken SULð2Þ × SURð2Þ ≃Oð4Þ symmetry group
with corresponding conserved charges. Below Tc the sym-
metry is broken to SUVð2Þ ≃Oð3Þ and the associated
massless Goldstone modes (the pions) must be incorporated
into the hydrodynamic effective theory [4–6]. Finally, in the
critical region the appropriate macroscopic description
includes an Oð4Þ order parameter [ϕa ¼ ðσ; π⃗Þ], and the
effective theory interpolates between the two hydrodynamic
limits above and below the critical point.
Beyond the theoretical appeal of the chiral limit, the real-

world up and down quark masses are small compared to
QCD scales, to the point where it is legitimate to ask
whether aspects of real-world QCD close to its phase
transition can be recovered by deforming the massless
limit. For static quantities this question was asked in [7,8]
and led to further studies of the chiral critical point with
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explicit symmetry breaking [9–17]. These studies, when
combined with important results from lattice QCD at
various quark masses [18–21], indicate that the static
properties of the chiral crossover in real world QCD can
be reasonably understood using universality considerations
and the existence of a critical point in the massless two-
flavor limit.
It remains to be seen whether the dynamics of the chiral

crossover can be similarly understood using the proximity
of QCD to the Oð4Þ critical point. The relevant hydro-
dynamics of the phase transition lies in the dynamical
universality class of model G in the Halperin-Hohenberg
classification scheme [3], which predicts the existence of
long-range chiral modes that describe the evolution of soft
pions in the crossover region. When the Oð4Þ symmetry is
explicitly broken, the pions develop a mass, tempering the
impact of these modes on the dynamics on the system.
Nevertheless, although these modes contribute negligibly
to the energy momentum tensor, they survive over time-
scales much longer than the typical relaxation time and
most definitely affect the long-range dynamics of chiral
observables in QCD in the crossover region.
For an experimental perspective, although it is challeng-

ing to systematically measure soft pions of transverse
momenta smaller than 400 MeV, recent analyses uncovered
some discrepancies between state-of-the-art hydrodynamic
models and available data in this momentum range. The
results are indicative that conventional hydrodynamics does
not fully describe the long wavelength dynamics of these
pseudo-Goldstone modes [22–24].
Taking these indications into consideration, and further

encouraged by the proposed upgrade to the ALICE
detector [25] which will be more sensitive to low pT
pions, a natural question, already raised in [3,6] and
subsequently studied further [26,27], is the following:
what is the effect of the critical chiral dynamics on the
hydrodynamics of real-world QCD? To answer this
question a more precise and detailed understanding of
the dynamics of model G itself is required.
Over the years, a series of classical-statistical simu-

lations have been presented in the literature [28–36],
building toward a characterization of the dynamics of
model G (this work) and model H, which is the model
describing the conjectured critical point at finite baryon
chemical potential [37]. In the case of model H, the
dynamics of the critical point can be partly understood
using an extension of hydrodynamics known as Hydroþ,
which incorporates additional slow modes [38,39].
In similar spirit (though different in detail), the functional
renormalization group (fRG) has been used to understand
the dynamics of the chiral transition in [40], building
upon recent real-time extensions of the fRG approach
[41]. Although limited to mean field, holographic models
can also provide analytical insight into the dynamics of
the chiral transition [42].

This work expands on [1] (where the first successful
numerical simulations of model G were presented) by
extending the zero momentum analysis to finite momenta.
With this extension, we are able to quantify the dispersion
curve of critical pions in detail and study the critical
diffusion of the conserved charges. We show that in a
finite volume simulation the orientation of the chiral
condensate diffuses on the three sphere (the coset mani-
fold), with a diffusion coefficient determined by the trans-
port coefficients of hydrodynamic pions in infinite volume.
When chiral symmetry is explicitly broken, the diffusive
dynamics is coupled to a Hamiltonian structure determined
by the pion mass, and the combined evolution dynamically
realizes the ϵ-regime of QCD at finite temperature.1 We
also compute new universal dynamical ratios relating the
diffusion coefficient to the (appropriately defined) order
parameter relaxation time, which we also determine both
above Tc and on the critical line. In total, these measure-
ments corroborate the dynamical scaling of model G with
critical exponent ζ ¼ d=2 across multiple observables,
ranging from the pion velocity and damping rate, to the
diffusion of the Oð4Þ charges.2 These results will prove
essential to the next step of this series of work, which will
quantitatively analyze the nonequilibrium dynamics of the
expanding critical system.

II. OVERVIEW OF MODEL G AND ITS PHASES

A. Model G

The theory we are considering is a generalization of
model G of [2] and was first introduced in [3]. It is the
relevant hydrodynamic theory constructed around the Oð4Þ
critical point of “2-flavor chiral QCD”, namely QCD with
massless up and down quarks (mu ¼ md ¼ 0). It contains a
Oð4Þ order parameter ϕa ≡ ðσ; π⃗Þ, a proxy for the quark
condensate of real QCD, dynamically coupled to vector and
axial charges,3 nsV and nsA respectively. They correspond
to the original isovector and isoaxial vector currents,
n⃗V ∼ q̄γ0 ⃗tIq and n⃗A ∼ q̄γ0γ5 ⃗tIq, respectively. These can
be conveniently combined into an antisymmetric tensor of
charge densities nab ∈ oð4Þ:

ðnVÞs ¼
1

2
ϵ0ss1s2ns1s2 ; ð1Þ

1The ϵ regime is when the quark mass mq ∝ H is small and
the volume V is large, but Hσ̄ðTÞV=T ∼ 1. Here σ̄ðTÞ is the
chiral condensate as a function of temperature—see [43] for an
overview.

2Here d ¼ 3 is the dimensionality of space.
3Here a and b denote Oð4Þ indices; s, s1, s2, etc. denote the

three isospin indices, i.e. the components of π⃗ ¼ ðπ1; π2; π3Þ;
finally, spatial indices are notated i, j and k. The dot product
indicates an appropriate contraction of indices when clear from
context, e.g. ϕ · ϕ ¼ ϕaϕa, π⃗ · π⃗ ¼ πsπs, and ∇ ·∇ ¼ ∂i∂

i.
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ðnAÞs ¼ n0s: ð2Þ

The free energy (or effective Hamiltonian) in the presence
of an explicit symmetry breaking Ha ¼ ðH; 0⃗Þ can be
studied using an Oð4Þ Landau-Ginzburg action

H≡
Z

d3x

�
n2

4χ0
þ 1

2
∂iϕa∂

iϕa þ VðϕÞ −H · ϕ

�
; ð3Þ

where

VðϕÞ ¼ 1

2
m2

0ϕ
2 þ λ

4
ðϕ · ϕÞ2; ð4Þ

with m2
0 negative. In equilibrium, the charges have Gaussian

fluctuations set by a susceptibility χ0, which is the same
coefficient for both the isovector and the isoaxial-vector
charges near the critical point. The interactions between the
charges and the order parameter enters the dynamics through
the equations of motion and are determined by the nontrivial
Poisson brackets between these fields—see [3,27] for
explicit expressions and a derivation. This construction leads
to the following evolution equations

∂tϕa þ
g
χ0

nabϕb ¼ −Γ0

δH
δϕa

þ θa; ð5aÞ

¼ Γ0∇2ϕa − Γ0ðm2
0 þ λϕ2Þϕa þ Γ0Ha þ θa; ð5bÞ

∂tnab þ g∇ · ð∇ϕ½aϕb�Þ þH½aϕb� ¼ σ0∇2
δH
δnab

þ ∂iΞi
ab; ð5cÞ

¼ D0∇2nab þ ∂iΞi
ab: ð5dÞ

Here, for example,H½aϕb� denotes the antisymmetrization,Haϕb −Hbϕa. The coefficients Γ0 and σ0 are the bare kinetic
coefficients associated with the order parameter and the charges. The bare diffusion coefficient of the charges is
D0 ¼ σ0=χ0. The constant g is a coupling of the field ϕ, and has the units of ðactionÞ−1 in our conventions. Finally, θa and
Ξab are the appropriate noises, which are defined through their two-point correlations [2]

hθaðt; xÞθbðt0; x0Þi ¼ 2TcΓ0δabδðt − t0Þδ3ðx − x0Þ; ð6aÞ

hΞi
abðt; xÞΞj

cdðt0; x0Þi ¼ 2Tcσ0δ
ijðδacδbd − δadδbcÞδðt − t0Þδ3ðx − x0Þ: ð6bÞ

The dissipative model G dynamics relaxes to the
equilibrium distribution for the fields ϕa and nab [2]

P½ϕ; n� ¼ 1

Z
e−H½ϕ;n�=Tc ; ð7Þ

which reproduces the static critical behavior of the
Oð4Þ model.
The basic observable that will be analyzed are statistical

two-point function between fields as a function of relative
momentum and time. In the presence of the explicit
breaking Ha ¼ Hδa0 the flavor index can always be
decomposed in a longitudinal σ and transverse π⃗ direction,
therefore it is natural to define:

Gσσðt; kÞ ¼
1

V
hϕ0ðt; kÞϕ0ð0;−kÞic; ð8Þ

for the scalar channel, and

Gππðt; kÞ ¼
1

3V

X3
s¼1

hπsðt; kÞπsð0;−kÞic; ð9Þ

for the pseudoscalar channel. The statistical correlators for
the charges are defined analogously

