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The properties of a phase diagram of strange quark matter in equilibrium with hadronic matter at finite
temperature are studied, where the quark phase and hadron phase are treated by a baryon density-dependent
quark mass model and hadron resonance gas model with a hard core repulsion factor, respectively. The
thermodynamic conditions for the formation of metastable strange quark droplets (“strangelets”) in
relativistic nuclear collisions are discussed. We obtained a rich structure of the phase diagram at finite
temperature, and study the dynamical trajectories of an expanding strange fireball. Our results indicate that
the strangeness fraction fs, perturbation parameter C, and confinement parameterD have a strong influence
on the properties of the phase diagram and the formation of strangelets. Considering the isentropic
expansion process, we found that the initial entropy per baryon is less than or equal to 5, which gives a large
probability for the formation of strangelets. Furthermore, a sufficiently large strangeness fraction fs and
one-gluon-exchange interaction and sufficiently small confinement interaction create possibilities for the
formation of strangelets. On the contrary, the fireball will always complete the hadronization process when
fs ¼ 0 or C ≥ 0 or D1=2 ≥ 170 MeV.
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I. INTRODUCTION

The phase transition between hadronic and quark matter
is one of the significant and challenging fields of modern
physics related to heavy-ion collisions, hybrid stars, and
hadronization in the early Universe. Following Witten [1]
and Farhi and Jaffe [2], who proposed and studied strange
quark matter, Liu and Shaw [3] and Greiner et al. [4]
proposed the possible creation of metastable cold strange
quark matter droplets (“strangelets”) in relativistic nuclear
collisions. In the early Universe, the slow expansion keeps
in equilibrium the weak interactions, which make strange
quarks and nonstrange quarks transform into each other so
that the free energy is always minimized; at the same time,
the adiabatic β equilibrium causes the “boiling off” of
strange quark matter clusters created in the hadronization
phase transition [5]. In the case of heavy-ion collisions,
strangeness must be considered as a conserved quantum

number due to the suppression of weak processes by short
collision timescales. Therefore, the “s-s̄ separation”mecha-
nism during phase transitions [4,6], surface emission of
hadrons [7], and strangeness conservation, provide the
possibility for metastable strange quark matter droplets
to survive during the expansion and cooling stages of hot
collision fireballs [4,7].
On the other hand, the Relativistic Heavy Ion Collider

carried out in the early 2000s has reached the collision
energy that could not be achieved in the previous heavy-ion
experiments, and created matter with properties never seen
at lower beam energies [8–11]. It was supposed that the
collisions could recreate the conditions of the early Universe
and discover a new state of matter in which quarks and
gluons have been liberated from confinement [3,4,7,12,13].
The state of matter is a hot quark-gluon plasma (QGP). The
droplets of strange quark matter, i.e., strangelets, may be
formed during the cooling process of the QGP [3,4,13,14],
which could serve as an unmistakable signature for the QGP
formation in the laboratory. In reality, there are many heavy-
ion experiments searching for strangelets [15–20].However,
we still know very little about the phase structure of strange

*chenhuaimin@wuyiu.edu.cn
†cjxia@yzu.edu.cn
‡gxpeng@ucas.ac.cn

PHYSICAL REVIEW D 109, 054031 (2024)

2470-0010=2024=109(5)=054031(9) 054031-1 © 2024 American Physical Society

https://orcid.org/0000-0003-3553-2608
https://orcid.org/0000-0002-3388-1137
https://orcid.org/0000-0002-4010-4539
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.109.054031&domain=pdf&date_stamp=2024-03-21
https://doi.org/10.1103/PhysRevD.109.054031
https://doi.org/10.1103/PhysRevD.109.054031
https://doi.org/10.1103/PhysRevD.109.054031
https://doi.org/10.1103/PhysRevD.109.054031


matter and the thermodynamic paths followed by fireballs
during expansion and cooling stages. Therefore, it is
necessary to estimate the phase transition process in the
heavy-ion collisions and provide a complete and reliable
thermodynamic basis and useful consistency checks for
future calculations.
At present, several effective theories have been developed

