
Enhanced contribution of the pairing gap to the QCD equation of state
at large isospin chemical potential

Yuki Fujimoto *

Institute for Nuclear Theory, University of Washington, Box 351550, Seattle, Washington 98195, USA

(Received 10 January 2024; accepted 28 February 2024; published 25 March 2024)

In this paper QCD at large isospin density is studied, which is known to be in the superfluid state with
Cooper pairs carrying the same quantum number as pions. The gap equation derived from the perturbation
theory up to the next-to-leading-order corrections is solved. The pairing gap at large isospin chemical
potential is found to be enhanced compared to the color-superconducting gap at large baryon chemical

potential due to the
ffiffiffi
2

p
difference in the exponent arising from the stronger attraction in one-gluon

exchange in the singlet channel. Then, using the gap function, the contribution of the condensation energy
of the superfluid state to the QCD equation of state is evaluated. At isospin chemical potential of a few GeV,
where the lattice QCD and the perturbative QCD can be both applied, the effect of the condensation energy
becomes dominant even compared to the next-to-leading order corrections to the pressure in the
perturbation theory. It resolves the discrepancy between the recent lattice QCD results and the perturbative
QCD result.

DOI: 10.1103/PhysRevD.109.054035

I. INTRODUCTION

A better understanding of QCD at nonzero chemical
potential is essential for unraveling the dynamical phenom-
ena involving strong interactions such as binary neutron
star mergers, core-collapse supernovae, and heavy-ion
collisions, from the first principles. The QCD equation
of state (EOS) is the most important quantity characterizing
the thermodynamics of the system.
The QCD EOS can be evaluated reliably in perturbation

theory at small temperature T and large quark chemical
potential μ [1–7]. The validity range of perturbative QCD
(pQCD) is limited to the range μ≳ 1 GeV. This value
corresponds to the baryon density nB ≳ 50nsat, where nsat ≃
0.16 fm−3 is the nuclear saturation density. It is far beyond
the reach of the core density of heavy neutron stars, so the
pQCD cannot be directly applied to the realistic environ-
ment although it has an indirect impact [8,9] (see, however,
Refs. [10,11]). In the nonperturbative regime, lattice QCD
simulations have pinned down the EOS at high T and small
μ by Taylor expansion in terms of μ=T [12,13]. However,
the large-μ region of QCD at μ=T > 1 is generally
inaccessible by the current Monte Carlo algorithm due
to the sign problem (see Ref. [14] for review).

The sign problem can be circumvented in two-flavor
QCD at nonzero chemical potential by taking the same
values of chemical potentials with opposite signs for u and
d quarks [15]. This specific setup corresponds to setting a
nonzero chemical potential for the (third component of)
isospin, which is denoted as μI, while keeping the baryon
chemical potential, μB, at zero. There have been several
lattice QCD studies of multipion system at nonzero μI
regarding the phase structure and thermodynamic proper-
ties [16–34] (see Ref. [35] for review of some of the
earlier works).
A recent lattice QCD calculation provided the QCD EOS

at T ≈ 0 and up to μI ≃ 3 GeV [34]. The authors were able
to construct states with the quantum numbers of up to 6144
pions, which correspond to large μI , on ensembles of gauge
configurations based on an ingenious algorithm introduced
in Refs. [36,37], and measured the thermodynamic proper-
ties from the extracted ground-state energies of these
systems. They compared their results with the pQCD
calculation from Ref. [38], and they found a discrepancy
between their lattice results and the pQCD calculation
at μI ≳ 2 GeV.
QCD at nonzero μI can be regarded as the phase-

quenched theory, in which the complex phase of the
fermion determinant is neglected, of QCD at nonzero
μB. Recently, Moore and Gorda pointed out that phase
quenching works for any linear combination of chemical
potentials not only for μI. They claim that the relative
difference between the phase-quenched theory and
the original theory is Oðα3sÞ, where αs is the QCD co-
upling constant, from the perturbative consideration [39].
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Nevertheless, the perturbative Oðα3sÞ difference between
the phase-quenched theory and the original theory will not
account for the discrepancy between the lattice QCD and
pQCD calculations mentioned above as the latter discrep-
ancy is noticeably larger than Oðα3sÞ.
Further, Moore and Gorda proposed that the phase-

quenched lattice calculation can be used to extract the
pressure of original theory up toOðα4sÞ corrections in the per-
turbation theory through the rigorous QCD inequality [40].
By the use of this inequality, the phase-quenched theory
places the bound on the pressure of the original theory (see
Ref. [41] for an application).
The purpose of this work is to demonstrate that the

EOS of the phase-quenched theory has an exponentially
enhanced nonperturbative correction compared to the
original theory. To this end, I take QCD at nonzero μI
as an example. In this specific theory, the nonperturbative
correction to the EOS related to the phase quenching is
embodied as the Bardeen-Cooper-Schrieffer (BCS) con-
densation energy.
The ground state of the isospin QCD is expected to be a

Bose-Einstein condensate (BEC) phase with pion conden-
sation at μI > mπ . As μI increases, it undergoes crossover
to the BCS state with Cooper pairs carrying the same
quantum number as pions [42] as observed in the recent
lattice QCD result [34] (see Ref. [43] for a review). In the
isospin QCD, u and d̄ quarks fill up the Fermi sea, and form
the color singlet quark-antiquark condensate, while in the
two-flavor QCD at nonzero μB and zero μI , u and d quarks
fill up the Fermi sea and form the color nonsinglet diquark
condensate leading to the color superconductivity. The
former (qq̄ channel) has stronger one-gluon attraction
compared to the latter (qq channel), thus the pairing gap
is exponentially enhanced at nonzero μI.
The BCS condensation energy correction to the pQCD

calculation also accounts for the discrepancy between the
lattice QCD and pQCD results. The gap parameter in the
isospin QCD is evaluated by using a method similar to
those used to derive the diquark gap parameter in the
color-superconducting phase of QCD at nonzero μB (see
Refs. [44,45] and references therein). I note that the
exponential enhancement of the BCS gap [42] and the
significance of the condensation energy contribution to
the EOS in the pQCD calculation [46] (see also Ref. [47]
for the demonstration that the attractive interaction near the
Fermi surface stiffens the EOS) were previously pointed
out in the literature although there was no reliable evalu-
ation of these effects prior to this work.
The paper is organized as follows. In the next section,

QCD EOS at nonzero μ is reviewed. I review the path
integral representation and QCD partition function, includ-
ing the notion of the phase quenching and the perturbative
expansion of the QCD EOS. In Sec. III, the Cooper pairing
in QCD at nonzero μI is discussed. After an overview of the
Cooper pairing is given, the derivation and solution of the

gap equation are presented. Section IV constitutes the main
result of this paper. Based on the pairing gap obtained in
the previous section, I calculate the condensation energy
and show the numerical results. In Sec. V, the possible
implications of this work to the quark-hadron crossover are
mentioned. Finally, the paper concludes with a summary
and discussion.
Throughout the paper, I mainly follow the notations in

Ref. [45], and take the number of flavors Nf as Nf ¼ 2

unless otherwise stated.

