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We investigate the chemical potential effects of the equation of state and the chiral transition in an
Einstein-Maxwell-dilaton-scalar system, which is obtained from an improved soft-wall anti–de Sitter/QCD
model coupled with an Einstein-Maxwell-dilaton system. The equations of state obtained from the model
are in quantitative agreement with the lattice results at both zero and nonzero chemical potentials. The
sensible chiral transition behaviors can be realized in the model. The QCD phase diagram with a critical end
point has also been obtained from the model.
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I. INTRODUCTION

The investigations of quantum chromodynamics (QCD)
phase transition and the construction of the QCD phase
diagram are of paramount importance in the field of
theoretical physics. These inquiries delve into the funda-
mental nature of matter and the Universe, aiming to unravel
the intricate behavior of quarks and gluons that make up

protons, neutrons, and other hadrons. Understanding the
QCD phase transition, which occurs under extreme con-
ditions of temperature and baryon chemical potential, such
as those in the early Universe or within neutron stars, is
critical for our comprehension of the fundamental forces
governing the cosmos [1]. The QCD phase diagram, on the
other hand, provides a comprehensive map of the different
phases of nuclear matter and offers essential insights into
the behavior of matter at various temperatures and den-
sities. These investigations not only deepen our under-
standing of the building blocks of matter but also have
practical applications, ranging from high-energy physics to
astrophysics, impacting the way we perceive the Universe
and its evolution.
One of the key issues is to study the nature of QCD phase

transition that takes place in hot and dense environments.
QCD is known to exhibit two distinct types of phase
transitions in these extreme conditions, namely the chiral
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and the deconfinement phase transitions. At low temper-
ature T and small baryon chemical potential μB, QCD
matter predominantly exists as confined hadrons due to
strong quark confinement, with a nonzero chiral condensate
that contributes to the hadron mass. As temperature rises,
QCD matter will finally enter a deconfined phase of quark-
gluon plasma through a smooth crossover, with the chiral
condensate approaching zero and the chiral symmetry
restored [1–3]. It is commonly believed that the phase
transition between hadronic matter and quark-gluon plasma
changes from a smooth crossover to a first-order phase
transition with the increase of μB. Hence, the existence and
properties of the critical end point (CEP) of the first-order
transition line are essential for understanding the behavior
of QCD matter under extreme conditions. The location of
CEP depends on factors like the number of quark flavors
and the strength of interactions. In extremely dense con-
ditions, such as in the core of neutron stars, quark matter
may undergo color superconductivity and exhibits novel
phases [4].
Efforts to understand the QCD phase transition and to

construct the QCD phase diagram have been a focal point of
both theoretical and experimental researches in the field of
nuclear and particle physics. In the Large Hadron Collider
at CERN and the Relativistic Heavy Ion Collider at
Brookhaven National Laboratory, high-energy nuclear
collisions have been conducted to recreate conditions
similar to the early Universe, allowing us to investigate
the properties of QCD matter under extreme conditions.
Neutron star astrophysics and gravitational wave observa-
tions also offer indirect insights into the behavior of dense
nuclear matter under extreme conditions. Theoretical
attempts at studying the QCD phase transition involve
lattice QCD simulations [5,6] and model calculations, such
as the chiral effective model and various other theoretical
frameworks [7–12]. However, almost all the methods come
with shortages and difficulties related to the nonperturba-
tive nature of low-energy QCD. For the lattice QCD, the
infamous sign problem exists when addressing issues at
finite baryon density, even though various systematic
schemes have been constructed to extrapolate the lattice
results to finite baryon chemical potentials [13–15].
In the last two decades, the gauge/gravity duality, also

known as the AdS/CFT correspondence [16–18], has been
established as a promising approach to solve various
strong-coupling related problems, especially the nonper-
turbative aspects of QCD [19–21]. Indeed, it has been a
long desire to construct a holographic dual of QCD, which
is called the anti–de Sitter (AdS)/QCD program, aiming
to provide quantitative descriptions for the low-energy
QCD properties that is intrinsically nonperturbative. This
includes the study of the hadron spectrum, the thermody-
namic properties and also the phase structure of QCD.
Many holographic QCDmodels have been constructed by a
bottom-up approach, in consideration of the basic features

of low-energy QCD, such as the spontaneous chiral
symmetry breaking and the linear confinement property
[22–66]. The well-known ones include the hard-wall and
soft-wall models [23–25], the modified versions of which
could produce the light hadron spectra in agreement with
measurements, and could also realize the proper chiral
transition behaviors in the case of both two and 2þ 1
flavors [67–75]. The equation of state and the associated
deconfinement phase transition at μB ¼ 0 have been studied
in the holographic framework by an Einstein-dilaton system
with a suitable dilaton potential [76–93], while the Einstein-
Maxwell-dilaton (EMD) systemhas been used to investigate
the properties of QCD phase transition at μB ≠ 0 and to
construct the QCD phase diagram [94–96]. However, the
chiral and deconfinement phase transitions, as two sides of
one coin, should be realized simultaneously in a consistent
way. For that, some efforts have been made to characterize
these two kinds of phase transitions in a single holographic
framework [97–102].
In this work, we attempt to construct a holographic QCD

