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We compute the pressure from first principles within perturbative QCD at finite baryon density and
very high magnetic fields up to two-loops and with physical quark masses. The region of validity for our

framework is given by ms ≪ μq ≪
ffiffiffiffiffiffi
eB

p
, where ms is the strange quark mass, μq is the quark chemical

potential, e is the fundamental electric charge, and B is the magnetic field strength. We include the effects of

the renormalization scale in the running coupling, αsðμq;
ffiffiffiffiffiffi
eB

p Þ, and running strange quark mass. We also
discuss the simplifications that come about in the chiral limit. The effectively negligible contribution of the
exchange diagram allows for building a simple analytic model for the equation of state for pure quark
magnetars and computing their mass and radius at very large values of B. These results provide constraints
on the behavior of the maximum mass and associated radius from perturbative QCD. We also discuss the
magnetic bag model for extreme magnetic fields.

DOI: 10.1103/PhysRevD.109.054033

I. INTRODUCTION

The phase diagram of strongly interacting matter under
the influence of different external control parameters, such
as temperature, different types of chemical potential and
electromagnetic fields, is determined by in-medium quan-
tum chromodynamics (QCD), its fundamental theory. The
case of magnetic QCD, where one of the control parameters
is an external magnetic field, is phenomenologically
relevant in different scenarios, such as the astrophysics
of compact stars [1–3], in noncentral, high-energy heavy-
ion collisions [4–10], and in the early Universe [11–13].
In particular, the thermodynamics of strong interactions

in cold and dense matter under the influence of very
strong magnetic fields is relevant to the description of
magnetars [14]. These objects correspond to a class of
compact stars [15] whose magnetic fields can be of the
order of 1015 Gauss [1–3] at the surface, and possibly
much higher in the core (up to 1020 Gauss [16]). The key
ingredient to describe the microphysics and to compute the
structural properties of magnetars is given by the equation

of state for hadronic matter under such extreme conditions.
The NICER X-ray determination of mass and radius
from millisecond pulsars PSR J0030þ 0451 [17,18] and
PSR J0740þ 6620 [19,20], along with the LIGO-VIRGO
detection of gravitational waves from binary neutron
star mergers [21,22], constrained the equation of state
that describes quark stars and neutron stars (see Ref. [23]
for a review).
In this paper we investigate the behavior of the pressure

from first principles within perturbative QCD at finite
density and very high magnetic fields up to two-loops
for Nf ¼ 3 flavors with physical quark masses. We show
that the exchange contribution increases with the magnetic
field, but nevertheless corresponds to a correction of less
than 3% at intermediate values of the quark chemical
potential (μq ∼ 300 MeV) even for extremely large mag-
netic fields. Since we use perturbative QCD within the
lowest-Landau level (LLL) approximation, the region of
validity for our framework is given by ms ≪ μq ≪

ffiffiffiffiffiffi
eB

p
,

wherems is the strange quark mass, μq the quark chemical
potential, e is the fundamental electric charge, and B is
the magnetic field strength. In the case of symmetric
quark matter, we consider values of the magnetic field
eB ∼ 1–9 GeV2 (B ∼ 1.7–15.3 × 1020 Gauss). These
ranges ensure the applicability of the LLL approximation
for relevant values of chemical potential (μq ≤ 0.8 GeV),
and 9 GeV2 corresponds to the highest value achieved
by lattice simulations for thermal QCD [24]. We also
include the effects of the renormalization scale in
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the running coupling, αsðμq;
ffiffiffiffiffiffi
eB

p Þ, and running quark
masses, since these effects have proven to be relevant for
the resulting thermodynamics [25–29]. Finally, we dis-
cuss the simplifications that come about in the chiral
limit, as was previously observed in the thermal magnetic
QCD case [30,31].
Cold and dense magnetic QCD has a major difference

with respect to its analogous at finite temperature and zero
baryon density; it suffers from the sign problem [32], so
that it cannot be tackled by Monte Carlo simulations in the
parameter sector that is relevant for compact star physics,
which would correspond to large values of the baryon
chemical potential. Therefore, one does not have lattice
QCD as a benchmark to compare to. Besides magnetic
pQCD, one can approach the equation of state in the limit
of a large number of colors Nc [33], via chiral perturbation
theory [34], using holographic models [35,36] and, of
course, within effective models. For a detailed discussion
and list of references, see Refs. [37–40]. Here we ignore
the effect of color superconductivity [41] in the presence
of a strong magnetic field [42–46], which might be
relevant to transport phenomena in the core of neutron
stars and magnetars.
The equation of state for a system composed by up,