II. REVIEW OF QCD EQUATION OF STATE
AT NONZERO CHEMICAL POTENTIAL

In this section, the Euclidean path integral representa-
tions of the QCD partition function with nonzero chemical
potential along with the notion of phase quenching are
reviewed. Then, the perturbative expansion of the partition
function and the phase-quenching effect in the perturbation
theory is discussed. The problem setting in this work and
the possible resolution are briefly mentioned.

A. Path integral representation
of QCD partition function

Here, I introduce the notion of phase quenching, as
discussed in detail in Refs. [39,40]. The Dirac operator
DfðμfÞ, for a quark of flavor f at nonzero chemical
potential μf, is defined as

DfðμfÞ≡ =Dþmf þ μfγ
0; ð1Þ

where the covariant derivative, =D≡ γμ∂μ þ igγμTaAa
μ, is a

skew-Hermitian operator, i.e., =D† ¼ −=D. Integrating out
the fermionic degrees of freedom, the grand canonical
partition function in the path integral representation is
expressed as

ZðT; fμfgÞ ¼
Z

½dA�
 Y

f

detDfðμfÞ
!
e−SG ; ð2Þ

where SG is the Euclidean action of QCD in the gauge
sector. In general, the fermion determinant detDfðμfÞ is
complex valued at nonzero μf. This complex phase is the
source of the sign problem preventing the Monte Carlo
simulation on the lattice.
I define the phase-quenched theory, by discarding the

phase of the fermion determinant, as

ZPQðT; fμfgÞ ¼
Z

½dA�
 Y

f

j detDfðμfÞj
!
e−SG : ð3Þ

Because the complex phase is absent, the phase-quenched
theory is free from the sign problem. From the relation,

γ5DðμfÞγ5 ¼ D†ð−μfÞ; ð4Þ
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one can rewrite the phase-quenched fermion determinant as

j detDfðμfÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detDfðμfÞ detDfð−μfÞ

q
: ð5Þ

Therefore, the phase-quenched theory is equivalent to a
theory with an equal number of fermions with opposite
chemical potentials. The fermion determinant appears with
a fractional power 1=2, so this theory is unphysical.
The phase-quenched theory becomes physically sensible

in two flavors with mass-degenerate u and d quarks. In this
theory, u and d quarks have opposite chemical potentials
μu ¼ μ and μd ¼ −μ. Usually, the quark chemical potential
μ is relabeled as μI ≡ 2μ, where μI is a conjugate variable to
the third component of isospin I3 and it is called isospin
chemical potential. The corresponding partition function is
defined as

ZIðT; μIÞ ¼
Z

½dA� detD
�μI
2

�
detD

�
−
μI
2

�
e−SG

¼
Z

½dA�
��� detD�μI

2

����2e−SG : ð6Þ

From the last line, one can indeed verify this is the phase-
quenched version of a theory at nonzero baryon chemical
potential μB ≡ Ncμ and zero μI ,

ZBðT; μBÞ ¼
Z

½dA�
�
detD

�
μB
Nc

�	
2

e−SG : ð7Þ

B. Perturbative expansion

Hereafter, instead of the partition function, I consider the
pressure P ¼ ðT=VÞ lnZ. I quote the perturbation expan-
sion of pressure up to next-to-next-to-leading order
(NNLO) in the massless limit [1,2] regularized in the
MS scheme [4,48]

P ¼ PLO þ αsPNLO þ α2sPNNLO: ð8Þ

and the coefficients at each order in αs are

PLO ¼ Pid; ð9Þ

PNLO ¼ −
2

π
Pid; ð10Þ

PNNLO ¼ −
1

π2

�
Nf ln

�
Nf

αs
π

�
þ β0

2
ln

Λ̄2

ð2μÞ2

þ 18 − 0.99793Nf

	
Pid; ð11Þ

where β0 ≡ ð11=3ÞNc − ð2=3ÞNf is the first coefficient of
the QCD beta function with Nc being the number of colors.
The pressure of the ideal quark gas is defined as

Pid ≡ NcNf
μ4

12π2
: ð12Þ

For the coupling constant αsðΛ̄Þ, the expression at the
NNLO is used, and the running of αsðΛ̄Þ, which is evaluated
at the renormalization scale Λ̄ is taken into account. TheMS
scale is fixed as ΛMS ≃ 330 MeV, which is the value
suggested from the Nf ¼ 2 lattice-QCD data [49,50]. I
set Λ̄ ¼ 2μ in the following calculation as 2μ is a typical
hard interaction scale in the system, but there is an
ambiguity in the choice of Λ̄. As in the conventional
prescription, uncertainties associated with this ambiguity
are evaluated by varying Λ̄ by a factor 2; namely, by
taking 1=2 ≤ Λ̄=ð2μÞ ≤ 2.
In the following I review how the effect of the phase

quenching appears in the perturbative expansion as
described by Moore and Gorda in [39]. One can construct
a Feynman rule for each determinant in the square root in
the phase-quenched fermion determinant (5) in analogy
to the ordinary perturbation theory. In the Feynman rules of
the phase-quenched theory, an additional factor 1=2 arises
from the following relation:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detDfð�μfÞ

q
¼ exp

�
1

2
tr lnDfð�μfÞ

�
: ð13Þ

Therefore, the only difference between the perturbative
expansion of the phase-quenched theory and the original
theory is that the sign of the μ is reversed for half of the
fermions.
The phase-quenched theory and the original theory have

the same perturbative expansion up to Oðα2sÞ. One can
explicitly verify that by setting μ → −μ in Eq. (8); it does
not change the expression of P.
The effect of μ → −μ appears at Oðα3sÞ. This can be

described schematically by going into the Nambu-Gorkov
basis

Ψ ¼
�

ψ

ψC

�
; ð14Þ

where ψC ¼ Cψ̄⊤ is the charge-conjugate spinor and
C≡ iγ2γ0 is the charge conjugation operator. In this basis,
free fermion propagators are

S−10 ≡
 
½Gþ

0 �−1 0

0 ½G−
0 �−1

!
; ð15Þ

where ½G�
0 �−1ðX; YÞ≡ −iðiγμ∂μ � μγ0Þδð4ÞðX − YÞ. The

quark-gluon coupling is modified as

ψ̄γμTaψAa
μ ¼

1

2
Ψ̄Γμ

aΨAa
μ; ð16Þ
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where

Γμ
a ≡

�
γμTa 0

0 −γμT⊤
a

�
: ð17Þ

The upper and lower component of Ψ gives the equivalent
description of the theory. Reversing the sign of μ in the
upper component of Ψ gives the equivalent description in
the lower component of Ψ with the original value of μ but
with the quark-gluon coupling in the conjugate represen-
tation. Therefore, flipping the sign μ → −μ is equivalent to
changing Ta → −T⊤

a ð¼ −T�
aÞ in the quark-gluon vertex

while keeping the original value of μ in the propagator, and
the effect of μ → −μ only appears in the color factor of
diagrams. The difference in the diagrammatic expansion
appears only atOðα3sÞ. This is due to the difference in color
factors with the fundamental and antifundamental repre-
sentations [39],

trTaTbTc ≠ tr½ð−T⊤
a Þð−T⊤

b Þð−T⊤
c Þ�: ð18Þ

This color factor appears in the diagram with three gluons
attached to two fermion loops involving different flavors.

