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We calculate the mass spectrum of the S-wave fully heavy tetraquark systems QQQ̄Q̄ðQ ¼ c; bÞ with
both normal ðJPC ¼ 0þþ; 1þ−; 2þþÞ and exotic ðJPC ¼ 0þ−; 1þþ; 2þ−Þ C-parities using three different
quark potential models (AL1, AP1, BGS). The exotic C-parity systems refer to the ones that cannot be
composed of two S-wave ground heavy quarkonia. We incorporate the molecular dimeson and compact
diquark-antidiquark spatial correlations simultaneously, thereby discerning the actual configurations of the
states. We employ the Gaussian expansion method to solve the four-body Schrödinger equation, and the
complex scaling method to identify the resonant states. The mass spectra in three different models
qualitatively agree with each other. We obtain several resonant states with JPC ¼ 0þþ; 1þ−; 2þþ; 1þþ in the
mass region (6.92,7.30) GeV, some of which are good candidates of the experimentally observed Xð6900Þ
and Xð7200Þ. We also obtain several exotic C-parity zero-width states with JPC ¼ 0þ− and 2þ−. These
zero-width states have no corresponding S-wave diquarkonium threshold and can only decay strongly to
final states with P-wave quarkonia. With the notation T4Q;JðCÞðMÞ, we deduce from the root mean square
radii that the Xð7200Þ candidates T4c;0ðþÞð7173Þ; T4c;2ðþÞð7214Þ and the state T4c;1ð−Þð7191Þ look like
molecular states although most of the resonant and zero-width states are compact states.

DOI: 10.1103/PhysRevD.109.054034

I. INTRODUCTION

Since the discovery of Xð3872Þ [1], numerous candi-
dates for multiquark states have been observed in experi-
ments. The multiquark states exhibit more intricate color
structures in forming color-singlet states than the conven-
tional hadrons. Investigating these states can enhance our
understanding of quantum chromodynamics (QCD). One
can find more details in recent reviews [2–12].
Among the myriad multiquark systems, the fully heavy

tetraquark states QQQ̄Q̄ðQ ¼ b; cÞ stand out as relatively
pure and clear systems, unaffected by unquenched dynamics
such as the creation and annihilation of light qq̄ðq ¼ u; d; sÞ
pairs. Recently, significant progress has been made in the
search for fully heavy tetraquark states. The LHCb
Collaboration initially discovered a fully charmed tetraquark

candidate Xð6900Þ [13]. Subsequently, both the CMS [14]
and ATLAS [15] collaborations independently verified
the existence of the Xð6900Þ state and reported additional
fully charmed tetraquark resonant states. Specifically,
the CMS reported the observation of Xð6600Þ and the
evidence of Xð7200Þ [14], while the ATLAS reported the
evidence of Xð6400Þ, Xð6600Þ, and Xð7200Þ [15].
Theoretical studies on fully heavy tetraquark states
began long before the experiments, making predictions
of their existence [16–28]. After recent discoveries,
many theoretical efforts have been made to understand
the experimental results [29–79]. The interpretations
of these states include compact tetraquark states
[29–32,36,41,48–50,52,53,56–58,60,61,63,69,72–74,78],
dynamical effects in dicharmonium rescattering
[37,38,44,45,54,62,65–67,75], hybrid states [46], etc.
Further details can be found in recent reviews [11,12].
The nature of fully charmed tetraquark states remains

controversial. Currently, few theoretical works consider
compact diquark-antidiquark and molecular diquarkonium
spatial configurations simultaneously and perform com-
prehensive four-body dynamical calculations. In our pre-
vious studies [80–82], we incorporated both dimeson and
diquark-antidiquark spatial configurations, employing
various quark models and few-body methods to conduct
benchmark calculations for tetraquark bound states.
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We have illustrated that the Gaussian expansion method
(GEM) is highly efficient in exploring tetraquark states.
Our results indicate that there are no bound states in
the fully heavy tetraquark systems. In Refs. [70,76], the
authors utilized the GEM to conduct four-body dynamic
calculations for the fully charmed tetraquark systems.
Furthermore, they employed the complex scaling method
(CSM) [83–85] to distinguish resonant states from dichar-
monium scattering states, yielding convincing and in-
triguing results. However, it is noteworthy that the
discussion in Refs. [70,76] is limited to fully charmed
tetraquark states, and does not include an exploration of
fully bottomed tetraquark states. Furthermore, the discus-
sion excludes the systems with exotic C-parity ðJPC ¼
0þ−; 1þþ; 2þ−Þ, which refer to the ones that cannot be
composed of two S-wave ground heavy quarkonia.
In this study, we aim to investigate the S-wave fully

heavy tetraquark QQQ̄ Q̄ðQ ¼ b; cÞ resonances with all
possible quantum numbers, employing a framework that
has been used to investigate Qsq̄ q̄ states efficiently [86].
We employ the GEM to solve the four-body Schrödinger
equation, considering both compact diquark-antidiquark
and molecular diquarkonium spatial configurations. We
utilize the CSM to distinguish resonant states from diquar-
konium scattering states. Regarding the (anti)quark-
(anti)quark interactions, we compare three quark potential
models with well-determined parameters and do not intro-
duce any new free parameters. Additionally, we apply the
approach proposed in our previous work [86] to analyze the
spatial structures of the tetraquark states, which can clearly
distinguish between the compact tetraquark states and the
molecular states.
This paper is organized as follows. In Sec. II, we provide

an introduction to the theoretical framework, including
(anti)quark-(anti)quark interactions, calculation methods,
and the approach to discerning between molecular and
compact tetraquark configurations. In Sec. III, we com-
prehensively discuss our numerical results, exploring the
masses, widths, decays, and spatial structures of the fully
heavy tetraquark states. We also explore the properties of
the states with exotic C-parity. Finally, we summarize our
findings in Sec. IV.

II. THEORETICAL FRAMEWORK

A. Hamiltonian

In the center-of-mass frame, the nonrelativistic
Hamiltonian for a tetraquark system reads

H ¼
X4
i¼1

�
mi þ

p2
i

2mi

�
þ

X4
i<j¼1

Vij; ð1Þ

where mi and pi are the mass and momentum of the
(anti)quark i, respectively. Vij represents the two-body
interaction between the (anti)quark pair ðijÞ. In this study,

we adopt three different quark potential models, namely the
AL1 and AP1 potentials proposed in Refs. [87,88] and the
potential used to study charmonia in Ref. [89] (denoted as
the BGS potential hereafter). These three potentials contain
the one-gluon-exchange interaction and quark confinement
interaction, and can be written as

Vij ¼ −
3

16
λi · λj

�
−

κ

rij
þ λrpij − Λ

þ 8πκ0

3mimj

exp ð−r2ij=r20Þ
π3=2r30

Si · Sj

�
; ð2Þ

where rij is the distance between (anti)quark i and j, λi and
Si are the SU(3) color Gell-Mann matrix and the spin
operator acting on (anti)quark i. The first term in the
potential is referred to as the color electric term, and the last
term is known as the color magnetic term. In the conven-
tional meson and baryon systems, the color factor λi · λj is
always negative and induces a confining interaction, thus
all eigenstates of the Hamiltonian must be bound states.
However, scattering states of two color-singlet clusters and
possible resonant states are allowed in the tetraquark
systems, since they have richer inner color structures than
the conventional hadrons, and the color factor might take
a zero or positive value. The parameters of the models
are taken from Refs. [88,89] and listed in Table I. The
parameters for the AL1 and AP1 potential were determined
by fitting the meson spectra across all flavor sectors, while
those for the BGS potential were determined by the
charmonium spectra. The theoretical masses of the char-
monia and bottomonia as well as their root-mean-square
(rms) radii calculated from the AP1 potential are listed in
Table II. It can be seen that all three potential models can
give a satisfactory description of the meson spectra.

B. Calculation methods

We use the complex scaling method (CSM) to obtain
possible bound and resonant states simultaneously, and we
apply the Gaussian expansion method (GEM) to solve the

TABLE I. The parameters in the AL1, AP1 and BGS quark
potential models.