down and strange quarks at zero temperature and nonzero
baryon chemical potential, which we will refer to as cold
and dense quark matter, was first obtained within pertur-
bative QCD more than four decades ago by Freedman
and McLerran [25,47], and also by Baluni [48] and
Toimela [49]. Since then, it has been systematically
improved [27,28,50–59]. One relevant feature of perturba-
tive QCD for cold and dense quark matter is that it seems to
be much better behaved, compared to its thermal counter-
part, in terms of the convergence of the series [60].
Nevertheless, if we consider the exchange contribution,
including the renormalization group running of αs and ms,
it brings corrections ∼30% for μq ∼ 600 MeV [27].
Therefore, the sizable reduction in the exchange contribu-
tion in the presence of a strong magnetic background
mentioned before has remarkable effects on the perturba-
tive series, as discussed in Ref. [31] for the thermal case.
The effectively negligible contribution of the exchange

diagram allows for building a simple (analytic) description
for the high-density sector of the equation of state for
magnetic cold quark matter from perturbative QCD, pro-
vided that the magnetic background is strong enough to
justify the lowest-Landau level description. We illustrate
the utility of this formulation by computing some features
of pure quark magnetars (strange magnetars) assuming
extremely large magnetic fields. We also provide some
estimates using an effective magnetic bag model that is
partially justified in the chiral limit (also assuming a very
high magnetic field) by the behavior of the magnetic
exchange diagram. In this paper we restrict our analysis
to pure quark magnetars since our point is just to illustrate

the behavior of the equation of state derived from magnetic
perturbative QCD and provide boundaries obtained from
the fundamental theory of strong interactions.
To compute hybrid magnetars or magnetized proto

neutron stars, however, one has to include the low-density
sector and perform a matching of the equations of state
(see Refs. [61–65]). Moreover, one should also include
crust effects [66,67]. To consider magnetic fields typical of
magnetars, one should also go beyond the lowest-Landau
level approximation in the pQCD sector of the equation
of state, which is very challenging. This more realistic
description of the star composition is however out of
the scope of the current presentation. Here we focus on
computing the equation of state from the fundamental
theory of strong interactions within a specific region of
validity where our approximations are under control.
The properties of strange quark magnetars have so far

been mostly studied within the framework of effective
theories, such as the Nambu-Jona-Lasinio model [68–71],
the density-dependent quark model [72,73], the quasipar-
ticle model [74–76], the chiral SU(3) quark mean field
model [77] and the bag model [63,78–80].
This work is organized as follows. In Sec. II we present

the perturbative setup and a few details on the calculation
of the pressure to two-loops, including the running of the
coupling and strange quark mass. In Sec. III we discuss
our results for the pressure. In Sec. IV, we present some
estimates from an effective magnetic bag model, which can
be justified in the chiral limit. In Sec. V we propose an
effective pQCD model for the equation of state and
compute some features of quark magnetars. Section VI
contains our summary and outlook.

II. PRESSURE IN COLD AND DENSE
MAGNETIC PERTURBATIVE QCD

In this section we compute the pressure in perturbative
QCD to two-loops. We assume that the system is embedded
in a uniform, very large magnetic field B ¼ Bẑ, where the
field strength B is much larger than the chemical potential
and all masses.
Let us start with the one-loop (free), contribution to the

pressure of in-medium QCD in the presence of high
magnetic fields. Since we will consider the case with zero
temperature, there is only the contribution coming from
the quark sector, which is given by the following renor-
malized expression (subtracting the pure vacuum term) in
the LLL [30,31,37–40,81]:

PLLL
free

Nc
¼ −

X
f

ðqfBÞ2
2π2

½xf ln ffiffiffiffiffi
xf

p �

þ T
X
f

qfB

2π

Z
dpz

2π
fln ð1þ e−β½EðpzÞ−μf �Þ

þ ln ð1þ e−β½EðpzÞþμf �Þg; ð1Þ
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whereNc ¼ 3, E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þm2

f

q
, xf ≡m2

f=2qfB and qf,mf, μf are respectively the absolute value of the electric charge, the

mass and the chemical potential of the f-quark. In the zero-temperature limit β → ∞, Eq. (1) has a simpler form in terms of
the Heaviside Θ function (for details, see Ref. [82]):