GAAðt; kÞ ¼
1

3V

X3
s¼1

hnAsðt; kÞnAsð0;−kÞic; ð10Þ

GVVðt; kÞ ¼
1

3V

X3
s¼1

hnVsðt; kÞnVsð0;−kÞic: ð11Þ

Note that all these correlators can be studied in mean field,
see [27].
At zero explicit breaking H ¼ 0, we will also consider

isotropized Oð4Þ charge and field correlators

Gϕϕðt; kÞ ¼
1

4V

X
a

hϕaðt; kÞϕað0;−kÞic; ð12Þ

Gnnðt; kÞ ¼
1

6V

X
a>b

hnabðt; kÞnabð0;−kÞic: ð13Þ
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B. Simulations

This paper is a continuation of [1] and presents results
obtained by numerically solving equations (5a)–(5d), using
an algorithm detailed in Appendix A of [1]. The stepper
combines a symplectic integrator for the Hamiltonian
evolution and Metropolis updates for the dissipative step.
Throughout we will present our results in lattice units,
setting g, Tc, and the lattice spacing a to unity. See [1] for
further discussion of how g, Tc, and a should be set in units
of kilograms, meters, and seconds to reproduce the results
of QCD close to its critical point.
The bare quartic coupling is set to λ ¼ 4 and the model is

simulated close to its critical mass, m2
cðλÞ ¼ −4.8110ð4Þ in

lattice units. The reduced temperature and magnetic field
are defined as in [12]:

tr ≡m2
0 −m2

c

jm2
cj

; h≡ H
H0

; ð14Þ

where H0 ¼ 5.15ð5Þ is chosen so that the magnetization
scales as

σ̄ ¼ h1=δ; ð15Þ

on the critical line, tr ¼ 0. For H ¼ 0 and in the broken
phase the magnetization scales as

σ̄ ¼ B−ð−trÞβ; ð16Þ

with amplitude,4 B− ¼ 0.988ð7Þ. The nonuniversal param-
eters B− and H0 completely fix the properties of the
magnetic equation of state close to the critical point.

For the static critical exponents quoted here and
below we take the values β ¼ 0.380ð2Þ and δ¼4.824ð9Þ
from [12]. For the correction-to-scaling exponent we take
ω ¼ 0.755ð5Þ [44] and the for the dynamical critical
exponent we take ζ ¼ d=2 [3], where d ¼ 3 is the number
of spatial dimensions. A summary of all exponents used in
this work is given in Table II of Appendix B.
We performed additional analyses along the critical line

using the data generated in [1] for different lattice sizes L.
We also generated an extensive set of data atH ¼ 0, both in
the broken (m2

0 < m2
c) and restored (m2

0 > m2
c) phases. The

dynamical parameters were chosen as in our previous work,
χ0 ¼ 5, Γ0 ¼ 1 and D0 ¼ 1=3. Our full dataset is summa-
rized in Table I.
For context, we also display the correlation length

(in lattice units) for our different simulations in Fig. 1.

TABLE I. Dataset analyzed in the present work. For all simulations, we fix λ ¼ 4, χ0 ¼ 5, Γ0 ¼ 1 and D0 ¼ 1=3. L is the size of our
lattices.

Phase m2
0 tr L H

Restored −4.6300 −4.7100 −4.7337 0.03762 0.02099 0.01608 96 0
−4.6800 −4.7200 −4.7600 0.02723 0.01891 0.01060
−4.7005 −4.7280 −4.7800 0.02296 0.01725 0.006444

Critical line m2
c ¼ −4.8110 0 80 0.002 0.006

0.003 0.01
0.004

Broken −4.8236 −4.9118 −0.002620 −0.02096 48 128 0
−4.8362 −5.0127 −0.005239 −0.04191 64
−4.8614 −5.2143 −0.01048 −0.08383 96

FIG. 1. The correlation length versus temperature in our
simulations close to the Oð4Þ critical point. The correlation
length in the restored phase and on the critical line is obtained
from fits described in Appendices B 1 and B 2. We use T=2f2 as a
proxy for the correlation length in the broken phase, with T ¼ 1
in our adopted units (see text).

4Note an unfortunate misprint in [1]. Equation (29) in the
published version should read Σ ¼ b1ðm2

c −m2Þβð1þ CTðm2
c−

m2ÞωνÞ. The then quoted parameters b1 ¼ 0.544� 0.004 and
CT ¼ 0.20� 0.02 lead to a parametrization σ̄ ¼ B−ð−trÞβð1þ
B1ð−trÞνωÞ, with B− ¼ jm2

cjβb1 ¼ 0.988� 0.007 and B1 ¼
CT jm2

cjων ¼ 0.49� 0.05.
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The correlation lengths in the restored phase and on
the critical line correspond to the fits presented in
Appendices B 1 and B 2. As discussed below, in the broken
phase the hydrodynamic theory is characterized by a pion
EFT at the longest wavelengths. The pion parameter f2ðTÞ
is a matching coefficient in the EFT, which characterizes
the pion’s fluctuations and scales as the inverse correlation
length close to the critical point [5,45]. We will use 1=ð2f2Þ
as an estimate for the correlation length in the broken phase
which is determined numerically in Appendix B 3. Here the
factor of 1

2
is conventional and is motivated by the fact that

finite volume corrections to correlation functions (which
are computable using the pion EFT [45]) are organized in
powers of 1=ð2f2LÞ with order one coefficients, see
Appendix B 3. The black data points correspond to the
different temperatures we simulated.
Before diving into a quantitative study, we use the rest of

this section to present the qualitative behavior of the
different channels in the restored and broken phases (with
H ¼ 0) and on the critical line (tr ¼ 0 and H ≠ 0). In the
restored and broken phases, the correlations functions from
the (nonlinear) simulation are analyzed using linearized
hydrodynamics. This analysis is valid provided the wave-
length of the analyzed mode is long compared to the
correlation length, kξðTÞ ≪ 1, and breaks down close to Tc
for any fixed k.

C. The restored phase with H = 0

In the restored phase, the Oð4Þ symmetry is unbroken
and there is no distinction between the axial and vector
channels. The order parameter simply dissipates toward
equilibrium on a finite (if long) timescale. But, both the
isovector and isoaxial vector charges are exactly conserved.
As a result, the nontrivial dynamics at the longest wave-
lengths is fully encoded in the correlators of conserved
charges at finite momenta. Indeed, for wavelengths long

compared to the (diverging) correlation length kξðTÞ ≪ 1,
the diffusion equation remains a valid hydrodynamic
description of the system:

∂tnab ¼ D∇2nab: ð17Þ

Thus, the relaxation rate of a diffusive mode of wave
number k is controlled by the diffusion coefficient Dk2

leading to the correlators (see Appendix A 1):

GAAðt; kÞ ¼ GVVðt; kÞ ¼ Tχ0e−Dk2t: ð18Þ

The charge correlations in the simulation are illustrated on
the left-hand side of Fig. 2, where we plot the axial
correlator (orange) and the vector correlator (blue), for
the first two momenta, for a given temperature. We clearly
see that the two channels are degenerate. The k dependence
is consistent with the expected diffusive behavior.
In writing the diffusion equation in Eq. (17) we have

integrated out the contributions to the currents from the
order parameter. The order parameter fluctuations simply
renormalize the diffusion coefficient, leading to the
scaling behavior of this transport coefficient. As discussed
below, the order parameter has a dynamical relaxation
time of order τ ∝ ξζ with ζ ¼ d=2. The diffusive modes
have a relaxation time of 1=Dk2, which is of order ξ2=D at
the boundary of applicability of the diffusion equation,
k ∼ ξ−1. In the spirit universality, all modes of with
wavelengths of order ξ should have a similar relaxation
time, ξζ, dictating the expected scaling of the diffusion
coefficient, D ∝ ξ2−ζ.
On the right-hand side of Fig. 2, we show the depend-

ence of the vector correlator (we could have equivalently
chosen the axial) on tr. This very weak dependence seems
at first to be in contradiction with the expected critical

scaling of the diffusion coefficient D ∼ tðζ−2Þνr . As we will

FIG. 2. Left: axial and vector charge correlators in the restored phase, for two different momenta. As expected, they decay
exponentially (note the log scale) and the decay rate depends on k2. Right: vector correlator at a given finite k for different masses in the
restored phase. Aweak dependence of the diffusion coefficient on the mass is observed, pointing at a weak critical dependence for the
diffusion coefficient; see Fig. 5 for a quantitative extraction.
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see more clearly in the next section, this apparent contra-
diction originates in the presence of a large regular constant
contribution to D, and by the smallness of its nonuniversal
critical amplitude. Nevertheless, we will extract the critical
contribution to D in Sec. III A.

D. The critical line

We next study the critical line, m2
0 ¼ m2

c, and study the
effect of explicit symmetry breaking, H ≠ 0. One of the
qualitative outcomes of our previous work [1] was to
demonstrate the emergence of damped pion waves already
on the critical line. This qualitative observation was
obtained from the k ¼ 0 modes of the axial current and
the pions correlators. The same qualitative observation
holds for nonzero momentum k and is observed in Fig. 3.
At the level of the charge correlators, the magnetic field lifts
the degeneracy between the axial and vector channels. The
axial correlator then displays characteristic oscillations
associated with axial charge propagation in the form of
damped pion waves. The vector channel on the other hand
remains purely diffusive. As in the restored phase, we
already observe that the critical behavior of the vector
diffusion constant is weak.