III. COOPER PAIRING IN QCD
AT LARGE ISOSPIN DENSITY

In this section, the Cooper pairing in the isospin QCD is
reviewed. Then, the gap equation is perturbatively derived
and solved.

A. Overview

At large μI > 0,1 u and d̄ quarks fill up the Fermi sphere
with the radius of μI=2 in the ground state. The Cooper
instability leads to that these u and d̄ quarks form Cooper
pairs in the color-singlet, pseudoscalar, and 1S0 channel:

hd̄αγ5uβi ∝ δαβΔ; ð19Þ

where the Greek letters α, β are the color indices in the
fundamental representation and Δ is the gap parameter.
Note that it has the same quantum number as πþ, and this
pattern of pairing is favored from the QCD inequality [42].
The gap Δ can be calculated in a similar setup as in the

diquark condensation at nonzero μB. In the weak-coupling
expansion, Δ on the Fermi surface has the form,

log

�
Δ
μ

�
¼ −

b−1
g

− b̄0 ln g − b0 þ � � � ; ð20Þ

where the perturbation series are truncated at Oð1Þ
and Oðln gÞ

In QCD at nonzero μI , the coefficient b−1 is

b−1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6Nc

N2
c − 1

s
π2 ¼ 3π2

2
; ð21Þ

as first pointed out in Refs. [42]. Note that this value is
1=

ffiffiffi
2

p
times smaller compared to that in QCD at nonzero

μB, which is b−1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6Nc=ðNc þ 1Þp

π2 ¼ 3π2=
ffiffiffi
2

p
first

pointed out in Ref. [51] (see also Refs. [52–59].
Therefore, the magnitude of Δ is exponentially enhanced.
For later convenience, I rewrite the remaining terms as

−b̄0 ln g − b0 ¼ ln b̃ − b00: ð22Þ

The factor b̃ arises from the gluon sector, in which
magnetic and electric gluon exchange occurs at a large
angle, so it is independent of the color structure of the
condensate and whether the chemical potential being μB or
μI . It reads

b̃ ¼ 512π4g−5: ð23Þ

The factor b00 arises from the wave function renormaliza-
tion. In this work, I compute this factor for the first time at
nonzero μI , and find

b00 ¼
π2 þ 4

16
; ð24Þ

so the numerical value is e−b
0
0 ≃ 0.420. At nonzero μB, this

was calculated in Refs. [55,60], and the authors found

b00 ¼
1

16
ðπ2 þ 4ÞðNc − 1Þ ¼ π2 þ 4

8
; ð25Þ

with the numerical value e−b
0
0 ≃ 0.177.

Summarizing these results, the superfluid gap Δ is
concisely summarized as

Δ ¼ b̃μ exp
�
−
π2 þ 4

16

�
exp

�
−
3π2

2g

�
: ð26Þ

The gap function in QCD at μI ≠ 0 is exponentially
enhanced compared to the color-superconducting gap in
QCD at μB ≠ 0. This is because the attraction arising from
the one-gluon exchange is stronger in the color singlet qq̄
channel compared to that in the color antitriplet qq
channel [42].
In the following two subsections, the gap equation for Δ

is derived and solved, and the difference from the diquark
condensation at nonzero μB is clarified.

1Note that I take μI > 0, which is opposite to the choice
in Ref. [42].
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B. Gap equation

In this subsection, I derive the gap equation from the
perturbation theory. Thegapequation is very similar to that of
the two-flavor color superconductor, the formalism devel-
oped in the context of color superconductivity is followed, in
which the Nambu-Gorkov basis is employed (14). Themajor
difference is that the Cooper pairing occurs in qq̄-channel,
not in the diquark channel. Consequently, the Nambu-
Gorkov basis (14) is replaced with the isospin basis [61];
namely,

Ψ ¼
�

ψ

ψC

�
→ Ψ ¼

�
u

d

�
: ð27Þ

I write down the gap equation in the isospin basis; in this
basis, the free quark propagators are

S−10 ≡
 
½Gþ

0 �−1 0

0 ½G−
0 �−1

!
; ð28Þ

The inverse free propagator is expressed in the momentum
space as

½G�
0 �−1 ¼

X
e¼�

½k0 � ðμ − ekÞ�γ0Λð�eÞ
k ; ð29Þ

where μ ¼ μI=2 is the quark chemical potential, and ΛðeÞ
k is

the energy projector

ΛðeÞ
k ≡ 1þ eγ0γ · k̂

2
: ð30Þ

The quark-gluon coupling Ψ̄Γμ
aΨAa

μ in this basis is charac-
terized by the following matrix:

Γμ
a ≡

�
γμTa 0

0 γμTa

�
: ð31Þ

Notice the difference between the quark-gluon vertex in the
isospin basis (27) and the Nambu-Gorkov basis (17); in the
latter case, the lower component of Γμ

a is in the antifunda-
mental representation −T⊤

a .
The quark part of the two-particle-irreducible (2PI)

action Γ can be written as the following functional of
the full quark propagator S [62–65]:

Γ½S� ¼ tr ln S−1 þ trðS−10 S − 1Þ þ Γ2½D; S�; ð32Þ

where Γ2 is the sum of the 2PI skeleton diagrams, and it
also depends on the full gluon propagator D. Notice that
this expression does not include a factor 1=2 as in Eq. (14)
of Ref. [45], which is required to cancel the double
counting in the Nambu-Gorkov basis. The ground state
is given by the stationary point of Γ. From the stationarity

condition δΓ½S�=δS ¼ 0, Schwinger-Dyson equation is
obtained as

S−1 ¼ S−10 þ Σ; ð33Þ

where Σ is the quark self-energy and defined by the
functional derivative of Γ2 at the stationary point

Σ≡ δΓ2

δS
: ð34Þ

Here, the conventional approximation for Γ2 in which
one truncates the infinite sum of the 2PI skeleton diagrams
up to the two-loop order is followed; this two-loop
approximation for Γ2 corresponds to a one-loop approxi-
mation for Σ. Then, the gap equation (34) becomes,