Parameters AL1 [88] AP1 [88] BGS [89]

p 1 2
3

1
κ 0.5069 0.4242 0.7281
λ½GeVpþ1� 0.1653 0.3898 0.1425
ΛðGeVÞ 0.8321 1.1313 0
κ0 1.8609 1.8025 0.7281
mcðGeVÞ 1.8360 1.8190 1.4794
mbðGeVÞ 5.227 5.206 � � �
r0cðGeV−1Þ 1.4478 1.2583 0.9136
r0bðGeV−1Þ 1.1497 0.8928 � � �
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complex-scaled four-body Schrödinger equation. We also
introduce a method to determine the C-parity of the neutral
tetraquark states by decomposing the Hilbert space.
In the CSM [83–85], the coordinate r and its conjugate

momentum p are transformed as

UðθÞr ¼ reiθ; UðθÞp ¼ pe−iθ: ð3Þ

Under such a transformation, the complex-scaled
Hamiltonian is written as

HðθÞ ¼
X4
i¼1

�
mi þ

p2
i e

−2iθ

2mi

�
þ

X4
i<j¼1

VijðrijeiθÞ; ð4Þ

which is no longer hermitian and has complex eigenvalues
EðθÞ. According to the ABC theorem [83,84], the energies
of the bound states, resonant states and scattering states
can be obtained as the eigenvalues of HðθÞ simultaneously.
The bound states (zero-width states) lie on the negative real
axis in the energy plane and are not changed by the
complex scaling. The resonant states with mass MR and
width ΓR can be detected at ER ¼ MR − iΓR=2 when
2θ > jArgðERÞj. The scattering states line up along beams
starting from threshold energies and rotated clockwise by
2θ from the positive real axis.
To solve the complex-scaled Schrödinger equation, we

apply the GEM [91] and expand the wave functions of the
S-wave fully heavy tetraquark states with total angular
momentum J and C-parity C as

ΨJ
CðθÞ ¼ A

X
jac

X
α;ni

CðjacÞ
α;ni ðθÞ½χJαΦðjacÞ

n1;n2;n3 �C: ð5Þ

where A is the antisymmetric operator of identical par-
ticles. χJα is the color-spin wave function, given by

χJ
3̄c⊗3c;s1;s2

¼ ½ðQ1Q2Þs13̄cðQ̄3Q̄4Þs23c �J1c ;
χJ
6c⊗6̄c;s1;s2

¼ ½ðQ1Q2Þs16cðQ̄3Q̄4Þs26̄c �
J
1c
; ð6Þ

for all possible combinations of s1; s2; J. It should be
emphasized that one has the flexibility to use either the
diquark-antidiquark type color-spin basis in Eq. (6) or the
dimeson type color-spin basis, which can be written as

χJ1c⊗1c;s1;s2
¼ ½ðQ1Q̄3Þs11cðQ2Q̄4Þs21c �1c ;

χJ8c⊗8c;s1;s2
¼ ½ðQ1Q̄3Þs18cðQ2Q̄4Þs28c �1c : ð7Þ

These two sets of bases are both complete and the trans-
formation between them are shown in Appendix A. It has
been demonstrated that the use of different discrete basis
functions yields negligible differences once they are com-

plete [82]. The S-wave spatial wave function ΦðjacÞ
n1;n2;n3 is

written as

ΦðjacÞ
n1;n2;n3 ¼ ϕn1ðrjacÞϕn2ðλjacÞϕn3ðρjacÞ ð8Þ

where ðjacÞ ¼ ðaÞ; ðbÞ; ðcÞ denotes three sets of spatial
configurations (dimeson and diquark-antidiquark) consid-
ered in our calculations, and rjac; λjac, ρjac are three
independent Jacobian coordinates in configuration (jac),
as shown in Fig. 1. ϕniðrÞ takes the Gaussian form,

ϕniðrÞ ¼ Nnie
−νni r

2

;

νni ¼ ν1γ
ni−1; ð9Þ

where Nni is the normalization factor. Finally, the expan-

sion coefficients CðjacÞ
α;ni ðθÞ are determined by solving the

energy eigenvalue equation,

HðθÞΨJ
CðθÞ ¼ EðθÞΨJ

CðθÞ: ð10Þ

For the fully heavy neutral tetraquark system ðQQQ̄ Q̄Þ,
the eigenstates of the Hamiltonian have definite C-parity C.
To determine the C-parity of the obtained states, we
decompose the Hilbert space H into Hþ and H−, where

TABLE II. The masses (in MeV) of cc̄ and bb̄ quarkonia in
three different quark models, compared with the experimental
results taken from Ref. [90]. The rms radii (in fm) of the
quarkonia in the AP1 potential are listed in the last column.

Mesons mExp: mAL1 mAP1 mBGS rrms
AP1

ηc 2984 3006 2982 2982 0.35
ηcð2SÞ 3638 3608 3605 3630 0.78
ηcð3SÞ � � � 4014 3986 4043 1.15
J=ψ 3097 3102 3102 3090 0.40
ψð2SÞ 3686 3641 3645 3672 0.81
ψð3SÞ 4039 4036 4011 4072 1.17
ηb 9399 9424 9401 � � � 0.20
ηbð2SÞ 9999 10003 10000 � � � 0.48
ηbð3SÞ � � � 10329 10326 � � � 0.73
ϒ 9460 9462 9461 � � � 0.21
ϒð2SÞ 10023 10012 10014 � � � 0.49
ϒð3SÞ 10355 10335 10335 � � � 0.74

(a) (b) (c)

FIG. 1. The Jacobian coordinates for two types of spatial
configurations: (a), (b) for the dimeson configurations, and
(c) for the diquark-antidiquark configuration.
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H� represents the subspace with C ¼ �1. Under charge
conjugation, the basis functions with ðjacÞ ¼ ðaÞ are trans-
formed as

½ðQ1Q2Þs1xcðQ̄3Q̄4Þs2x̄c �J1cΦ
ðaÞ
n1;n2;n3

→
C ½ðQ̄1Q̄2Þs1x̄cðQ3Q4Þs2xc �J1cΦ

ðaÞ
n1;n2;n3

¼ ð−1Þs1þs2−J½ðQ3Q4Þs2xcðQ̄1Q̄2Þs1x̄c �J1cΦ
ðaÞ
n1;n2;n3

¼ ð−1Þs1þs2−J½ðQ1Q2Þs2xcðQ̄3Q̄4Þs1x̄c �J1cΦ
ðaÞ
n1;n2;n3 : ð11Þ

In the third line, we exchange ½Q3Q4�s2xc and ½Q̄1Q̄2�s1x̄c in the
color-spin wave function and the factor ð−1Þs1þs2−J arises
from the Clebsch–Gordan coefficient. In the last line the
particle indices 1 ↔ 3; 2 ↔ 4 are exchanged to rewrite the
basis function to its original form. The transformation
behavior of the basis functions with ðjacÞ ¼ ðbÞ; ðcÞ can be
obtained similarly,

½ðQ1Q2Þs1xcðQ̄3Q̄4Þs2x̄c �J1cΦ
ðbÞ
n1;n2;n3

→
C ð−1Þs1þs2−J½ðQ1Q2Þs2xcðQ̄3Q̄4Þs1x̄c �J1cΦ

ðbÞ
n2;n1;n3 ; ð12Þ

½ðQ1Q2Þs1xcðQ̄3Q̄4Þs2x̄c �J1cΦ
ðcÞ
n1;n2;n3

→
C ð−1Þs1þs2−J½ðQ1Q2Þs2xcðQ̄3Q̄4Þs1x̄c �J1cΦ

ðcÞ
n2;n1;n3 : ð13Þ

For these two sets of spatial configurations, the indices of
Gaussian basis ðn1; n2Þ are swapped. Once we obtain the
transformation properties, we can construct the basis ofH�
by using linear superposition of the original basis functions.
The basis functions of H� that satisfy the antisymmetriza-
tion of identical fermions are listed in Appendix B. The
Hamiltonian is block-diagonal in H ¼ Hþ ⊕ H− because
of the conservation of C-parity, and we can obtain states
with C ¼ �1 by solving the Schrödinger equation in H�
separately.

