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Assuming that D�
s0ð2317Þ is a DK molecular state with a binding energy of 45 MeV, we investigate the

existence of four-hadron molecules, DDKK and DD̄KK̄, with the Gaussian expansion method. Their
binding energies are 138–155 MeVand 123–163 MeV below the mass thresholds of DDKK and DD̄KK̄.
TheDD̄KK̄ state has a decay width of 74–107 MeV due to the complexKK̄ interaction. Further theoretical
studies of and experimental searches for such four-hadron molecules can help deepen the understanding of
the nonperturbative strong interaction in a nontrivial way.
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I. INTRODUCTION

Many studies have been performed on multi-hadron
systems. The best-known ones are atomic nuclei and hyper-
nuclei. The deuteron (np) is formed by a proton and a
neutron with a binding energy of 2.2 MeV [1], the triton
(nnp) is formed by a proton and two neutrons with a
binding energy of 8.5 MeV [2], and the α particle (nnpp) is
formed by two protons and two neutrons with a binding
energy of 28.1 MeV [3]. In addition, as an isotope of
helium, the 3He nucleus (ppn) is formed by two protons
and a neutron. Similar bound states composed of different
numbers of antikaons and nucleons have also been
studied [4–13]. The Λð1405Þ can be considered as a quasi-
bound K̄N state [14,15]. The K̄ K̄ N system was found to
bind with a binding energy of 10–33 MeV [11]. In
Ref. [12], the authors studied multihadron states composed
of an antikaon and a varying number of nucleons. They
found that the binding energies of K̄NN, K̄NNN,
K̄NNNN, and K̄NNNNN are 25–28 MeV, 45–50 MeV,
68–76 MeV, and 70–81 MeV, respectively. In Ref. [13],

the studies of the K̄NNN system and K̄ K̄ NN system in
different methods were reviewed. The binding energies
of the K̄NNN and K̄ K̄ NN states are in the range of
17–110 MeV and 31–117 MeV.
The D�

s0ð2317Þ state, discovered by the BABAR
Collaboration in 2003 [16] and subsequently confirmed
by the CLEO Collaboration [17], Belle Collaboration [18],
and BESIII Collaboration [19], is a strange-charmed scalar
meson and lies about 45 MeV below theDK threshold. It is
not easy to interpret the D�

s0ð2317Þ as a conventional cs̄
state because its mass is far below the lightest cs̄ scalar state
predicted in the conventional quark model [20–27]. On the
other hand, many studies support that it is a molecular state
dynamically generated by the Weinberg-Tomozawa DK
interaction [28–38], which is confirmed by many lattice
QCD studies [39–43].
The DK bound-state picture naturally inspired studies of

DDK, DD̄K [44], and DKK three-body systems [45–48].1
In Ref. [46], theDDK system forms a three-body molecule
with a binding energy of about 70 MeV. In the coupled
channel approach [47], the DDK bound state was found to
lie about 90 MeV below theDDK threshold. In Ref. [48], it
was found that the KK repulsion is of the same order of
magnitude as the DK attractive interaction, which prevents
the DKK system from binding. Naively, one expects that
the DDKK system may bind because, with one more D
meson, the extra DK attraction can help bind the four-body
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system. Indeed, the DDDK system was shown to bind
with a binding energy of 74–106 MeV [46]. To obtain a
complete picture of multihadron states composed of differ-
ent numbers of D mesons and kaons, similar to the light
nuclear system and nucleon-antikaon system, we study in
this work the DDKK and DD̄KK̄ systems with the
Gaussian expansion method (GEM) [50,51].
This article is organized as follows. In Sec. II, we explain

how to use the GEM to solve the four-body Schrödinger
equation and construct the four-body wave functions. In
Sec. III, we explain how we determine the subsystem
potentials involved in the four-body systems. We present
and discuss the results in Sec. IV, followed by a summary
in Sec. V.