to study the phase diagram of cold and hot strongly
interacting matter, drawing important conclusions. Based
on theMIT bag model, Lee and Heinz [21] have presented a
detailed discussion of the phase structure of strange quark
matter with finite strangeness and the thermodynamic
conditions for the formation of strangelets in relativistic
nuclear collisions, and studied the isentropic expansion
process of strange quark matter systems in a phase diagram.
On the basis of a previous study, the influence of finite
volume effect on the phase diagram and evolution of
strangelets is further considered [22]. Using a Brueckner-
Hartree-Fock approach for the hadronic equation of state
and a generalized MIT bag model for the quark part,
Maruyama and coworkers [23] investigated the hadron-
quark phase transition occurring in beta-stable matter in
hyperon stars and analyzed the differences between Gibbs
and Maxwell phase transition constructions. Lugones and
Grunfeld found that the surface tension under the MIT bag
model is lower than the critical value in favor of the existence
of the strangelets [24,25]. In Shao’s work, they studied the
influence of vector interactions on the hadron-quark/gluon
phase transition in the two-phasemodel, where quarkmatter
is described by the PNJL model, and hadron matter by the
nonlinear Walecka model [26].
In addition, there are several other effective models

describing quark matter, such as the Nambu-Jona-Lasinio
model [27–29], quasiparticle model [30–33], strangeon
star model [34–36], perturbation model [37–42], and so
on [43–46]. In the present paper, we apply the baryon
density-dependent quark mass model considering both
confinement and first-order perturbation interactions to
comprehensively study the phase diagram of the quark-
gluon plasma phase in equilibrium with a finite hadronic
gas and analyze carefully the formation of strangelets in
isentropic expansion processes. The model was proved to
be thermodynamically self-consistent in the previous
paper [47,48].
The paper is organized as follows. In Sec. II, we give the

thermodynamic treatment and equation of state of the quark
phase at finite temperatures in the framework of the baryon
density-dependent quark mass model. In Sec. III, we
consider the Hagedorn factor in hadronic phase, and give
the thermodynamic treatment and equation of state. In
Sec. IV, we present the numerical results about the proper-
ties of phase transition at finite temperature, where the
phase equilibrium condition, phase diagram, and isentropic
expansion process are discussed. Finally, a summary is
given in Sec. V.

II. THE QUARK-GLUON PLASMA PHASE

The QGP phase is assumed to consist of free quarks and
gluons. In the framework of a baryon density-dependent
quark mass model [48], the contribution of various particles
to the thermodynamic potential density can be written as

Ω0 ¼ Ωþ
0 þΩ−

0 þ Ωg
0: ð1Þ

The contribution of the particle (þ) and antiparticle
(−) is

Ω�
0 ¼

X
i

−
diT
2π2

Z
∞

0

ln
h
1þ e−ð

ffiffiffiffiffiffiffiffiffiffiffi
p2þm2

i

p ∓μ�i Þ=T
i
p2dp: ð2Þ

Ωg
0 ¼

dgT

2π2

Z
∞

0

ln
h
1 − e−

ffiffiffiffiffiffiffiffiffiffiffi
p2þm2

g

p
=T
i
p2dp; ð3Þ

where i ¼ q (q ¼ u, d, s), dq ¼ 3ðcolorsÞ × 2ðspinsÞ ¼ 6

and dg ¼ 8ðcolorsÞ × 2ðspinsÞ ¼ 16.
In this work, we adopt a baryon density-dependent

quark mass model to describe the quark mass, i.e.,
mi ¼miðnu;nd;ns;TÞ¼mi0þmIðnu;nd;ns;TÞ, where mi0,
mI and nb represent the current mass (mu0 ¼ 5 MeV,
md0 ¼ 5 MeV, ms0 ¼ 120 MeV) [49], interaction mass,
and baryon density, respectively. We note that the inter-
action mass of particles and antiparticles varies with state
variables, which corresponds to strong interactions. The
quark mass scaling used is