model with the aim to provide a proper description for both
the equation of state and the chiral transition at finite μB in
the two-flavor case. The matter part of this model will be
given by an improved soft-wall model that could generate
spontaneous chiral symmetry breaking and realize the right
chiral transition properties, at least qualitatively. The bulk
background will be given by an EMD system which could
describe the equation of state and the expected deconfine-
ment properties of QCD. By integrating these two sectors
into an Einstein-Maxwell-dilaton-scalar (EMDS) system,
we find that the properties of deconfinement and chiral
transitions could be characterized consistently in this
holographic framework. Furthermore, we find that the
model results of the equation of state at finite μB are in
good agreement with the lattice results of two flavors, and
the QCD phase diagram containing a CEP can also be
obtained. After fixing the model parameters, we also
investigate the equation of state in the reduced EMD
system with the coupling β ¼ 0, and we find that the
phase transition is a first-order one at μB ¼ 0, which is
consistent with that of the pure gauge sector of QCD
[103,104]. This feature is very different from that given in
the previous work [101], where we only gave a qualitative
investigation on the phase transition in a simple Einstein-
dilaton-scalar system at zero chemical potential.
The paper is organized as follows. In Sec. II, we outline

the holographic QCD model, and then focus on the EMDS
system that will be mainly addressed. The equation of
motion will be derived from the action of the model, and the
boundary condition will be given for numerical calculation.
In Sec. III, we investigate the QCD phase transition at finite
μB in the EMDS system and show the numerical results.
The model parameters will be fixed by fitting the two-flavor
lattice results of the equation of state at μB ¼ 0. We then
obtain the equation of state and the chiral transition at
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finite μB. The QCD phase diagram will also be obtained
from the model. In Sec. IV, we give a conclusion on our
work with a few discussions.

II. THE IMPROVED SOFT-WALL AdS/QCD
MODEL COUPLED WITH AN EMD SYSTEM

The action of the two-flavor holographic QCD model
can be divided into two parts: S ¼ SG þ SM. The part of
gravitational background is an EMD system that can be
written in the string frame,

SG ¼ 1

2κ25

Z
d5x

ffiffiffiffiffiffi
−g

p
e−2ϕ½R − hðϕÞFMNFMN

þ4ð∂ϕÞ2 − VðϕÞ�; ð1Þ

where κ25 ¼ 8πG5 is the effective Newton constant. The
chemical potential effects can be introduced into the system
by the Abelian gauge field AM of the action. The dilaton ϕ
has been included to break the conformal symmetry, in
order to give a sensible description for QCD phase
transition [76]. Later we will specify the form of the
dilaton potential VðϕÞ and also the gauge kinetic function
hðϕÞ that characterizes the coupling strength of the gauge
field AM.
The flavor part of the action comes from an improved

soft-wall AdS/QCD model with an additional coupling
term of the Abelian gauge field and the bulk scalar field:

SM ¼ −κ
Z

d5x
ffiffiffiffiffiffi
−g

p
e−ϕTr

�
jDXj2 þ VXðX;ϕÞ

þ λ̃3ðϕÞFMNFMN jXj2 þ 1

4g25
ðF2

L þ F2
RÞ
�
; ð2Þ

where the covariant derivative DMX ¼ ∂
MX − iAM

L Xþ
iXAM

R , and the chiral gauge field strength takes the form
FMN
L;R ¼∂

MAN
L;R−∂

NAM
L;R−i½AM

L;R;A
N
L;R�. The coupling term

λ̃3ðϕÞ will be fixed below. The potential for the bulk scalar
and the dilaton takes the form

VXðX;ϕÞ ¼ m2
5jXj2 − λ1ϕjXj2 þ λ2jXj4; ð3Þ

where the bulk scalar mass is determined by the mass-
dimension relation m2

5L
2 ¼ ΔXðΔX − 4Þ with ΔX ¼ 3

being the scaling dimension of the dual operator q̄RqL
of the scalar field in the boundary [24].
The potential VX in Eq. (3) has been applied to

investigate thermodynamic properties of QCD in the case
of μB ¼ 0 [100,101], which shows that such a form of VX
could provide a good description for both the equation of
state and the chiral transition, at least on the qualitative
level. Thus it seems natural for us to generalize to the finite
chemical potential case in order to check whether this type
of holographic QCD model could still produce consistent