C. Discern between molecular
and compact tetraquark states

In contrast to other frameworks, such as those discussed
in Refs. [92,93], the quark model does not require a prior
assumptions regarding the structures of a multiquark state.
Basically, the molecular or compact tetraquark states can be
discerned through the analysis of their wave functions in
the quark model. The proportions of color components
and root-mean-square (rms) radii are commonly used
criteria [27,86,94], which reflect the color structure and
the spatial structure, respectively.
However, identifying molecular states based on the

proportions of color components may be ambiguous and
misleading in the systems with identical particles. An ideal
loose molecular state consists of two colorless subclusters,

which are widely separated. Due to the antisymmetrization
of identical particles, its wave function takes the form

jΨi ¼ ½ðQ1Q̄3Þ1cðQ2Q̄4Þ1c �1c ⊗ jψ1i
þ ½ðQ1Q̄4Þ1cðQ2Q̄3Þ1c �1c ⊗ jψ2i

¼ Að½ðQ1Q̄3Þ1cðQ2Q̄4Þ1c �1c ⊗ jψ1iÞ: ð14Þ

Here, Q1Q̄3 and Q2Q̄4 form two subclusters in jψ1i, while
Q1Q̄4 and Q2Q̄3 form two subclusters in jψ2i. The two
subclusters are widely separated, therefore we have
hψ1jψ2i ≈ 0. We decompose the wave function in Eq. (14)
in the orthogonal color basis as

jΨi¼χ1c⊗1c
⊗
�
jψ1iþ

1

3
jψ2i

�
þ2

ffiffiffi
2

p

3
χ8c⊗8c

⊗ jψ2i

¼ 1ffiffiffi
3

p χ 3̄c⊗3c
⊗ðjψ1i− jψ2iÞþ

ffiffiffi
2

pffiffiffi
3

p χ6c⊗6̄c
⊗ðjψ1iþjψ2iÞ;

ð15Þ

with

χ1c⊗1c
¼ ½ðQ1Q̄3Þ1cðQ2Q̄4Þ1c �1c ; ð16Þ

χ8c⊗8c
¼ ½ðQ1Q̄3Þ8cðQ2Q̄4Þ8c �1c ; ð17Þ

χ3̄c⊗3c
¼ ½ðQ1Q2Þ3̄cðQ̄3Q̄4Þ3c �1c ; ð18Þ

χ6c⊗6̄c
¼ ½ðQ1Q2Þ6cðQ̄3Q̄4Þ6̄c �1c : ð19Þ

For an ideal loose molecular state, we obtain P1⊗1∶P8⊗8¼
5∶4 and P3̄⊗3∶ P6⊗6̄ ¼ 1∶2. One can see that even for an
ideal molecular state, the proportions of χ8c⊗8c

and χ1c⊗1c

are comparable. Therefore, discerning between molecular
and compact states solely via the proportions of color
components could be misleading in the systems with
identical particles.
Meanwhile, the naive definition of the rms radius could

be misleading when the antisymmetric wave function is
required for the identical quarks. For instance, when the
mesons ðcq̄Þ and ðsq̄Þ form a molecular state, the wave
function satisfying the Pauli principle is jψAi ¼
jðcq̄1Þðsq̄2Þi − jðcq̄2Þðsq̄1Þi. One can see that each anti-
quark q̄ belongs to both mesons simultaneously. Therefore,
neither hψAjr2cq̄jψAi nor hψAjr2sq̄jψAi can reflect the size of
the constituent mesons.
In Ref. [86], we proposed a new approach to calculate

the rms radii in the Qsq̄ q̄ system, which eliminates the
ambiguity arising from the antisymmetrization of identical
particles q̄ q̄. In the fully heavy tetraquark system, there
exist two pairs of identical particles. Here we further extend
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the definitions of rms radii for the QQQ̄ Q̄ system. We
uniquely decompose the antisymmetric wave function as

ΨJðθÞ ¼
X
s1≥s2

ð½ðQ1Q̄3Þs11cðQ2Q̄4Þs21c �J1c ⊗ jψ s1s2
1 ðθÞi

þ ½ðQ1Q̄3Þs21cðQ2Q̄4Þs11c �J1c ⊗ jψ s1s2
2 ðθÞi

þ ½ðQ1Q̄4Þs11cðQ2Q̄3Þs21c �J1c ⊗ jψ s1s2
3 ðθÞi

þ ½ðQ1Q̄4Þs21cðQ2Q̄3Þs11c �J1c ⊗ jψ s1s2
4 ðθÞiÞ

¼ A
X
s1≥s2

½ðQ1Q̄3Þs11cðQ2Q̄4Þs21c �J1c ⊗ jψ s1s2
1 ðθÞi; ð20Þ

where s1, s2 sum over spin configurations with total angular
momentum J. We denote the non-antisymmetric compo-
nent of the wave function as

jΨJ
nAðθÞi ¼

X
s1≥s2

½ðQ1Q̄3Þs11cðQ2Q̄4Þs21c �J1c ⊗ jψ s1s2
1 ðθÞi: ð21Þ

where ðQ1Q̄3Þ and ðQ2Q̄4Þ form color singlets. Instead of
using the complete wave function ΨJðθÞ, we use jΨJ

nAðθÞi
to define the rms radius:

rrms
ij ≡ Re

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hΨJ

nAðθÞjr2ije2iθjΨJ
nAðθÞi

hΨJ
nAðθÞjΨJ

nAðθÞi

s #
: ð22Þ

This definition discards the contribution of the exchange
terms resulting from the antisymmetrization, which may
play an important role in the numerical results of the rms
radii, especially for compact tetraquark states. However,
our primary interest lies in the general clustering behavior
of the tetraquark states rather than in specific numerical
results. The current definition of the rms radius is useful for
investigating the internal spatial structures of the tetraquark
states. For example, if the resulting state is a scattering
state or a hadronic molecule of ηcJ=ψ , rc1c̄3 and rc2c̄4 are
respectively expected to be the sizes of J=ψ and ηc, and
much smaller than the other rms radii. On the other hand, if
the resulting state is a compact tetraquark state, all rms radii
in the four-body system should be of the same order. One
can find detailed examples for comparing two definitions of
the rms radius in Appendix C. However, it should be noted
that for a hadronic molecule composed of two mesons with
the same quantum numbers but different radial excitation,
for example ψð3SÞJ=ψ , the current definition cannot
eliminate the ambiguity arising from the antisymmetriza-
tion. As a result, neither rc1c̄3 nor rc2c̄4 reflects the size of
ψð3SÞ or J=ψ ; instead, they represent the average of the
sizes of the two mesons.
It should be emphasized that the inner products in the

CSM are defined using the c-product [95],

hϕnjϕmi≡
Z

ϕnðrÞϕmðrÞd3r; ð23Þ

where the square of the wave function rather than the
square of its magnitude is used. The rms radius calculated
by the c-product is generally not real, but its real part can
still reflect the internal quark clustering behavior if the
resonant state is not too broad, as discussed in Ref. [96].

III. RESULTS AND DISCUSSIONS

We investigate the S-wave fully charmed ccc̄c̄ and
fully bottomed bbb̄b̄ tetraquark systems with all possible
quantum numbers, including JPC ¼ 0þþ; 1þ−; 2þþ; 0þ−;
1þþ; 2þ−. It should be stressed that the S-wave ground
state diquarkonium thresholds exist only in the 0þþ;
1þ−; 2þþ systems, namely ηcηc and ηbηb in the 0þþ
systems, ηcJ=ψ and ηbϒ in the 1þ− systems, J=ψJ=ψ
and ϒϒ in the 2þþ systems. In the following discussions,
the 0þþ; 1þ−; 2þþ systems are referred to as normal
C-parity systems, whereas the 0þ−; 1þþ; 2þ− systems are
referred to as exotic C-parity systems. For convenience, we
label the QQQ̄Q̄ tetraquark states obtained in the calcu-
lations as T4Q;JðCÞðMÞ, where M is the mass of the state.

