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We study the properties of the charged kaon in symmetric nuclear matter using a Bethe-Salpeter
amplitude to model the quark-antiquark bound state, which is well constrained by previous studies of its
vacuum properties. The electromagnetic form factor, charge radius, decay constant, and the light-front
valence component probability are investigated in symmetric nuclear matter. In order to describe the
constituent up and antistrange quarks in nuclear matter, we adopt the “quark-meson coupling (QMC)
model,” which has been widely applied to various hadronic and nuclear phenomena in the nuclear medium.
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I. INTRODUCTION

The main purpose of this work is to investigate the in-
medium modification of the Kþ-meson properties in sym-
metric nuclear matter in a light-front constituent quark
model with the in-medium input of the quark-meson coup-
ling (QMC) model [1–3], where the Kþ-meson model [4] is
adjusted to provide the best description of the Kþ-meson
data in vacuum. Similar approaches were also used for the
pion [5–8]. Furthermore, we mention that their static and
dynamical properties have also been investigated theoreti-
cally and experimentally [5,9–28].
The kaon has not received as much attention compared to

the pion, however they prove to be important as they have
an abundant source of information about the nature of
fundamental interactions essential in establishing the stan-
dard model of particle physics, such as the quark model of
hadrons [14,29–34]. The kaon structure and their dynamics
are an important tool to understand the electroweak
interactions and CP violation [30].
The theoretical framework we adopt is the light-front

approach [35,36], more specifically, we use a symmetric
vertex model for Kþ-meson bound state jus̄i in order to
model the Bethe-Salpeter amplitude [4,5,37].
An important additional information about the meson’s

internal structure can be inferred from their valence-quark
distribution functions. With respect to the description of
bound states on the light-cone approach, a detailed review

of hadronic wave functions in QCD based models can be
found in Ref. [35]. The light-front plus component of the
electromagnetic current Jþ, has been successfully used
to calculate elastic electromagnetic form factors, charge
radii, and also the weak decay constants for pseudoscalar
particles with the light-front approach [4,5,9–11,30,33].
Using the symmetric K − qq̄ vertex model [5], the com-
ponents of the current are conveniently obtained in the
Drell-Yan frame, where the light-front bound state wave
functions are defined on the hypersurface x0 þ x3 ¼ 0 and
are covariant under kinematical boosts due to the stability
of Fock-state decomposition [35,38], and it was possible to
analyse the partial contributions of each particle to the com-
position of the complete form factor. In the present work,
we consider the symmetric vertex function to optimize
and unify the parameter set to simultaneously calculate the
electromagnetic form factor, root-mean-square charge
radius, decay constant, and probability of the kaon valence
component η [4,5]. Our numerical results are compared
with experimental data in vacuum up to Q2 ≈ 0.10 GeV2

to explore the validity of the model, where Q2 ¼ −q2 > 0,
with q being the four-momentum transfer.
This work is organized as follows. In Sec. II we briefly

review the QMC model focusing on the properties of
constituent up and strange quarks and the kaon vertex in
symmetric nuclear matter. The expressions for the in-
medium electromagnetic form factor of the kaon are
discussed in Sec. III, while the results for the in-medium
kaon properties, electromagnetic form factor and partial
contribution of charge, decay constant and probability of
the kaon valence component η are presented in Sec. IV.
Finally, Sec. V is devoted to a summary and discussions
with the perspective of applying the model to other
mesons.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 109, 054024 (2024)

2470-0010=2024=109(5)=054024(12) 054024-1 Published by the American Physical Society

https://orcid.org/0000-0003-1579-0909
https://orcid.org/0000-0003-1551-9609
https://orcid.org/0000-0003-4926-1829
https://orcid.org/0000-0002-5497-5490
https://orcid.org/0000-0002-7701-0421
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.109.054024&domain=pdf&date_stamp=2024-03-18
https://doi.org/10.1103/PhysRevD.109.054024
https://doi.org/10.1103/PhysRevD.109.054024
https://doi.org/10.1103/PhysRevD.109.054024
https://doi.org/10.1103/PhysRevD.109.054024
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