results of QCD phase transition with other models or lattice
simulations. The coupling term of the Abelian gauge field
and the bulk scalar field in Eq. (2) has also been considered
in previous studies with the aim to realize the correct
behaviors of chiral transition at finite μB [105]. We remark
that the role of this coupling term is in some sense like that
in Ref. [105] but in a rather different model setup.
The holographic QCD model is built in a gravitational

background with the metric ansatz

ds2 ¼ L2e2ASðzÞ

z2

�
−fðzÞdt2 þ dxidxi þ dz2

fðzÞ
�
; ð4Þ

where L is the curvature radius of the asymptotic AdS5
spacetime. Without loss of generality, we just take L ¼ 1
below. At finite temperature, this metric represents an
asymptotic AdS black hole to be solved from the equation
of motion of the system. We require fðzhÞ ¼ 0 at the event
horizon zh of the black hole.

A. The Einstein-Maxwell-dilaton-scalar system

According to Ref. [24], the vacuum expectation value
(VEV) of the bulk scalar field X can be written as hXi ¼
χðzÞ
2
I2 with I2 denoting the 2 × 2 unit matrix, and the chiral

condensate σ is embodied in the UVexpansion of the scalar
VEV hXi. In order to investigate the properties of chiral
transition, we only need to consider the vacuum part of
matter fields represented by hXi in the bulk action (2) and
neglect the vacuum fluctuations corresponding to the
meson fields. Thus the holographic QCD model is reduced
to an EMDS system:

S ¼ SG þ Sχ ;

¼ 1

2κ25

Z
d5x

ffiffiffiffiffiffi
−g

p
e−2ϕ

�
R − hðϕÞFMNFMN þ 4ð∂ϕÞ2

− VðϕÞ − βeϕ
�
1

2
ð∂χÞ2 þ Vðχ;ϕÞ

þ λ̃3ðϕÞ
2

FMNFMNχ2
��

; ð5Þ

where β ¼ 16πG5κ controls the coupling strength between
the bulk background and the matter part, and the potential
for the scalar VEV χ and the dilaton ϕ takes the form

Vðχ;ϕÞ ¼ TrVXðhXi;ϕÞ;

¼ 1

2
ðm2

5 − λ1ϕÞχ2 þ
λ2
8
χ4: ð6Þ

For convenience, we usually transform to the Einstein
frame by taking the metric ansatz
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ds2 ¼ L2e2AEðzÞ

z2

�
−fðzÞdt2 þ dxidxi þ dz2

fðzÞ
�

ð7Þ

with the warp factor AEðzÞ related to the string-frame factor
ASðzÞ by AE ¼ AS − 2

3
ϕ. The bulk action (5) in the Einstein

frame can then be written as

S ¼ 1

2κ25

Z
d5x

ffiffiffiffiffiffiffiffi
−gE

p �
RE − ωðϕÞFMNFMN

−
4

3
ð∂ϕÞ2 − VEðϕÞ − βeϕ

�
1

2
ð∂χÞ2 þ VEðχ;ϕÞ

þ λ̂3ðϕÞ
2

FMNFMNχ2
��

; ð8Þ

where

ωðϕÞ ¼ hðϕÞe4ϕ
3 ;

VEðϕÞ ¼ e
4ϕ
3 VðϕÞ;

VEðχ;ϕÞ ¼ e
4ϕ
3 Vðχ;ϕÞ;

λ̂3ðϕÞ ¼ λ̃3ðϕÞe−4
3
ϕ: ð9Þ

We could do a rescaling ϕc ¼
ffiffiffiffiffiffiffiffi
8=3

p
ϕ to convert the

kinetic term of the dilaton ϕ to a canonical one. Following
Ref. [76], we adopt a simpler form of the dilaton potential

VcðϕcÞ ¼
1

L2
ð−12 cosh γϕc þ b2ϕ2

c þ b4ϕ4
cÞ; ð10Þ

and take VEðϕÞ ¼ VcðϕcÞ. This guarantees the bulk
geometry to have an asymptotic AdS structure near the
boundary:

Vcðϕc → 0Þ ≃ −12
L2

þ b2 − 6γ2

L2
ϕ2
c þOðϕ4

cÞ: ð11Þ

The mass-dimension relation gives

b2 ¼ 6γ2 þ ΔðΔ − 4Þ
2

; ð12Þ

where Δ denotes the scaling dimension of the dual operator
of the dilaton field. As shown in Ref. [101], the specific
value of Δ in the Breitenlohner-Freedman bound actually
does not affect the qualitative behaviors of phase transition.
Thus we just take Δ ¼ 3 for simplicity.
We adopt a form of the gauge kinetic function

ωðϕÞ ¼ c0
4
e−c1ϕc þ 1 − c0

4sechðc3c4Þ
sech½c3ðϕc − c4Þ�; ð13Þ

which approaches 1=4 as ϕc → 0 in the UV limit. Such a
form of ωðϕÞ is inspired by those considered in
Refs. [94,95], which provide a suitable description for

the quark susceptibility at μB ¼ 0. For the last unfixed
function λ̂3ðϕÞ, we will adopt a simple exponential form
λ̂3ðϕÞ ¼ λ3ekϕ in order to produce proper chiral transition
behaviors at finite μB. We remark that the coupling term
related to λ̂3 has few influences on the equation of state at
finite μB.