A. Fully charmed tetraquark

1. States with normal C-parity

With the CSM, the complex eigenenergies of the
0þþ; 1þ−; 2þþ ccc̄c̄ systems obtained from three different
quark potential models are shown in Fig. 2. We choose
varying complex scaling angles θ to distinguish resonant
states from scattering states. All of the states are above
the lowest diquarkonium threshold, so no bound state is
obtained. The diquarkonium scattering states rotate along
the continuum lines starting from the threshold energies.
Moreover, we obtain a series of resonant states whose
complex energies are summarized in Table III. For com-
parison, we also list the results in Ref. [70], where the
authors used the BGS potential for the ccc̄ c̄ systems.
Qualitatively, the ccc̄c̄ resonances obtained from three

different quark potential models are in accordance with
each other. Most of the resonances exist in all three models.
For a specific resonant state, its width remains consistent
across different models, while the mass in the BGS
potential is approximately 50–100 MeV larger than those
in the AL1 and AP1 potentials. These differences are
expected considering that the discrepancies of the predic-
tions of the heavy quarkonium mass spectra from various
potentials are up to tens of MeV.
The tetraquark resonant states with different quantum

numbers JPC exhibit a similar pattern. A lower resonant
state with mass M ≈ 7000 MeV and width Γ ≈ 75 MeV,
and a higher resonant state with mass M ≈ 7200 MeV and
width Γ ≈ 50 MeV are obtained in the 0þþ; 1þ−; 2þþ
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systems. The lower 0þþ state can decay into the ηcηc;
J=ψJ=ψ ; ηcð2SÞηc and ψð2SÞJ=ψ channels. Additionally,
the higher 0þþ state can decay into the ηcð3SÞηc and
ψð3SÞJ=ψ channels. The lower 2þþ state can decay into
the J=ψJ=ψ and ψð2SÞJ=ψ channels. Additionally, the
higher 2þþ state can decay into the ψð3SÞJ=ψ channel.
Considering that the quark potential models have errors
up to tens of MeVand that we have neglected the widths of
the quarkonia in our calculations, the lower 0þþ and 2þþ
states may serve as the candidates for the experimentally
observed Xð6900Þ state, while the higher 0þþ and 2þþ
states may serve as the candidates for the experimentally
observed Xð7200Þ state. On the other hand, the lower 1þ−

state can decay into the ηcJ=ψ ; ηcð2SÞJ=ψ and ηcψð2SÞ
channels. Additionally, the higher 1þ− state can decay into

the ηcψð3SÞ and ηcð3SÞJ=ψ channels. The 1þ− states are
not the candidates for Xð6900Þ or Xð7200Þ because they
cannot decay into either the J=ψJ=ψ or ψð2SÞJ=ψ chan-
nels. These states can be searched for in future experiments.
Moreover, we observe several narrow resonant states

with different quantum numbers. These states are found in
the mass region (6.92,7.30) GeV. These narrow resonances
can be searched for by experiments in the corresponding
diquarkonium decay channels. However, we do not observe
any signal for resonance in the mass region (6.2,6.6) GeV,
namely no candidate for Xð6400Þ or Xð6600Þ is found.
Comparing the results of resonant states obtained from

the BGS potential with those of Ref. [70], our calculations
can reproduce the previous results well within numerical
uncertainty. In addition, we obtain three extra narrow

(a1) (a2) (a3)

(b1) (b2) (b3)

(c1) (c2) (c3)

FIG. 2. The complex energy eigenvalues of the ccc̄c̄ states with normal C-parity in the (a) AL1, (b) AP1, and (c) BGS potential with
varying θ in the CSM. The solid lines represent the continuum lines rotating along ArgðEÞ ¼ −2θ. The resonances do not shift as θ
changes and are highlighted by the orange circles.
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resonant states in the BGS potential. The reason for
these discrepancies might be that a set of complete
color-spin basis is used in our calculations while some
basis functions are neglected in Ref. [70]. For example,
in the 0þþ system, the diquarkonium color configuration
½ðQ1Q̄3Þ8cðQ2Q̄4Þ8c �1c is not included in the previous
calculations. These missing basis functions turn out to
be crucial for the existence of the extra resonant states.
As mentioned above, the fully charmed tetraquark

resonant states obtained from different models qualitatively
agree with each other. Therefore, we only choose the results
in the AP1 potential to analyze their inner structures.
The proportions of the color configurations χ3̄c⊗3c

and
χ6c⊗6̄c

in the wave functions as well as the rms radii of the
fully charmed resonant states are listed in Table IV. For
most resonant states, their rms radii are approximately of
the same size and less than 1 fm, indicating that they are

compact tetraquark states. However, for the Xð7200Þ
candidate states T4c;0ðþÞð7173Þ; T4c;2ðþÞð7214Þ and the
state T4c;1ð−Þð7191Þ, the rrms

c1c̄3 and rrms
c2c̄4 are much smaller

than the other radii. Compared with the rms radii of the
quarkonia listed in Table II, we observe that both rrms

c1c̄3 and
rrms
c2c̄4 are larger than the rms radii of ηc and J=ψ , and smaller
than those of ηcð3SÞ and ψð3SÞ, while rrms

c1c̄4 ; r
rms
c2c̄3 ; r

rms
c1c2 and

rrms
c̄3c̄4 are much larger than the rms radii of all mesons. These
results suggest that these three states might have a molecu-
lar configuration. It should be noted that these resonant
states have relatively large widths and are located close to
the continuum line of the scattering states, therefore the
results of their rms radii are less numerically accurate in the
CSM and should be considered as qualitative estimates.

2. States with exotic C-parity

The complex eigenenergies of the fully charmed tetra-
quark systems with exotic C-parity ðJPC ¼ 0þ−; 1þþ; 2þ−Þ
obtained from three different quark potential models are
shown in Fig. 3. We obtain a series of resonant and zero-
width states, whose energies are summarized in Table V.
Similar to the systems with normal C-parity, the states with
exotic C-parity obtained from different models qualitatively
agree with each other. The masses of a specific state in the
AL1 and AP1 potentials are nearly the same, while the
mass in the BGS potential is around 50–100 MeV larger
than the former ones. In the following we solely focus
on the results in the AP1 potential. The proportions of the
color configurations and the rms radii of the resonant and
zero-width states are listed in Table VI. The different rms
radii of these states are approximately the same and less
than 1 fm, indicating that all of these states have compact
tetraquark configuration.
For the 1þþ ccc̄ c̄ system, we obtain a series of

ψð2SÞJ=ψ and ψð3SÞJ=ψ diquarkonium scattering states
as well as four extremely narrow resonant states, whose
two-body decay widths are less than 1 MeV. The states

TABLE III. The complex energies E ¼ M − iΓ=2 (in MeV) of
the ccc̄c̄ resonant states with normal C-parity from various
potential models. The last column lists the results in Ref. [70].
The “?” indicates the potential existence of resonant states, which
blend into the continuum lines of scattering states and cannot be
obtained accurately in the present calculations. The “—” suggests
that no corresponding resonance is obtained.

JPC AL1 AP1 BGS BGS, Wang et al.

0þþ 6980 − 35i 6978 − 36i 7030 − 36i 7035 − 39i
7034 − 1i 7049 − 1i 7127 − 0.1i —
7156 − 20i 7173 − 20i 7239 − 17i 7202 − 30i

1þ− 6921 − 0.5i 6932 − 0.5i 6991 − 0.1i —
6995 − 35i 6998 − 35i 7048 − 35i 7050 − 35i

? 7191 − 32i 7254 − 24i 7273 − 25i

2þþ 7013 − 38i 7017 − 39i 7066 − 39i 7068 − 42i
7127 − 6i 7114 − 4i — —

? 7214 − 30i 7268 − 32i 7281 − 46i
7272 − 9i 7276 − 12i 7337 − 8i —

TABLE IV. The proportions of different color configurations and the rms radii (in fm) of the ccc̄ c̄ resonant states
with normal C-parity in the AP1 potential. The last column shows the spatial configurations of the states, where C.
and M. represent the compact tetraquark and molecular configurations, respectively.

JPC M − iΓ=2 χ3̄c⊗3c
χ6c⊗6̄c

rrms
c1c̄3 rrms

c2 c̄4 rrms
c1 c̄4 ¼ rrms

c2 c̄3 rrms
c1c2 ¼ rrms

c̄3c̄4 Configurations

0þþ 6978 − 36i 86% 14% 0.81 0.81 0.86 0.66 C.
7049 − 1i 37% 63% 0.70 0.70 0.82 0.75 C.
7173 − 20i 46% 54% 0.89 0.89 2.31 2.28 M.