II. QUARKS IN NUCLEAR MATTER

The QMC model was developed in 1988 by Guichon [1]
with the MIT bag model, and a similar model by Frederico
et al. in 1989 [2] with a confining harmonic potential. In
both approaches it is possible to describe nuclear matter
properties based on the quark degrees of freedom. The
model has been successfully applied for various studies of
finite (hyper)nuclei [39–43] as well as the hadron proper-
ties in a nuclear medium (see Ref. [3] for a review).
The medium effects arise through the self-consistent

coupling of phenomenological isoscalar-Lorentz-scalar (σ),
isoscalar-Lorentz-vector (ω), and isovector-Lorentz-vector
(ρ) meson fields directly to the confined light flavor u and d
valence quarks, rather than to the nucleons and the heavier
flavor quarks. As a result, the internal structure of the
bound nucleon is modified by the surrounding nuclear
medium with respect to the free nucleon. The effective
Lagrangian density for a uniform, spin saturated and
isospin-symmetric nuclear system (symmetric nuclear
matter) at the hadronic level is given by [1–3,39–43]

L ¼ ψ̄
�
iγ · ∂ −m�

Nðσ̂Þ − gωω̂μγμ
�
ψ þ Lmeson; ð1Þ

where ψ , σ̂ and ω̂ are respectively the nucleon, Lorentz-
scalar isoscalar σ, and Lorentz-vector isoscalar ω field
operators, with gω being the nucleon-ω coupling constant,
while the nucleon-σ effective coupling which depends on
the σ̂ (or nuclear density) is defined by,

m�
Nðσ̂Þ ¼ mN − gσðσ̂Þσ̂; ð2Þ

which defines the σ-field dependent coupling constant,
gσðσ̂Þ. All the important nuclear many-body dynamics,
including three-body nucleon force modeled at the quark
level, will effectively be condensed in gσðσ̂Þ. Solving the
Dirac equations for the up and down quarks in the nuclear
medium with the same mean fields (mean values) σ and ω,
which act on the bound nucleon self-consistently based
on the Lagrangian, we obtain the effective σ-dependent
coupling gσðσÞ at the hadronic level [1,2,39–43]. The free
meson Lagrangian density is given by

Lmeson ¼
1

2

�
∂μσ̂∂

μσ̂ −m2
σσ̂

2
�
−
1

2
∂μω̂ν

�
∂
μω̂ν − ∂

νω̂μ
�

þ 1

2
m2

ωω̂
μω̂μ; ð3Þ

where we neglected the isospin-dependent Lorentz-vector
isovector ρ-meson field, since we consider isospin-
symmetric nuclear matter within the Hartree mean-field
approximation. In this case the mean value of the ρ-mean
field becomes zero and there is no need to consider its
possible contributions due to the ρ-Fock (exchange) terms.
In the sequence we adopt the nuclear matter rest frame.

Then, the nucleon density ρ, the nucleon Fermi momentum

kF, the nucleon scalar density ρs, and the effective nucleon
mass m�

N are related by,

ρ ¼ 4

ð2πÞ3
Z

d3kθðkf − jkjÞ ¼ 2k3f
3π2

;

ρs ¼
4

ð2πÞ3
Z

d3kθðkf − jkjÞ m�
NðσÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m�2
N þ k2

p ; ð4Þ

where m�
Nðσ̂Þ [see Eq. (2)], is the value of the effective

nucleon mass at a given density, calculated by the QMC
model [1,2,39–44] [See also Eq. (9)]. The Dirac equations
for the light quarks, light antiquarks, strange and heavy
quarks, and strange and heavy antiquarks (q ¼ u or d
and Q ¼ s, c or b) in the bag of hadron h in nuclear
matter at the position x ¼ ðt; rÞ with jrj ≤ bag radius, are
given by [3],�
iγ · ∂x − ðmq − Vq

σÞ ∓ γ0

�
Vq
ω þ 1

2
Vq
ρ

	
�
ψuðxÞ
ψ ūðxÞ

	
¼ 0;

ð5Þ
�
iγ · ∂x − ðmq − Vq

σÞ ∓ γ0

�
Vq
ω þ 1

2
Vq
ρ

	
�
ψdðxÞ
ψ d̄ðxÞ

	
¼ 0;

ð6Þ

½iγ · ∂x −mQ�
�
ψQðxÞ
ψ Q̄ðxÞ

	
¼ 0; ð7Þ

where we have neglected the Coulomb force as usual, since
the nuclear matter properties are due to the strong inter-
action, and we assume SU(2) symmetry for the light
quarks, mq ¼ mu ¼ md, and define m�

q ¼ mq − Vq
σ ¼

m�
u ¼ m�̄

u, but mq̄ ¼ m�̄
s ¼ ms̄. In symmetric nuclear mat-

ter, the isospin dependent ρ-meson mean field in Hartree
approximation yields Vq

ρ ¼ 0 in Eqs. (5) and (6), so we
ignore it hereafter.
The constant mean-field potentials in nuclear matter are