B. Equation of motion and boundary condition

By the variational method, the Einstein field equation
and the equations of motion for the Abelian gauge field AM,
the dilaton ϕ, and the scalar VEV χ can be derived from the
action (8) as

RMN −
1

2
gMNRþωðϕÞ

�
1

2
gMNFABFAB−2FMAFN

A

�

þ4

3

�
1

2
gMN∂Jϕ∂

Jϕ−∂Mϕ∂Nϕ

�
þ1

2
gMNVEðϕÞ

þβ

2
eϕ
�
1

2
gMN∂Jχ∂

Jχ−∂Mχ∂Nχ

�
þβ

2
gMNeϕVEðχ;ϕÞ

þβ

2
λ̂3ðϕÞeϕ

�
1

2
FABFABgMN −2FMAFN

A

�
χ2¼ 0; ð14Þ

∇M

�
wðϕÞFMN þ β

2
λ̂3ðϕÞeϕχ2FMN

�
¼ 0; ð15Þ

8

3
∇M∇Mϕ − ∂ϕwðϕÞFMNFMN − ∂ϕVEðϕÞ

−
β

2
eϕgMN

∂Mχ∂Nχ − β∂ϕ½eϕVEðχ;ϕÞ�

−
β

2
∂ϕ½λ̂3ðϕÞeϕ�FMNFMNχ2 ¼ 0; ð16Þ

∇Mðeϕ∇MχÞ − λ̂3ðϕÞeϕFMNFMNχ

− eϕ∂χVEðχ;ϕÞ ¼ 0: ð17Þ

At finite chemical potential, we only keep the time-
component At of the Abelian gauge field to be nonzero. In
terms of the metric ansatz (7) and the assumption that the
bulk fields depend only on the fifth-dimension coordinate
z, Eqs. (14)–(17) can then be simplified to the following
five independent equations:

f00 þ 3A0
Ef

0 −
3

z
f0 − 4z2ωðϕÞe−2AEA02

t

− 2βz2λ̂3ðϕÞe−2AEþϕχ2A02
t ¼ 0; ð18Þ

A00
E þ 2

z
A0
E − A02

E þ 4

9
ϕ02 þ β

6
eϕχ02 ¼ 0; ð19Þ
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A00
t þ

A0
t

2zeϕωðϕÞ þ βzλ̂3ðϕÞe2ϕχ2
½2ωðϕÞeϕðzA0

E − 1Þ

þ 2zeϕ∂ϕωðϕÞϕ0 þ βze2ϕ∂ϕλ̂3ðϕÞϕ0χ2

þ βλ̂3ðϕÞe2ϕðχ2ðzA0
E þ zϕ0 − 1Þ þ 2zχχ0Þ� ¼ 0; ð20Þ

ϕ00 þ
�
3A0

E þ f0

f
−
3

z

�
ϕ0 −

3β

16
eϕχ02 −

3e2AE∂ϕVEðϕÞ
8z2f

þ 3z2e−2AEA02
t ∂ϕωðϕÞ

4f
−
3βe2AE∂ϕðeϕVEðχ;ϕÞÞ

8z2f

þ 3βz2eϕ−2AEχ2A02
t

8f
ðλ̂3ðϕÞ þ ∂ϕλ̂3ðϕÞÞ ¼ 0; ð21Þ

χ00 þ
�
3A0

E þ ϕ0 þ f0

f
−
3

z

�
χ0 −

e2AE∂χVEðχ;ϕÞ
z2f

þ 2z2λ̂3ðϕÞe−2AE

f
A02
t χ ¼ 0; ð22Þ

where the function fðzÞ and the electrostatic potential AtðzÞ
are required to satisfy the following boundary conditions:

fð0Þ ¼ 1; fðzhÞ ¼ 0; ð23Þ

Atð0Þ ¼ μB; AtðzhÞ ¼ 0: ð24Þ

The UV asymptotic solution for Eqs. (18)–(22) can be
obtained as

fðzÞ ¼ 1 − f4z4 þ � � � ; ð25Þ

AEðzÞ ¼ −
1

108
ð3βm2

qζ
2 þ 8p2

1Þz2

−
1

24
βp1m2

qζ
2ð2λ1 þ 11Þz3 þ � � � ; ð26Þ

AtðzÞ ¼ μB − κ25nBz
2 −

4
ffiffiffi
6

p

9
p1κ

2
5nB½c0c1

þ ðc0 − 1Þc3 tanhðc3c4Þ�z3 þ � � � ; ð27Þ

ϕðzÞ ¼ p1zþ
3

16
βm2

qζ
2ðλ1 þ 6Þz2 þ p3z3

−
�
1

48
βp1m2

qζ
2ð9λ21 þ 111λ1 þ 286Þ

−
4

9
p3
1ð12b4 − 6γ4 þ 1Þ

�
z3 ln zþ � � � ; ð28Þ

χðzÞ ¼mqζzþp1mqζðλ1þ 5Þz2þ σ

ζ
z3

−
�
1

96
m3

qζ
3ðβð9λ21þ 108λ1þ 308Þ− 24λ2Þ

þ 1

18
p2
1mqζð9λ21þ 111λ1þ 286Þ

�
z3 lnzþ �� � ; ð29Þ

where ζ ¼
ffiffi
3

p
2π is a normalization constant [27], mq denotes

the current quark mass, σ the chiral condensate, and nB the
baryon number density. From the UVexpansions (25)–(29),
we read another two conditions:

ϕ0ð0Þ ¼ p1; χ0ð0Þ ¼ mqζ: ð30Þ

In terms of the boundary conditions (23), (24), and (30), the
bulk fields can be solved numerically from Eqs. (18)–(22)
(see the Appendix). The baryon number density nB and the
chiral condensate σ can then be extracted from the UV
asymptotics of At and χ, respectively.

III. QCD PHASE TRANSITION AT FINITE
CHEMICAL POTENTIAL

A. Equation of state and chiral transition

Once we could solve the EMDS system, the equations of
state and the chiral transition can be investigated simulta-
neously at finite μB. The temperature and the entropy
density are given by the formulas:

T ¼ jf0ðzhÞj
4π

; s ¼ 2πe3AEðzhÞ

κ25z
3
h

: ð31Þ

The pressure p can be calculated by the differential relation

dp ¼ sdT þ nqdμq; ð32Þ

and the energy density can then be obtained from the
thermodynamic relation ε ¼ −pþ sT þ μqnq, with the
quark number density nq ¼ 3nB and the quark chemical
potential μq ¼ μB=3.
To do the numerical calculation, we need to fix the model

parameters, which could be determined by fitting the lattice
results of the equation of state in the two-flavor case
[106,107]. First note that we can always set the back-
ground-matter coupling to be β ¼ 1 by rescaling the scalar
VEV χ and other parameters in our model. The current
quark mass will be taken as mq ¼ 5 MeV. By fitting the
equation of state at μq ¼ 0, we can fix the parameters
G5 ¼ 0.582, γ ¼ 0.75, b4 ¼ 0.02, and p1 ¼ 0.473 GeV.
Other parameters of the model are related to the chemical
potential effects and the properties of chiral transition. For
instance, the values of the coefficients c0, c1, c3, c4, and λ3,
k have direct effects on the equation of state at finite μq. In
order to fix these parameters, we could use the quark
susceptibility defined by

χq2 ¼
∂
2ðP=T4Þ
∂ðμq=TÞ2

¼ ∂ðnq=T3Þ
∂ðμq=TÞ

: ð33Þ

The values of λ1, λ2, λ3, and k are crucial for a proper
realization of the chiral transition behaviors at finite μq.
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Since the background fields and the matter fields are
coupled with each other, the thermodynamic properties
at finite μq actually depend on all the parameters of the
model. By a global fitting, we can fix the remaining
parameters to be c0¼0.725, c1¼30, c3¼0.47, c4¼0.45,
λ1 ¼ −1, λ2 ¼ 10, λ3 ¼ −0.65, and k ¼ −1.67.
In Fig. 1, we present the model calculations for the

scaled energy density ϵ=T4, the pressure p=T4 and the
quark susceptibility χq=T2 at μq ¼ 0, which have been used
to fix the parameters of the model. We can see that the
model results have a good match with the lattice results in
the two-flavor case [106,107]. Then we can apply our
model to investigate the properties of the equation of state
and the chiral transition at nonzero chemical potential. In
Fig. 2, we present the model results for the scaled pressure
Δp=T4 with Δp ¼ pðT; μqÞ − pðT; 0Þ and the quark num-
ber density nq=T3 at fixed values of μq=T, which are
compared with the lattice results in the two-flavor case. We
find that the model results are in good agreement with the
lattice data.
We also investigate the behaviors of the equation of state