1þ− 6932 − 0.5i 65% 35% 0.66 0.66 0.73 0.63 C.
6998 − 35i 88% 12% 0.79 0.80 0.77 0.59 C.
7191 − 32i 44% 56% 0.71 1.08 2.09 2.08 M.

2þþ 7017 − 39i 90% 10% 0.79 0.79 0.71 0.56 C.
7114 − 4i 69% 31% 0.92 0.92 0.65 0.55 C.
7214 − 30i 57% 43% 0.92 0.92 1.93 1.88 M.
7276 − 12i 73% 27% 0.86 0.86 1.04 0.93 C.
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T4c;1ðþÞð6939Þ and T4c;1ðþÞð7242Þ have predominant color
configuration χ 3̄c⊗3c

. For the states T4c;1ðþÞð6896Þ and
T4c;1ðþÞð7200Þ, the proportions of χ 3̄c⊗3c

and χ6c⊗6̄c
are

around 2
3
and 1

3
, respectively. The states T4c;1ðþÞð7200Þ and

T4c;1ðþÞð7242Þ are the radial excitation of T4c;1ðþÞð6896Þ
and T4c;1ðþÞð6939Þ, respectively. All of the four states can
decay into the ψð2SÞJ=ψ channel, but the decay widths are
very small. In Sec. III C, we discuss the reasons for the
small widths in detail.
For the 0þ− ccc̄ c̄ system, there do no exist any S-wave

diquarkonium thresholds. Therefore no meson-meson scat-
tering state is observed. All of the states in the system are
identified as zero-width states, which lie on the real axis
and are not changed by the complex scaling. According to
the proportions of color configurations listed in Table VI,

(a1) (a2) (a3) 

(b1) (b2) (b3) 

(c1) (c2) (c3) 

FIG. 3. The complex energy eigenvalues of the ccc̄c̄ states with exotic C-parity in the (a) AL1, (b) AP1 and (c) BGS potential with
varying θ in the CSM. The solid lines represent the continuum lines rotating along ArgðEÞ ¼ −2θ. The zero-width states and resonances
do not shift as θ changes and are highlighted by the orange circles.

TABLE V. The complex energies E ¼ M − iΓ=2 (in MeV) of
the ccc̄c̄ resonant and zero-width states with exotic C-parity from
various potential models.

JPC AL1 AP1 BGS

0þ− 6882 6890 6962
6938 6945 6995
7185 7188 7268
7249 7242 7316

1þþ 6889 − 0.1i 6896 − 0.2i 6970 − 0.1i
6933 − 0.4i 6939 − 0.4i 6995 − 0.1i
7200 − 0.4i 7200 − 0.1i 7286 − 0.4i
7251 − 0.1i 7242 − 0.3i 7318 − 0.2i

2þ− 6945 6950 6999
7262 7252 7324
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the four 0þ− zero-width states can be clearly arranged
into two doublets, fT4c;0ð−Þð6890Þ; T4c;0ð−Þð6945Þg and
fT4c;0ð−Þð7188Þ; T4c;0ð−Þð7242Þg. The color configurations
of the two states inside a doublet are orthogonal to each
other. The lower state is dominated by the χ6c⊗6̄c

compo-
nent, while the higher state is dominated by the χ3̄c⊗3c

component. In the fully heavy tetraquark system, it is
known that the color magnetic term is suppressed by the
heavy quark mass, and the dominant color electric inter-
actions between two (anti)quarks are attractive in ½Q1Q2�3̄c
and ½Q̄3Q̄4�3c configurations but repulsive in ½Q1Q2�6c and
½Q̄3Q̄4�6̄c configurations. Besides, the color electric term
also provides an attractive interaction between the 6c
diquark and 6̄c antidiquark, which is much stronger than
the one between 3̄c diquark and 3c antidiquark due to the
color SU(3) algebra [18,27,29]. The fact that the lower
state has the dominant χ6c⊗6̄c

configuration suggests that
the strong attraction between two color sextet clusters
prevails over the repulsion within the (anti)diquark and
contributes to the formation of a deeper state than the χ3̄c⊗3c

dominant one, which is consistent with the conclusion in
Refs. [18,27]. As a result of the interaction mechanism, the
rms radii rrms

c1c2 and rrms
c̄3c̄4 , which characterize the sizes of the

diquark and antidiquark, take larger values in the χ6c⊗6̄c

dominant state than in the χ3̄c⊗3c
dominant state. On the

other hand, the rms radii rrms
c1c̄3 , r

rms
c2c̄4 , r

rms
c1c̄4 and rrms

c2c̄3 , which
characterize the distance between diquark and antidiquark,
take smaller values in the χ6c⊗6̄c

dominant state than in the
χ3̄c⊗3c

dominant state. It is also worth mentioning that the
four rms radii rrms

cic̄j equal to each other in the 0þ− and 2þ−

systems. The reason is that these states consist only of
S-wave diquark-antidiquark configuration, as illustrated
in Appendix. B, and their spatial wave function is sym-
metric under the particle exchange c1 ↔ c2 or c̄3 ↔ c̄4.
The higher doublet states fT4c;0ð−Þð7188Þ; T4c;0ð−Þð7242Þg
have larger rms radii than the lower doublet states

fT4c;0ð−Þð6890Þ; T4c;0ð−Þð6945Þg and can be viewed as
the radial excitation of the latter.
Similar to the 0þ− system, S-wave diquarkonium thresh-

old does not exist in the 2þ− ccc̄c̄ system, and all of the
states in the system are identified as zero-width states. Due
to the restriction of antisymmetrization of identical par-
ticles, the only allowed color configuration for these states
is χ 3̄c⊗3c

. The state T4c;2ð−Þð7252Þ is the radial excitation of
the ground state T4c;2ð−Þð6950Þ.
It should be noted that although S-wave diquarkonium

threshold does not exist in the 0þ− and 2þ− ccc̄c̄ systems,
diquarkonium thresholds with higher orbital angular
momentum do exist in these systems. For example, the
P-wave J=ψχc1 state and the S-wave hcχc1 state can form
the 0þ− or 2þ− ccc̄c̄ system, while the S-wave ηcψ2 state
and the P-wave J=ψχc2 can form the 2þ− ccc̄c̄ system.
These scattering states have the same quantum numbers as
the zero-width states obtained in the present calculations.
The coupling between them may alter the positions of the
zero-width states. Considering the effect of this coupling is
beyond the scope of this work. However, if one assumes
the coupling effect is small and treats it as perturbation, the
positions of the states should not change by much. The
zero-width states may obtain nonzero widths and transform
into resonant states, which can decay into the diquarkonium
channels with lower energies. All of these states lie above
the ground state diquarkonium threshold J=ψχc1, whose
theoretical energy in the AP1 potential is 6593 MeV.
Therefore, they may be searched for in the P-wave
J=ψχc1 decay channel in the experiment.

B. Fully bottomed tetraquark

In the ccc̄c̄ system, we observe that the results in different
quark potential models qualitatively agree with each other.
Therefore, we only choose the AP1 potential to investigate
the bbb̄b̄ system. The complex eigenenergies of the bbb̄b̄
states with normal and exotic C-parities are shown in Fig. 4.

TABLE VI. The proportions of different color configurations and the rms radii (in fm) of the ccc̄c̄ resonant and
zero-width states with exotic C-parity in the AP1 potential. The last column shows the spatial configurations of the
states, where C. and M. represent the compact tetraquark and molecular configurations, respectively.

JPC M − iΓ=2 χ 3̄c⊗3c
χ6c⊗6̄c

rrms
c1 c̄3 rrms

c2c̄4 rrms
c1 c̄4 ¼ rrms

c2 c̄3 rrms
c1c2 ¼ rrms

c̄3 c̄4 Configuration

0þ− 6890 36% 64% 0.62 0.62 0.62 0.71 C.
6945 64% 36% 0.65 0.65 0.65 0.71 C.
7188 18% 82% 0.80 0.80 0.80 0.93 C.
7242 82% 18% 0.85 0.85 0.85 0.83 C.