II. THEORETICAL FORMALISM

To obtain the binding energies and wave functions of the
four-body systems, we solve the four-body Schrödinger
equation with the GEM, which has been widely applied to
investigate few-body nuclear [50] and hadronic [52,53]
systems. The four-body Schrödinger equation reads"

T þ
X6
1¼i<j

VðrijÞ − E

#
ΨTotal

J ¼ 0; ð1Þ

where T is the kinetic-energy operator, VðrijÞ are the two-
body potentials between particle i and particle j, and J is
the total angular momentum of the four-body system. The
four-body total wave function ΨTotal

J is expressed as a sum
of the wave functions of the eighteen rearrangement
coordinates [50],

ΨTotal
J ¼

X
c;α

Cc;αΦc
J;αðrc;Rc; ρcÞ ðc ¼ 1 − 18Þ; ð2Þ

where Cc;α are the expansion coefficients of relevant bases,
and c ¼ 1–18 denote the eighteen Jacobi coordinates of the
four-body system. Thanks to the symmetry of the DDKK
system, the 18 Jacobi coordinates can be categorized into
six groups (c0 ¼ 1–6), as shown in Fig. 1. α is a collection
of parameters fl; L; λ; L0;Λ; t; T; Ig. Here, l, L, and λ are
the orbital angular momenta of the coordinates r, R, and ρ
in each channel. L0 is the coupling of l and L, the total
orbital angular momentum Λ is the coupling of L0 and λ:t
and T are the isospin of the coordinates r and R in each
channel, and the total isospin I is the coupling of T and t (or
the last particle), which will be discussed later.
Because the spin of D and KðK̄Þ is zero, there is no need

to consider the spin wave function. Therefore, the wave
function of each channel can be written as

Φc0
J;αðrc0 ;Rc0 ;ρc0 Þ¼

h�
ϕG
nc0 lc0

ðrc0 ÞψG
Nc0Lc0

ðRc0 Þ
�
L0
c0
χGνc0 λc0 ðρc0 Þ

i
Λ

⊗Hc0
tT;I; ð3Þ

where ϕG
nc0 lc0

, ψG
Nc0Lc0

, and χGνc0 λc0 are the spatial wave

functions and Hc0
tT;I is the total isospin wave function.

For the details of the spatial wave functions, one can refer
to Ref. [46]. Noting that although in the stochastic varia-
tional method of Suzuki et al. [54], a single set with
nondiagonal Gaussian functions should, in principle, pro-
vide the same results, here, we employ different sets of
Jacobi variables in the GEM shown in Table I.
As shown in Fig. 1, there are two types of configurations,

i.e., K type (c0 ¼ 1–4) and H type (c0 ¼ 5, 6). As a result,
the total isospin wave function Hc0

tT;I has two coupling
ways, HK

tT;I and HH
tT;I , which can be written as

HK
tT;I ¼

���
η1
2
ðiÞη1

2
ðjÞ�tη1

2
ðkÞ�Tη1

2
ðnÞ�I;

HH
tT;I ¼

��
η1
2
ðiÞη1

2
ðjÞ�t�η1

2
ðkÞη1

2
ðnÞ�T�I; ð4Þ

where η1
2
ðiÞ is the isospin wave function of particle i. The

possible values of t and T are listed in Table I.

III. TWO-BODY POTENTIALS

A. The DK interaction

In this work, we employ the DK interaction used in
Refs. [46,47]. The dominant contribution to the S-waveDK
interaction is the Weinberg-Tomozawa (WT) term between
a D meson and a kaon, which can be formulated as a
standard quantum mechanical potential in the nonrelativ-
istic limit,

VDKðqÞ ¼ −
CWðIÞ
2f2π

; ð5Þ

FIG. 1. Six Jacobi coordinates of the DDKK system. Symmet-
rization is implicit between D mesons and between kaons.