PLLL
free

Nc
¼ −

X
f

ðqfBÞ2
2π2

½xf ln ffiffiffiffiffi
xf

p � þ
X
f

qfB

2π

Z
dpz

2π
ðμf − EÞΘðμf − EÞ ð2Þ

¼ −
X
f

ðqfBÞ2
2π2

½xf ln ffiffiffiffiffi
xf

p � þ
X
f

qfB

2π

Z
PF

0

dpz

2π
ðμf − EÞ ð3Þ

¼ −
X
f

ðqfBÞ2
2π2

½xf ln ffiffiffiffiffi
xf

p � þ
X
f

ðqfBÞ
4π2

�
μfPF −m2

f log

�
μf þ PF

mf

��
; ð4Þ

where PF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2f −m2

f

q
is the Fermi momentum. Notice that, in principle, the first (magnetic vacuum) term contributes for

all values of μf, whereas the second term appears only for μf > mf, as usual. It is easy to check from the Heaviside function,

that the next Landau level (n ¼ 1), only contributes if B <
μ2f−m

2
f

2qf
.

In the chiral limit, we have simply
�
PLLL
free

Nc

�
chiral

¼ qfB

4π2
μ2f: ð5Þ

The two-loop pressure at finite density and temperature was first computed in Ref. [30] in the LLL approximation.
It corresponds to the exchange diagram and has the following form (for one flavor):

PLLL
exch

Nc
¼−

1

2
g2
�
N2

c−1

2Nc

�
m2

f

�
qfB

2π

�Z
dmk

2π
mke

−
m2
k

2qfB

Z
dpzdqzdkz

ð2πÞ3 ð2πÞδðkz−pzþqzÞ
1

ωEpEq

�
ωΣþ

E2
−−ω2

þ ωΣ−

E2þ−ω2
þ2

�
Eþ

E2þ−ω2
−

E−

E2
−−ω2

�
nBðωÞNFð1Þ−

�
2ðEqþωÞ

ðE−−ωÞðEþþωÞ
�
NFð1Þ−2

Eþ
E2þ−ω2

nBðωÞ−
1

Eþþω

�
; ð6Þ

where

E� ≡ Ep � Eq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

f

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

f

q
;

NFð1Þ ¼ nFðEp þ μfÞ þ nFðEp − μfÞ;
Σ� ≡ nFðEp þ μfÞnFðEq � μfÞ þ nFðEp − μfÞnFðEq ∓ μfÞ: ð7Þ

Here, nB and nF are the Bose-Einstein and Fermi-Dirac distributions, respectively, and ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z þm2

k

q
, wherem2

k accounts

for the gluon momentum components transverse to the magnetic field. Again, in the limit T → 0, we have
nFðEp þ μfÞ → 0, nFðEp − μfÞ → Θðμf − EpÞ and nBðωÞ → 0, so that NFð1Þ → Θðμf − EpÞ, Σ− → 0 and
Σþ → Θðμf − EpÞΘðμf − EqÞ. Then Eq. (6) acquires the form

PLLL
exch

Nc
¼ −

1

2
g2
�
N2

c − 1

2Nc

�
m2

f

�
qfB

2π

�Z
dmk

2π
mke

−
m2
k

2qfB

Z
dpzdqzdkz

ð2πÞ3 ð2πÞδðkz − pz þ qzÞ

×
1

ωEpEq

�
ω

E2
− − ω2

Θðμf − EpÞΘðμf − EqÞ −
�

2ðEq þ ωÞ
ðE− − ωÞðEþ þ ωÞ

�
Θðμf − EpÞ −

1

Eþ þ ω

�
: ð8Þ

The pressure to two-loops for three flavors (Nf ¼ 3) with physical quark masses depends not only on the chemical
potential and magnetic field, but also on the renormalization subtraction point Λ̄, an additional mass scale generated by the
truncation in the perturbative expansion. This comes about via the scale dependence of both the strong coupling αsðΛ̄Þ and
strange quark mass msðΛ̄Þ.
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The running of both αs and ms are known to four-loop
order in the MS scheme [83]. Since we have determined the
pressure only to first order in αs ¼ g2=4π, we use for the
coupling [27]