ΣðKÞ ¼ −g2
XZ

Q
Γμ
aSðQÞΓν

bD
ab
μνðK −QÞ; ð35Þ

where
PR

Q ≡ T
P

ωn

R d3q
ð2πÞ3 denotes the sum over the

Matsubara modes and integration in the momentum space.
The quark self-energy in the isospin basis is written as

Σ≡
�
Σþ Φ−

Φþ Σ−

�
; ð36Þ

and the quark full propagator as

S≡
�
Gþ F−

Fþ G−

�
: ð37Þ

The off-diagonal elements of the self-energy are related via
Φ− ¼ γ0ðΦþÞ†γ0. Through the Schwinger-Dyson equa-
tion (33), one can express the diagonal and anomalous
propagators in terms of the free propagator and the self-
energy as

G� ¼ 
½G�
0 �−1þΣ�−Φ∓ð½G∓

0 �−1þΣ∓Þ−1Φ��−1; ð38Þ
F� ¼ ð½G∓

0 �−1 þ Σ∓Þ−1Φ�G�: ð39Þ
The diagonal elements of the quark self-energy are

calculated as [58,66]

Σ� ≃ ḡ2 ln

�
M2

k20

�
k0γ0Λ�

k ; ð40Þ

where ḡ≡ g=ð3 ffiffiffi
2

p
πÞ and M2 ≡ ð3π=4Þm2

g with the gluon
mass being m2

g ≡ Nfg2μ2=ð6π2Þ.
For the off-diagonal part of the quark self-energy, the

following ansatz for the gap matrix given the pairing
pattern in Eq. (19) is used:

Φ�ðKÞ ¼ �ΔðKÞγ5M; ð41Þ
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where M is the matrix in the color space,

Mαβ ¼ δαβ: ð42Þ

By substituting all these equations in Eqs. (38) and (39),
I obtain

G� ¼ ð½G∓
0 �−1 þ Σ∓Þ

X
e

MΛð∓eÞ
k

½k0=ZðeÞðk0Þ�2 − ½ϵðeÞk �2
; ð43Þ

F� ¼ �Δγ5M
X
e

Λð∓eÞ
k

½k0=ZðeÞðk0Þ�2 − ½ϵðeÞk �2
; ð44Þ

where the wave function renormalization is defined as

ZðþÞðk0Þ≡
�
1þ ḡ2 ln

�
M2

k20

�	−1
; ð45Þ

and Zð−Þðk0Þ ¼ 1. The quasiparticle energy is defined as

ϵðeÞk ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðek − μÞ2 þ jΔðeÞj2

q
: ð46Þ

Now, the (2, 1) component of the gap equation (35) is
considered,

ΦþðKÞ ¼ −g2
XZ

Q
γμTaFþðQÞγνTbDab

μνðK −QÞ; ð47Þ

whereDab
μν is the gluon propagator. The gluon propagator is

assumed to have the color structure Dab ∝ δab, where the
roman indices a; b;… are the color indices in the adjoint
representation. By substituting Φþ (41) and Fþ (44) in the

equation above, multiplyingM†γ5ΛðþÞ
k to both sides of the

equation, and taking the trace, I obtain

ΔðKÞ ¼ −CFg2
XZ

Q

ΔðQÞ
½q0=ZðþÞðq0Þ�2 − ½ϵðþÞ

q �2

×
tr
h
γμγ5Λð−Þ

q γνγ5ΛðþÞ
k

i
trΛðþÞ

k

DμνðK −QÞ: ð48Þ

The antiparticle contribution is neglected. Hereafter, I
suppress the superscript (þ) as there is only a quasiparticle
contribution. The color factor CF appearing in front is

CF ¼ trðTaMTaM†Þ
trðMM†Þ ¼ N2

c − 1

2Nc
¼ 4

3
: ð49Þ

This color factor is associated with the 1 channel, which is
the most attractive among the available color channels in
the one-gluon exchange interaction between qq̄, and the
available color channels are given by the decomposition

3 ⊗ 3̄ ¼ 1 ⊕ 8. Note that this is twice as large as that in the
2SC phase of the two-flavor color superconductor at
nonzero μB, in which the color structure of the gap is
antisymmetric Mαβ ¼ ϵαβ3 and the color factor is

tr½ð−TT
aÞMðMM†ÞTaM†�
trðMM†Þ ¼ Nc þ 1

2Nc
¼ 2

3
: ð50Þ

This color factor is associated with the 3̄ channel, which is
the most attractive among the available color channels in
the one-gluon exchange interaction between qq, and the
available color channels are given by the decomposi-
tion 3 ⊗ 3 ¼ 3̄ ⊕ 6.
After splitting the gluon propagator into the longitudinal

and transverse component, taking theMatsubara sum,which
is the same procedure as in the nonzero-μB case [57], the gap
equation becomes

Δk ≃ 2ḡ2
Z

δ

0

dðq − μÞ
ϵ̃q

�
Z2ðϵ̃qÞ tanh

�
ϵ̃q
2T

�

×
1

2
ln

�
b̃2μ2

jϵ̃2q − ϵ̃2kj
�
Δq

	
; ð51Þ

where ϵ̃q ≡ ZðϵqÞϵq and Δk ≡ Δðϵ̃k; kÞ. The factor b̃ is
defined in Eq. (23). Note that an additional prefactor
2 ¼ Nc − 1 arises in the isospin QCD by replacing the
color factor (50) in the baryonic QCD by (49). The solution
to this equation is elaborated on in the next subsection.

C. Solution of the gap equation

In this subsection, I clarify how the additional factor two
in Eq. (51) modifies the solution of the gap equation by
explicitly solving it. The calculation at nonzero μB pre-
sented in Refs. [57,60] (the same results can be derived
using different formalisms as in Refs. [55,58,59,67]) is
followed. In the equations below, all the modifications
arising at nonzero μI are underlined. Namely, if all the
underlined coefficients are discarded, one recovers the
calculation at nonzero μB in Ref. [60].
I solve the gap equation (51) at zero temperature to

obtain the gap function at the Fermi surface Δ� ≡ Δq¼μ.
The thermal factor becomes tanh½ϵ̃q=ð2TÞ� ¼ 1. As for
the dressed energy ϵ̃q in logarithms, I approximate as
lnðb̃μ=jϵ̃2q − ϵ̃2kjÞ ≃ lnðb̃μ=jϵ2q − ϵ2kjÞ and Zðϵ̃qÞ ≃ ZðϵqÞ,
which are valid at the leading order. Then the gap equation
becomes