E. Broken phase with H = 0

Below the critical point the longest wavelength modes
are characterized by massless Goldstone bosons, which
describe phase fluctuations of the chiral condensate and are
part of the hydrodynamic theory.5 Following [5,6], these
fluctuations are parametrized by an angle φ⃗ðt; xÞ with
ϕaðt; xÞ ¼ ðσ̄; σ̄ φ⃗ðt; xÞÞ. We are assuming without loss
of generality that the chiral condensate is nearly aligned

with the pole of the three sphere (the coset manifold) and
takes the form

1

V

Z
x
d3xϕaðt; xÞ ¼ σ̄na; ð19Þ

where na ≃ ð1; φ⃗0Þ is a unit vector to first order in φ⃗0. As
discussed futher below, in a finite volume simulation the
vector na will slowly diffuse on the coset manifold, and a
Fokker-Planck equation describing its motion (both with
and without explicit symmetry breaking) is given in
Appendix A 2. In general, the fluctuations φ⃗ðt; xÞ describe
the linearized fluctuations around the current vev, and a
linearized hydrodynamic approximation is valid provided
the vev is stationary on the timescales characterizing the
decay of these fluctuations (see below).
When the wavelength of φ is long compared to the

correlation length ξ≡m−1
σ , a hydrodynamic description of

φ is valid, and the fluctuations of modes with wavelength
order m−1

σ simply determine the critical behavior of the
parameters of the hydrodynamic theory. The free energy
associated with the phase and charge fluctuations in the
hydrodynamic approximation is

H½φ;n�¼
Z

d3x
n⃗2V
2χ0

þ n⃗2A
2χ0

þ1

2
f2ðTÞ∂iφ⃗ ·∂iφ⃗þ

1

2
f2m2φ2;

ð20Þ

where we have included a mass term, which is relevant only
when the magnetic field is nonzero and is determined by
the Gell-Mann, Oakes, Renner relation

f2m2 ¼ Hσ̄: ð21Þ

FIG. 3. Left: axial correlators as a function of time at fixed momentum on the critical line (tr ¼ 0) for different values of the magnetic
field H. The axial charge is propagating but strongly damped and we see typical oscillations. Right: vector correlator as a function of
time at fixed momentum on the critical line for different magnetic fields. The vector charge remains diffusive. The symmetry is broken
and the vector channel is no longer degenerate with the axial channel. As in the restored phase (see Fig. 2) we see a weak dependence on
the temperature, indicating of a small critical amplitude which is extracted in Fig. 6.

5For clarity we will restore the temperature in this section.
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We will set H ¼ m ¼ 0 for the remainder of this section,
relegating a more complete dicussion of explicit sym-
metry breaking to Appendix A 2. The resulting hydro-
dynamic equations of motion for the pions and axial
charge take the form6

∂tφ⃗ −
n⃗A
χ

¼ Γ
f2

∇ · ðf2∇φ⃗Þ; ð22aÞ

∂tn⃗A −∇ðf2∇φ⃗Þ ¼ D∇2n⃗A; ð22bÞ

which reflects from the Poisson bracket between the
phase and the charge, fφs; nAs0g ¼ δss0 . The vector charge
remains diffusive

∂tn⃗V ¼ D∇2n⃗V: ð22cÞ

The linearized hydrodynamic system is solved in
Appendix A 1 and the resulting pion eigen-waves have
dispersion relations

ωðkÞ − i
2
ΓðkÞ ¼ �vk −

i
2
DAk2; ð23Þ

where

v2 ≡ f2

χ0
and DA ≡ ΓþD: ð24Þ

The expected form of the correlation function from the
linearized hydrodynamic theory is determined in App. A 1

Gφφðt; kÞ ¼
T

f2k2
e−

1
2
DAk2t

�
cosðvktÞ

þ 1

2vk
ðD − ΓÞk2 sinðvktÞ

�
: ð25Þ

At large wavelengths the pion effective theory deter-
mines the static and dynamic correlation functions.
The static correlation function for k ≪ mσ can be read

off from the free energy in (20) and is singular in the
massless limit:

Gππð0; kÞ ¼ σ̄2Gφφð0; kÞ ¼ σ̄2
T

f2k2
; k ≪ mσ: ð26Þ

By contrast, the static fluctuations of the σ are bounded (if
diverging) and determined by the static susceptibility of the
Oð4Þ critical point, which scales as

Gσσð0; kÞ ∝ mη−2
σ k ≪ mσ: ð27Þ

The σ and π⃗ are part of an Oð4Þ multiplet and their
correlators must be the same order of magnitude at the
boundary of applicability of the pion EFT, k ∼mσ. Since

the vev scales as σ̄2 ∝ mðd−2þηÞ
σ , the pion constant must

scale as f2 ∝ mðd−2Þ
σ [45]. We have anticipated this scaling

in Fig. 3 where T=2f2 (with T ¼ 1 in our adopted units)
served as a definition of the correlation length in the
broken phase.
Because of these scalings, the long-wavelength behavior

of the static and dynamic correlation functions of ϕa are
dominated by the phase fluctuations. Specifically, the static
correlation function reads

Gϕϕð0;kÞ¼
1

4
ðGσσð0;kÞþ3Gππð0;kÞÞ≃

3

4
σ̄2

T
f2k2

; k≪mσ;

ð28Þ

up to corrections of order ðk=mσÞ2. Additional finite volume
corrections to this formula are given in Appendix B 3. These
are suppressed by 1=f2L and reflect the nonlinearities of the
static pion EFT [45]. Phase fluctuations also determine the
dynamic correlations

Gϕϕðt; kÞ ≃
3

4
σ̄2Gφφðt; kÞ: ð29Þ

Figure 4 (Left) exhibits Gϕϕ from the numerical simulation
and the results exhibit the characteristic pion oscillations
of (25), becoming increasingly damped near the critical
point. The critical scaling of v and DA will be extracted
numerically in the next section by fitting these results with
the functional form (25), and the results are summarized in
Fig. 7. The critical scaling of v andDA are determined by the
fluctuations of critical, but nonhydrodynamic modes, with
k ∼mσ . Non-linearities in the hydrodynamic effective theory
would lead to corrections to the linearized correlation
functions in Eq. (25) of order T=f2L. Although we have
not attempted to find these corrections here, when extrapo-
lating our numerical results to infinite volume, a fit term of
order ∼1=L is included in the extrapolation ansatz.
In a finite volume simulation the orientation of the

chiral condensate is not fixed, but diffuses slowly in time

6In [26], which also determined the nonlinear structure of the
hydrodynamic theory, the dissipative coefficient Γ=f2 was called
ζð2Þ. In mean field theory the hydrodynamic parameter Γ equals
the bare parameter Γ0 [27]. A notable feature of these equations
when the symmetry is explicitly broken is that the same
coefficient Γ=f2 controls both the damping rate at finite mo-
mentum and the mass term, see Eq. (A1). This is a general result
dictated by entropy considerations [3,26,46] and related locality
arguments [47]. This became widely recognized through a
sequence of explicit holographic computations in different con-
texts with explicitly broken symmetries [48–51]—for a review
see [52]. The pion dynamics in a holographic model of the phase
transition is described in [42] and can be profitably compared to
mean field theory results of [27].
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due to thermal noise. Indeed, a stochastic variable ξφ
with variance

hξφsðt; xÞξφs0 ðt0; x0Þi ¼
2TΓ
f2

δss0δðt − t0Þδðx − x0Þ; ð30Þ

should be added to (22a). Integrating this equation over
the volume shows that the angular zero mode φ⃗0ðtÞ≡R
x φ⃗ðt; xÞ=V has a variance which increases in time

2Dt ¼ 1

3
hφ⃗0ðtÞ · φ⃗0ðtÞi ¼ 2

�
TΓ
f2V

�
t: ð31Þ

This result (which is presented in detail in Appendix A 2)
relates the vev diffusion coefficient to the pion kinetic
coefficients, D ¼ TΓ=f2V. The diffusion rate decreases
with increasing volume and is suppressed relative to the
pion damping rate, Γk2 ∼ Γ=L2, by one power of length,
T=f2L ∝ 1=mσL. This scaling with the box size justifies
the vevþ linearized fluctuations approximation scheme
a posteriori. When the magnetic field is nonzero and the
Oð4Þ symmetry is explicitly broken the Fokker-Planck
equation describing the motion of the chiral condensate
on the three sphere features a rich interplay between
Hamiltonian and diffusive dynamics, which is developed
in Appendix A 2.
Turning to the conserved charges, the correlation

function of the vector and axial-vector charges in the
broken phase are intrinsically different. The axial charge
is coupled through in equations of motion to the pions
and its correlation function reflects this coupling (see
Appendix A 1)

GAAðt; kÞ ¼ Tχ0e−
1
2
DAk2t

h
cosðvktÞ

−
1

2vk
ðD − ΓÞk2 sinðvktÞ

i
: ð32Þ

The vector charge continues to obey the diffusion
equation with corresponding response functions

GVVðt; kÞ ¼ Tχ0e−Dk2t: ð33Þ

Separating the vector and axial vector response in the
absence of explicit symmetry breaking is challenging, since
the condensate forms in an arbitrary direction. Moreover,
because of finite volume, this direction is not completely
fixed, but slowly wanders along the coset manifold. This can
be addressed in future work. For now we have simply
computed the combined correlator Gnnðt; kÞ

Gnnðt; kÞ ¼
1

6
½3GAAðt; kÞ þ 3GVVðt; kÞ�; ð34Þ

which is exhibited in Fig. 4 (Right). The result
curves show a mix of exponential decay and oscillating
pion waves.
It is striking how the hydrodynamic EFT and the pattern

of chiral symmetry break essentially dictates the scaling
dynamical response of model G [5,6]. A summary of the
reasoning proves an overview of the next section.