αsðΛ̄Þ ¼
4π

β0L

�
1 −

2β1
β20

lnL
L

�
; ð9Þ

where β0 ¼ 11 − 2Nf=3, β1 ¼ 51 − 19Nf=3, L ¼
2 ln ðΛ̄=ΛMSÞ. Since αs depends on Nf, fixing the massive
quark at some energy scale also depends on the number of
flavors. For the strange quark mass, we have

msðΛ̄Þ ¼ m̂s

�
αs
π

�
4=9

�
1þ 0.895062

�
αs
π

��
; ð10Þ

with m̂s being the renormalization group invariant strange
quark mass, i.e. Λ̄ independent. Since Eq. (9) for αs tells us
that different values of Nf give different values of ΛMS, by
choosing αsðΛ̄ ¼ 1.5 GeV; Nf ¼ 3Þ ¼ 0.336þ0.012

−0.008 [84],
we obtain Λ2þ1

MS
¼ 343þ18

−12 MeV. Fixing the strange quark
mass at msð2 GeV; Nf ¼ 3Þ ¼ 92.4ð1.5Þ MeV [85] gives
m̂2þ1

s ≈ 248.7 MeV when using α2þ1
s in Eq. (10).

As usual, there is arbitrariness in the way one should
connect the renormalization scale Λ̄ to a physical mass
scale of the system under consideration [86]. In cold
and dense QCD where, besides quark masses, the only
scale is given by the quark chemical potential, and
μf ≫ mf, the usual choice is 2μf with a band around it,
i.e. μf < Λ̄ < 4μf. In the present case, where the magnetic
field also provides a relevant mass scale given by

ffiffiffiffiffiffi
eB

p
, the

choice becomes more ambiguous. Following the detailed
analysis of different ways of implementing the scale
dependence performed in Ref. [31], we show results only
for the most physical case that emerged in that study;

Λ̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2μfÞ2 þ eB

q
, which corresponds to a natural exten-

sion of what is done in finite-temperature field theory at
nonzero density [86].
In Fig. 1 we show results for the renormalization

group running of the strong coupling, αs, and the strange
quark mass, ms, as functions of the chemical potential
μ ¼ μu ¼ μd ¼ μs (assuming symmetric matter) for
eB¼ 1 GeV2 and eB¼ 9 GeV2, including bands that
encode the renormalization-scale dependence in the standard

range between half the central scale Λ̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2μfÞ2 þ eB

q
and

two times it. To delimit the region of validity, we also show

FIG. 1. Running coupling (top) and strange quark mass (bottom) as functions of the chemical potential for eB ¼ 1 GeV2 (left) and
eB ¼ 9 GeV2 (right). The bands correspond to changes in the central scale by a factor of 2. For these plots μ ¼ μu ¼ μd ¼ μs, assuming
symmetric matter.
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the line ms ¼ μ in the plots of the running of the
strange quark mass. It is clear from the figures that,
for large values of the magnetic field, the coupling
remains small in all the relevant parameter region and
the bands become narrower with increasing B. Notice
also that both αs and ms become very flat functions of μ
for very large magnetic fields. In fact, at lowest order,
one has ð∂ms=∂μsÞ ¼ Oðα13=9s μB=eBÞ ≪ 1 for large B.

III. RESULTS FOR THE PRESSURE

In this section, we present results for the pressure of
symmetric quark matter as a function of the chemical
potential μ ¼ μu ¼ μd ¼ μs for eB ¼ 1 GeV2 and
eB ¼ 9 GeV2, the latter being the highest value of mag-
netic field attained in currently available lattice simula-
tions in the case of thermal QCD [24]. We also show
results for the pressure as a function of the magnetic field
for μ ¼ 0.6 GeV. Panels with the free pressure, Ps

free, the
exchange diagram contribution, Ps

exch, the ratio P
s
exch=P

s
free,

and the full strange pressure, Ps, are displayed. We
concentrate on the contribution from the strange quark
because mass effects are more relevant in this case. The
ratio Ps

exch=P
s
free provides a certain measure of the reliability

of perturbation theory, since it seems to be more well

behaved than the case in the absence of a large magnetic
field [30]. Besides the case that includes the renormaliza-
tion group running of αs and ms, we plot the case with no
running for comparison.
For simplicity, we fully neglect anisotropy effects