Δk ≃ 2ḡ2
Z

δ

0

dðq − μÞ
ϵq

ZðϵqÞ
1

2
ln

�
b̃2μ2

jϵ2q − ϵ2kj
�
Δq; ð52Þ

In Ref. [51], Son observed that the logarithm can be
replaced by maxflnðb̃μ=ϵkÞ; lnðb̃μ=ϵqÞg at this order, so
I make a further approximation,
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1

2
ln

�
b̃2μ2

jϵ2q − ϵ2kj
�
≃ ln

�
b̃μ
ϵq

�
θðq − kÞ þ ln

�
b̃μ
ϵk

�
θðk − qÞ;

ð53Þ

and introduce the variables [57,60],

x≡ ḡ ln

�
2b̃μ

k − μþ ϵk

�
;

y≡ ḡ ln

�
2b̃μ

q − μþ ϵq

�
;

x� ≡ ḡ ln

�
2b̃μ
Δ�

�
;

x0 ≡ ḡ ln

�
b̃μ
δ

�
: ð54Þ

Since Δ� ∼ μ expð−1=ḡÞ, these variables scale in the ḡ
expansion as

x;y∼
�
Oð1Þ ðclose to the Fermi surfaceÞ;
OðḡÞ ðaway from the Fermi surfaceÞ;

x�∼OðḡÞ;
x0∼Oð1Þ: ð55Þ

The gap equation up to OðḡÞ is written in terms of these
variables as

ΔðxÞ ≃ 2x
Z

x�

x
dyð1 − 2ḡyÞΔðyÞ

þ 2

Z
x

x0

dyyð1 − 2ḡyÞΔðyÞ: ð56Þ

To determine the functional form of ΔðxÞ, I take the
second derivative of the gap equation (56) to convert the
integral equation into the differential equation,

Δ00ðxÞ ≃ −2ð1 − 2ḡxÞΔðxÞ; ð57Þ

where the 0 symbol denotes the derivative with respect to
the argument of the function. By changing the independent
variable from x to z≡ −21=3ð2ḡÞ−2=3ð1 − 2ḡxÞ, Eq. (57)
becomes the Airy equation,

Δ00ðzÞ − zΔðzÞ ¼ 0: ð58Þ

The solution to this equation is given by a linear combi-
nation of the Airy functions Ai and Bi. With arbitrary
constants C1 and C2, ΔðzÞ is expressed as

ΔðzÞ ¼ C1AiðzÞ þ C2BiðzÞ: ð59Þ

For later convenience, the Airy functions are decomposed
into the phase and modulus as

AiðxÞ¼MðjzjÞcosθðjzjÞ; BiðzÞ¼MðjzjÞsinθðjzjÞ;

MðjzjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ai2ðzÞþBi2ðzÞ

q
; θðjzjÞ ¼ arctan

�
AiðzÞ
BiðzÞ

�
;

ð60Þ

and also for the derivative of the Airy functions, I
decompose as

Ai0ðxÞ¼NðjzjÞcosφðjzjÞ; Bi0ðzÞ¼NðjzjÞsinφðjzjÞ;

NðjzjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ai02ðzÞþBi02ðzÞ

q
; φðjzjÞ ¼ arctan

�
Ai0ðzÞ
Bi0ðzÞ

�
;

ð61Þ

The coefficients C1 and C2 are fixed by the boundary
conditions Δðz�Þ ¼ Δ� and Δ0ðz�Þ ¼ 0, where z� ¼
−21=3ð2ḡÞ−2=3ð1 − 2ḡx�Þ. The solution ΔðzÞ and its deriva-
tive are

ΔðzÞ ¼ Δ�
MðjzjÞ
Mðjz�jÞ

sin ½φðjz�jÞ − θðjzjÞ�
sin ½φðjz�jÞ − θðjz�jÞ�

; ð62Þ

Δ0ðzÞ ¼ Δ�
NðjzjÞ
Mðjz�jÞ

sin ½φðjz�jÞ − φðjzjÞ�
sin ½φðjz�jÞ − θðjz�jÞ�

: ð63Þ

Now, the functional form of ΔðzÞ has been determined.
For the remaining part, the undetermined constantΔ� needs
to be evaluated. To this end, set x ¼ x� in Eq. (56)
and change the integration variable as y → w≡
−21=3ð2ḡÞ−2=3ð1 − 2ḡyÞ, then I arrive at

Δðz�Þ ¼
Z

z0

z�
dw½wþ 21=3ð2ḡÞ−2=3�wΔðwÞ: ð64Þ

The function wΔðwÞ in the integral can be replaced with
Δ00ðwÞ using the Airy equation (58). Then, the integration
by part gives the following relation:



z0 þ 21=3ð2ḡÞ−2=3�Δ0ðz0Þ − Δðz0Þ ¼ 0; ð65Þ

where z0 ¼ −21=3ð2ḡÞ−2=3ð1 − 2ḡx0Þ. By substituting
Eqs. (62) and (63) into the above equation, the following
equation is obtained:

21=3ð2ḡÞ1=3x0 sin ½φðjz�jÞ − φðjz0jÞ�

−
Mðjz0jÞ
Nðjz0jÞ

cos

�
φðjz�jÞ − θðjz0jÞ −

π

2

	
¼ 0: ð66Þ

I expand this equation up to the next-to-leading order in
terms of ḡ. In the above equation, the following asymptotic
formulas, which are valid at the weak coupling,
jzj ∼ ḡ−2=3 ≫ 1, are used:
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φðjzjÞ≃3π

4
−
2

3
jzj3=2− 7

48
jzj−3=2þOðjzj−9=2Þ

≃−
ffiffiffi
2

p

3ḡ
þ3π

4
þ

ffiffiffi
2

p
x− ḡ

 ffiffiffi
2

p
x2

2
þ 7

24
ffiffiffi
2

p
!
þOðḡ2Þ;

ð67Þ

θðjzjÞ ≃ π

4
−
2

3
jzj3=2 þ 5

48
jzj−3=2 þOðjzj−9=2Þ

≃ −
ffiffiffi
2

p

3ḡ
þ π

4
þ

ffiffiffi
2

p
x − ḡ

 ffiffiffi
2

p
x2

2
−

5

24
ffiffiffi
2

p
!
þOðḡ2Þ;

ð68Þ

MðjzjÞ
NðjzjÞ ≃ jzj−1=2 þOðjzj−7=2Þ

≃ 2−1=6ð2ḡÞ1=3½1þ ḡxþOðḡ2Þ�; ð69Þ

giving

21=3ð2ḡÞ
(
x0 sinð

ffiffiffi
2

p
x�Þ −

1ffiffiffi
2

p
"
cos
� ffiffiffi

2
p

x�
�

þ ḡ
2

 ffiffiffi
2

p
x2� þ

2
ffiffiffi
2

p
x0

ḡ
þ 1ffiffiffi

2
p
!
sin
� ffiffiffi

2
p

x�
�#

þOðḡ2Þ
)