(i) The characteristic frequency of the pion waves
below the critical point is of order ωðkÞ ∼ vk where

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
f2=χ0

p
∝ mðd−2Þ=2

σ . The scaling of the velocity
will be extracted from the real time correlations of ϕ,
Eq. (25), and from its static behavior, Eq. (28), and
the results are summarized in Fig. 7 (Right).

(ii) At the boundary of applicability of the pion EFT
k ∼mσ, the pion frequency is ωðkÞ ∼ vk ∼md=2

σ .
But, since the pions are part of anOð4Þmultiplet, the
order parameter must inherit this dynamical time-
scale, τ ∼m−d=2

σ , setting the dynamical critical ex-
ponent of model G, ζ ¼ d=2. τ will be extracted in
the restored phase, Fig. 5 (left), and on the critical
line, Fig. 6 (left).

FIG. 4. Left: normalized Gϕϕ correlator at k ¼ 2π=128 as function of time for different reduced temperatures tr in the broken phase.
We see that this correlator is sensitive to the Goldstone modes. Right: normalized Gnn correlator at k ¼ 2π=128 as function of time for
different reduced temperatures tr in the broken phase. This correlator is also sensitive to the Goldstone dynamics.
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(iii) Close to the critical point and for k≲mσ, the real
and imaginary parts of ωðkÞ should be commensu-
rate if the critical point is characterized by a single
timescale. This reasoning dictates the scaling of the
pion damping coefficient, DA ∝ md=2−2

σ . The scaling
of DA is exhibited in Fig. 7 (left).

(iv) Since the axial and vector charges must become
degenerate above Tc, the diffusion coefficient must
have the same scaling as DA, leading to the scaling,
D ∼md=2−2

σ . The scaling of D is exhibited in the
restored phase, Fig. 5 (right), and on the critical line,
Fig. 6 (right).

Finally, the vev diffusion coefficient D is also consistent
with these scalings. Taking the scaling of f2 ∝ md−2

σ

and Γ ∝ md=2−2
σ we see the angular variance given in (31)

grows as

2Dt ∝
t

ðmσL2Þd=2 : ð35Þ

At the critical point where mσL → 1, the angular variance
increases as

2Dt →
t

Ld=2 ; ð36Þ

which is again consistent with a universal dynamical
critical timescale of τ ∝ Lζ with a common critical expo-
nent of ζ ¼ d=2.

III. RELAXATION TIME AND FINITE
MOMENTA DYNAMICS

A. H = 0, restored phase: Scaling of the correlation time

We first determine the order parameter relaxation time τ
from the two-point function Gϕϕðt; kÞ. Specifically, we

define τ as the autocorrelation time of Gϕϕ at zero
momentum GϕϕðtÞ≡Gϕϕðt; 0Þ

τ≡
Z

∞

0

dt
GϕϕðtÞ
Gϕϕð0Þ

; ð37Þ

which is motivated by an exponential decay, Gϕϕ ∝ e−t=τ

(in practice, we cutoff the integral at some Tmax and make
sure the results are independent of this technicality).
Qualitatively, the decorrelation of GϕϕðtÞ is characterized
by a single timescale τ without significant structure. From
scaling, we expect the correlation time to behave as

τðtrÞ ¼ τþt−νζr ð1þ τ1tνωÞ; ð38Þ

with the critical exponents ν, ω, and ζ given in Table II in
Appendix B. The resulting fit (with the exponents fixed) is
shown in Fig. 5 and we find

τþ ¼ 1.570� 0.037; ð39Þ

τ1 ¼ −1.49� 0.15: ð40Þ

The growth of τ near the Tc is nicely consistent with
ζ ¼ d=2.
The diffusion coefficient D of the Oð4Þ charges is

also expected to show dynamical critical scaling, but since
the charges are conserved, the coefficient has to be
extracted from finite momentum correlators. In particular,
we expect the vector correlator in the restored phase to
behave as

GVVðt; kÞ ¼ Tχ0e−Dk2t; ð41Þ

FIG. 5. Left: dynamical correlation time as a function of tr in the restored phase. The fit parameters are τþ ¼ 1.570� 0.037,
τ1 ¼ −1.49� 0.15 with χ2=dof ¼ 5.74=7. Right: vector diffusion coefficient as a function of tr. Note that despite its smallness,
we clearly observe a critical dependence of D. The resulting fit parameters are Dþ ¼ 0.0190� 0.0013, D1 ¼ −1.7� 0.55
with χ2=dof ¼ 5.67=7.
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as discussed in the previous section. Similar to the order
parameter case, we have the relation

D≡ 1

k2

�Z
∞

0

dt
GVVðt; kÞ
GVVð0; 0Þ

�
−1
; ð42Þ

which we use in practice to extract D from our data. It is
important that the correlator be well described by an
exponential, which is clearly seen in Fig. 2.
Again, we introduce a cutoff Tmax and make sure the

results are independent of this choice. As discussed above,
we expect Dk2 to be comparable 1=τ ∼ ξζ at the boundary
of applicability of the diffusive description, k≲ ξ. This
means that the diffusion coefficient should scale with the
correlation length as, D ∝ ξ2−ζ.
The critical behavior of D appears to be weak and its

regular part cannot be neglected. To take this into account,
we add a constant D0 to our fit

DðtrÞ ¼ Dþt−νð2−ζÞr ð1þD1tωνr Þ þD0: ð43Þ

In an abuse of notation, D0 here is the renormalized
diffusion coefficient far above Tc, which we determine
independently by running our simulations without the
coupling to the order parameter, leading to

D0 ≈ 0.2425ð5Þ: ð44Þ

This parameter is different from the bare lattice parameter
(also called D0 ¼ 1=3) which controls the Metropolis
updates of the charge at the scale of the lattice spacing
(see [1] in Appendix A.c for further details). Fixing D0 and
fitting Dþ and D1 in (43), we get the following determi-
nation of the nonuniversal amplitudes

Dþ ¼ 0.0190� 0.0013; ð45Þ

D1 ¼ −1.7� 0.55: ð46Þ

Dþ is small as was anticipated based on a one loop
calculation using mean field propagators [27].
Using the nonuniversal amplitude ξþ from the correla-

tion length ξ ∼ ξþt−νr determined in Appendix B 1, we
can combine these results into a universal dynamical
amplitude ratio

Qþ
D ≡Dþτþ

ξþ2
¼ 0.148� 0.011; ð47Þ

which numerically encodes the coupling between the
charge diffusion and the order parameter relaxation at
criticality. The universal dynamical ratio presented here
is new and will prove useful to any future study which
realizes the critical dynamics of model G.

B. The critical line

We next study the dynamics on the critical line,m2
0 ¼ m2

c

and H ≠ 0. As in the previous section we define the order
parameter relaxation time τ from the correlation of the σ
field

τ≡
Z

∞

0

dt
Gσσðt; 0Þ
Gσσð0; 0Þ

: ð48Þ

The results for τ as a function of the magnetic field
are shown in Fig. 6, and are fit with the expected scaling
form

τðHÞ ¼ τHH−νcζð1þ τ1HνcωÞ; ð49Þ

FIG. 6. Left: relaxation time for the σ field, τðHÞ, as function of the magnetic fieldH on the critical line,m2
0 ¼ m2

c. The data points are
fit with τðHÞ ¼ τHH−νcζð1þ τ1HνcωÞ. The results are τH ¼ 1.312� 0.022 and τH1 ¼ −1.45� 0.06 with χ2=dof ¼ 6.07=3. Right:
Diffusion coefficient as function of the magnetic field H on the critical line, m2

0 ¼ m2
c. The data points are fit with

DðHÞ ¼ DHH−νcζð1þDH
1 H

νcωÞ þD0. The results are DH ¼ 0.023� 0.002 and DH
1 ¼ −1.02� 0.42 and D0 ¼ 0.2425 is kept fixed

with χ2=dof ¼ 0.72=3.
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with fixed exponents νc, ω, and ζ given in Table II of
Appendix B, and fitted parameters

τH ¼ 1.312� 0.022; ð50Þ

τH1 ¼ −1.45� 0.06: ð51Þ

As in the restored phase, the subleading term with exponent
ω is necessary to have a reasonable fit compatible with the
expected dynamical exponent, ζ ¼ d=2.
Similarly, the diffusion coefficient is defined in the same

way as in the restored phase

D≡ 1

k2

�Z
∞

0

dt
GVVðt; kÞ
GVVð0; kÞ

�
−1
; with jkj ¼ 2π

L
; ð52Þ

and we adopt an analogous strategy and functional form to
fit the dependence of D on the correlation length

DðHÞ ¼ DHH−νcð2−ζÞð1þDH
1 H

νcωÞ þD0: ð53Þ

As in the previous section, D0 ¼ 0.2425 is the regular part
of the diffusion coefficient and is extracted from our
diffusion only runs. The fit results are shown in Fig. 6
and the fit parameters are

DH ¼ 0.023� 0.002; ð54Þ

DH
1 ¼ −1.02� 0.42: ð55Þ

The singular part of the diffusion coefficient diverges next
to the critical point with the expected exponent H−νcð2−ζÞ
and the subleading correction improves the quality of the
fit. Including the regular part of the diffusion coefficientD0

is crucial to extracting the scaling of D with H, since the
critical amplitude DH is small, as anticipated in the one
loop computation in [27].
The results for the order parameter and the diffusion

coefficient can be concisely recast as a universal amplitude
ratio

QH
D ≡DHτH

ξH2
L

¼ 0.151� 0.022; ð56Þ

where ξHL is the amplitude associated with the longitudinal
correlation length and is determined in Appendix B 2. Note
that within numerical errors the dynamical ratio on the
critical line matches the one in the restored phase (47).