defined by Vq
σ ≡ gqσσ ¼ gqσhσi and Vq

ω ≡ gqωω¼ gqωδμ;0hωμi,
with gqσ and gqω being the corresponding quark-meson
coupling constants, and the quantities inside the brackets
stand for taking expectation values by the nuclear matter
ground state [3]. Note that, since the velocity averages to be
zero in the rest frame of nuclear matter, the mean vector
source due to the quark fields as well, hψq γ⃗ ψqi ¼ 0. Thus
we may just keep the term proportional to γ0 in Eqs. (5)
and (6). The normalized, static solution for the ground state
quarks or antiquarks with flavor f in the hadron h, may be
written as ψfðxÞ ¼ Nfe−iϵft=R

�
hψfðr⃗Þ, where Nf and ψfðr⃗Þ

are the normalization factor and corresponding spin and
spatial part of the wave function. The bag radius in medium
for a hadron h, R�

h, is determined through the stability
condition for the mass of the hadron against the variation of
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the bag radius [3] [See also Eq. (9)]. The eigenenergies in
units of 1=R�

h are given by

�
ϵu

ϵu

	
¼ Ω� � R�

h

�
Vq
ω þ 1

2
Vq
ρ

	
;�

ϵd

ϵd̄

	
¼ Ω� � R�

h

�
Vq
ω −

1

2
Vq
ρ

	
;

ϵQ ¼ ϵQ̄ ¼ Ω�
Q: ð8Þ

The hadron masses in a nuclear medium m�
h (free mass

mh), are calculated by

m�
h ¼

X
j¼q;q̄;Q;Q̄

njΩ�
j − Zh

R�
h

þ 4

3
πR�3

h B;

dm�
h

dR�
h

����
Rh¼R�

h

¼ 0; ð9Þ

where Ω�
q ¼Ω�̄

q ¼ ½x2q þ ðR�
hm

�
qÞ2�1=2, with m�

q ¼mq − gqσσ,
Ω�

Q ¼ Ω�̄
Q ¼ ½x2Q þ ðR�

hmQÞ2�1=2, and xq;Q being the lowest

bag eigenfrequencies. nqðnq̄Þ and nQðnQ̄Þ are the quark
(antiquark) numbers for the quark flavors q and Q,
respectively. Note that, when the hadron h contains at least
one light quark (antiquark) R�

h ≠ Rh and thus Ω�
Q ≠ ΩQ.

The MIT bag quantities, Zh, B, xq;Q and mq;Q are the
parameters for the sum of the center of mass and gluon
fluctuation effects, bag constant, lowest eigenvalues for the
quarks q or Q, respectively, and the corresponding current
quark masses. We will also give the definition of incom-
pressibility (K), which is a measure of the resistance of
atomic nuclei to compression, describing the rigidity of the
nuclear matter (see Eq. (14) [1,45]). ZN and B are fixed by
fitting the nucleon (the hadron) mass in free space. (See
Table I the nucleon case.) For the nucleon h ¼ N case in the
above, the lowest, positive bag eigenfunction is given by

qðt; r⃗Þ ¼ Nffiffiffiffiffiffi
4π

p e−iϵqt=R
�
N

�
j0ðxr=R�

NÞ
iβ�qσ⃗ · v̂j1ðxr=R�

NÞ
	
θðR�

N − rÞχm;

ð10Þ

with r ¼ jr⃗j and χm the spin function and

Ω�
q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ðm�

qR�
NÞ2

q
;

β�q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω�

q −m�
qR�

N

Ω�
q þm�

qR�
N

s
;

N −2 ¼ 2R�3
N j20ðxÞ

�
Ω�

qðΩ�
q − 1Þ þ m�

qR�
N

2

�
x2

; ð11Þ

where x is the eigenvalue for the lowest mode, which
satisfies the boundary condition at the bag surface,
j0ðxÞ ¼ β�qj1ðxÞ. The same meson mean fields σ and ω
for the quarks satisfy the following equations at the nucleon
level self-consistently:

σ ¼ gσ
m2

σ
CNðσÞ

4

ð2πÞ3
Z

dk⃗θðkF − jkjÞ m�
Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m�2
N þ k2

p ;

ω ¼ gωρ
m2

ω
;