mi ¼ mi0 þ
D

n1=3b

�
1þ 8T

ΛT
e−ΛT=T

�
−1

þ Cn1=3b

�
1þ 8T

ΛT
e−ΛT=T

�
ð4Þ

with temperature scale parameter ΛT ¼ 280 MeV [50],
where D corresponds to the confinement parameter and C
represents the strength of perturbative interactions. If C
takes negative values, it represents the one-gluon-exchange
interaction strength [51].
As the constant mass is replaced with an equivalent mass

that varies with the environment, the relationship between
the thermodynamic quantities of the free particle system is
destroyed. The thermodynamic treatment is essential to
ensure the thermodynamic self-consistency of the system.
Starting from the free energy F̄, the basic thermodynamic
differential relationship is

dF̄ ¼ −S̄dT − PdV þ
X
i

μidNi; ð5Þ

where S̄, T, P, V, μi, and Ni correspond to the entropy,
temperature, pressure, volume, chemical potential, and
particle number of the system, respectively. For a uniform
system, the free energy density F ¼ F̄=V, entropy density
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S ¼ S̄=V, and particle number density ni ¼ Ni=V. The
differential expression Eq. (5) becomes

dF ¼ −SdT þ
�
−P − F þ

X
i

μini

�
dV
V

þ
X
i

μidni: ð6Þ

The temperature T, volume V, and quark number
densities ni are considered as independent state variables,
so the corresponding free energy density F is the character-
istic thermodynamic function. However, in the thermody-
namic limit, where only large volumes are considered, the
thermodynamic potential is expected to scale with the
volume, so that the corresponding density should be
volume independent. The free energy density takes the
same form as the free particle system with the constant
masses replaced by an equivalent mass, i.e.,

F ¼ FðT; fnig; fmigÞ
¼ Ω0ðT; fμ�i g; fmigÞ þ

X
i

μ�i ni; ð7Þ

where the chemical potential μi is replace with the effective
potential μ�i . The corresponding differential relation is

dF ¼ ∂Ω0

∂T
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X
i

�
∂Ω0

∂μ�i
dμ�i þ μ�i dni þ nidμ�i
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By comparing Eq. (6) with Eq. (8), we have

SQ ¼ −
∂Ω0

∂T
−
X
i

∂mi

∂T
∂Ω0

∂mi
; ð9Þ

PQ ¼ −F þ
X
i

μin
Q
i ; ð10Þ

μi ¼ μ�i þ
X
j

∂Ω0

∂mj

∂mj

∂ni
; ð11Þ

where the up index Q is used to label the quark phase.
Combining Eq. (10) and E ¼ F − TS shows that the Euler
equation E ¼ TS − PþP

i μini is verified.

The energy density is given by

E ¼ F þ TS ¼ Ω0 þ
X
i

μ�i n
Q
i þ TS: ð12Þ

By ∂F=∂μ�i ¼ ∂Ω0=∂μ�i þ ni ¼ 0, the particle number
densities nQi ¼ nþi − n−i are obtained by

n�i ¼ −
∂Ω�

0

∂μ�i
: ð13Þ

Considering the contribution of gluons to the system, we
need to know the effective mass of gluons. Recently,
Borsányi et al. gave 48 pressure values from the lattice
simulation [52]. Based on pressure in the lattice data, we
could describe the gluon mass according to the fast
convergence expression of QCD coupling. By the corre-
sponding 48 pressure values, we use the least square
method to obtain the most effective fitting results. Here,
we define the scaled temperature as x ¼ T=Tc, where Tc is
the critical temperature. At T < Tc, the expression of the
gluon’s equivalent mass is

mg

T
¼

X
i

aixi ¼ a0 þ a1xþ a2x2 þ a3x3; ð14Þ

where expansion coefficients a0¼ 67.018, a1 ¼ −189.089,
a2 ¼ 212.666, a3 ¼ −83.605. At T > Tc, the expression of
the gluon’s equivalent mass is

mg

T
¼

X
i

biαi ¼ b0 þ b1αþ b2α2 þ b3α3; ð15Þ

where α is the strong coupling constant and expansion
coefficients b0 ¼ 0.218, b1 ¼ 3.734, b2 ¼ −1.160,
b3 ¼ 0.274. As is well known, the QCD coupling α is
running and depends on the solution of the renormaliza-
tion-group equation for the coupling. Recently, we have
solved the renormalization group equations for the QCD
coupling by a mathematically strict way and obtained a fast
convergence expression of α [53]. Here, we only take the
leading order term, i.e.,