[87,88]. Results shown in this paper correspond to the
longitudinal pressure in an anisotropic description [89].
One can show that significant anisotropies for quark
magnetars appear for fields above 5 × 1018 Gauss [87].
Nevertheless, we focus on the analysis of QCD inter-
actions in the (longitudinal part of the) equation of state in
this magnetic, cold and dense environment and recall that
we do not aim at providing a realistic description of
magnetars here.
In Figs. 2 and 3 we plot the pressure as a function of the

strange quark chemical potential for the two different
values of external magnetic field. One can see that the
effects from the running of the coupling and the mass
are significant, reaching ∼50% for smaller values of μ
in the exchange contribution, when compared to the case
with no running. On the other hand, for high magnetic
fields it is clear that the two-loop contribution is com-
paratively negligible, representing a correction of a few
percent. Even for much smaller fields, eB ∼ 0.0059 GeV2

(B ¼ 1018 Gauss), typical of magnetar cores, the obtained

FIG. 2. Ps
free (top left), Ps

exch (top right), Ps
exch=P

s
free (bottom left), and Ps (bottom right) as functions of the chemical potential for

eB ¼ 1 GeV2.
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exchange contribution remains negligible. Still, one expects
the LLL approximation to break down for such “low” field
intensities. On the other hand, as will become clear in what
follows, running effects always play a relevant role, since
they also affect the leading term of the pressure via the
running of the mass.
In Fig. 4 we show the behavior of the pressure as a

function of the magnetic field for μs ¼ 600 MeV. Although
the exchange contribution increases with the magnetic
field, it remains comparatively very small even for values
of the field way beyond what is expected to be found in
astrophysical environments.
Finally, we show in Fig. 5 the free and the full pressures,

both including renormalization group running bands
between half and twice Λ̄, for eB ¼ 1 GeV2. For com-
parison, we also display the pressure in the chiral limit,
given by Eq. (5). One can see that, for large magnetic fields,
all cases are essentially indistinguishable unless one goes to
values of the chemical potential below μs ¼ 300 MeV.
This fact suggests that one could build a pQCD-based
simple analytic model for the equation of state of cold and
dense quark matter under very large magnetic fields that
could be used to describe quark magnetars. Before that,
however, let us discuss some estimates from the magnetic
bag model that are better justified after the results we have
just discussed.

IV. MAGNETIC BAG MODEL AND ESTIMATES
FOR QUARK MAGNETARS

As discussed previously, the chiral limit for perturbative
QCD at very high magnetic fields is extremely simple. The
exchange contribution vanishes identically for mf ¼ 0, as
was already discussed in Refs. [30,31], and the free con-
tribution is given by Eq. (5). We can use this fact to justify
building an effective magnetic bag model by including only
the purely magnetic contribution to the pressure and energy
density, besides the usual bag constant. Magnetic versions
of the bag model have been considered previously in
[63,78,80,81,90]. Here, however, we consider this model
for very large magnetic fields, which brings the quadratic
behavior of the pressure with the chemical potential shown
in Eq. (5). This has important consequences, as we will see,
since the equation of state that results is much stiffer than in
the usual MIT bag model, where PMIT

f ∼ μ4f.
Following the usual procedure for building a bag model

[15,91–95], it is straightforward to derive the following
equation of state from the thermodynamic potential:

Pbag ¼ ϵ − 2Beff ; ð11Þ

where we have an effective bag constant Beff in the
presence of the magnetic field B given by

FIG. 3. Ps
free (top left), Ps

exch (top right), Ps
exch=P

s
free (bottom left), and Ps (bottom right) as functions of the chemical potential for

eB ¼ 9 GeV2.
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Beff ≡ B þ B2

2
; ð12Þ

B being the bag constant. Here, we have essentially used
Eq. (5) and the first law of thermodynamics. This should be
contrasted to the usual MIT bag model that yields the
following equation of state:

PMIT ¼ 1

3
ðϵ − 4BÞ: ð13Þ

The new form of the equation of state, Eq. (11), obtained
in the limit of extremely high magnetic fields, is also a
self-bound equation of state, but a much stiffer one. It
corresponds to the Zel’dovich equation of state [96] and
represents the limiting causal situation, with speed of sound
cs ¼ 1 [15]. This comes about because, in the presence of
an extremely strong magnetic field, one has Pbag ∼ eBμ2f
instead of PMIT ∼ μ4f, as discussed above.
We can use a scaling, analogous to the one originally

proposed by Witten [91] in the case of the original MIT bag

FIG. 4. Ps
free (top left), Ps

exch (top right), Ps
exch=P

s
free (bottom left), and Ps (bottom right) as functions of the magnetic field for

μ ¼ 0.6 GeV.