CNðσÞ ¼
−1

gσðσ ¼ 0Þ
�
∂m�

NðσÞ
∂σ



; ð12Þ

where CNðσÞ is the constant value of the scalar density
ratios [1,2,39–43].
Because of the underlying quark structure of the nucleon

used to calculate m�
NðσÞ in the nuclear medium [see Eq. (9)

with h ¼ N], CNðσÞ gets σ dependence, whereas the usual
pointlike nucleon based model yields unity, CNðσÞ ¼ 1.
It is this CNðσÞ or gσðσÞ that gives a new saturation mecha-
nism in the QMC model. Without an explicit introduc-
tion of nonlinear couplings of the meson fields in the
Lagrangian density at the nucleon and meson level, the
standard QMC model yields the nuclear incompressibility
of K ≃ 280 MeV, which is in contrast to a naive version of
quantum hydrodynamics (QHD) [46], also called the
pointlike nucleon model of nuclear matter, which results
in a much larger value, K ≃ 500 MeV; the empirically
extracted value falls in the range K ¼ 200–300 MeV [45].
Once the self-consistency equation for the σ, Eq. (12), has
been solved, one can evaluate the total energy per nucleon,
which is shown in Eq. (13) and Fig. 1,

W ¼ Etot=A ¼ 4

ð2πÞ3ρ
Z

d3kθðkF − jkjÞ

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m�2

N þ k⃗2
q

þm2
σσ

2

2ρ
þ g2ωρ
2m2

ω
: ð13Þ

The nuclear incompressibility K is evaluated according
to the equation below [1,45],

K ¼ 9ρ0
∂
2W
∂ρ2

����
ðρ¼ρ0Þ

; ð14Þ

where W ¼ E=A is the energy per particle in Eq. (13).

TABLE I. Coupling constants, the parameter ZN, bag constant
B (in B1=4), and calculated properties for symmetric nuclear
matter at normal nuclear matter density ρ0 ¼ 0.15 fm−3, for
mq ¼ 5 and 220 MeV. The effective nucleon mass, m�

N , and the
nuclear incompressibility,K, are quoted in MeV (the free nucleon
bag radius used is RN ¼ 0.8 fm, the standard input value in the
QMC model [3]).

mq (MeV) g2σ=4π g2ω=4π m�
N K ZN B1=4 (MeV)

5 5.39 5.30 754.6 279.3 3.295 170
220 6.40 7.57 698.6 320.9 4.327 148
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We then determine the coupling constants, gσ and gω, so
as to fit the binding energy of 15.7 MeV at the saturation
density ρ0 ¼ 0.15 fm−3ðk0F ¼ 1.305 fm−1Þ for symmetric
nuclear matter.
The kaon model we adopt here (see the Refs. [4,5]),

uses a vacuum constituent quark mass,mu ¼ 220 MeV and
ms̄ ¼ 508 MeV [47], in order to well reproduce the
electromagnetic form factor and decay constant data.
Therefore, to be consistent with this kaon model, our
nuclear matter is built with the same vacuum mass. The
corresponding coupling constants and some calculated
properties for symmetric nuclear matter at the saturation
density, with the standard values of mσ ¼ 550 MeV and
mω ¼ 783 MeV, are listed in Table I.
For comparison, we also give the corresponding quan-

tities calculated in the standard QMC model with a vacuum
quark mass of mq ¼ 5 MeV as shown in Ref. [3]. Thus we
have obtained the necessary properties of the light-flavor
constituent quarks in symmetric nuclear matter with the
empirically accepted data for a vacuum mass of mu ¼
220 MeV and strange quark mass ms̄ ¼ 508 MeV [47];
namely, the density dependence of the effective mass
(scalar potential) and vector potential. The same in-medium
constituent light quark properties will be used as input
as already used to describe the pion immersed in symmetric
nuclear matter [6].
We will use the jVK

ω j in Fig. 3 correspondingly as jVq
ωj

in the calculation and the kaon mass, m�
K ¼ m�

h, being
calculated by Eq. (9) with Rh ¼ RK and Zh ¼ ZK .
In Fig. 2 we show the results for the effective mass of the

constituent light quark and potentials versus nuclear den-
sity. In Fig. 3 shown is the kaon bound state effective mass
and potentials versus nuclear density, and in Fig. 4 we show
the effective mass of the nucleon, m�

N in symmetric nuclear
matter. Note that the total potential of Kþ at ρ0 is slight

FIG. 1. Negative of the binding energy per nucleon ðEtot=AÞ −
mN for symmetric nuclear matter obtained via the vacuum up
and down quark mass, mq ¼ 220 MeV. At the saturation point
ρ0 ¼ 0.15 fm−3, the value is fitted to −15.7 MeV.