α ¼ β0
β20 lnðu=ΛÞ þ β1 ln lnðu=ΛÞ

; ð16Þ

where the beta coefficients β0 ¼ 11=2 − Nf=3, β1 ¼
51=4 − 19Nf=12, and number of flavors Nf ¼ 3. The
renormalization scale varies linearly with temperature as
u=Λ ¼ c0 þ c1x, c0 ¼ 1.054, c1 ¼ 0.479.
To get an impression of the gluon introduced here, we

have plotted the temperature dependence of contribution of
particle species to the thermodynamic potential in Fig. 1. It
can be seen that they are all decreasing functions of the
temperature. The gluon contribution of the thermodynamic
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potential vanishes at zero temperature, while for quarks
there are finite contributions even at zero temperature. We
see that below the critical temperature, the contribution of
the thermodynamic potential of gluons is very small, while
above the critical temperature, the thermodynamic potential
of gluons can rapidly increase. However, the contribution
of gluons to the total thermodynamic potential is relatively
small, while the contribution of quarks is relatively large.

III. HADRONIC PHASE

We consider the hadronic phase as a weakly interacting
mixed gas of strange hadrons Kþ; K0;Λ;Σ;Ξ;Ω; non-
strange hadrons π, η, N, Δð1232Þ; and their antiparticles.
According to the quark component of various hadrons, the
chemical potential of hadrons is composed of the quark
chemical potential as follows:

μi ¼
X
q

ðniq − niq̄Þμq; ð17Þ

where i and q represent the hadronic species and quark
flavor respectively. ðniq − niq̄Þ is the net number of the quark
q for i-th baryon.
Based on Bose-Einstein and Fermi-Dirac statistics, the

expressions of the thermodynamic quantities for i-th non-
interacting hadrons are

εpti ¼ di
2π2

Z
∞

0

p2εi
eðεi−μiÞ=T � 1

þ p2εi
eðεiþμiÞ=T � 1

dp; ð18Þ

Ppt
i ¼ di

6π2

Z
∞

0

p4

εiðeðεi−μiÞ=T � 1Þ þ
p4

εiðeðεiþμiÞ=T � 1Þ dp;

ð19Þ

npti ¼ di
2π2

Z
∞

0

p2

eðεi−μiÞ=T � 1
þ p2

eðεiþμiÞ=T � 1
dp; ð20Þ

Spti ¼ � di
2π2

Z
∞

0

�
ln½1� e−ðϵi−μiÞ=T � � ðϵi − μiÞ=T

eðϵi−μiÞ=T � 1

þ ln½1� e−ðϵiþμiÞ=T � � ðϵi þ μiÞ=T
eðϵiþμiÞ=T � 1

�
p2dp; ð21Þ

where ϵi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

i

p
, and the upper and the lower

operation symbol denote the fermions and bosons respec-
tively. The parameter di represent degeneracy factors di ¼
spin × isospin. Naturally, the total energy density, pressure,
and baryon number density for the hadronic phase are

εpt ¼
X
i

εpti ; ð22Þ

Ppt ¼
X
i

Ppt
i ; ð23Þ

nptb ¼
X
i

bin
pt
i : ð24Þ

Here, a proper volume correction of pointlike hadron is
used to consider the hard core repulsion, which is known as
the Hagedorn correction factor [21,54,55]. Then, the
energy density, pressure, baryon number density, and
entropy density are modified, i.e.,