1þþ 6896 − 0.2i 71% 29% 0.67 0.58 0.71 0.63 C.
6939 − 0.4i 96% 4% 0.60 0.68 0.65 0.68 C.
7200 − 0.1i 68% 32% 0.83 0.75 0.94 0.78 C.
7242 − 0.3i 98% 2% 0.82 0.88 0.85 0.81 C.

2þ− 6950 100% 0% 0.65 0.65 0.65 0.69 C.
7252 100% 0% 0.86 0.86 0.86 0.81 C.
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Similar to the ccc̄c̄ system, we obtain a series of resonant
states with normal C-parity in the bbb̄b̄ system. The
complex energies, the proportions of different color con-
figurations and the rms radii of these resonant states are
listed in Table VII. The different rms radii of these states
are around 0.5 fm, indicating that all of these states have
compact tetraquark configuration. We obtain a lower
resonant state with mass M ≈ 19780 MeV and width
Γ ≈ 60 MeV, and a higher resonant state with mass M ≈
19950 MeV and width Γ ≈ 40 MeV in the 0þþ; 1þ− and
2þþ systems. We also obtain two narrow resonant states

T4b;0ðþÞð19898Þ and T4b;1ð−Þð19762Þ. These states can
decay strongly and be searched for in the corresponding
diquarkonium decay channels in the experiment.
For the bbb̄b̄ system with exotic C-parity, we obtain a

series of resonant and zero-width states, whose complex
energies, proportions of different color configurations
and rms radii are listed in Table VIII. For the 0þ− system,
we obtain two zero-width states T4b;0ð−Þð19722Þ and
T4b;0ð−Þð19754Þ. The lower one is dominated by the
χ3̄c⊗3c

color configuration while the higher one is

(a1) (a2) (a3)

(b1) (b2) (b3)

FIG. 4. The complex energy eigenvalues of the bbb̄ b̄ states with (a) normal and (b) exotic C-parities in the AP1 potential with varying
θ in the CSM. The solid lines represent the continuum lines rotating along ArgðEÞ ¼ −2θ. The zero-width states and resonances do not
shift as θ changes and are highlighted by the orange circles.

TABLE VII. The proportions of different color configurations and the rms radii (in fm) of the bbb̄b̄ resonant states
with normal C-parity in the AP1 potential. The last column shows the spatial configurations of the states, where C.
and M. represent the compact tetraquark and molecular configurations, respectively.

JPC M − iΓ=2 χ 3̄c⊗3c
χ6c⊗6̄c

rrms
b1b̄3

rrms
b2b̄4

rrms
b1b̄4

¼ rrms
b2b̄3

rrms
b1b2

¼ rrms
b̄3b̄4

Configuration

0þþ 19773 − 28i 87% 13% 0.51 0.51 0.50 0.33 C.
19898 − 0.4i 36% 64% 0.43 0.43 0.50 0.47 C.
19944 − 17i 80% 20% 0.58 0.58 0.56 0.38 C.

1þ− 19762 − 0.1i 65% 35% 0.40 0.40 0.44 0.38 C.
19778 − 29i 87% 13% 0.51 0.51 0.52 0.36 C.
19948 − 19i 78% 22% 0.58 0.58 0.59 0.41 C.

2þþ 19788 − 30i 86% 14% 0.51 0.51 0.53 0.38 C.
19957 − 22i 76% 24% 0.59 0.59 0.62 0.45 C.
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dominated by the χ6c⊗6̄c
color configuration. The mass

hierarchy of the χ 3̄c⊗3c
dominated state and the χ6c⊗6̄c

dominated state is reversed compared to the ccc̄c̄ system.
This suggests that in the bbb̄b̄ system, the interaction
within the (anti)diquark plays a more important role than
the interaction between diquark and antidiquark. For the
1þþ system, we obtain two extremely narrow resonant
states T4b;1ðþÞð19731Þ and T4b;1ðþÞð19748Þ, whose two-
body decay widths are less than 0.1 MeV. For the 2þþ
system, a zero-width state T4b;2ð−Þð19741Þ is obtained.
These states may couple with the P-wave diquarkonium
thresholds. Due to the coupling effect, the 0þ− and 2þ−

zero-width states may transform into resonant states, which
can decay into the P-wave ϒχb1 channel.

C. Resonances with small widths

In our calculations, we obtain several extremely narrow
resonant states with quantum numbers JP ¼ 1þ in both the
ccc̄c̄ and bbb̄b̄ systems. Intuitively, one would assume that
these states can decay into the diquarkonium channels with
the same quantum numbers and lower energies. However,
the narrow widths of these states indicate that the two-body
decay process is suppressed. The reasons for the suppres-
sion are given as follows.
The two-body decay width of the tetraquark state

is proportional to the modulus square of the T-matrix
element [97],

ΓF→AþB ∝ jTF→AþBj2 ¼
����hψABj

X4
i<j¼1

VijjψFi
����
2

; ð24Þ

where F denotes the tetraquark state and A, B denote
the final mesons. The potential Vij is given in Eq. (2),
comprising the color magnetic term and spin-independent
terms. In the fully heavy system, the color magnetic
transition is suppressed by the heavy quark mass. The
spin-independent terms contain the color factor λi · λj,
whose matrix elements are listed in Appendix A. It can
be seen that

P
4
i<j¼1 λi · λj is proportional to the identity

operator and cannot induce transition between different
color configurations. Color mixing via spin-independent

terms can occur only when the coefficients of λi · λj are
different. Roughly speaking, the magnitudes of color
mixing matrix elements depend on the differences between
various coefficients. From Tables IV, VI, VII, VIII, we can
see that the different rms radii of the narrow resonances
with JP ¼ 1þ are of the same order and the differences
between them are rather small. Therefore, the color mixing
matrix elements are suppressed in the system.
For the 1þ− ccc̄c̄ system, the state T4c;1ð−Þð6932Þ is a

narrow resonance, whose dominant color-spin configura-
tion is ½ðcc̄Þ18cðcc̄Þ08c �11c . On the other hand, the dicharmo-
nium thresholds ηcψ have color-spin configuration
½ðcc̄Þ11cðcc̄Þ01c �11c . The transition between T4c;1ð−Þð6932Þ
and the dicharmonium channels can only occur via color
mixing, which is suppressed in the fully heavy system.
For the 1þþ ccc̄c̄ system, there are two types of
narrow resonances. The first type T4c;1ðþÞð6896Þ and
T4c;1ðþÞð7200Þ have dominant color-spin configuration
½ðcc̄Þ18cðcc̄Þ18c �11c , while the second type T4c;1ðþÞð6939Þ
and T4c;1ðþÞð7242Þ have dominant color-spin configuration
½ðccÞ1

3̄c
ðc̄ c̄Þ13c �11c . On the other hand, the dicharmonium

thresholds Ψð2SÞJ=ψ , Ψð3SÞJ=Ψ have color-spin configu-
ration ½ðcc̄Þ11cðcc̄Þ11c �11c . The coupling between the first
type of resonances and the dicharmonium channels is
suppressed by the color mixing matrix elements. The spin
configurations of the second type of resonances are
orthogonal to those of the dicharmonium channels, which
can be seen from the decomposition,

½ðc1c2Þ1ðc̄3c̄4Þ1�1 ¼
1ffiffiffi
2

p ½ðc1c̄3Þ1ðc2c̄4Þ0�1

þ 1ffiffiffi
2

p ½ðc1c̄3Þ0ðc2c̄4Þ1�1: ð25Þ

As a result, the coupling between them can only occur via
the color magnetic term. Therefore the two-body decay
widths of these two types of resonant states are both
suppressed. For the bbb̄b̄ system, similar arguments can
be used to account for the narrow widths of the states
T4b;1ð−Þð19762Þ, T4b;1ðþÞð19731Þ, and T4b;1ðþÞð19748Þ.

TABLE VIII. The proportions of different color configurations and the rms radii (in fm) of the bbb̄b̄ resonant and
zero-width states with exotic C-parity in the AP1 potential. The last column shows the spatial configurations of the
states, where C. and M. represent the compact tetraquark and molecular configurations, respectively.