FIG. 2. Effective light quark masses and the potentials in
symmetric nuclear matter.

FIG. 3. Kaon effective mass and potentials versus the nuclear
density, where total potential at ρ0 gives a slight repulsion of
about 40 MeV.

FIG. 4. Nucleon effective mass, m�
N versus nuclear density.
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repulsion of about 40 MeV as empirically extracted and
practiced [44,48,49]. However, according to Fig. 2, the
effective “constituent quark mass” becomes negative at
ρ ≃ 1.8ρ0. Thus, the present constituent quark kaon model
in symmetric nuclear matter may be valid in the range
ρ ¼ ½0; 1.8ρ0�. The consequence of this model validity will
be reflected on some results later, and one must take the
results with caution for ρ > 1.8ρ0. (Explicitly some results
will be shown in Figs. 9 and 10). In the sequence, the
symmetric vertex model for the kaon with the potentials of
the nuclear medium will be shown.

III. THE MODEL

The electromagnetic current for aKþ-meson (jus̄i bound
state), is calculated in one-loop approximation (triangle
diagram shown in Fig. 5), modeling the Bethe-Salpeter
amplitude through a symmetric vertex function in momen-
tum space with a pseudoscalar coupling between Kþ and
quarks. This coupling is given by the effective Lagrangian
in vacuum [5,33,37],

Leff ¼ −i
m̂
fKþ

q̄
1ffiffiffi
2

p ðλ4 þ iλ5Þγ5q
1ffiffiffi
2

p ðϕ4 − iϕ5ÞΛ; ð15Þ

here, q ¼ ðu; d; sÞT and Kþ ¼ 1ffiffi
2

p ðϕ4 − iϕ5Þ, m̂ ¼ muþms̄
2

,

Λ the symmetric vertex function, and fKþ the Kþ decay
constant. With the Lagrangian (15) we will work in Hartree
mean field approximation and the modifications will enter
as the shift of the light-quark momentum in light front
approach via mK → m�

K and Pþ ¼ P0 þ P3 → P�þ ¼
P�0 þ P�3 þ V ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

K þ q⃗2=4
p

þ P�3 þ V due to the vec-
tor potential V, and in the Lorentz-scalar part through the
Lorentz-scalar potential Vq

σ as mu → m�
u ¼ mu − Vq

σ [3,6]
and ms̄ → m�̄

s ¼ ms̄ based on the QMC model [see Eq. (6)]
[3]. The QMCmodel has been applied to many nuclear and
hadronic phenomena in a nuclear medium with success,
and the inputs in vacuum as well as quantities calculated in-
medium shown in Table I are adopted in the present model
to describe the effects of nuclear medium as seen in the
previous section. The electromagnetic current for the Kþ
with the plus-component, is obtained from the covariant
expression Eq. (16) corresponding to the vacuum triangle
diagram in Fig. 5.

In the vacuum the electromagnetic current is given by,

Jμðq2Þ¼−ie
2m̂2

f2Kþ
NC

Z
d4k
ð2πÞ4

×

�
1

3
Tr
�
Sðk;muÞγ5Sðk−P0;ms̄ÞγμSðk−P;ms̄Þγ5

�
þ2

3
Tr
�
Sðk;ms̄Þγ5Sðk−P0;muÞγμSðk−P;muÞγ5

�
×Λðk;PÞΛðk;P0Þ; ð16Þ

where the symmetric vertex function is given by [4–6]

Λðk; PÞ ¼ C
k2 −m2

R þ iϵ
þ C
ðP − kÞ2 −m2

R þ iϵ
; ð17Þ

with NC ¼ 3 being the number of colors in QCD, and

Sðk − P;muÞ ¼
1

ð=k − =PÞ −mu þ iϵ
;

Sðk − P;ms̄Þ ¼
1

ð=k − =PÞ −ms̄ þ iϵ
; ð18Þ

are corresponding to the up and antistrange quark propa-
gators in the photon interaction, respectively.
Also, we work in the Breit frame and using light-front

coordinates, kþ ¼ k0 þ k3, k− ¼ k0 − k3, and k⊥ ¼ ðk1; k2Þ,
and one has

qþ ¼−q− ¼
ffiffiffiffiffiffiffiffi
−q2

q
sinα; qx ¼

ffiffiffiffiffiffiffiffi
−q2

q
cosα; qy ¼ 0

and q2 ¼ qþq− − ðq⃗⊥Þ2; ð19Þ

where the Drell-Yan condition qþ ¼ 0 is recovered with α
equal zero [5,11,50]. As is well known, theKþ-meson form
factor can be extracted from the covariant expression
below, in the elastic case,