EH ¼ 1

1þ εpt=4B

X
i

εpti ; ð25Þ

PH ¼ 1

1þ εpt=4B

X
i

Ppt
i ; ð26Þ

nHb ¼ 1

1þ εpt=4B

X
i

bin
pt
i ; ð27Þ

SH ¼ 1

1þ εpt=4B

X
i

Spti ; ð28Þ

where bi corresponds to the baryon number of i-th hadron.
The factor ð1þ εpt=4BÞ−1 is the proper volume correction
and limits the energy density to 4B, where the bag constant
B1=4 ¼ 180 MeV [49].
The number density of strange quarks is

nHs ¼ 1

1þ εpt=4B

X
i

sin
pt
i ; ð29Þ

where si is the strange valence quark number of the i-th
hadron.
Note that in an ideal hadron resonance gas (HRG)

mode [56], the hadrons are assumed to be pointlike
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FIG. 1. Temperature dependence of the contribution of particle
species to the thermodynamic potential of light quarks (u=d),
massive strange quark (s), and gluon (g) at fixed nb. The “sum”
stands for the total contributions.
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particles with no interaction between them. However, this
assumption is very simplistic and fails to describe the lattice
QCD (LQCD) data at temperatures above T ∼ 150 MeV
The validity region of the HRG model could be extended to
higher temperatures by introducing the interaction effect.
The excluded volume (EV) effect is the simplest way to
implement the interacting HRG; the short-range repulsive
interaction was modeled via a hard-core correction follow-
ing the thermodynamically consistent way as developed
in Ref. [54].
Further improvement was made considering Lorentz

contracted hard core potentials in hadron gas models [57].
It was found that at higher temperatures, the Lorentz
contraction effects are stronger for light particles such as
pions and make their effective excluded volume smaller than
that of heavy ones. At smaller temperatures (T ∼ 100 MeV),
the pion density is small, and excluded volume corrections
are unimportant [58]. One of the most successful improve-
ments to the model which explains the LQCD results is the
van der Waals hadron resonance gas (VDWHRG) model.
The VDWHRG model effectively explains the LQCD data
up to T ∼ 180 MeV [59]. Van der Waals interaction
does play a crucial role in the hadronic systems at high
temperatures [60].
Our paper mainly studies the structure of phase diagrams

and the evolution of isentropic expansion processes. Since
the temperature during the isentropic expansion process is
generally below 100 MeV, we expect that the volume
correction of meson is not significant. Therefore, the
current paper simply considers the EV effect. In the future
work, we plan to consider more realistic models.

IV. PHASE DIAGRAM AND ISENTROPIC
EXPANSION PROCESS AT
FINITE TEMPERATURE

We consider the isolated system with finite strangeness
that undergoes a first order phase transition from the
hadronic phase to the QGP phase. In the equilibrium
phase diagram, eigenquantities satisfy Gibbs equilibrium
conditions, i.e., chemical equilibrium μQi ¼ μHi , mechanic
equilibrium PQ ¼ PH, and thermodynamic equilibrium
TQ ¼ TH. In the isolated system, the total net baryon
number in the system is kept as a constant. In addition,
the total net strangeness in the compact system is
conserved since the collision in heavy-ion collisions is
too short to establish flavor equilibrium [22]. The
strangeness fraction is defined as

fs ¼ ntots =ntotb : ð30Þ

We consider that the strangeness fraction is in the range
0 ≤ fs < 3. The system maintains a fixed strangeness
fraction, resulting in a smooth variation of the chemical
potentials during the conversion from hadronic matter to

QGP. Here, we will not conduct a complete dynamic
study on the expansion of fireballs, including the effects
of surface evaporation which could change the strange-
ness and entropy density of the system [2, 5, 6] and the
dynamics of the freeze-out process. On the contrary, we
will attempt to obtain some qualitative insights by
assuming a smooth hydrodynamic dynamics expansion
at strangeness fraction fs and constant entropy S̄=A.
The phase transitions occur through a mixed phase. For

the quark phase, it is difficult for the system to achieve
mechanical equilibrium since the quark mass will become
infinite when nQb → 0. Referring to the method used by
He et al. [22], we define a ratio of the hadronic phase
volume to the total volume as α ¼ VH=V tot. α ¼ 0 and
α ¼ 1 correspond to the beginning and end of hadroniza-
tion respectively, and then we obtain the boundary between
mixed phase and hadronic or quark phase. Similarly, we
define nQb ¼ NQ

b =V
Q, nHb ¼ NH

b =V
H to represent the baryon

number density in the quark and hadronic phases.
Generally, common light quark chemical potentials
μu ¼ μd are assumed by isospin symmetry [22,55].
According to the Gibbs conditions and baryon/strangeness
density conservation condition, the equilibrium phase
diagram satisfies