JPC M − iΓ=2 χ 3̄c⊗3c
χ6c⊗6̄c

rrms
b1b̄3

rrms
b2b̄4

rrms
b1b̄4

¼ rrms
b2b̄3

rrms
b1b2

¼ rrms
b̄3b̄4

Configuration

0þ− 19722 77% 23% 0.38 0.38 0.38 0.41 C.
19754 23% 77% 0.39 0.39 0.39 0.45 C.

1þþ 19731 96% 4% 0.41 0.36 0.39 0.41 C.
19748 71% 29% 0.35 0.42 0.44 0.38 C.

2þ− 19741 100% 0% 0.39 0.39 0.39 0.42 C.
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IV. SUMMARY

In summary, we calculate the mass spectrum of the S-
wave fully heavy tetraquark systems with both normal
ðJPC ¼ 0þþ; 1þ−; 2þþÞ and exotic ðJPC ¼ 0þ−; 1þþ; 2þ−Þ
C-parities using three different quark potential models
(AL1, AP1, BGS). The exotic C-parity systems refer to
the ones that have no corresponding S-wave ground heavy
quarkonia thresholds. We employ the Gaussian expansion
method to solve the four-body Schrödinger equation, and
the complex scaling method to distinguish resonant states
from scattering states.
Our calculations show that the mass spectra in different

quark models are in qualitative agreement. We obtain a
series of resonant states with JPC ¼ 0þþ; 1þ−; 2þþ and
1þþ. Moreover, we obtain several zero-width states in the
0þ− and 2þ− systems, where S-wave diquarkonium

threshold does not exist. For the fully charmed system,
we compare the theoretical results in the AP1 and BGS
potentials with the experimental results in Fig. 5. We do not
display the results in the AL1 potential since they
are nearly the same as those in the AP1 potential. We find
good candidates for the experimentally observed Xð6900Þ
and Xð7200Þ in both the 0þþ and 2þþ systems. However,
signals for the Xð6400Þ and Xð6600Þ are not seen in our
calculations. Several resonant and zero-width fully
charmed tetraquark states await to be found in the experi-
ment. For the fully bottomed system, we summarize the
theoretical results in the AP1 potential in Fig. 6. Resonant
and zero-width fully bottomed tetraquark states are pre-
dicted in the mass region (19.7,20.0) GeV.
By investigating the root mean square radii of the states,

we find that most of the resonant and zero-width states have
compact tetraquark configuration, except that the Xð7200Þ
candidates T4c;0ðþÞð7173Þ; T4c;2ðþÞð7214Þ and the state
T4c;1ð−Þð7191Þ may have molecular configurations. We
also study the decay modes of the resonant and zero-width
states. The resonant states can decay strongly to S-wave
diquarkonium thresholds while the zero-width states can
only decay to P-wave quarkonia. Further study that con-
siders the P-wave tetraquark systems is needed to better
establish the properties of the 0þ− and 2þ− states.
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FIG. 6. The mass spectrum of the S-wave bbb̄ b̄ states in the
AP1 potential. The green and blue lines represent the states with
widths larger and smaller than 1 MeV, respectively. The dotted
lines represent dicharmonium thresholds, whose experimental
energies are taken from Ref. [90].

(a) (b) (c)

FIG. 5. The mass spectrum of the S-wave ccc̄c̄ states in the (a) AP1, (b) BGS potential. The experimental results reported by LHCb
(model I) [13], CMS (noninterference model) [14] and ATLAS (model A and α) [15] are shown in Fig. (c). In Fig. (a) and (b), the green
and blue lines represent the theoretical ccc̄c̄ states with widths larger and smaller than 1 MeV, respectively. In Fig. (c), the red lines and
the dashed areas represent the central masses and the uncertainties in the experiments, respectively. The dotted lines represent
dicharmonium thresholds, whose experimental energies are taken from Ref. [90].
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APPENDIX A: COLOR BASIS
AND COLOR FACTORS

The color basis of the tetraquark systems can be written
in the diquark-antidiquark form,

χ 3̄c⊗3c
¼ ½ðQ1Q2Þ3̄cðQ̄3Q̄4Þ3c �1c ;

χ6c⊗6̄c
¼ ½ðQ1Q2Þ6cðQ̄3Q̄4Þ6̄c �1c ; ðA1Þ

or in two sets of dimeson form,

χa1c⊗1c
¼ ½ðQ1Q̄3Þ1cðQ2Q̄4Þ1c �1c ;

χa8c⊗8c
¼ ½ðQ1Q̄3Þ8cðQ2Q̄4Þ8c �1c ; ðA2Þ

χb1c⊗1c
¼ ½ðQ1Q̄4Þ1cðQ2Q̄3Þ1c �1c ;

χb8c⊗8c
¼ ½ðQ1Q̄4Þ8cðQ2Q̄3Þ8c �1c : ðA3Þ

Each of these forms constitute a complete and orthogonal
color basis for the tetraquark systems. The transformation
between different sets of bases is given by

χa1c⊗1c
¼ 1ffiffiffi

3
p ðχ3̄c⊗3c

þ
ffiffiffi
2

p
χ6c⊗6̄c

Þ;

χa8c⊗8c
¼ 1ffiffiffi

3
p ð−

ffiffiffi
2

p
χ 3̄c⊗3c

þ χ6c⊗6̄c
Þ;

χb1c⊗1c
¼ 1ffiffiffi

3
p ð−χ3̄c⊗3c

þ
ffiffiffi
2

p
χ6c⊗6̄c

Þ;

χb8c⊗8c
¼ 1ffiffiffi

3
p ð

ffiffiffi
2

p
χ 3̄c⊗3c

þ χ6c⊗6̄c
Þ: ðA4Þ

It is equivalent to use Eqs. (A1), (A2), or (A3) as the color
basis in the calculations. The matrix elements for the color
factor λi · λj in the diquark-antidiquark color basis (A1) are
listed in Table IX. From the last column we can see thatP

4
i<j¼1 λi · λj is actually proportional to the identity

operator.

APPENDIX B: BASIS FUNCTIONS WITH
DEFINITE C-PARITY

Under charge conjugation, the transformation behavior
of the basis functions is shown in Eqs. (11)–(13). Using the
linear superposition of the original basis functions, we can
construct a new set of basis with definite C-parity and

decompose the Hilbert space H into positive and negative
C-parity subspaces H�. The basis functions of H� with
different quantum numbers and satisfying the antisymmet-
rization of identical particles are explicitly listed in the
following.

(i) JPC ¼ 0þþ

χ0
3̄c⊗3c;1;1

h
ΦðcÞ

n1;n2 þΦðcÞ
n2;n1

i
; ðB1Þ

χ0
6c⊗6̄c;0;0

h
ΦðcÞ

n1;n2 þΦðcÞ
n2;n1

i
; ðB2Þ

χ0
3̄c⊗3c;1;1

h
ΦðaÞ

n1;n2 þΦðbÞ
n1;n2 þΦðaÞ

n2;n1 þΦðbÞ
n2;n1

i
; ðB3Þ

χ0
6c⊗6̄c;0;0

h
ΦðaÞ

n1;n2 þΦðbÞ
n1;n2 þΦðaÞ

n2;n1 þΦðbÞ
n2;n1

i
; ðB4Þ

χ0
3̄c⊗3c;0;0

h
ΦðaÞ

n1;n2 −ΦðbÞ
n1;n2 þΦðaÞ

n2;n1 −ΦðbÞ
n2;n1

i
; ðB5Þ

χ0
6c⊗6̄c;1;1

h
ΦðaÞ

n1;n2 −ΦðbÞ
n1;n2 þΦðaÞ

n2;n1 −ΦðbÞ
n2;n1

i
; ðB6Þ

(ii) JPC ¼ 0þ−

χ0
3̄c⊗3c;1;1

h
ΦðcÞ

n1;n2 −ΦðcÞ
n2;n1

i
; ðB7Þ

χ0
6c⊗6̄c;0;0

h
ΦðcÞ

n1;n2 −ΦðcÞ
n2;n1

i
; ðB8Þ

(iii) JPC ¼ 1þþ

χ1
3̄c⊗3c;1;1

h
ΦðcÞ

n1;n2 −ΦðcÞ
n2;n1

i
; ðB9Þ

χ1
3̄c⊗3c;1;0

h
ΦðaÞ

n1;n2 −ΦðbÞ
n1;n2 −ΦðaÞ

n2;n1 þΦðbÞ
n2;n1

i
þ χ1

3̄c⊗3c;0;1

h
ΦðaÞ

n1;n2 þΦðbÞ
n1;n2 −ΦðaÞ

n2;n1 −ΦðbÞ
n2;n1

i
;