and the chiral transition with fixed values of μq. We present
the temperature T as a function of the horizon zh at five
different values of μq in Fig. 3, from which we find that for
smaller values of μq, the temperature decreases monoton-
ically with the event horizon. However, when μq increases
beyond a critical point μEq ≃ 423 MeV, the behavior of T
with respect to zh will become nonmonotonic in a small
region of zh, which signals that the transition order of the
thermodynamic quantities obtained from the model will be
changed around the critical value μEq . The chiral transition
behaviors with fixed μq are presented in Fig. 4, from which
we can see that the chiral transition is a smooth crossover at
smaller values of μq, yet when μq becomes larger and

larger, the chiral condensate σ descends more and more
rapidly with the increase of temperature T in the transition
region, until μq reaches the critical point μEq , at which the
chiral transition becomes a second-order phase transition,
and then it converts to a first-order phase transition when μq
is larger than μEq . These behaviors of chiral transition with
respect to the chemical potential are consistent with that of
the T − zh curves in Fig. 3.

T4

p T4

2
q

0.1 0.2 0.3 0.4 0.5 0.6
0

2

4

6

8

10

T(GeV)

FIG. 1. Comparison of the model results for the scaled energy
density ϵ=T4, the pressure p=T4, and the quark susceptibility χq2
with the lattice results at μq ¼ 0. The model results are denoted
by solid lines, while the lattice data are denoted by dashed lines or
points with error bars [106,107].
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FIG. 2. Comparison of the model results for the scaled pressure
Δp=T4 and the quark number density nq=T3 with the lattice
results for μq=T ¼ 0.2, 0.4, 0.6, 0.8, 1. The lattice data are taken
from Refs. [106,108].
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FIG. 3. The temperature T as a function of the horizon zh at
μq ¼ 0; 250; 350; 423; 500 MeV.
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Note that the change of the transition order is not that
obvious from the chiral transition behaviors shown in Fig. 4.
We then calculate the scaled entropy density s=T3 and the
free energyF ¼ −p around the critical pointμEq . In Fig. 5,we
present the model results for three neighboring values of μq,
from which we can see clearly that the free-energy line
displays a swallow-tail shape at μq ¼ 443 MeV, which is a
clear signal for a first-order phase transition. The intersection
point of the free-energy line determines the critical temper-
ature of the first-order transition.

B. QCD phase diagram

Wecan obtain theQCDphase diagram as long aswe could
determine the transition temperature at each chemical poten-
tial,which can be attained from the analysis of the equation of
state and the chiral transition. As mentioned above, the
critical temperature Tc for the first-order phase transition at
large μq can be determined by the intersection point of the
free-energy line. As μq decreases to μEq ≃ 423 MeV, the
swallow-tail shape of the free-energy line disappears, with
the critical temperature TE ≃ 91.2 MeV, at which a second-
order phase transition occurs. The phase transition turns into
a smooth crossover below μEq. There is no unique way to
determine the transition temperature Tc for the crossover
case. We may use the minimum of the speed of sound cs,
which is a suitable probe to characterize the drastic change of
degrees of freedom between the confinement phase of
hadrons and the deconfinement phase of quark-gluon
plasma. In addition, we may also use the maximally
decreasing point of the chiral condensate σ to signify the
chiral transition temperature.
The model prediction for the QCD phase diagram is

presented in Fig. 6, where we use the baryon chemical
potential μB, instead of the quark chemical potential μq.
Note that there is a CEP located at ðμEB; TEÞ ¼
ð1268 MeV; 91.2 MeVÞ, which links the first-order tran-
sition line in the range of μB > μEB with the crossover
transition line in the range of μB < μEB. It seems that the
critical point μEB of our model with two flavors is larger than
those obtained from other models including a recent
holographic study on the phase structure of two-flavor
QCD [109–113]. It can be seen from Fig. 6 that the two
crossover lines given by the minimum of cs and the σ
inflection do not coincide, with the chiral transition temper-
ature greater than the deconfinement transition temperature
at smaller values of μB, and they converge gradually to the
CEP with the increase of μB. At μB ¼ 0, the transition
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FIG. 4. The behaviors of the chiral condensate σ with respect to
the temperature T at μq ¼ 0; 250; 350; 423; 500 MeV.
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FIG. 5. The behaviors of the scaled entropy density s=T3

and the free energy F around the transition temperature for
μq ¼ 403; 423; 443 MeV.
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FIG. 6. The QCD phase diagram obtained from the model. The
minimum of the speed of sound cs and the maximally decreasing
point of the chiral condensate σ are denoted by the dashed and
dotted lines, respectively. The first-order transition is denoted by
a solid line. The CEP is marked by a red point.
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temperature determined by the minimum of cs is about
162 MeV, while the chiral transition temperature is about
190 MeV.