PQðT; μq; μs; nQb Þ ¼ PHðT; μq; μsÞ; ð31Þ

ntotb ¼ nQb ðT; μq; μs; nQb Þð1 − αÞ þ nHb ðT; μq; μsÞα; ð32Þ

ntots ¼ nQs ðT; μs; nQb Þð1 − αÞ þ nHs ðT; μq; μsÞα; ð33Þ

Stot ¼ SQðT; μq; μs; nQb Þð1 − αÞ þ SHðT; μq; μsÞα: ð34Þ

In the framework of the thermodynamic treatment
method of strange quark matter and hadronic matter given
in Secs. II and III, we could obtain the phase structure by
solving Eqs. (31)–(33). Considering Eq. (34), we will get
the isentropic expansion process with baryon density-
dependent quark mass model.
At fixed strangeness fraction fs, we get the phase

diagram in Fig. 2 by solving Eqs. (31)–(33). The dashed
curves obtained at α ¼ 0 represent the boundary between
the quark-gluon phase and the mixed phase. When the
value of α approaches 1, we obtain the boundary between
the hadron phase and the mixed phase, which is indicated
by solid curves. From the phase diagram, we can see that
the quark phase is on the right side of each diagram, the
hadron phase is on the left side, and the mixed phase is in
the middle. The strangeness fraction has a significant
impact on the boundary between the hadron phase and
the mixed phase. As the strangeness fraction increases, the
area of the hadron phase dramatically decreases, and the
boundary curve between the hadron phase and the mixed
phase will approach the temperature axis. The boundary
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between the quark phase and the mixed phase does not vary
significantly with the strangeness fraction, but only slightly
expands to the right. Therefore, the area of the mixed phase
is constantly expanding. Furthermore, we found a narrow
high temperature and low density mixed phase region in the
phase diagram, which implies the possibility of forming
strangelets in heavy ion collisions. In addition, our research
shows that a large strangeness fraction is beneficial for the
formation of strangelets during the process of quark-hadron
phase transition. This is consistent with the conclusion of
previous model studies such as the QMDTD model [55].
Next, we discuss the isentropic expansion process with

the initial entropies per baryon under fixed strangeness
fraction, in which the system is adiabatic and total entropy
is conserved. Based on Eqs. (31)–(34), we obtained the
expansion trace under entropy conservation. The isentropic
expansion process under different strangeness fraction fs is
also shown in Fig. 2. The two dashed curves represent the
isentropic expansion trace, and the initial entropy per
baryon is 5 and 10, respectively. We find that a high initial
entropy per baryon will prevent the occurrence of strange-
lets at the final stage of evolution, and the fireball will
always complete the hadronization process. At the strange-
ness fraction fs ¼ 0.1, 0.3, 0.5, the initial entropy per
baryon is about 5, which is beneficial for the formation of
strangelets. Compared with the MIT bag model [21,22,55],
the baryon density-dependent quark mass model predicts a
similar isentropic expansion trajectory for the formation of

strangelets. However, the difference is that the mixed phase
in the baryon density-dependent quark mass model has a
narrow region of mixed phase at high temperature and low
density. In the case of high entropy, the isentropic curve for
the mixed phase is shorter, and the reheating effect of the
baryon density-dependent quark mass model is more sig-
nificant than that of the bag model. Moreover, as the
strangeness fraction fs decreases, the area of hadron phase
will expand, and the area of mixed phase will shrink in the
phase diagram; the reheating effect is more significant,
reducing the chances for the formation of strangelets so that
fireball will make it easier to complete the hadronic process.
In Fig. 3, we present phase diagrams adopting different

strengths for one-gluon-exchange interactions. We can see
that the boundary curve between the hadron phase and the
mixed phase will expand to the right; the boundary
between the quark phase and the mixed phase also expands
to the right and has a more significant impact as the one
gluon-exchange interaction strength C decreases. In other
words, the area of the mixed phase and hadron phase is
continuously decreasing with the strength of one-gluon-
exchange interactions. Therefore, a larger one gluon-
exchange interaction strength C is conducive to the
formation of strangelets.
At the same time, we consider the isentropic expansion

process under different one-gluon-exchange interaction
strength in Fig. 3. Based on the analysis of phase diagrams
with different strangeness fraction, we take fs ¼ 0.5.