ðB10Þ

χ1
6c⊗6̄c;0;1

h
ΦðaÞ

n1;n2 −ΦðbÞ
n1;n2 −ΦðaÞ

n2;n1 þΦðbÞ
n2;n1

i
þ χ1

6c⊗6̄c;1;0

h
ΦðaÞ

n1;n2 þΦðbÞ
n1;n2 −ΦðaÞ

n2;n1 −ΦðbÞ
n2;n1

i
;

ðB11Þ

TABLE IX. Color factor matrix elements hχcjλi · λjjχ0ci in the color basis (A1).

hχcjλi · λjjχ0ci λ1 · λ2 λ3 · λ4 λ1 · λ3 λ1 · λ4 λ2 · λ3 λ2 · λ4
P

4
i<j¼1 λi · λj

hχ 3̄c⊗3c
jλi · λjjχ 3̄c⊗3c

i − 8
3

− 8
3

− 4
3

− 4
3

− 4
3

− 4
3

− 32
3

hχ6c⊗6̄c
jλi · λjjχ6c⊗6̄c

i 4
3

4
3 − 10

3
− 10

3
− 10

3
− 10

3
− 32

3

hχ 3̄c⊗3c
jλi · λjjχ6c⊗6̄c

i 0 0 −2
ffiffiffi
2

p
2

ffiffiffi
2

p
2

ffiffiffi
2

p
−2

ffiffiffi
2

p
0

BENCHMARK CALCULATIONS OF FULLY HEAVY COMPACT … PHYS. REV. D 109, 054034 (2024)

054034-13



(iv) JPC ¼ 1þ−

χ1
3̄c⊗3c;1;1

h
ΦðcÞ

n1;n2 þΦðcÞ
n2;n1

i
; ðB12Þ

χ1
3̄c⊗3c;1;1

h
ΦðaÞ

n1;n2 þΦðbÞ
n1;n2 þΦðaÞ

n2;n1 þΦðbÞ
n2;n1

i
; ðB13Þ

χ1
6c⊗6̄c;1;1

h
ΦðaÞ

n1;n2 −ΦðbÞ
n1;n2 þΦðaÞ

n2;n1 −ΦðbÞ
n2;n1

i
; ðB14Þ

χ1
3̄c⊗3c;1;0

h
ΦðaÞ

n1;n2 −ΦðbÞ
n1;n2 −ΦðaÞ

n2;n1 þΦðbÞ
n2;n1

i
− χ1

3̄c⊗3c;0;1

h
ΦðaÞ

n1;n2 þΦðbÞ
n1;n2 −ΦðaÞ

n2;n1 −ΦðbÞ
n2;n1

i
;

ðB15Þ

χ1
6c⊗6̄c;0;1

h
ΦðaÞ

n1;n2 −ΦðbÞ
n1;n2 −ΦðaÞ

n2;n1 þΦðbÞ
n2;n1

i
− χ1

6c⊗6̄c;1;0

h
ΦðaÞ

n1;n2 þΦðbÞ
n1;n2 −ΦðaÞ

n2;n1 −ΦðbÞ
n2;n1

i
;

ðB16Þ
(v) JPC ¼ 2þþ

χ2
3̄c⊗3c;1;1

h
ΦðcÞ

n1;n2 þΦðcÞ
n2;n1

i
; ðB17Þ

χ2
3̄c⊗3c;1;1

h
ΦðaÞ

n1;n2 þΦðbÞ
n1;n2 þΦðaÞ

n2;n1 þΦðbÞ
n2;n1

i
; ðB18Þ

χ2
6c⊗6̄c;1;1

h
ΦðaÞ

n1;n2 −ΦðbÞ
n1;n2 þΦðaÞ

n2;n1 −ΦðbÞ
n2;n1

i
; ðB19Þ

(vi) JPC ¼ 2þ−

χ2
3̄c⊗3c;1;1

h
ΦðcÞ

n1;n2 −ΦðcÞ
n2;n1

i
; ðB20Þ

where χJc1⊗c2;s1;s2 is the color-spin wave function, and

ΦðjacÞ
n1;n2 ≡ΦðjacÞ

n1;n2;n3 is the S-wave Gaussian spatial wave
function. The detail expression for the wave functions
can be found in Eqs. (6) and (8).

We can see that the S-wave fully heavy tetraquark states
with JPC ¼ 0þ− and 2þ− contain only diquark-antidiquark

configurationΦðcÞ
n1;n2;n3 and exclude dimeson configuration

ΦðaÞ
n1;n2;n3 , Φ

ðbÞ
n1;n2;n3 , which arises from the fact that S-wave

dimeson systems cannot have such quantum numbers.
It should be noted that the minus sign in Eqs. (B7), (B8)
and (B20) demands that the radial excitation of the
diquark and the antidiquark must be different, therefore
the 0þ− or 2þ− tetraquark state is not a particle-
antiparticle pair and one cannot simply calculate the
C-parity as C ¼ ð−1ÞLþS ¼ þ1.

APPENDIX C: TWO DEFINITIONS OF ROOT
MEAN SQUARE RADIUS

In our calculations, we only use the non-antisymmetric
component of the wave function to calculate the rms radii.
It seems more reasonable to calculate the rms radii of the
compact tetraquark states using the complete wave func-
tion. However, our primary interest lies in the general
clustering behavior of the tetraquark states rather than in
specific numerical results of the rms radii, since the latter
are not experimentally observables at present. The rms radii
calculated using the non-antisymmetric component of the
wave function are already capable of distinguishing
between compact tetraquark states and loose molecular
states. To illustrate this, we compare the results of rms radii
calculated using the complete wave function jΨJðθÞi
and the non-antisymmetric term jΨJ

nAðθÞi in Table X.
One compact and one molecular ccc̄ c̄ resonant states
with JPC ¼ 0þþ are chosen as examples. For the state
T4c;0ðþÞð6978Þ, both the results from jΨJðθÞi and jΨJ

nAðθÞi
indicate that all rms radii are of the same order and support
the compact tetraquark configuration. For the state
T4c;0ðþÞð7173Þ, the results from jΨJ

nAðθÞi can clearly
demonstrate the clustering behavior of a molecular state:
ðc1c̄3Þ and ðc2c̄4Þ form two subclusters, which are widely
separated. On the other hand, the results from jΨJðθÞi are
much less clear due to the antisymmetrization. It should
also be noted that all rrms

cic̄j are the same in the results from

jΨJðθÞi due to the antisymmetrization of the wave function.
In conclusion, calculating the rms radii using only the

non-antisymmetric term can reflect the internal spatial
structure of tetraquark states more transparently.

TABLE X. The rms radii (in fm) of the ccc̄ c̄ resonant states calculated using the complete wave functions jΨJðθÞi
in Eq. (20) and the non-antisymmetric components of the wave functions jΨJ

nAðθÞi in Eq. (21), respectively. The last
column shows the spatial configurations of the states, where C. and M. represent the compact tetraquark and
molecular configurations, respectively.

M − iΓ=2 Wave function rrms
c1 c̄3 rrms

c2 c̄4 rrms
c1c̄4 ¼ rrms

c2c̄3 rrms
c1c2 ¼ rrms

c̄3 c̄4 Configurations

6978 − 36i jΨJ
nAðθÞi 0.81 0.81 0.86 0.66 C.

jΨJðθÞi 0.83 0.83 0.83 0.68

7173 − 20i jΨJ
nAðθÞi 0.89 0.89 2.31 2.28 M.

jΨJðθÞi 1.83 1.83 1.83 2.43
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