C. Pure gauge sector

With suitable choice of parameters, the EMDS system
with the action (5) is capable of describing both the
equation of state and the chiral transition at finite chemical
potential, and the properties of phase transition obtained
from the model are consistent with the lattice results and the
common expectations. Now we would like to decouple the
matter part with the bulk background by setting β ¼ 0. It is
interesting to see how the equation of state and other
thermodynamic quantities behave in the reduced EMD
system which may holographically characterize the gluon
dynamics of QCD.
We calculate the scaled entropy density s=T3, the energy

density ϵ=T4, and the pressure p=T4 at zero chemical
potential in this EMD system with the fixed parameters.
The numerical results are presented in Fig. 7. Clearly, the
EMD system of this model exhibits a first-order phase
transition at μq ¼ 0, which is qualitatively consistent
with the lattice simulations for pure Yang-Mills theory
[103,104]. The free-energy line in this case has been shown

in Fig. 8, from which we can read the critical temper-
ature Tc ≃ 137.5 MeV.

IV. CONCLUSION AND DISCUSSION

We investigated the properties of phase transition and
phase diagram in an improved soft-wall AdS/QCD model
coupled with an EMD system in the two-flavor case. With
fixed parameters, this model yields the equation of state in
quantitative agreement with the lattice results of two flavors
at both zero and nonzero chemical potentials. It also
generates sensible chiral transition behaviors consistent
with the equation of state at finite chemical potential. Note
that the deconfinement and chiral transitions are interre-
lated with each other, and occur simultaneously in the first-
order transition region of large μB. This is a natural result of
the fact that the bulk background fields and the vacuum
scalar field have been coupled together. But in the cross-
over region, because of different order parameters being
used, the transition temperatures obtained from them are
also different. In addition, we find that the first-order phase
transition beyond μEB is actually very weak in our model, as
can be seen by the free-energy lines in Fig. 5.
The QCD phase diagram in the T − μB plane has been

obtained, with a CEP located at ðμEB; TEÞ ¼ ð1268 MeV;
91.2 MeVÞ. The large value of the critical point μEB in our
model forms an obvious contrast to those obtained from the
previous studies [109–112]. By the equation of state, we
also find that the reduced EMD system of our model
generates a first-order phase transition at zero chemical
potential, which is consistent with that of the pure gauge
theory [103,104]. To sum up, all these features indicate that
the phase structure of our model is quite similar to that of
QCD, at least on a qualitative level, as long as μB is not too
large. We may wonder whether a more quantitative
description for the phase structure of QCD could be
obtained from such a holographic framework.
For a convincing description of the QCD phase tran-

sition, we actually need to give the information of hadron
spectrum. It remains to be seen whether the mass spectra of
light hadrons could be reproduced in this holographic QCD
model. It will be interesting to generalize the two-flavor
investigations of this work to the 2þ 1 flavor case by
introducing another vacuum scalar field related to the
strange flavor, in which case we may have other ways to
obtain the QCD phase diagram containing a CEP. With the
rise of the astronomy of neutron stars and gravitational
waves, it will also be interesting to apply this holographic
QCD model to investigate the equation of state and other
properties of neutron stars.
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APPENDIX: IMPLEMENTATION OF SPECTRAL
COLLOCATION METHOD IN OUR MODEL

We now detail the implementation of the spectral
collocation method for the numerical calculation. First
we change the form of Eqs. (18)–(22) by applying the
following two transformations successively:

z→ uzh; fðzÞ→ f̂ðuÞ; AEðzÞ→ ÂEðuÞ
AtðzÞ→ ÂtðuÞ; ϕðzÞ→ ϕ̂ðuÞ; χðzÞ→ χ̂ðuÞ; ðA1Þ

u →
tþ 1

2
; f̂ðuÞ → f̃ðtÞ;

ÂEðuÞ →
�
tþ 1

2

�
2

ÃEðtÞ; ÂtðuÞ → ÃtðtÞ;

ϕ̂ðuÞ → tþ 1

2
ϕ̃ðtÞ; χ̂ðuÞ → tþ 1

2
χ̃ðtÞ: ðA2Þ

Equations (18)–(22) are then transformed into the desired
form with t as the independent variable. Since the final
expressions are too lengthy to be presented here, we just
show the changed form of Eq. (19),