C. H = 0 and the broken phase

Our aim in this section is to extract the matching
coefficients of the pion hydrodynamic EFT by studying
the momentum dependence of the correlators and analyzing
the pion dispersion curve. To this end, we study Gϕϕ for
various tr and L and analyze the two lowest nonzero

momentum modes, k ¼ 2π=L and k ¼ 4π=L. We then
perform some fits using the hydro prediction (25) and
extract the parameters ωðkÞ and ΓðkÞ. ωðkÞ and ΓðkÞ are
subsequently extrapolated to infinite volume using the
forms

ΓðkÞ ¼ DAk2ð1þ d1=LÞ; ð57aÞ

ωðkÞ ¼ vkþ v2k2; ð57bÞ

with DA, v, d1, and v2 as parameters. As discussed in
Sec. II E, finite volume corrections to the dynamics of the
Goldstone modes scale inversely with the linear extent of
the lattice ∼1=f2L and are therefore important to control.
Including d1 and v1 as fit parameters captures this
characteristic volume dependence and proved crucial to
reliably extracting DA and v from this analysis. The fitting
procedure, together with other systematic checks, are
presented in detail in Appendix C.
In the static case, a finite volume pion EFT was

developed many years ago by Hasenfratz and Leutwyler
and can be used to determine the first 1=f2L correction to
the chiral condensate analytically [45]. We used their
expansion in Appendix B 3 to determine velocity v2 ¼
f2=χ0 and, as we show below, the result agrees with the
dynamic fit using (57). In Sec. II E we have taken the first
steps in developing a real time finite volume analog of their
work by deriving the vev diffusion coefficient in (31) and a
corresponding forced Fokker-Planck equation on the coset
manifold in Appendix A 2. But, a more complete analysis is
left for future work.
Knowing v and DA, we can proceed further and study

their scaling with temperature. We start with a study of the
critical behavior of DA, shown on the left hand side of
Fig. 7. We use the following scaling ansatz

DAðtrÞ ¼ D−
Ajtrj−νð2−dÞð1þD−

A1jtrjωνÞ þDA0; ð58Þ

and obtain the following fit parameters

D−
A ¼ 0.044� 0.009; ð59Þ

D−
A1 ¼ −11� 6; ð60Þ

DA0 ¼ 1.19� 0.13: ð61Þ

with a χ2=dof of 6.3=3, which is mostly driven by the large
fluctuation around tr ∼ −0.004. The exponents ν, ζ and the
subleading ω were held fixed. As in all the previous cases,
including a subleading correction and a regular part is
necessary to obtain a precise fit. We did not find a way to
independently fix the regular part for this analysis. This
leads to a degeneracy between DA0 and D−

A1, resulting in
large errors for D−

A1. This problem does not affect the
extracted value of the leading amplitude, D−

A.
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The Goldstone velocity v is shown on the right hand side
of Fig. 7. The data are fitted with the expected scaling form,

vðtrÞ ¼ v−tν=2r ð1þ v1tνωr Þ; ð62Þ

with ν and ω fixed, yielding

v− ¼ 0.462� 0.003; ð63Þ

v1 ¼ 0.325� 0.03: ð64Þ

The χ2 is 15.9 with 4 degrees of freedom. The relatively
large value of the χ2 is due to the very high precision of our
data. It is driven by the points farther away from the critical
point and probably reflects the fact that our data are
sensitive to sub-subleading corrections. We also show
the determination of v ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
f2=χ0

p
obtained from the static

analysis in Appendix B 3. The analysis makes use of (28)
but exploits the known finite volume analysis of Hasenfratz
and Leutwyler [45]. The agreement between the static
analysis and the fits to the real time correlation functions is
remarkable and is a highly nontrivial confirmation of the
low-energy EFT.
Ideally, at this point we would complete this study by

determining the critical amplitude of the diffusion coef-
ficient in the broken phase. However, because the ampli-
tude is small, and because finite volume corrections are
only suppressed by 1=f2L, we were unable to unambig-
uously extract this amplitude with the current dataset and
our current understanding of finite volume corrections. We
can clearly see the diffusive behavior, but the coefficient is
constant within uncertainty.

IV. DISCUSSION

In this work, we performed an extensive study of the
finite momentum dynamics of model G, the critical
dynamical model corresponding to two-flavor QCD in
the chiral limit. Across all different phases of the theory,
we exhibited striking agreement between theoretical pre-
dictions and our full-fledged numerical simulations. In
particular, although the critical amplitude is small, we
showed that the critical contribution to the vector diffusion
coefficient D scales with the correct dynamical critical
exponent, both in the restored phase and along the critical
line. After additionally extracting the critical relaxation
time τ of the order parameter (which also scales appropri-
ately), we recast these new results as universal dynamical
amplitude ratios Qþ

D, QH
D, which reflect the coupling

between the order parameter and the diffusive dynamics.
Next, we took on the challenge of studying the finite
momentum dynamics of the broken phase at zero magnetic
field. Because the simulation is at finite volume, the chiral
condensate is not constant but wanders through the coset
manifold at a finite rate. We show that the diffusion
coefficient for this process is consistent with dynamical
scaling and is determined by the transport coefficients of a
pion hydrodynamic EFT, which we review in Sec. II E.
Despite this subtlety, we were able to clearly observe the
critical pion dynamics. The culmination of this part is
presented in Fig. 7, which compares the pion dispersion
relation measured in this work to the scaling predictions for
the pion damping rate and velocity close to the critical
point. The agreement is striking and further exemplifies the
precision of our numerics.
Future directions to be explored are diverse. One avenue

is to refine the treatment of finite volume effects in the
broken phase by developing a finite volume real time

FIG. 7. Left: DA ¼ ΓþD axial diffusion coefficient as a function of the reduced temperature tr. The dashed line is a fit to the scaling

form DA ¼ D−
At

−νð2−ζÞ
r ð1þD−

A1t
ων
r Þ þDA0. The fit results are D−

A ¼ 0.044� 0.009, D−
A1 ¼ −11� 6 and DA0 ¼ 1.19� 0.13, with

χ2=dof ¼ 6.9=3. Right: velocity of the dispersion relation as a function of tr. The data points are the value extracted from the time
dependence of the correlation functions. The dashed (green) line is the fit to the data with the scaling form v ¼ v−tβ=2r ð1þ v1tνωr Þ. The fit
results are v− ¼ 0.462� 0.003 and v1 ¼ 0.325� 0.03 with χ2=dof ¼ 15.9=4. The continuous (blue) line is described in Appendix B 3
and in the text and is obtained by determining v2 ¼ f2=χ0 from static correlation measurements.
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EFT for the dynamics of the chiral condensate in the spirit
of [45,53]. The first steps in this direction are presented in
Appendix A 2, which worked out a Fokker-Planck descrip-
tion for the dissipative and Hamiltonian dynamics of the
condensate on the coset manifold. This provides a real time
description of QCD in the ϵ-regime, suggesting connec-
tions with random matrix theory [43].
A more physically motivated direction is the study of the

Kibble-Zurek dynamics of this model. Physical systems are
typically not tuned at their physical point, but traverse the
phase transition, with their relevant coupling varying at a
finite rate. This finite rate competes with the critical
relaxation rate of the system and prevents the correlation
length from diverging. When transiting from the restored to
the broken phase, this competition results in the formation
of finite-length domains with different values of the
condensate. A careful examination of this phenomenon,
both in the presence and absence of explicit symmetry
breaking, will be crucial to any future phenomenological
predictions. We plan to utilize the precision measurements
presented here and in our prior work [1] to study this
phenomenon in detail.
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APPENDIX A: HYDRODYNAMICS

This appendix extends the discussion of the hydro-
dynamics of the broken phase given in Sec. II E. We will
keep the temperature explicit in this section, following the
practice of II E.