PAN, LIU, LU, and GENG PHYS. REV. D 109, 054026 (2024)

054026-2



where the pion decay constant fπ ≈ 130 MeV and the
strength of the WT term CWðIÞ depends on the isospin of
the DK system,

CWð0Þ ¼ 2; CWð1Þ ¼ 0: ð6Þ

After Fourier transform and with a local Gaussian regulator,
the DK potential in coordinate space reads [46]

VDKðr; RCÞ ¼ −
CWðIÞ
2f2π

e−ðr=RCÞ2

π3=2R3
C

: ð7Þ

According to chiral perturbation theory (ChPT) [36], the
leading-order S-wave DK interaction in isospin zero is
attractive, while the next-to-leading (NLO) order correction
is weakly repulsive. The LO DK interaction reads

VDKðr; RCÞ ¼ CðRCÞ
e−ðr=RCÞ2

π3=2R3
C

; ð8Þ

where RC is the cutoff, and CðRCÞ is the running coupling
constant describing the strength of the LO DK interaction.
We should also add a short-range repulsive core in the DK
interaction as the NLO correction, whose isospin factor
CWðIÞ is the same as the LO term. So the total DK
interaction can be written as

VDKðr; RCÞ ¼ CS
e−ðr=RSÞ2

π3=2R3
S

þ CðRCÞ
e−ðr=RCÞ2

π3=2R3
C

¼ C0
Se

−ðr=RSÞ2 þ C0
Le

−ðr=RCÞ2 ; ð9Þ

where C0
S, C0

L are coupling constants, and RS, RC are
cutoffs for the repulsive and attractive potentials. The
uncertainty coming from the NLO corrections can be
estimated by varying the cutoff RC within a sensible range.
Specifically, we require that C0

S > jC0
Lj and RS < RC and

take RS ¼ 0.5 fm, RC ¼ 1.0, 2.0, 3.0 fm, C0
S ¼ 0, 500,

1000, 3000 MeV. For each set of these parameter values,
C0
L is determined by reproducing the D�

s0ð2317Þ as a DK
bound state with a binding energy of 45 MeV.

B. The DD interaction

Due to a lack of data, we turn to the one-boson exchange
(OBE) model [55,56] to describe theDDðD̄Þ interaction. In
the OBE model, the potential between two hadrons is
generated by exchanging light mesons (i.e., π, σ, ρ, and ω).
The OBE model has been successfully employed in accu-
rately describing the nuclear force [55,56] and predicting
the existence of heavy hadron molecules [57]. In recent
years, it has been widely applied to study newly discovered
hadronic molecules [58–70].
The DDðD̄Þ potential is generated by exchanging

σ, ρ, ω [58],

VDDðD̄Þ ¼ Vσðr;ΛÞ þ ξVωðr;ΛÞ þ Vρðr;ΛÞ; ð10Þ

where a form factor and a cutoff Λ regularize the con-
tribution of each light meson. ξ equals to þ1 for the DD
system, and −1 for the DD̄ system, which are related to
each other by the G parity of light mesons. The particular
contribution of each meson is written as [58]

Vσðr;ΛÞ ¼ −g2σmσWC

�
mσr;

Λ
mσ

�
; ð11Þ

Vρðr;ΛÞ ¼ þτ⃗1 · τ⃗2g2ρmρWC

�
mρr;

Λ
mρ

�
; ð12Þ

Vωðr;ΛÞ ¼ þg2ωmωWC

�
mωr;

Λ
mω

�
; ð13Þ

where

WCðx; λÞ ¼
e−x

4πx
− λ

e−λx

4πλx
−
ðλ2 − 1Þ

2λ

e−x

4π
: ð14Þ

Since we focus on four-body bound states, we only take
the real part of theDDðD̄Þ interaction, as argued in Ref. [68].
The masses of the exchanged bosons are mσ ¼ 0.6 GeV,
mρ ¼ 0.77 GeV, mω ¼ 0.78 GeV, and the couplings are
gρ ¼ gω ¼ 2.6, gσ ¼ 3.4. The cutoff Λ is determined by
reproducing the mass of the Xð3872Þ as a DD̄� molecule,
yielding Λ ¼ 1.01þ0.19