¼ 0: ð70Þ

I note that the fact that x0 is one order higher than x� based
on the scaling behavior (55) is used. Also, x0 is an arbitrary
scale and far from the Fermi surface, so it is expected that
x0 dependence cancels in the final expression. Indeed, the
x0-dependence terms cancel in the equation above, and
results become independent of x0 up to OðḡÞ in the
perturbative expansion. From this relation,

ffiffiffi
2

p
x� ≃ arctan

"
−

2

ḡð1= ffiffiffi
2

p þ ffiffiffi
2

p
x2�Þ

#
; ð71Þ

and its expansion owing to the relation arctanð−1=xÞ ≃
π=2þ xþOðx3Þ for jxj ≪ 1 yields

ffiffiffi
2

p
x� ≃

π

2
þ ḡ
2

 ffiffiffi
2

p
x2� þ

1ffiffiffi
2

p
!
: ð72Þ

By solving this quadratic equation up to OðḡÞ, and using
the relation x� ≡ ḡ lnð2b̃μ=Δ�Þ, I finally arrive at

Δ� ≃ 2b̃μ exp

"
−

π

2
ffiffiffi
2

p
ḡ
−
1

2

�
1

2
þ π2

8

�
þOðḡ2Þ

#
: ð73Þ

IV. PAIRING GAP CONTRIBUTION
TO THE EQUATION OF STATE

In this section, the condensation energy of the BCS state
up to OðgÞ is calculated and the magnitude of such a
correction is numerically evaluated and compared with the
lattice QCD data.

A. Calculation of the condensation energy

The physical pressure is obtained as the value of Γ½S� at
its extremum. The stationarity condition implies the rela-
tion (34), and formally this relation can be rewritten as
Γ2½S� ¼ 1

2
trðΣSÞ. By substituting this relation into the

expression of Γ½S� (32) with the use of the Schwinger-
Dyson equation, the pressure is obtained as

P ¼ tr ln S−1 −
1

2
trð1 − S−10 SÞ: ð74Þ

By substituting the bare quark propagators (28) and (29),
and the full quark propagators (37), (43), and (44) into the
above expression, and then by taking the Matsubara sum,
the pressure is obtained (the detailed derivation is presented
in Sec. 2.4 in Ref. [68]),

PðΔÞ ¼ 2Nc

X
e¼�

Z
d3k
ð2πÞ3

"
ϵ̃ðeÞk þ 2T ln

�
1þ e−ϵ̃

ðeÞ
k =T
�

− Z2ðϵ̃ðeÞk Þ jΔj
2

2ϵ̃ðeÞk

tanh

 
ϵ̃ðeÞk

2T

!#
: ð75Þ

At zero temperature, the pressure becomes

PðΔÞ ¼ 2Nc

Z
d3k
ð2πÞ3

�
ϵ̃k − Z2ðϵ̃kÞ

Δ2

2ϵ̃k

�
; ð76Þ

where I suppressed the superscript (þ) of the dressed
quasiparticle energy ϵ̃k since only the (þ) component has
the contribution from the pairing gap Δ; the (−) component
is the same as in the unpaired vacuum. Henceforth, the
logarithm can be approximated as Zðϵ̃kÞ ≃ ZðϵkÞ so that

PðΔÞ ≃ 2Nc

Z
d3k
ð2πÞ3 ZðϵkÞ

�
ϵk −

Δ2

2ϵk

�
: ð77Þ

The condensation energy is defined as

δP≡ PðΔÞ − PðΔ ¼ 0Þ: ð78Þ

Now, the integral is limited around the Fermi surface
−δ ≤ k − μ ≤ δ, and the momentum dependence of the
gap Δ is neglected. Around the Fermi surface, the density
of states is μ2=ð2π2Þ, and the integration parity is used to
limit the range of integration to ½0; δ�. Then, the condensa-
tion energy is reduced to
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δP¼ 2Nc
μ2

π2

Z
δ

0

dðk−μÞ
�
ZðϵkÞ

�
ϵk−

Δ2

2ϵk

�
−Zðϵð0Þk Þϵð0Þk

	
;

ð79Þ

where ϵð0Þk ¼ jk−μj is the quasiparticle energy in the unpaired
vacuum. By expanding ZðϵÞ ≃ 1þ 2ḡ2 ln½ϵk=ðb̃μÞ� þOðḡ2Þ
and defining ξ≡ k − μ,

δP ¼ 2Nc
μ2

π2

Z
δ

0

dξ

��
1þ 2ḡ2 ln

�
ϵξ
b̃μ

�	�
ϵξ −

Δ2

2ϵξ

�

−
�
1þ 2ḡ2 ln

�
ξ

b̃μ

�	
ξ


: ð80Þ

The leading-order contribution to δP in the expansion in
terms of the coupling constant g is

δPLO ≡ 2Nc
μ2

π2

Z
δ

0

dξ

�
ϵξ −

Δ2

2ϵξ
− ξ

�

≃ Nc
μ2Δ2

2π2
; ð81Þ

where in the last line, only the term that is leading in the
expansion in terms of Δ=δ is kept.
The next-to-leading-order contribution to δP of OðgÞ is

δPNLO≡4ḡ2Nc
μ2

π2

Z
δ

0

dξ

�
ln

�
ϵξ
b̃μ

��
ϵξ−

Δ2

2ϵξ

�
− ln

�
ξ

b̃μ

�
ξ

	
;

≃ ḡ2Nc
μ2Δ2

π2

�
1

2
þ2 ln

�
δ

b̃μ

�
− ln

�
Δ
2b̃μ

�	
: ð82Þ

Again, in the last line, the term that is leading in the
expansion in terms of Δ=δ is kept, which is found to be
proportional to Δ2. Among the terms in the square bracket
in the last line, only the last term − ln½Δ=ð2b̃μÞ� is kept.
From the scaling in Eq. (55), this is the only term at Oð1Þ
and the other terms are OðgÞ. This is because of Δ ∼ e−1=g,
so lnΔ ∼ 1=g reduces the power of g by one. One can also
think of this as absorbing the ∼ ln δ term into the definition
of Δ2 in the prefactor since Δ has an implicit δ-dependence
neglected in the derivation of Δ above; although it is
not confirmed whether the δ-dependence in Δ and the
∼ ln δ-term match or not. Therefore, the NLO contribution
at OðgÞ to δP is

δPNLO ≃ −ḡ2Nc
μ2Δ2

π2
ln

�
Δ
2b̃μ

�
þOðḡ2Þ;

¼ gNc
μ2Δ2

12π2
þOðg2Þ: ð83Þ

Summarizing the result, the condensation energy δP up
to OðgÞ is

δP ¼ Nc

2π2
μ2Δ2

�
1þ g

6

�
: ð84Þ

I will plot the numerical value of this term in the next
subsection.