1. Correlation functions from the pion EFT

Here we will review the temporal correlation functions
which arise the from pion hydro equations of motion,
(22), but include the explicit symmetry breaking term
and noise. Although these correlators are limits of the
mean field results derived in [27], they transcend mean
field and follow directly from the hydrodynamic equa-
tions of motion.
When including the mass term, we must distinguish two

regimes, the “p-regime” and the “ϵ-regime” [45,54]. If the
mass and momenta are the same order of magnitude m ∼
k ∼ 2π=L (the so-called p-regime), the vev direction na is
strongly localized at the north pole of the sphere and we
may make small angle approximations, cosφ ≃ 1 − φ2=2,
at all times. This is quantified below in Sec. A 2—
see Eq. (A30) and surrounding text. The small angle

approximations are used when writing the mass terms
in (20) and (A1) below.
When the mass is small m ≪ k ∼ 2π=L, the orientation

of the vev will slowly wander on the three sphere (the
ϵ-regime), and a small angle approximation for the ori-
entation the vev is not apppropriate. In this case φ⃗ðt; xÞ
describes a small angular fluctuation around the current
vev, and the mass in Eqs. (20) and (A1) below can be set to
zero. As discussed in the body of the text, the decay time of
the linearized fluctuations is short compared to the diffusive
motion of the vev. Our primary focus in this work is on the
ϵ-regime.
The hydrodynamic equations for the phase and axial

charge follow from the free energy (20) and read

∂tφ⃗−
n⃗A
χ
¼ Γ
f2

½∇ ·ðf2∇φ⃗Þ−f2m2φ⃗Þ�þ ξ⃗φ;

ðA1aÞ

∂tn⃗A−∇ðf2∇φ⃗Þþf2m2φ⃗¼D∇2n⃗Aþ ξ⃗A; ðA1bÞ

which follows from the Poisson bracket between the
phase and the charge, fφs; nAs0 g ¼ δss0 . The vector charge
remains diffusive

∂tn⃗V ¼ D∇2n⃗V þ ξ⃗V: ðA1cÞ

The noise added to the right-hand-side of Eq. (A1) has
variances given by the Fluctuation-Dissipation Theorem
(FDT)

hξφ;sðt;xÞξφ;s0 ðt0;x0Þi¼
2TΓ
f2

δss0δðt− t0Þδðx−x0Þ; ðA2aÞ

hξAsðt; xÞξAs0 ðt0; x0Þi ¼ 2Tσδss0δðt − t0Þ½−∇2δðx − x0Þ�;
ðA2bÞ

hξVsðt; xÞξVs0 ðt0; x0Þi ¼ 2Tσδss0δðt − t0Þ½−∇2δðx − x0Þ�:
ðA2cÞ

where σ ¼ χ0D.
The equations are easily solved. For instance, we can

Fourier transform in space and write the solution to the
vector equation by integrating from t ¼ 0 up to t (with
t > 0)

n⃗Vðt;kÞ¼ n⃗ð0;kÞe−Dk2tþ
Z

t

0

dt1ξ⃗Vðt1;kÞeDk2ðt1−tÞ: ðA3Þ

The variance in the initial condition n⃗ð0; kÞ is determined
from the free energy functional in (20) and reads

1

3V
hn⃗Vð0; kÞ · n⃗Vð0;−kÞi ¼ Tχ0: ðA4Þ
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Alternatively one can integrate from past infinity to
determine the initial condition:

n⃗ð0; kÞ ¼
Z

0

−∞
dt1ξ⃗Vðt1; kÞeDk2t1 : ðA5Þ

Computing the variance of n⃗ð0; kÞ using the variance of the
noise in (A2c) reproduces (A4), which demonstrates how
the noise and dissipation work together in establishing the
equilibrium state. By either method

1

3V
hn⃗ðt; kÞ · n⃗ð0;−kÞi ¼ Tχ0e−Dk2t: ðA6Þ

An identical strategy can be used in the axial channel by
finding the eigenfunctions of the system. As in the vector
case, we Fourier transform in space and calculate response
function. It is convenient to work with the vector of
variables7 Y ¼ ðy1; y2Þ ¼ ðωkφ; μAÞ where μA ¼ nA=χ

and ω2
k ¼ v2ðkþm2Þ. The static susceptibility is diagonal

in these variables, and can be read off from the free energy
written in (20)

1

V
hyað0; kÞybð0;−kÞi ¼

T
χ0

δab: ðA7Þ

As in the diffusion example, the static susceptibility sets the
initial conditions for the subsequent evolution. The equa-
tions of motion take the form ∂tY þMY ¼ ξ and eigen-
values of M are

λ� ¼ �iωk þ
1

2
Γk; ω2

k ≡ v2ðk2 þm2Þ;
Γk ≡ Γðk2 þm2Þ þDk2: ðA8Þ

The homogeneous solutions are Y ∝ e−λ�t. The full matrix
of correlation functions

½Gsymðt; kÞ� ¼
1

3V

 
ω2
khφsðt; kÞφsð0;−kÞi ωkhφsðt; kÞμAsð0;−kÞi

ωkhμAsðt; kÞφsð0;−kÞi hμAsðt; kÞμAsð0;−kÞi

!
; ðA9Þ

reads

½Gsymðt; kÞ� ¼
T
χ0

e−
1
2
Γkt

 
cosðωktÞ þ Δk

ωk
sinðωktÞ sinðωktÞ

− sinðωktÞ cosðωktÞ − Δk
ωk
sinðωktÞ

!
; ðA10Þ

with Δk ≡ ðDk2 − Γðk2 þm2ÞÞ=2. In the body of the text
this result is used in the massless limit in (25) and (32).

2. Diffusion of the chiral condensate
on the coset manifold

a. Free diffusion on the three sphere

In a finite volume simulation the chiral condensate is not
fixed but diffuses on the coset manifold. Let us examine
this diffusion by analyzing the zero mode of the hydro-
dynamic equations of motion given in (A1), but limiting
the discussion to H ¼ 0. In finite volume the fields take
the form

φ⃗ðt; xÞ ¼ Vφ⃗0ðtÞ þ
X
k≠0

eik·xφ⃗ðt; kÞ; ðA11Þ

n⃗Aðt; xÞ ¼
X
k≠0

eik·xn⃗ðt; kÞ: ðA12Þ

The axial charge is exactly conserved and there is no net
charge in the box, and consequently the k ¼ 0mode is zero

for n⃗A. Then, integrating (22) over volume, the zero mode
of φ satisfies a random walk

∂tφ⃗0 ¼ ξ⃗0; ξ⃗0ðtÞ≡
Z
x
ξ⃗φðt; xÞ=V: ðA13Þ

Solving for φ0 and computing its variance leads to (31),
which is reproduced here for convenience

2Dt≡ 1

3
hφ⃗0ðtÞ · φ⃗0ðtÞi ¼ 2

�
TΓ
f2V

�
t; ðA14Þ

i.e. D≡ TΓ=f2V. The noise satisfies

hξφ0sðtÞξφ0s0 ðt0Þi ¼ 2Dδss0δðt − t0Þ: ðA15Þ

The probability density Pðφ⃗0Þ satisfies the diffusion
equation

∂tP ¼ D
∂

∂φ0s

�
δss

0 ∂P
∂φ0s0

�
: ðA16Þ

The direction of the chiral condensate is labeled by a unit
vector on the three sphere nana ¼ 1. We have parametrized

7For simplicity, Y will denote a single isospin component of
these fields.
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this direction by three angles, φ0s, assuming they are small.
The coordinates φ⃗ provide a local Cartesian coordinate
patch for the three sphere close to the pole. In a general
coordinate system the diffusion equation reads

∂tP ¼ D∇I∇IP; ðA17Þ

where∇I∇I is the Laplacian on the sphere. More explicitly,
a set of coordinates covering the three sphere is
qI ¼ ðq1; q2; q3Þ ¼ ðφS; θ;ΦÞ

ds2 ¼ dφ2
S þ sin2 φSðdθ2 þ sin2 θdΦ2Þ; ðA18Þ

where φS is approximately φS ≃
ffiffiffiffiffi
φ⃗2

p
close to the

north pole.

b. Explicit symmetry breaking, forced diffusion,
and the ϵ-regime of QCD

When the symmetry is explicitly broken by a magnetic
field, the axial charge must be reconsidered. In this case the
zero modes satisfy the equations of motion

∂tφ⃗0 −
n⃗A0
χ

¼ −Γm2φ⃗0 þ ξ⃗φ0
; ðA19Þ

∂tn⃗A0 þ f2m2φ⃗0 ¼ 0: ðA20Þ

where the statistics of ξ⃗φ0
are given in (A15). The variables

φ⃗0 and n⃗A0 are canonical conjugates fφ0s; nA0s0g ¼ δss0 . To
illustrate the structure of these equations we introduce a
traditional notation

ðQs; PsÞ≡ ðφ0s; nA0sÞ; ðA21Þ

and the equations of motion are written

∂tQs þ fH0; Qsg ¼ −βVD
∂H0

∂Qs þ ξs0; ðA22Þ

∂tPs þ fH0; Psg ¼ 0: ðA23Þ

Here β and V are the inverse temperature and volume
respectively, and D ¼ TΓ=f2V is the diffusion coefficient
introduce earlier. Finally the Hamiltonian for the zero
modes is

H0ðQ;PÞ ¼ P⃗2

2χ
þ 1

2
f2m2Q⃗2: ðA24Þ

The Fokker-Planck equation for the phase space prob-
ability density PðQ;PÞ follows from the Langevin dynam-
ics and reads [55–57]

∂tP þ fP;H0g ¼ βVD
∂

∂Qs

�
δss

0 ∂H0

∂Qs0 P
�

þD
∂

∂Qs

�
δss

0 ∂P

∂Qs0

�
: ðA25Þ

We emphasize that the canonical measure for the proba-
bility density PðQ;PÞ is invariant under canonical change
of coordinates.
We have worked with a set of spatial coordinates, which

parametrize a region close to the pole of the three sphere by
Cartesian coordinates. We then make a canonical change
of variables to the polar coordinates qI given in (A18).
The Hamiltonian is generalized to include larger angles
and reads

H0ðq; pÞ ¼
gIJðqÞ
2χ

pIpJ − f2m2 cosðφSÞ; ðA26Þ

where gIJðqÞ is the metric of the sphere in (A18). Here we
used the original free energy in (3) and the Gell-Mann,
Oakes, Renner relation to deduce the potential for the
zero mode