FIG. 5. Pfree (left) and P (right) as functions of the chemical potential for eB ¼ 1 GeV2. The bands correspond to changes in the
central scale by a factor of 2. For comparison, we also display the pressure in the chiral limit, given by Eq. (5).
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model, to write the maximum mass, radius and central
energy density of a strange quark magnetar obtained from
the Tolman-Oppenheimer-Volkov (TOV) equations [97].
Using the Zel’dovich equation of state above as an input,
one obtains [15],

Mmax ¼ 4.23M⊙

�
ϵsat
2Beff

�
1=2

; ð14Þ

Rmax ¼ 17.6 km

�
ϵsat
2Beff

�
1=2

; ð15Þ

ϵmax
c ¼ 3.03ð2BeffÞ; ð16Þ

whereM⊙ is the solar mass and ϵsat ¼ 140 MeV=fm3 is the
energy density at nuclear matter saturation. These equa-
tions only make sense for magnetic field strengths such
that

ffiffiffiffiffiffi
eB

p
≫ μf. Here we adopt the value B1=4 ¼ 145 MeV

(B ¼ 57 MeV=fm3) for the bag constant.
A magnetic field of B ¼ 1018 Gauss, for instance, typical

of magnetar cores, corresponds to
ffiffiffiffiffiffi
eB

p
∼ 77 MeV,

which is “too low”. For B ¼ 2 × 1019 Gauss, one hasffiffiffiffiffiffi
eB

p
∼ 342 MeV, which is of the same order as μf and

yields an energy density of B2

2
¼ 900 MeV=fm3, so that

Beff ¼ 957 MeV=fm3. Then, we can estimate the values
of the maximum mass, radius and central energy density
in the presence of a magnetic field B ¼ 2 × 1019 Gauss
to be, respectively, Mmax ≈ 1.14M⊙, Rmax ≈ 4.75 km, and
ϵmax
c ≈ 41ϵsat. These values should be taken as extreme,
since they correspond to assuming magnetic fields that
yield an equation of state that sits in the causality limit. For
comparison, the value B1=4 ¼ 145 MeV for the bag con-
stant produces quark stars with maximum mass Mmax

MIT ≈
2.01M⊙ and radius Rmax

MIT ≈ 10.9 km in the absence of a
magnetic field [15]. Very large magnetic fields produce
stars that are less massive, smaller and much more compact,
in line with the findings of Ref. [80].

V. ANALYTIC pQCD MODEL FOR THE
EQUATION OF STATE AND QUARK

MAGNETARS

A. Analytic pQCD approximate equation of state

As discussed previously, the contribution of the two-loop
exchange diagram is negligible when compared to the
one-loop free term in the case of very high magnetic fields.
For magnetic fields expected to be found in the core of
magnetars and higher, one can show that the exchange
contribution remains small, but renormalization group
running effects are relevant. This point is illustrated in
Fig. 6, where we show Pfree and how it compares to the
total pressure P as functions of the chemical potential for
B ¼ 1019 Gauss, including the running bands that corre-
spond to changes in the central scale by a factor of 2. We
also plot the pressure in the chiral limit, given by Eq. (5),
for comparison.
Hence, we can build a simple analytic pQCD-based

model for the equation of state by using

Peff

Nc
¼ −

X
f

ðqfBÞ2
2π2

½xf ln ffiffiffiffiffi
xf

p �

þ
X
f

ðqfBÞ
4π2

�
μfPF −m2

f log

�
μf þ PF

mf

��
; ð17Þ

including the renormalization group running. This repre-
sents an excellent approximation to the two-loop pQCD
result at very large magnetic fields.
One will notice that we have larger bands for the pressure

as we push pQCD towards smaller values of the magnetic
field, essentially leaving the strict region of validity for the
full calculation. The bands here provide a measure of the
uncertainty in the perturbative calculation, a useful feature
that is usually not present in model calculations. In fact, one
can use the perturbative band at a given chemical potential