−0.10 GeV [58]. In this work, we set the

TABLE I. Four-body isospin space and the Gaussian range parameters for the IðJPÞ ¼ 0ð0þÞ configuration of the
DDKK system. Lengths are in units of fm.

c0 Isospin configuration nmax r1 rmax Nmax R1 Rmax νmax ρ1 ρmax

1 ððDDÞ1KÞ1=2K 8 0.2 10 6 0.4 10 6 0.6 10
2 ððDKÞ0ð1ÞDÞ1=2K 8 0.1 10 5 0.3 10 6 0.6 10
3 ððDKÞ0ð1ÞKÞ1=2D 8 0.3 10 5 0.6 10 6 0.6 10
4 ððKKÞ1DÞ1=2D 8 0.1 10 5 0.4 10 6 0.6 10
5 ðDDÞ1ðKKÞ1 8 0.2 9 6 0.1 10 6 0.2 8
6 ðDKÞ0ð1ÞðDKÞ0ð1Þ 8 0.1 8 5 0.1 10 8 0.2 8
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cutoff toΛ ¼ 1.0 GeV and neglect the small uncertainty due
to the exploratory nature of the present work.

C. The KK interaction

The kaon-kaon interaction has been widely investigated
in studies of a0ð980Þ [71,72], KKK̄ [73], KK̄N [74],
K̄ K̄ N [11], etc. Considering that the typical kinetic energy
of the kaon in such systems is small compared to its mass,
we adopt the nonrelativistic KKðKK̄Þ potential in the
present work. For the S-wave KK effective potential,
because of the Bose-Einstein statistics, I ¼ 0 is forbidden.
Therefore, we only consider the I ¼ 1 interaction.
Following Refs. [11,73,74], the KK and KK̄ potentials
can be written as one Gaussian function,

VKKðrÞ ¼ v0e−ðr=bÞ
2

; ð15Þ

where v0 and b are the strength of the potential and the
interaction range, respectively. The interaction ranges of
KK and KK̄ are assumed to be the same. The strength of
the KK interaction is determined by reproducing the lattice
QCD scattering length aKþKþ ¼ −0.14 [75]. The strength
of the KK̄ interaction is determined by fitting to the masses
and widths of f0ð980Þ and a0ð980Þ [76] assuming that
f0ð980Þ and a0ð980Þ are quasibound states of KK̄ in the
I ¼ 0 and I ¼ 1 channels, respectively. Here, we adopt the
parameters for the two cases studied in Refs. [11,73,74].
In case A, vKK0 ¼ 104 MeV, vKK̄0 ¼ −630 − 210i MeV,
and b ¼ 0.66 fm, while in case B, vKK0 ¼ 313 MeV,
vKK̄0 ¼ −1155 − 283i MeV, and b ¼ 0.47 fm.

IV. RESULTS AND DISCUSSIONS

The binding energies, expectation values, and root-
mean-square (rms) radii of the DDKK system are given
in Table 1. The binding energies are defined with respect to
the full-dissociation threshold. Noting that considering
only one channel c0, we can obtain a sizeable fraction of
the binding energy, about 120–130 MeV, about 20 MeV
lower than the result from the full GEM. Besides, the single
channel results also show that channels c0 ¼ 2, 3, 6 play a

more important role, indicating that the DK cluster domi-
nates the DDKK system. Here, we choose the full GEM to
obtain more accurate results to compare with the DDK
system. The binding energies as functions of potential
parameters are shown in Fig. 2. Clearly, for all parameters
studied, the DDKK system is always bound with a binding
energy of 138–155 MeV. As the strength of the repulsive
core C0