FKþðq2Þ ¼ 1

eðPþ P0Þμ hP
0jJμjPi: ð20Þ

In the light-front approach, besides the valence compo-
nent of the electromagnetic current, we can have the
nonvalence contribution or zero modes; thus, the full
electromagnetic form factor is given by [5,11,30,31],

FKþðq2Þ ¼ FðIÞ
Kþðq2; αÞ þ FðIIÞ

Kþ ðq2; αÞ; ð21Þ

where the valence component, FðIÞ
Kþðq2; αÞ, has the loop

integration on k− light-front energy, constrained by 0 ≤
kþ < Pþ (see the light-front time-ordered diagram in the

left panel of the Fig. 6), and FðIIÞ
Kþ ðq2; αÞ has the loop

integration on k− in the interval Pþ ≤ kþ ≤ P0þ (see the
right panel of the Fig. 6), corresponding to pair production

FIG. 5. Feynman diagrams for Kþ-photon interaction in the
vacuum.
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contributions with qþ > 0. We use only the valence

component, FðIÞ
Kþðq2; αÞ, since the nonvalence component

goes to zero in the adopted framework (further see
Refs. [4,5,11,33] for more details).
Now we consider the symmetric nuclear matter adapting

the initial and final momenta of the composite spin
zero bound state defined by energy P�0 ¼ E�

K ¼ E0�
K ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m�2
K þ q⃗2=4

p
and P0⊥

�! ¼ −P⊥
�! ¼ q⃗

2
where the q conditions

using light-front approach are shown by Eq. (19),Λ�ðk; P�Þ
and Λ�ðk; P�0 Þ using mu → m�

u and ms → m�̄
s as discussed

in Sec. II. After the k�− integration for Jþ current [see
Eq. (16)], a light-front wave function emerges from the
symmetric vertex function with the change of variable x ¼
kþ
Pþ in medium to x� ¼ k�þ

P�þ, where P�þ ¼ E�
K þ P�3 þ V,

k�þu ¼ E�
u þ k�3u þ jVu

ωj for the u quark momenta and
k�þs̄ ¼ E�̄

s þ k�3s̄ for the s̄ antiquark momenta [5,6,37,44].
We summarize here the light-front model in vacuum for the
symmetric vertex function Λ (V ¼ 0 and m�

R ¼ mR) for the
pseudoscalar bound states. In addition, the m�

R ¼ mR ¼
600 MeV is used, the same value as in the vacuum [4,5].
The Kþ-meson light-front wave function in the sym-

metric nuclear matter is defined as:

Φ�ðx�; k⃗⊥Þ ¼
P�þ

m�2
Kþ −M2

0

�
N

ð1 − x�Þðm�2
Kþ −M2

0Þ

þ N
x�ðm�2

Kþ −M2
RÞÞ



þ ½u ↔ s̄�; ð22Þ

where N is the normalization factor, M2
0 is the free mass

operator andM2
R is a regulator mass function, given below,

M2
0 ¼

k2⊥ þm�2
u

x�
þ ðP� − kÞ2⊥ þm2

s̄

ð1 − x�Þ − P2⊥; and

M2
R ¼ k2⊥ þm�2

u

x�
þ ðP� − kÞ2⊥ þm2

R

ð1 − x�Þ − P2⊥; ð23Þ

with, ½u ↔ s̄� (recall thatm�̄
s ¼ ms̄). Using only the valence

component of the electromagnetic current coming from

the Feynman diagram seen in Fig. 5, FðIÞ
Kþðq2; αÞ, (because

the entire production of pairs, FðIIÞ
Kþ ðq2; αÞ, is null for the

adopted reference as previously stated [5,11,30,31]) the
elastic electromagnetic form factor for the kaon in nuclear
medium, evaluated in the Breit-frame [4–6,11,33] is
given by,

F�ðWFÞ
Kþ ðq2Þ ¼ 1

2π3ðP�0þ þ P�þÞ

×
Z

d2dk⊥dk�þθðk�þÞθðP�þ − k�þÞ
k�þðP�þ − k�þÞðP�0þ − k�þÞ

×Φ�†ðx�; k⃗⊥ÞTr½Oþ�Φ�ðx�; k⃗⊥Þ
þ ½u ↔ s̄�: ð24Þ

The Eq. (25) represents the Dirac trace Tr½Oþ�, which is
calculated with the light-front coordinates in symmetric
nuclear matter, and the result is,