FIG. 6. Pfree (left) and P=Pfree (right) as functions of the quark chemical potential for B ¼ 1019 Gauss (eB ¼ 0.059 GeV2). The
bands correspond to changes in the central scale by a factor of 2. For comparison, we also display the pressure in the chiral limit,
given by Eq. (5).
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to restrict possible equations of state, in the same fashion as
performed in Ref. [53] for neutron star matter.1

B. Limits on quark magnetars from pQCD

We can illustrate the applicability of the analytic
approximate equation of state for cold quark matter in
the presence of a high magnetic background obtained from
perturbative QCD by computing the mass-radius diagram
of quark magnetars assuming that the magnetic field is
high enough. By doing that, we can place constraints on the
behavior of the maximum mass and associated radius from
perturbative QCD. Any given model description should
approach these constraints for high enough values of B.
In order to describe quark magnetars, one must still

impose beta equilibrium and charge neutrality. These are
given, respectively, by the following conditions [15]:

μd ¼ μs ¼ μu þ μe ð18Þ

and

2

3
nu −

1

3
nd −

1

3
ns − ne ¼ 0: ð19Þ

Here μe is the electron chemical potential,

ne ¼
eBμe
2π2

ð20Þ

is the electron number density, and

nf ¼ Nc
qfBPF

2π2
ð21Þ

is the f-quark number density (μf > mf). The energy
density of a magnetized system at zero temperature is
given by

ϵ¼−Pþ
X
f

μf
∂Pf

∂μf
þμene¼−Pþ

X
f

μfnfþμene: ð22Þ

Here, we should write the running of the strange quark
mass in terms of the baryon chemical potential as
Λ̄ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2μB=3Þ2 þ eB

p
, where μB ¼ μu þ μd þ μs. The fact

that the scale is a function of the external parameter μB
spoils the thermodynamic consistency. So, the pressure
must be corrected to

P ¼ Peff þW −
B2

2
þ Pe; ð23Þ

where we add the purely magnetic contribution to the
pressure, the free electron pressure,

Pe ¼
eBμ2e
4π2

; ð24Þ

and a function (W) that ensures thermodynamic con-
sistency, so that ð∂P=∂μfÞ is equal to Eq. (21) (see
Refs. [98–103] for details). In our case, the μB dependence
of the scale enters only in the strange pressure via the
running of the mass. Thus, the function W is given by

∂W
∂μs

¼ −
∂ðPeff þ PeÞ

∂ms

∂ms

∂Λ̄
∂Λ̄
∂μs

: ð25Þ

In Fig. 7 we show the equation of state, P ¼ PðϵÞ,
and the mass-radius relation obtained from our simple
analytic pQCD-based model for a magnetic field B ¼ 1019

Gauss, an order of magnitude larger than a typical value
in the interior of magnetars. We also show results from
the magnetic bag model for comparison. Defining the

FIG. 7. Equation of state (left) and mass-radius relation (right) obtained from perturbative QCD for B ¼ 1019 Gauss. We also show
results from the magnetic bag model for comparison. For the perturbative equation of state, we exhibit results with and without a bag
constant B1=4 ¼ 145 MeV. The different curves correspond to changes in the central scale by a factor of 2.

1Even though the exchange contribution is small for B ¼ 1019

Gauss, such field is not high enough to justify the LLL
approximation, as discussed previously. Hence, the equation of
state above should not be naively applied to magnetars. Reliable
results are only obtained for higher values of the magnetic field.
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dimensionless scale X ≡ Λ̄=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2μB=3Þ2 þ eB

p
, the curves

coming from perturbative QCD correspond to X ¼ 1=2, 1,
2, i.e., changes in the central scale by a factor of 2.
We exhibit results with and without a bag constant
(B1=4 ¼ 145 MeV). One can notice that the slope in the
analytic pQCD-based model for the equation of state is
smaller than the one from the magnetic bag model, so that
the speed of sound is less than 1 in the former. This is an
effect of strong interactions via the renormalization group
running and brings significant deviations from the magnetic
bag model (cf. Fig. 6) that affect the mass-radius relation
lowering the values of the maximum mass and radius.
As expected from the analysis in the previous section,

the masses and radii obtained are small when in the
presence of a high magnetic field. For comparison,
perturbative QCD to two-loops, and including the
running of αs and ms, yields quark stars with maximum
mass Mmax

pQCD ≈ 2.16M⊙ and radius Rmax
pQCD ≈ 12 km in the

absence of magnetic field [27].
Figure 8 displays the maximum mass and its respective

radius as functions of the magnetic field B obtained from
perturbative QCD. The different curves correspond to
changes in the central scale by a factor of 2. In the figure,
we also show results from the bag model for comparison.
These results place constraints on the behavior of the
maximum mass and associated radius from perturbative
QCD coming down from very high values of the magnetic
field. Any given model description should, ideally,
approach these constraints for high enough values of B.
Although the equation of state extracted from perturbative