S and the cutoff RC increases, the binding energy
decreases. In addition, as RC grows, the differences among
different C0

S and between case A and case B become
smaller. This trend can also be seen in the potentials for
different RC, as shown in Fig. 3. As RC increases, the total
potential becomes flatter, and the differences between case
A and case B and among different C0

S decrease, especially
for the range of our interest, 1 fm < r < 2 fm, which is
responsible for the trend observed above. From the expect-
ation values of the potentials, one concludes that the DK
interaction plays a dominant role. The strength of the
repulsive KK interaction is compatible with the strength of
the attractive DD interaction, which is much smaller than
the strength of the attractive DK interaction. Therefore, the
differences between case A and case B are minor. The
kinetic energy of the four-body system is much smaller

FIG. 2. Binding energies of the DDKK system as functions of
the cutoff RC. The solid lines and dashed lines correspond to case
A and case B, respectively. Blue, red, green, and orange lines are
for C0

S ¼ 0, 500, 1000, 3000 MeV, respectively.

FIG. 3. Total potential of the DDKK system, the solid and dashed lines are for case A and case B. The black, blue, red, and orange
lines are for C0

S ¼ 0, 500, 1000, 3000 MeV. The left, middle, and right figures are the total potential obtained for RC ¼ 1.0, 2.0, 3.0 fm.
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than the kaon mass, which justifies the use of a non-
relativistic potential for the kaon-kaon interaction. The rms
radius of the KK subsystem is larger than those of the DK
subsystem and the DD subsystem. As RC and C0

S increase,
so do the rms radii, and the rms radii of case B are a bit
larger than those of case A. The rms radii of each sub-
system are all in the range of 1.0–3.3 fm, consistent with
the typical size of a hadronic molecule. Because the basis
functions are not orthogonal to each other, we can not get
the accurate probability of each channel, which is calcu-
lated by hΨc0

J jΨc0
J i. However, their relative sizes show that

the configurations ðDKÞ0ðDKÞ0 (38%) and ððDKÞ0KÞ1=2D
(51%) play a dominant role.
The minimal quark content of the DDKK system is

ccs̄ s̄. States containing such quark configurations have
been studied in Refs. [77,78]. Reference [78] studied
bound and resonant states of double-heavy tetraquarks
with strangeness in the chiral quark model. For ccs̄ s̄ with
IðJPÞ ¼ 0ð0þÞ, only two resonant states with masses of
4176 and 4250 MeV are found. In the quark delocaliza-
tion color screening model [77], two resonant states with

IðJPÞ ¼ 0ð0þÞ are obtained, a molecular resonant state
with a mass of around 4256 MeV and a width of around
60 MeV, and a compact resonant state with a mass of
around 4308 MeV and a width of around 19 MeV. In our
current work, the mass of the DDKK bound state is
4581 MeV, about 300 MeV higher than the states obtained
in the quark models, possibly mixing with radially excited
states of ccs̄ s̄.
In Ref. [46], the DDDK system is shown to have a

binding energy of 91–107 MeV, which is about 50 MeV
smaller than the binding energy of the DDKK system. In
both systems, theDK interactions are dominant. Intuitively,
there are four DK pairs in the DDKK system, one more
than in the DDDK system, which can qualitatively explain
the difference of binding energy.
Next, we investigate the DD̄KK̄ system. There are no

identical particles in this system. Therefore, all the 18
Jacobian channels are distinguishable. Compared to the
DDKK system, the DD̄KK̄ system is unique because the
KK̄ interaction is complex. To study the DD̄KK̄ system,
we follow the method of Ref. [74] in which the imaginary

TABLE II. Binding energies, expectation values of the Hamiltonian (potential and kinetic energies), and rms radii of the four-body
systemDDKK. Energies are in units of MeVand radii are in units of fm. The numbers outside and inside the brackets represent cases A
and B. The cutoffs RS and RC are in units of fm, and the coupling constants C0

S and C0
L are in units of MeV.