Tr½Oþ� ¼ 1

4
k�þq2⊥ −

�
k2⊥ þm�2

u

k�þ

	
P�þP�0þ

−
�
P�0þk⊥ · P⊥ þ P�þk⊥ · P0⊥

�
þ ½u ↔ s̄�: ð25Þ

It is also interesting to describe the partial contributions
of quarks in medium, for the quark u, F�

Kþðs̄us̄Þ, and the

strange antiquark, F�
Kþðus̄uÞ, to the formation of the full form

factor as shown below,

F�
Kþðs̄us̄Þðq2Þ ¼ es̄

1

2π3ðP�0þ þ P�þÞ
Z

d2k⊥dk�þθðk�þÞθðP�þ − k�þÞ
k�þðP�þ − k�þÞðP�0þ − k�þÞ Ψ�†ðx�; k⃗⊥ÞTr½Oþ�s̄us̄Ψ�ðx�; k⃗⊥Þ; ð26Þ

F�
Kþðus̄uÞðq2Þ ¼ eu

1

2π3ðP�0þ þ P�þÞ
Z

d2k⊥dk�þθðk�þÞθðP�þ − k�þÞ
k�þðP�þ − k�þÞðP�0þ − k�þÞ Ψ�†ðx�; k⃗⊥ÞTr½Oþ�us̄uΨ�ðx�; k⃗⊥Þ; ð27Þ

with the values of eu ¼ 2=3 and es̄ ¼ 1=3, referring to the charges of the quarks.

FIG. 6. Feynman diagrams contributing to the elastic electro-
magnetic form factor for pseudoscalar mesons. Left: the valence
component contributions from the electromagnetic current to the
electromagnetic form factor. Right: nonvalence contribution for
the electromagnetic current with the frame different from the
Breit frame with the Drell-Yan condition.
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For convenience, we introduce the transverse momentum
probability density in symmetric nuclear matter,

f�ðk⊥Þ ¼
1

4π3m�
Kþ

Z
2π

0

dϕ
Z

m�
Kþ

0

dk�þM�2
0

k�þðP�þ − k�þÞ
×Φ�2�k�þ; k⃗⊥;m�

Kþ ; 0
�
; ð28Þ

and from the integration of f�ðk⊥Þ we have the in-medium
probability of the valence component in the kaon:

η� ¼
Z

∞

0

dk⊥k⊥f�ðk⊥Þ: ð29Þ

In the nuclear medium, the kaon decay constant, f�Kþ , is
defined as the matrix element of the partially conserved
axial-vector current (PCAC) [4,5,9,33,51], and has the
following expression [6]

Pμh0ðρÞjAμ
i jK�

ji ¼ im�2
Kþf�Kþδij: ð30Þ

From the interaction Lagrangian density, Eq. (15), we
obtain the in-medium decay constant, f�Kþ , in terms of the
valence component [5,6]

f�Kþ ¼
ffiffiffiffiffiffiffi
NC

p Z
d2k⊥dx�
ð2πÞ3

2½x�ms þm�
uð1 − x�Þ�

x�ð1 − x�Þ
×Φ�ðx�; k⊥Þ: ð31Þ

The normalization constant NC is obtained from the
condition F�

Kþð0Þ ¼ 1. Then, the probability to find the

kaon for the valence components state is η� ¼ F�ðWFÞ
Kþ ð0Þ,

which is less than one at lower densities nuclear medium,
similarly to the vacuum case [4,5]. In the present work, we
also calculate the root-mean-square charge radius for the
kaon, in the nuclear medium.

IV. RESULTS

The pion model in the vacuum has two free parameters,
the constituent up quark mass,mu ¼ 220 MeV [47,51–56],
and the regulator mass, mR, fixed in order to reproduce the
correct experimental weak decay constant [18]. For the
kaon in symmetric nuclear matter, we have the up quark
mass in the medium, m�

u, and the strange (antiquark) mass,
m�̄

s ¼ ms̄ ¼ 508 MeV, together with the regulator mass
mR ¼ 600 MeV, as shown in Table II. The mR value is
determined to fit the weak decay constant, Eq. (31), but the
vacuum case [4]. The model gives, for the vacuum case,
fKþ ¼ 109.03 MeV, which is within the experimental
value of fexpKþ ¼ 110.096ð3Þ MeV [18] (see Table III).

TABLE II. Parameters for the kaon in symmetric nuclear matter with the QMC model. In vacuum RK ¼ 0.382 fm and ZK ¼ 3.920
[see Eq. (9)].