a1ðtÞÃ00
EðtÞ þ a2ðtÞÃ0

EðtÞ þ a3ðtÞÃEðtÞÃ0
EðtÞ

þ a4ðtÞÃ0
EðtÞ2 þ a5ðtÞÃEðtÞ

þ a6ðtÞÃEðtÞ2 þ a7ðtÞ ¼ 0; ðA3Þ

where t∈ ð−1; 1Þ and the coefficient functions are

a1ðtÞ ¼ 36ðtþ 1Þ2; ðA4Þ

a2ðtÞ ¼ 216ðtþ 1Þ; ðA5Þ

a3ðtÞ ¼ −36ðtþ 1Þ3; ðA6Þ

a4ðtÞ ¼ −9ðtþ 1Þ4; ðA7Þ

a5ðtÞ ¼ 216; ðA8Þ

a6ðtÞ ¼ −36ðtþ 1Þ2; ðA9Þ

a7ðtÞ ¼ 2f8ϕ̃ðtÞ2 þ 3e
1
2
ðtþ1Þϕ̃ðtÞβχ̃ðtÞ2

þ16ðtþ 1Þϕ̃ðtÞϕ̃0ðtÞ þ 6e
1
2
ðtþ1Þϕ̃ðtÞðtþ 1Þβχ̃ðtÞχ̃0ðtÞ

þðtþ 1Þ2½8ϕ̃0ðtÞ2 þ 3e
1
2
ðtþ1Þϕ̃ðtÞβχ̃0ðtÞ2�g: ðA10Þ

The boundary conditions (23), (24), and (30) now become

f̃ð−1Þ ¼ 1; ðA11Þ

f̃ð1Þ ¼ 0; ðA12Þ

Ãtð−1Þ ¼ μB; ðA13Þ

Ãtð1Þ ¼ 0; ðA14Þ

ϕ̃ð−1Þ ¼ p1zh; ðA15Þ

χ̃ð−1Þ ¼ ζmqzh: ðA16Þ

Next, let us first select a set of distinct collocation points
ftigNi¼0 (N ≥ 1 is an integer) on ½−1; 1� with ftigNi¼0 being
the N þ 1 roots of the equation

ð1 − t2Þ d
dt

LNðtÞ ¼ 0; ðA17Þ

where LNðtÞ is the Nth Legendre polynomial. The deriva-
tive matrix D is an ðN þ 1Þ × ðN þ 1Þ matrix, which is
given by

Dij ¼

8>>>>><
>>>>>:

− NðNþ1Þ
4

; i ¼ j ¼ 0

0; 1 ≤ i ¼ j ≤ N − 1

NðNþ1Þ
4

; i ¼ j ¼ N
LNðxiÞ

ðxi−xjÞLNðxjÞ ; i ≠ j

: ðA18Þ

Note that the range of each index of the matrix D is ½0; N�.
For a general function fðtÞ, fðtiÞ denotes the value of fðtÞ
at the collocation point ti. The value of the derivative
function f0ðtÞ can be calculated by the differential matrix

f0ðtÞ		! ¼ DfðtÞ		!
; ðA19Þ

where

fðtÞ		! ¼

0
BBBBB@

fðt0Þ
fðt1Þ
..
.

fðtNÞ

1
CCCCCA
; f0ðtÞ		! ¼

0
BBBBB@

f0ðt0Þ
f0ðt1Þ

..

.

f0ðtNÞ

1
CCCCCA
: ðA20Þ

The matrix of the second-order differential operator is
defined as D2 ≡ D2.
Then we can build the discretization scheme of Eq. (A3),

a1ðtiÞ
XN
j¼0

ðD2ÞijÃEðtjÞ þ a2ðtiÞ
XN
j¼0

DijÃEðtjÞ

þ a3ðtiÞÃEðtiÞ
XN
j¼0

DijÃEðtjÞ þ a4ðtiÞ
�XN
j¼0

DijÃEðtjÞ
�2

þ a5ðtiÞÃEðtiÞ þ a6ðtiÞÃEðtiÞ2 þ a7ðtiÞ ¼ 0 ðA21Þ
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with 0 ≤ i ≤ N. For f̃, Ãt, ϕ̃, χ̃, they satisfy the boundary
conditions (A11)–(A16), which now turn into

f̃ðt0Þ − 1 ¼ 0; ðA22Þ
f̃ðtNÞ ¼ 0; ðA23Þ

Ãtðt0Þ − μB ¼ 0; ðA24Þ
ÃtðtNÞ ¼ 0; ðA25Þ

ϕ̃ðt0Þ − p1zh ¼ 0; ðA26Þ
χ̃ðt0Þ − ζmqzh ¼ 0: ðA27Þ

Hence, the discretized equations for f̃ and Ãt should take
values from i∈ ½1; N − 1�, while the discretized equations
for ϕ̃ and χ̃ take values from i∈ ½1; N�. Note that the IR
boundary conditions of ϕ̃ and χ̃ are natural boundary
conditions which are satisfied implicitly in the equations of
motion after discretized.
Then putting the discretized equations and boundary

conditions together, we have in total 5ðN þ 1Þ equations
which can be solved numerically to obtain the values of
f̃ðtiÞ, ÃEðtiÞ, ÃtðtiÞ, ϕ̃ðtiÞ, and χ̃ðtiÞ, ð0 ≤ i ≤ NÞ. For more
details about the spectral collocation method, one can refer
to [114,115].
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