QCD cannot provide a good description of the low- and
intermediate-density sectors all by itself, it is obtained from
first principles and should guide the description of the
high-density regime. For instance, model calculations of
the equation of state for quark matter in the presence of
strong magnetic fields should approach this behavior
for high μB and very high B. To provide a more realistic
description of the equation of state in magnetar matter,
even for very large magnetic fields, one should match a

low-density equation of state onto the equation of state from
perturbative QCD, which is beyond the scope of this paper.

VI. SUMMARY AND OUTLOOK

In this paper we computed the pressure within perturba-
tive QCD at finite density and very high magnetic fields up
to two-loops and physical quark masses. Since we adopt
the lowest-Landau level approximation in order to obtain
analytic results and more control on qualitative aspects,
the region of validity for our framework is restricted to
ms ≪ μq ≪

ffiffiffiffiffiffi
eB

p
, where ms is the strange quark mass, e is

the fundamental electric charge, μq is the quark chemical
potential, and B is the magnetic field strength.
As also observed previously in the case of thermal

magnetic QCD [30,31], in the case of cold and dense
QCD the contribution of the exchange diagram is essen-
tially negligible. This sizable reduction in the exchange
contribution in the presence of a very strong magnetic
background might have remarkable effects on the
convergence of the perturbative series. For instance, a
clearly visible band related to the renormalization scale
dependence appears only for relatively small values of the
chemical potential.
We used this fact to build a simple (analytic) description

for the high-density sector of the equation of state from our
first-principle perturbative QCD result. It can be encoded in
a simple formula which represents an excellent approxi-
mation to the two-loop pQCD result at very large magnetic
fields. One can use the associated perturbative band at a
given chemical potential to restrict possible equations of
state for magnetars, in the same fashion as performed in
Ref. [53] for neutron star matter, provided that the magnetic
field is high enough to justify the lowest-Landau level
approximation.
If one considers the chiral limit in an extremely large

magnetic background, a much stiffer effective magnetic bag
model emerges, producing a Zel’dovich equation of state
that sits in the causal limit. The reason is that one has
Pbag ∼ eBμ2 in the magnetic bag model, instead of the

FIG. 8. Maximum mass (left) and its respective radius (right) as functions of the magnetic field B obtained from perturbative QCD.
The different curves correspond to changes in the central scale by a factor of 2. We also show results from the bag model for comparison.

FRAGA, PALHARES, and RESTREPO PHYS. REV. D 109, 054033 (2024)

054033-10



usual PMIT ∼ μ4 behavior. Within this model, we estimated
the maximum mass, radius and central energy density for
very large magnetic fields.
As an illustration, we used our simple analytic pQCD-

based model to compute the equation of state P ¼ PðϵÞ for
magnetized quark star matter, imposing beta equilibrium
and charge neutrality. Then, we obtained the mass-radius
diagram for quark magnetars by solving the TOV equa-
tions. All our results have renormalization-group scale
dependence, which provides at least a rough measure of
their uncertainty. We also computed the maximum mass
and its respective radius as functions of B, placing con-
straints on their behavior from perturbative QCD coming
down from very high values of the magnetic field. Model
calculations of the equation of state for quark matter in the
presence of strong magnetic fields should approach this
behavior for high densities and extreme values of B.
Of course, a more realistic picture of magnetars should

incorporate the low-density sector and the matching of the
equations of state, besides the inclusion of crust effects and a
more thorough treatment of the magnetic field profile. This
would allow for the computation of magnetic effects on other
relevant observables, such as the tidal deformability.

From the analysis of the perturbative series of magnetic
QCD performed here for the case of cold quark matter, and
its thermal counterpart in Refs. [30,31], the convergence in
powers of αs seems to be much more well-behaved than in
the case with no magnetic field. The challenging technical
extension that would permit more direct applications to
astrophysical phenomenology would be going beyond the
lowest-Landau level approximation.
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