FIG. 2. The phase diagram and isentropic expansion process have been shown at a different fixed strangeness fraction.
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FIG. 3. The phase diagram and isentropic expansion process have been shown under different perturbation parameters C.

FIG. 4. The phase diagram and isentropic expansion process have been shown under a different confinement parameter D.
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At fs ¼ 0.5, all systems with S=nb ≤ 5 follow expansion
trajectories and are trapped in the mixed phase. As the one-
gluon-exchange interaction strength increases, the area of
hadronic phase andmixed phase in the phase diagramwill be
reduced, and the reheating effect will not change signifi-
cantly. The fireball will not complete the hadronization
process and remains within the mixed phase, creating the
possibility for the formation of strangelets. When C takes a
positive value, it represents perturbation interaction, and the
fireball will always complete hadronization process.
The phase diagrams under different confinement param-

eters is indicated in Fig. 4. As the confinement parameterD
increases, the boundary curve between the hadron phase
and the mixed phase shifts to the right, and the boundary
between the quark phase and the mixed phase also shifts to
the right, where the mixed phase covers a larger density
range. Therefore, a smaller confinement parameter D is
beneficial for the formation of strangelets.
In addition, the phase diagram and isentropic expansion

process under different confinement parameter D are
shown in Fig. 4. At fs ¼ 0.5, all systems with S=nb ≤ 5
follow expansion trajectories and are trapped in the mixed
phase. As the confinement parameter D increases, the area
of hadron phase and mixed phase will expand in the phase
diagram; the reheating effect is more significant, decreasing
the possibility for the formation of strangelets. Until
D1=2 ¼ 170 MeV, the isentropic expanding fireball will
complete the hadronization process.
As shown in Figs. 2–4, even if the baryon density is very

small, some isentropic trajectories of S=nb do not enter the
hadronic phase, i.e., the system will not be completely
hadronized. This means that the strange quark matter can
actually survive the hadronization and cooling process. As
the temperature decreases, QGP cools down, giving rise to
surviving (meta)stable cold strangelets. This is consistent
with the conclusion of reference [21].

V. SUMMARY

We have considered the phase structure of strange matter,
revealing the rich structure of the quark-hadron phase
diagram, providing a comprehensive and reliable thermo-
dynamic basis for the dynamic study of the creation of
strange quark matter in relativistic nuclear collisions.
The phase diagram of strange quark matter in equilib-

rium with hadronic matter is systematically studied at finite
temperature within a baryon density-dependent quark mass
model and hard core repulsion factor. Based on the Gibbs
equilibrium conditions, we studied the effects of the
strangeness fraction fs, quark confinement and first-order
perturbative interactions on the phase diagram, the isen-
tropic expansion process, and the formation of strangelets.
In the context of isentropic and hydrodynamic expansion,
the formation of cold strangelets requires a sufficiently
small confinement interaction D and large one-gluon-
exchange interaction C, and an expanding fireball with
either a low specific entropy S=nb or a large strangeness
fraction fs. On the contrary, the fireball will always
complete the hadronization process when fs ¼ 0 or
C ≥ 0 or D1=2 ≥ 170 MeV. Therefore, a sufficiently large
strangeness fraction fs and one-gluon-exchange interaction
C and sufficiently small confinement interaction D create
possibilities for the formation of strangelets. Furthermore,
we found that the initial entropy per baryon is less than or
equal to 5; the fireball will not complete the hadronization
process and remains within the mixed phase, creating the
possibility for the formation of strangelets.
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