−1
V

Z
x
Haϕaðt;xÞ¼−Hσ̄cosφS¼−f2m2cosðφSÞ: ðA27Þ

The change of coordinates leads to the Fokker-Planck
equation in its final form

∂tP þ fP;H0g ¼ βVD∇Ið∇IH0PÞ þD∇I∇IP; ðA28Þ

where ∇I is the covariant derivative on the three sphere.
It is straightforward to see that the steady state solution to

this equation is the equilibrium probability distribution

Pðq; pÞd3qd3p ¼ e−βVH0d3qd3p: ðA29Þ

If the momenta are of no interest they can be integrated over
yielding

PðqÞ ffiffiffi
g

p
d3q ¼ eβVf

2m2 cosφS
ffiffiffi
g

p
d3q; ðA30Þ

which is consistent with the partition functions discussed
in [45].
It is satisfying that the dissipative dynamics of the finite

volume chiral condensate on the three sphere is controlled
by the (infinite volume) pion pole mass and damping
coefficient. Indeed, the Fokker-Planck equation provides a
detailed real time picture of the so called “ϵ-regime” of
QCD. In this regime the quark mass is very small, but
βVf2m2 ∼ 1 is of order unity. The full mass potential
ΔH0 ∝ −f2m2 cosðφSÞ is needed in this regime. But, the
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effect of the mass on the linearized hydrodynamic modes
with k ∼ 2π=L is negligible:

ω2
k ¼ v2ðk2 þm2Þ ≃ v2k2ð1þOðT=f2LÞÞ: ðA31Þ

In the opposite limit where m ∼ k ∼ 2π=L (the p-regime),
the vev is strongly peaked near the pole of the
three sphere [see Eq. (A30)], and the linearized hydro-
dynamic approximation with the quadratic mass term
developed in Sec. A 1 is valid at all times. The thermo-
dynamics of the ϵ-regime has been extensively studied
using random matrix theory and chiral perturbation
theory (see [43,45] for an overview). It would be
interesting to pursue this connection further.

APPENDIX B: STATIC MEASUREMENTS
IN THE Oð4Þ MODEL

In this appendix we determine the correlation length and
the magnetic susceptibility in the restored phase and along
the critical line. In particular, their nonuniversal critical
amplitudes serve to define universal ratios, including the
novel dynamical ones introduced in the main text. We also
determine the pion constant f2 using static measurements.
For convenience we collect the critical exponents used in
this work in Table II.

1. Restored phase

The magnetic susceptibility in the restored phase is
defined as

χðkÞ ¼ 1

4V

X3
a¼0

hjϕaðkÞj2i; ðB1Þ

and the zero momentum limit is notated with χ

χ ≡ χð0Þ: ðB2Þ

A standard estimator of the correlation length is the
so-called “second-moment correlation length” [44],
computed as8

ξ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ=F − 1

4 sin2ðπLÞ

s
; ðB3Þ

with F the susceptibility of the first Fourier mode

F ¼ χðkÞjk¼2π
L
: ðB4Þ

We fit their dependence on the reduced temperature
tr ¼ ðm2

0 −m2
cÞ=m2

c to

ξðtrÞ ¼ ξþt−νr ð1þ ξ1tωνr Þ; ðB5Þ

χðtrÞ ¼ Cþt−γr ð1þ C1tωνr Þ: ðB6Þ

The exponent ω is the first subleading scaling exponent.
To perform the fit, we fix β, ν and ω to the values presented
in Table II and fit ξþ, ξ1, Cþ and C1. The fits are presented
in Fig. 8. We obtain

ξþ ¼ 0.4492� 0.0036; ξ1 ¼ 0.332� 0.085;

Cþ ¼ 0.2077� 0.0032; C1 ¼ 1.11� 0.15: ðB7Þ

The chi-square for the fit of the correlation length is
χ2=dof ¼ 9.1=7 and the one for the susceptibility is
χ2=dof ¼ 4.83=7. These values, together with the value
the nonuniversal value for the magnetization in the restored
phase

σ̄ðtrÞ ¼ B−ð−trÞβð1þ B1ð−trÞνωÞ; ðB8Þ

that was extracted in Ref. [1]9

B− ¼ 0.988� 0.007; ðB9Þ

TABLE II. Critical exponents of the Oð4Þ model used in this
work. The top of the table is for zero field, H ¼ 0 and tr ¼
ðm2

0 −m2
cÞ=m2

c is the reduced temperature. The middle of the
table is on the critical line, tr ¼ 0 and H ≠ 0. The bottom of the
table shows the correction-to-scaling exponent ω, which is also
universal. In the table we denote “any scaling quantity” by Y, and
θðYÞ and cðYÞ are its associated critical exponent and nonuni-
versal subleading amplitude respectively. ζ is the dynamical
scaling exponent of model G where d ¼ 3 is the number of spatial
dimensions.

Exponent Definition Value Reference

β σ̄ ∝ ð−trÞβ 0.380(2) [12]
ν ξ ∝ t−νr 0.7377(41) [12]
γ χ ∝ t−γr 1.4531(104) [12]

δ σ̄ ∝ H1=δ 4.824(9) [12]
νc ξL;T ∝ H−νc 0.4024(2) [12]
1 − 1=δ χL;T ∝ H−1þ1=δ 0.7927(4) [12]

ω Y ∝ ξθðYÞð1þ cðYÞξ−ω þ…Þ 0.755(5) [44]
ζ τ ∝ ξζ d=2 [3]

8This definition is motivated by mean field theory where the
two point functions takes the form, χðkÞ ¼ χð0Þ=ðξ2k2 þ 1Þ.
Working with the first fourier mode, we replace k2 with the
eigenvalue of the discretized Laplacian k̃21 ≡ 2 − 2 cosð2π=LÞ
and solve for ξ, leading to Eq. (B3).

9Note an unfortunate misprint. Equation (29) in the published
version should read Σ ¼ b1ðm2

c −m2
0Þβð1þ CTðm2

c −m2
0ÞωνÞ.

The then quoted parameters b1 ¼ 0.544� 0.004 and CT ¼
0.20� 0.02 lead to B− ¼ jm2

cjβb1 ¼ 0.988� 0.007 and
B1 ¼ CT jm2

cjων ¼ 0.49� 0.05.
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allow us to compute the universal ratio [58]

Qc ¼
ðB−Þ2ξ3
Cþ ¼ 0.4266� 0.0126: ðB10Þ

This value is indeed compatible with the Qc ¼ 0.4231ð9Þ
of [58].

2. Critical line m2
0 =m

2
c

At a nonzero magnetic field the magnetization will
be parallel to the magnetic field. Then it is natural to
define and measure the longitudinal and transverse χL
susceptibilities:

χLðkÞ ¼
1

V
hjϕ0ðkÞj2ic; ðB11Þ

χTðkÞ ¼
1

3V

X3
s¼1

hjϕsðkÞj2ic: ðB12Þ

The static susceptibilities are shown in Fig. 9. As a fitting
function, we chose the scaling prediction with the first
subleading correction

χðHÞ ¼ χH−1þ1
δð1þ χ1HνcωÞ: ðB13Þ

To extract the correlation length in the longitudinal and
the transverse directions we measure the second-moment
correlation length as in (B3) with

FL ¼ χLðkÞjk¼2π
L
; ðB14Þ

FT ¼ χTðkÞjk¼2π
L
: ðB15Þ

FIG. 8. Left: correlation length as a function of the reduced temperature. The fitted non universal amplitude is ξþ ¼ 0.4492� 0.0036
and the subleading amplitude is ξ1 ¼ 0.33� 0.09. The χ2=dof is 9.1=7. Right: magnetic susceptibility as a function of the reduced
temperature. The fitted non universal amplitude is Cþ ¼ 0.208� 0.003 and the subleading correction is C1 ¼ 1.11� 0.15. The χ2=dof
is 4.83=7. In both cases, the error bars are too small to be visible on the plot.

FIG. 9. Left: longitudinal susceptibility χL as a function of the magnetic field H. The data points are fit with χLðHÞ ¼
χHLH

−1þ1=δð1þ χHL1H
νcωÞ. The results are χHL ¼ 0.1564� 0.0016 and χHL1 ¼ 0.45� 0.06 with χ2=dof ¼ 0.26=3. Right: perpendicular

susceptibility χT as function of the magnetic field H. The data points are fit with χTðHÞ ¼ χHT H
−1þ1=δð1þ χHT1H

νcωÞ. The results are
χHT ¼ 0.241� 0.004 and χHT1 ¼ 0.25� 0.08 with χ2=dof ¼ 6.17=3.
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The scaling prediction fixes the fitting function as

ξLðHÞ ¼ ξHLH
−νcð1þ ξHL1H

νcωÞ; ðB16Þ

ξTðHÞ ¼ ξHT H
−νcð1þ ξHT1H

νcωÞ; ðB17Þ

and the result of the fit is shown in Fig. 10. The universal
ratio ξTþ=ξLþ ¼ 1.85� 0.12 is consistent with the more
precise estimate done in [58].