B. Numerical results

In Fig. 1, the isospin matter pressure normalized with the
ideal gas value (12) is plotted. At μ ∼ 1 GeV (equivalently,
μI ∼ 2 GeV), it is expected that the pQCD works since the
typical interaction scale in the system is large enough
compared to the QCD scale ΛMS. Meanwhile, the lattice
QCD calculation provides the EOS up to μI ∼ 3 GeV [34].
As one can see in Fig. 1, there is a discrepancy between
these two calculations.
On the one hand, the pQCD calculation predicts P=Pid ≃

1–2αs=π þOðα2sÞ < 1 and an increase in P=Pid with
increasing μI (the green band in Fig. 1). For the pQCD
calculation Eq. (8) is used and the scale variation uncer-
tainty is evaluated by taking 1=2 ≤ Λ̄=μI ≤ 2. The lines in
the green band from the bottom to the top correspond to the
value Λ̄=μI ¼ 1=2, 1, and 2.
On the other hand, the lattice QCD data [34] dictates

P=Pid > 1 and P=Pid decreases with increasing μI (the blue
and orange bands in Fig. 1). The blue and orange shaded
bands marked with Lattice QCD A and Lattice QCD B are
the results sampled from different ensembles; the lattice
geometry is L3 × T ¼ 483 × 96 and 643 × 128 for the
ensemble A and B, respectively.
As explained in Sec. II B, there can be a difference of

Oðα3sÞ between these two within the perturbation theory;
however, the discrepancy is clearly larger than Oðα3sÞ.

FIG. 1. Comparison of the pQCD pressure with the lattice QCD
data. The bands for the pQCD results correspond to uncertainties
arising from the ambiguity in the renormalization scale Λ̄, and
dotted lines in the middle denote the common choice Λ̄ ¼ μI . The
pressure is normalized by the ideal-quark-gas value (12).
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Now, I add the condensation energy of the BCS state
δP (84) to the pQCD pressure. The red lines in the figure
show the perturbative estimate with the Cooper pairing
taken into account. For the gap function, the expression in
Eq. (26) is used. The red lines from the bottom to the top
correspond to thevalues Λ̄=μI ¼ 2, 1, and 1=2. Note that this
is in reverse order of the pQCD pressure without the pairing
correction. The smaller Λ̄=μI corresponds to the larger value
of αs, and the gap is large for the larger value of αs.
One can see that the discrepancy is resolved by adding

the condensation energy. I stress that this result is without
any fine-tuning, and the only ambiguity in the calculation is
the choice of the renormalization scale Λ̄.
In Fig. 2, the relative magnitudes of different contribu-

tions to the pressure is compared. Note that the x-axis is the
quark chemical potential μ, not the isospin chemical
potential μI . The perturbative corrections to P at each
order, NLO (10) and NNLO (11) relative to the ideal quark
gas pressure Pid (12) are shown. Oðα3sÞ contributions with
α3sPid mimicking the higher-order corrections are also
plotted as the full contribution at Oðα3sÞ is as yet incom-
plete [7]. This is the order of magnitude expected for the
difference between the phase-quenched theory and the
original theory because this difference does not contain
any logarithmically enhanced contribution ∼αs lnðαsÞ as
reported in Ref. [39].
The condensation energy (84) is plotted by the red lines.

The condensation energy contribution surpasses the
dominant corrections in the pQCD at the NLO around
μ ∼ 1–5 GeV, depending on the renormalization scale.
Note that the scale variation uncertainty becomes larger
for pQCD with the pairing contribution.
I also overlay the pairing gap contribution diquark gap in

the 2SC phase in Fig. 2. The expression of the 2SC gap is

Δ2SC ¼ b̃μ exp

�
−
π2 þ 4

8

�
exp

�
−

3π2ffiffiffi
2

p
g

�
: ð85Þ

As expected, this contribution is exponentially suppressed
and does not contribute to bulk thermodynamics.

V. QUARK-HADRON CROSSOVER

The results presented above may also suggest the quark-
hadron crossover from the BEC phase to the BCS phase. At
the equation level, one can see that the pion condensate in
the BEC phase changes into a BCS condensate.
At low density, from the chiral perturbation, the leading

contribution to the pressure is ∝ μ2I , and it reads [42,69],

PI ⊃
f2π
2
μ2I : ð86Þ

I call it the BEC term. From the one-loop correction in the
chiral perturbation theory, the term ∝ μ4I arises with a small

prefactor ∼1=ð4πÞ2 [69]. As the density becomes larger, the
μ4I term becomes more relevant compared to the μ2I term.
From the calculations above, even at μI ≃ 2 GeV, a

substantial contribution from the pairing in the BCS regime
is found, which has the form

PI ⊃
NcΔ2

2π2

�
1þ g

6

��
μI
2

�
2

: ð87Þ

I call it the BCS term. Although there is a μ dependence in
Δ, it varies slowly with increasing μ, so this μ dependence
is mild, and Δ can be regarded roughly as a constant.
Therefore, it has the same structure as the BEC term (86);
namely, the BCS term can be rewritten as ∝ f2Δμ

2
I =2 by

defining the prefactor fΔ as

f2Δ ≃ Nc
Δ2

4π2

�
1þ g

6

�
: ð88Þ

In the pQCD, there also arises a term with ∝ μ4I (12).
In Fig. 3, the relative magnitude of the prefactor of the

BCS term, fΔ to the pion decay constant fπ is shown,
which is the prefactor of the BEC term. I find that the value
of fΔ stays close to fπ and varies slowly with increasing μI .
Note that the band in Fig. 3 corresponds to the scale-
variation uncertainty.
It may also be interesting to observe the behavior of these

terms in the large-Nc limit as discussed in Refs. [42] (see
also Refs. [70,71]). At small μI, the BEC term (86) scales as
OðNcÞ since f2π ∼OðNcÞ. At large μI , the bulk thermo-
dynamics is dominated by Pid ¼ NcNfμ

4=ð12π2Þ (12),
which also scales as OðNcÞ. Therefore, the BEC and
BCS regime is continuous in the Nc scaling, which is

FIG. 2. The magnitude of the perturbative and pairing correc-
tions to P relative to the ideal quark gas value Pid. The central line
corresponds to the renormalization scale Λ̄ ¼ 2μ, and the band
around it represents Λ ¼ μ and 4μ. Note that the horizontal axis is
quark chemical potential μ.
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similar to that at nonzero μB [72] although the physics
origin at small chemical potential is different; in the
nonzero μI case, the Nc dependence arises from the chiral
symmetry breaking through the Gell-Mann–Oakes–Renner
relation, while in the nonzero μB case, it arises from the
interaction among baryons.
Now I turn to the large-Nc limit of the BCS term. As

explained in the following it scales differently from the other
terms in the pressure. Unlike the BCS term in the color-
superconducting phase, which is suppressed in the limit
Nc → ∞ with fixed ’t Hooft coupling λ ¼ g2Nc [73], the
BCS term at nonzero μI is nonvanishing in the large-Nc limit
as this is a color singlet. The naive estimate of the gap in the
large-Nc by taking this limit in the expression (26) gives