RS RC C0
S C0

L E hTi hVDDi hVDKi hVKKi rDD rDK rKK

0.5 1 0 −320.1 −154.78(−151.84) 239.38(233.70) −9.07(−8.89) −396.42(−389.32) 11.33(12.67) 1.03(1.04) 1.20(1.22) 1.54(1.57)
500 −455.4 −152.03(−150.40) 189.39(187.46) −7.58(−7.52) −342.14(−339.24) 8.30(8.90) 1.14(1.14) 1.33(1.34) 1.70(1.72)

1000 −562.6 −150.20(−149.09) 174.04(173.10) −6.85(−6.83) −324.12(−322.40) 6.72(7.04) 1.20(1.21) 1.41(1.42) 1.81(1.83)
3000 −838.7 −146.11(−145.43) 181.27(180.73) −6.24(−6.24) −325.73(−324.63) 4.59(4.91) 1.31(1.31) 1.58(1.59) 2.04(2.05)

0.5 2 0 −149.1 −145.80(−145.26) 113.17(112.63) −4.95(−4.92) −258.35(−257.35) 4.32(4.37) 1.43(1.44) 1.69(1.70) 2.15(2.17)
500 −178.4 −143.92(−143.64) 95.39(95.33) −4.07(−4.07) −238.19(−237.83) 2.96(2.93) 1.58(1.58) 1.87(1.88) 2.39(2.40)
1000 −195.0 −142.79(−142.57) 95.12(95.09) −3.84(−3.85) −236.55(−236.26) 2.48(2.45) 1.64(1.64) 1.97(1.97) 2.52(2.53)
3000 −225.9 −140.59(−140.41) 102.70(102.65) −3.80(−3.80) −241.43(−241.17) 1.94(1.91) 1.70(1.70) 2.12(2.12) 2.73(2.74)

0.5 3 0 −107.0 −142.36(−142.17) 73.80(73.71) −3.30(−3.29) −215.21(−214.89) 2.34(2.29) 1.75(1.75) 2.07(2.08) 2.64(2.65)
500 −119.4 −141.13(−141.03) 64.78(64.81) −2.76(−2.76) −204.80(−204.67) 1.65(1.59) 1.90(1.90) 2.28(2.28) 2.90(2.90)

1000 −125.6 −140.38(−140.29) 65.27(65.29) −2.65(−2.65) −204.43(−204.31) 1.43(1.38) 1.96(1.96) 2.37(2.37) 3.02(3.03)
3000 −136.2 −138.95(−138.87) 69.59(69.61) −2.64(−2.64) −207.07(−206.96) 1.16(1.12) 2.02(2.02) 2.52(2.52) 3.23(3.24)

TABLE III. Binding energies, expectation values of the Hamiltonian (potential and kinetic energies), and rms radii of the four-body
system DD̄KK̄. Energies are in units of MeV and radii are in units of fm. The relevant parameter values are RS ¼ 0.5 fm and
C0
S ¼ 0 MeV.

RC C0
L E hTi hVDD̄i hVDKþD̄ K̄i hVD̄KþDK̄i hVKK̄i rDD̄ rDK=D̄ K̄ rD̄K=DK̄ rKK̄

b ¼ 0.66 fm vKK̄
0 ¼ −630 − 210i MeV

1 −320.1 −156.15 − 53.35i 307.65 −12.68 −228.98 −62.10 −160.04 1.07 1.08 1.16 1.14
2 −149.1 −133.44 − 42.01i 186.93 −7.09 −142.76 −44.49 −126.04 1.46 1.51 1.56 1.40
3 −107.1 −123.60 − 37.42i 147.15 −4.79 −116.33 −37.39 −112.25 1.81 1.85 1.89 1.57