3. Broken phase and the pion velocity

Our goal in this appendix is to extract the infinite
volume chiral condensate σ̄ðTÞ and pion velocity v2ðTÞ ¼
f2ðTÞ=χ0 by analyzing static correlators below the critical
point at H ¼ 0. The resulting parametrization of the
velocity is shown in Fig. 7 (Right). We will use the
magnetization

MaðtÞ≡ 1

V

X
x

ϕaðt; xÞ; ðB18Þ

the static correlation function Gϕϕð0; kÞ, and their their
dependence on volume to extract σ̄ðTÞ and ðσ̄2=f2ÞðTÞ in
the infinite volume limit.
In infinite volume the magnetization remains constant in

time and determines the chiral condensate

lim
V→∞

Ma ¼ σ̄ðTÞna: ðB19Þ

Here na is an arbitrary unit vector on the three-sphere
characterizing the orientation of the condensate. However,
in any finite volume

hMai ¼ 0; ðB20Þ

since the condensate orientation vector na stochastically
explores the S3 in time—see Appendix A 2.
One way to extract σ̄ is to look at the fluctuations ofMa,

evaluating hM2i ¼ hMaMai, which is approximately σ̄2 at
large volumes. The leading deviation of hM2i from σ̄2 at
finite volume comes from the fluctuations of long wave-
length Goldstone modes and can be neatly analyzed with a
Euclidean pion effective theory [45,59] In the chiral limit
the only parameter of the EFT is the pion constant f2ðTÞ.
When a finite magnetic field is included the chiral con-
densate σ̄ is also a parameter.
Apart from a slightly different fitting procedure, the

current determination of σ̄ðTÞ simply repeats the analysis
done in our earlier work for the larger lattices and datasets
used here [1]. The expansion relating hM2i and σ̄2 takes the
form [1,45]

hM2i ¼ σ̄2
�
1þ 0.677355

f2L
þ 0.156028

f4L2
þOððf2LÞ−3Þ

�
;

ðB21Þ

and is valid for f2ðTÞL ≫ 1. The numerical coefficients are
known analytically in terms of “shape coefficients” β1 and
β2, but are of no interest here.
To determine the chiral condensate, we plotted hM2i

versus L at fixed temperature, and made various fits
with (B21) to determine σ̄2ðTÞ and ðσ̄2=f2ÞðTÞ. We
estimated the systematic uncertainty in the extracted
values of σ̄ðTÞ by adding a C=L3 term to the fit form
and comparing to a fit based on (B21). Except for the
point closest to Tc the systematic uncertainty σ̄ðTÞ is
smaller than our statistical uncertainty, which would not
have been the case if only the first term ∝ 1=f2L in the
expansion had been used.

FIG. 10. Left: longitudinal correlation length ξL as function of the of the magnetic field H. The data points are fit with
ξL ¼ ξLþH−νcð1þ ξL1HνcωÞ. The results are ξLþ ¼ 0.447� 0.026 and ξL1 ¼ −0.14� 0.32 with χ2=dof ¼ 0.19=3. Right:
perpendicular correlation length ξT as function of the magnetic field H. The data points are fit with ξT ¼ ξTþH−νcð1þ ξT1HνcωÞ.
The results are ξTþ ¼ 0.826� 0.027 and ξT1 ¼ 0.24� 0.19 with χ2=dof ¼ 6.76=3.
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Our results for σ̄ðTÞ are shown in the right panel of
Fig. 11, This is fit with the functional form

σ̄ðtrÞ ¼ B−ð−trÞβð1þ B1ð−trÞωνÞ: ðB22Þ
with fit parameters B−¼0.988�0.007, B1 ¼ 0.51� 0.07.
The results for the vev amplitude and subleading correc-
tions are compatible with our previous results. For com-
parison, we also show the fit results for the first term
B1ð−trÞβ. Clearly, for precision work, the subleading
corrections are important in the temperature range we
are considering.
The decay constant f2 of the pion EFT can be extracted

using similar methods The correlation function of the scalar
field at small wave numbers

k ∼
1

L
≪ mσ ≪

1

a
; ðB23Þ

is dominated by the massless Goldstone mode. Recalling
Eq. (28) with T ¼ 1, the correlation function takes the form

4

3
Gϕϕð0; kÞ ¼

σ̄2

f2k2
; ðB24Þ

to leading order in the pion EFT. However, there are
important corrections to this result stemming from the finite
system size, which are of order 1=f2L and are captured by
the leading order pion EFT. Short distance correlations of
order ðmσLÞ2 and smaller lead to higher derivative terms
in the pion EFT, which are not included. Naturally, these
terms become increasingly important near the critical point.
Following the perturbative expansion of Hasenfratz and
Leutwyler the correction takes the form

4

3
Gϕϕð0; kÞ ¼

σ̄2

f2k2

�
1þ β1

f2L
−
N − 2

f2k2V
þO

�
1

ðm2
σLÞ2

��
:

ðB25Þ

where β1 ¼ 0.225785 is a “shape coefficient” reflecting
the fluctuations of pions in a cubic box. Numerically for
k ¼ 2π=L and N ¼ 4:

4

3
k2Gϕϕð0; kÞjk¼2π=L ¼ σ̄2

f2

�
1þ 0.175124

f2L

�
: ðB26Þ

To extract σ̄2=f2 we plotted k2Gϕϕð0; kÞ for the first Fourier
mode as a function of system size and fitted the result for
ðσ̄2=f2ÞðTÞ and 1=f2 using (B26). The subleading correc-
tion ∼1=f2L in (B26) was treated as a free parameter,
although it is broadly consistent with the σ̄2ðTÞ extracted
above and the ðσ̄2=f2ÞðTÞ determined here.
The data on ðσ̄2=f2ÞðTÞ are shown in Fig. 11.

Asymptotically, σ̄2=f2 should behave as

σ̄2

f2
∼ ð−trÞη; ðB27Þ

where η ¼ 0.030 is a critical exponent. We are unable to
extract η from our measurements. Instead, we have simply
fit a form

σ̄2

f2
¼ C0ð−trÞC1 ; ðB28Þ

with C0 ¼ 0.910ð8Þ and C1 ¼ 0.009ð3Þ, which gives a
heuristic parametrization of the results shown in the figure.
There is a hint in the data that η is nonzero.
Given the fit results for σ̄2ðTÞ in (B22) and (B28) for

ðσ̄2=f2ÞðTÞ we can extract the velocity

v2 ¼ f2

χ0
¼ 1

χ0

σ̄2ðTÞ
ðσ̄2=f2ÞðTÞ : ðB29Þ

The uncertainty is dominated by the contribution from
σ̄2ðTÞ as σ̄2=f2 (which is nearly unity) in total provides a

FIG. 11. Left: magnetization in the broken phase for zero magnetic field after an extrapolation to infinite volume developed in [45].
The dashed line is a fit to the data with σ̄ðtrÞ ¼ B−ð−trÞβð1þ B1ð−trÞωνÞ including the subleading correction. The dotted line shows the
leading term of the fit. Right: an estimate of the pion constant f2 (or more precisely σ̄2=f2) based on static correlations, together with a
phenomenological fit ansatz.
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ten percent correction. In Fig. 11 we have varied the fit
parameters in the range allowed by the fits to deduce the
static velocity and its uncertainty.

APPENDIX C: AXIAL CHANNEL SYSTEMATICS
IN THE BROKEN PHASE

We record in this appendix our systematic analysis
leading to the extraction of ΓðkÞ and ωðkÞ in the bro-
ken phase.
To validate the fitting form (57)

ΓðkÞ ¼ DAk2ð1þ d1=LÞ; ðC1Þ

ωðkÞ ¼ vkþ v2k2; ðC2Þ

and the specific dependence on the size L of the axial
diffusion coefficientDA, we fit the damping coefficient Γ as

function of the reduce temperature tr using three different
datasets: k ¼ 2π=L, k ¼ 4π=L and the combined sample.
Figure 12 shows the results obtained for DA and the
leading volume correction d1 across the three different
datasets. The consistency of the fit among the different
datasets and the values of d1 exemplify the importance
of the size-dependent d1=L term in (57) in the axial
diffusion coefficient. Conversely, the remaining systematic
dispersion between the different datasets can be considered
as an evaluation of the remaining systematic errors.
The same strategy is adopted for the extraction of the

parameter for the dispersion curves, ωðkÞ that is fitted as

ωðkÞ ¼ vkþ v2k2; ðC3Þ

where the quadratic term v2k2 was needed to improve the
quality of the fit. In Fig. 13 we show the results for the
coefficient v and v2. We see that in this case, the systematic

FIG. 12. Result of the fit of the damping rate ΓðkÞ ¼ DAk2ð1þ d1
LÞ. Left: DA coefficient as a function of tr extracted for k ¼ 2π=L

(black dots), k ¼ 4π=L (purple dots) and the two datasets together (green dots). Right: d1 coefficient as a function of tr extracted for
k ¼ 2π=L (black dots), k ¼ 4π=L (purple dots) and the two datasets together (green dots).

FIG. 13. Result of the fit of the dispersion curves ωðkÞ ¼ vkþ v2k2. Left: v coefficient as a function of tr extracted for k ¼ 2π=L
(black dots), k ¼ 4π=L (purple dots) and the two datasets together (green dots). Right: v2 coefficient as a function of tr extracted for
k ¼ 2π=L (black dots), k ¼ 4π=L (purple dots) and the two datasets together (green dots).
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errors are smaller and that the fit agrees very well across all
different datasets.
Let us conclude this appendix by commenting on our

assessment of statistical errors for this analysis. We

subdivided each simulation in the time direction into blocks
and fit each block independently. We then used the mean
and the standard error of this set of block fits as an estimator
for the best fit parameters and their statistical error.
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