Δ ∼ μ

�
Nc

λ

�
5=2

exp

�
−

ffiffiffi
6

p
π2ffiffiffi
λ

p
�
: ð89Þ

With this, the BCS term (87) scales asOðN6
cÞ although it is

parametrically small compared to the bulk μ4-term for a
small value of λ. The prefactor ðNc=λÞ5=2 in the above
expression arises from the Debye screening and the Landau
damping effects in the gluon exchange. Therefore, the BCS
term (87) in the large-Nc limit scales differently from the
pion BEC term (86) as well as the bulk μ4 term.
However, these effects responsible for the large prefactor

ðNc=λÞ5=2 are suppressed by OðN−1=2
c Þ in the large-Nc

limit, therefore the naive estimate above may be modified
and gives the consistent Nc counting also for the BCS term.
I will justify this by the hand-waving estimate. The gap
equation takes the form [45],

Δ ∝ g2
N2

c − 1

2Nc

Z
dξ

Δffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ Δ2

p dθ
μ2

θμ2 þ δ2
; ð90Þ

where θ is the angle between the momenta k and q [see
Eq. (47) for definition] and δ is a cutoff scale for the
collinear divergence. At finite Nc, δ arises from the Landau
damping δ ∼ ðΔm2

gÞ1=3. Here, if we assume that the con-
finement persists at large Nc, which is the fundamental
assumption in quarkyonic matter [72], δ can be taken as the
QCD scale ΛQCD, which is the characteristic scale for
the confinement. Then, the solution of the gap equation
becomes Δ=μ ∼ expð−ΛQCD=λÞ without the N5=2

c factor in
front. Even though the parametric dependence of the gap on
λ is different, it still survives in the large-Nc limit. This will
give the same large-Nc scaling for the BCS term as the BEC
term, so the quark-hadron crossover is implied from the
large-Nc limit.
I also note that the gap parameter here wins over the gap

of the chiral density wave, such as of the Deryagin,
Grigoriev, and Rubakov type [74–76] (see also [77]). It
is natural to expect so as the chiral density wave uses only
the part of the phase space near the Fermi surface. The
detailed analysis will be reported elsewhere.

VI. SUMMARY AND DISCUSSION

In this work, I studied QCD at nonzero isospin chemical
potential μI ≠ 0 as a specific example of the phase-
quenched theory. I calculated the gap parameter and the
condensation energy associated with it up to the next-to-
leading order in the expansion in terms of the coupling
constant g. I found an exponential enhancement in this
contribution, and the inclusion of this nonperturbative
correction to the equation of state explains the discrepancy
between the lattice QCD and naive pQCD results without
any fine-tuning, as shown in Fig. 1.
This implies that when extracting the perturbative

coefficients of Oðα4sÞ from the phase-quenched lattice
simulation, one needs to take into account the nonpertur-
bative correction arising from the Cooper pairing. In the
physical sense, the effect of the phase quenching of the
fermion determinant in the partition function is interpreted
as an enhancement in the pairing gap (it is evident in
Fig. 2). This correction cannot be treated within the
perturbation theory explained in Sec. II B. Each fermion
determinant in the square root of Eq. (5) corresponds to
quarks with positive and negative chemical potentials, and
these quarks are treated separately in the perturbation
theory. However, in the actual lattice QCD calculation,
there is a large contribution to the thermodynamics from the
mixing between these quarks with positive and negative
chemical potentials.
This can be exemplified clearly by relabeling the quarks

with positive and negative chemical potentials in Eq. (5) as
u and d quarks, respectively. Then, the Cooper pair
condensation hd̄γ5ui mixes u and d quarks, and one can
have a diagram with u and d quarks running inside already
at a one-loop level. One can generalize the results in this

FIG. 3. Relative magnitude of the prefactor of the BCS term
compared to that of the BEC term. The vertical dashed line is the
value of the pion decay constant in the vacuum, fπ ≃ 93 MeV.
The band shows the scale-variation uncertainty.
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paper from Nf ¼ 2 to even Nf straightforwardly. For odd
Nf, the generalization is more nontrivial, namely, the gap
equation and its solution presented in Sec. III should be
modified to include an additional factor of 1=2 in Eq. (13)
in the perturbation theory. It would also be interesting to see
the effect of flavor mixing of different origins, for example
from the instanton-induced interaction (see, e.g., [78]).
To the best of my knowledge, this is the first cross-

validation of the perturbative QCD at large density con-
fronted with the lattice simulation. This has several
implications and impacts on QCD at nonzero baryon
chemical potential, and possibly on neutron star physics.
I also verified that the calculation of the pairing gap as a

solution of the gap equation derived in the perturbation
theory is reliable in the regime where the perturbative
expansion of the partition function is valid. It is highly
plausible that the evaluation of the pairing gap is reliable as
well in QCD at nonzero baryon chemical potential sug-
gesting that if the weak-coupling calculation of the pairing
gap is still valid around μ ∼ 1 GeV, the pairing gap at
nonzero baryon chemical potential is exponentially small
compared to the isospin-QCD counterpart. As a conse-
quence, this fact implies that the color-superconducting gap
does not affect the bulk properties such as the equation of
state at least in the perturbative regime. It further implies
that the behavior of the trace anomaly introduced in
Ref. [79] is very different between QCD at nonzero μI
and μB. Namely, the former case shows the large negative
value for the trace anomaly as shown in Ref. [34] (see also
Ref. [46]), which is mainly caused by the pairing gap term

in thermodynamics, while in the latter case, the trace
anomaly can still be positive owing to the absence of
the large pairing gap term as conjectured in Ref. [79].
As a future extension of this work, changing the number

of colors Nc is an interesting direction, particularly taking
Nc ¼ 2 and Nc → ∞. In two-color QCD, one can use
technology very similar to the present work to calculate the
equation of state. Two-color QCD at nonzero chemical
potential is a theory free from sign problem, so one can
confront the lattice data (to date, there are several lattice
equations of state available, e.g., [80–84]). One may also
expect the large diquark gap as well because the repre-
sentations 2 and 2̄ are equivalent in SU(2) due to
the pseudoreality. As I mentioned partially in the text,
the expression for the pairing gap may be different in the
large-Nc limit and may hint at the existence of a phase
transition as a function of Nc. This would also deserve
further investigation.
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