b ¼ 0.47 fm vKK̄
0 ¼ −1155 − 283i MeV

1 −320.1 −162.95 − 53.17i 368.87 −13.32 −234.25 −67.22 −217.01 1.04 1.04 1.10 1.04
2 −149.1 −135.33 − 41.60i 231.47 −7.24 −144.20 −45.56 −169.80 1.44 1.48 1.53 1.30
3 −107.1 −124.37 − 37.04i 186.49 −4.86 −116.99 −37.83 −151.18 1.80 1.83 1.87 1.48
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part of the KK̄ interaction is treated as a perturbative
correction in the KK̄N molecular state. They also discussed
the difference between the complex energy obtained in
perturbative and nonperturbative treatments for the KK̄
two-body system. The conclusion is that the imaginary
energies obtained in both methods are similar, while the
real energies increase slightly because of the higher-order
corrections of the perturbative expansion [74].
We first consider the real part of the Hamiltonian in the

GEM calculation. The total wave function Ψ and the
binding energy ReðEÞ are obtained using the lowest-energy
solution. The imaginary part of the energy ImðEÞ is
estimated by calculating the expectation value of the
imaginary part of the Hamiltonian (ImðVKK̄Þ) with the
obtained total wave function Ψ,

ImðEÞ ¼ hΨjImðVKK̄ÞjΨi: ð16Þ

The complex energy is given as E ¼ ReðEÞ þ iImðEÞ and
the decay width is Γ ¼ −2iImðEÞ.
According to chiral perturbation theory [36], the leading

order DK̄ interaction is only half of the leading order
DK interaction in isospin zero, while in isospin one,
VI¼1
DK̄ ¼ −VI¼0

DK̄ . In momentum space, the I ¼ 0 DK̄ can
not form a bound state [36]. However, if we naively reduce
by half the DK interactions given in Table II, which is in
position space, they can generate a bound state. The reason
is that two range parameters RC and RS in the form of
e
−ðr=RCðSÞÞ2

π3=2R3
CðSÞ

will arise in position space potential due to the

Fourier transform with a local Gaussian regulator. While in
momentum space, the potential is a constant, meaning that
naively reducing the DK potential in position space by half
is inappropriate. But if we remove the repulsive core in the
DK interaction, i.e., C0

S ¼ 0, and take RC < 0.78 fm, one
can simultaneously obtain aDK bound state with a binding
energy of 45 MeV and an unbound DK̄ system. By taking
C0
S ¼ 0, RC ¼ 0.77 fm, and b ¼ 0.66 fm, we can obtain a

bound DD̄KK̄ state with a binding energy of 166.09 MeV
and a width of 117.22 MeV. Besides, we find that the
smaller the RC, the more bound the DD̄KK̄ system
becomes. Therefore, setting the parameters for the

DD̄KK̄ system the same as those for the DDKK system,
i.e., RC ¼ 1, 2, 3 fm and b ¼ 0.47, 0.66 fm, is enough to
describe the bound state of the DD̄KK̄ system, and can
help us to estimate the uncertainty originating from RC and
compare this system with the DDKK system. In addition,
we fix C0

S ¼ 0 as mentioned above.
The results are listed in Table III. The parameters of the

KK̄ interaction have tiny effects on theDD̄KK̄ system. The
binding energies of the DD̄KK̄ system range from 123 to
163 MeV, compatible with those of the DDKK system.
Although the interaction between D and kaon (antikaon)
of the DD̄KK̄ system is weaker than that of the DDKK
system, the KK̄ interaction is strong enough to yield a total
potential for theDD̄KK̄ system compatible with that for the
DDKK system as shown in Fig. 4. From the perspective of
expectation values, the dominant interactions in theDD̄KK̄
system are the DK interaction and KK̄ interaction. As RC

increases and b decreases, the KK̄ interaction plays a more
important role, which can also be seen in Fig. 4. The rms
radii of each subsystem are all in the range of 1.0–2.0 fm.
The imaginary part of the expectation values of the total
potential hΨjImðVÞjΨi is about −40 MeV, and the real part
hΨjReðVÞjΨi is about −320 MeV, jhΨjImðVÞjΨij ≪
jhΨjReðVÞjΨij, which justifies the perturbative treatment.
As for the three-body subsystems of the DD̄KK̄ system,
DD̄K was found to bind with a binding energy of about
45 MeV [44,79]. For the DKK̄ system, a state was found
with a mass of about 2833–2855 MeV, made mostly of
Df0ð980Þ [48].

V. SUMMARY AND CONCLUSION

In this work, we studied the four-body systems with
IðJPÞ ¼ 0ð0þÞ composed of two D mesons and two kaons
(antikaons), DDKK and DD̄KK̄. We adopted the OBE
model to describe the DD potential, and the cutoff is
determined by reproducing the Xð3872Þ as a DD̄� mol-
ecule. We employed the WT term as the LO chiral potential
and a repulsive core as the NLO correction in the non-
relativistic limit to describe the S-waveDK interaction. The
uncertainties of the DK interaction were estimated by
varying the cutoff RC and coupling constant C0

S. The other

FIG. 4. Total potential of the DD̄KK̄ system, the solid and dashed lines are for case A and case B. The black line is for the real part of
the KK̄ interaction. The left, middle, and right figures are the total potential obtained for RC ¼ 1.0, 2.0, 3.0 fm.
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coupling constant C0
L was determined by reproducing

the D�
s0ð2317Þ as a DK bound state. The strength of the

DK̄ interaction was taken as half of the DK interaction
according to chiral perturbation theory. We employed a
nonrelativistic form to describe the interaction between two
kaons and that between a kaon and an antikaon, which were
expressed in the form of one Gaussian function. Two
interaction ranges were considered. The strengths of the
KK and KK̄ interaction were obtained by reproducing the
scattering length aKþKþ ¼ −0.14 and fitting to the masses
and widths of f0ð980Þ and a0ð980Þ, respectively.
The four-body Schrödinger equations were solved using

the Gaussian expansion method. For the DDKK system,
the binding energy is about 138–155 MeV. The dominant
contribution is the DK interaction, and the strength of the
repulsive KK interaction is compatible with the strength of
the attractive DD interaction, which has a tiny impact on
the binding energy. As a result, we obtained a complete
multihadron picture composed of D mesons and kaons
similar to that of nucleons, as shown in Fig. 5. The DK

molecule corresponds to deuteron (np), DDK to triton
(nnp), and DDKK to the alpha particle (nnpp).
Although, the only difference between the DDK̄ K̄

system and the DDKK system is the interaction between
the D meson and the antikaon (kaon), the results show that
the DDK̄ K̄ system can not bind, which can be understood
intuitively due to the unbound two-body subsystems. We
note that fully Borromean four-body bound states can exist,
although their two-body, as well as three-body subsystems,
are unbound, e.g., ΛΛnn [80,81]. The DD̄KK̄ system is
a bit more complicated due to the nonexistence of iden-
tical Jacobian coordinates and the imaginary term of the
Hamiltonian. We treated the imaginary term perturbatively
based on the wave functions obtained with only the real part
of the Hamiltonian. The binding energy is 123–163 MeV,
and the decay width is 74–107 MeV. The perturbative
treatment is justified via jhΨjImðVÞjΨij ≪ jhΨjReðVÞjΨij.
Undoubtedly, experimental searches for and further

theoretical studies of these four-hadron molecules are
essential to verify the molecular nature of the D�

s0ð2317Þ
and test our understanding of the DK, DK̄, DD, KK, and
KK̄ interactions. According to Ref. [82], the prompt
production rates of these multihadron molecules in eþe−
colliders might be too small to be realistic. One needs to
study other processes, such as heavy-ion collisions, to
search for these states.
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