ρ=ρ0 0.00 0.25 0.50 0.75 1.00 1.50 2.00 2.50 3.00

mK [MeV] 493.7 472.1 452.7 435.5 420.1 394.1 373.4 356.6 342.8
mu [MeV] 220 179.9 143.3 109.8 79.6 27.3 −15.7 −51.6 −81.7
Vu
σ [MeV] 0.00 29.2 58.4 87.6 116.9 175.3 233.7 292.2 350.6

ms̄ [MeV] 508.0
mR [MeV] 600.0

TABLE III. Summary of in-medium kaon properties calculated. The η� is calculated via Eq. (29), and gives the probability of the
valence component in the kaon for the quark antiquark. The relation hr�2Kþi1=2:f�Kþ is related to the Tarrach’s theorem [57]. Parameters
used in the calculations are ms̄ ¼ 508 MeV and mR ¼ 600 MeV.

ρ=ρ0 mu [MeV] hr�2Kþi1=2 [fm] f�Kþ=fKþ f�Kþ [MeV] η� hr�2Kþi1=2:f�Kþ

0.00 220 0.712 1.000 109.01 0.711 0.388
0.25 179.925 0.792 0.952 103.82 0.752 0.411
0.50 143.261 0.896 0.906 98.79 0.802 0.438
0.75 109.890 1.024 0.863 94.03 0.864 0.470
1.00 79.619 1.182 0.822 89.66 0.943 0.507
1.50 27.346 1.661 0.758 82.60 1.161 0.583
2.00 −15.725 1.746 0.717 78.20 1.346 0.545
2.50 −51.558 1.278 0.682 74.32 1.366 0.439
3.00 −81.727 1.101 0.647 70.49 1.375 0.364
Exp.[PDG] [18] mK ¼ 493.7 MeV 0.560� 0.031 110.096(3) 0.313
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The electromagnetic root-mean-square charge radius,
hr�2Kþi1=2, of the kaon is calculated from the elastic electro-
magnetic form factor, from the following expression [4,5],

hr�2Kþi ¼ −6
∂

∂q2
F�
Kþðq2Þjq2⋍0: ð32Þ

The result obtained for the kaon electromagnetic radius in
vacuum with the present model, is hr�2Kþi1=2 ¼ 0.712 fm
[4,33], to be compared with the experimental value 0.560�
0.031 fm [18], with an error of 21.3%. We evaluate
numerically the derivative, and jF�

Kþðq2Þj varies fast around
q2 ¼ 0 for all chosen nuclear densities as well as in
vacuum. The values cited in this work are all evaluated
at Q2 ¼ −q2 ¼ 0.001 ðGeV=cÞ2, where the stability of the
form factor has been checked.
In Figs. 7 and 8, the Q2 dependence of the kaon elastic

electromagnetic form factor squared is shown in symmetric

nuclear matter with the light-front model [4,5], for nine
nuclear densities. Specifically in Fig. 8 we multiply the form
factor byQ2 to better analyze. The model result is compared
with the experimental data in the vacuum [15,16].
The results for the model in the vacuum, reproduce well

the experimental data for vacuum [15,16] and also agree
with other models [7,8].
As the nuclear density increases, the absolute value of

the form factor jF�
Kþðq2Þj decreases faster than in vacuum,

and the electromagnetic charge radius for the kaon increase
up to densities ρ=ρ0 close to 1.8, where the mass of the
quark u is positive, but for higher densities the behavior
begins to change. This leads to a larger kaon charge radius in
nuclear matter with increasing density, as shown in Fig. 9.
In terms of the quark mass in the medium, m�

u, the kaon
electromagnetic radius decreases, like the pion case, con-
sistent with the decreasing of the quark effective mass in the
nuclear medium as shown in Fig. 10 (see the Table III).

FIG. 7. Kaon electromagnetic form factor in symmetric nuclear
matter for five nuclear densities as function of Q2 ¼ −q2.
Experimental data in vacuum are from Refs. [15,16].

FIG. 8. The kaon electromagnetic form factor multiplied by
Q2 ¼ −q2.

FIG. 9. The kaon and pion electromagnetic root-mean-square
charge radius as function of the nuclear density.

FIG. 10. The electromagnetic root-mean-square charge radius,
hr�Kþi1=2, as a function of the quark mass, m�

u.
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The decrease in the quark mass kinematically allows for
the quarks to move in a larger space region and the quark-
antiquark binding energy becomes smaller, i.e., the kaon is
less bound which results in an increase of the charge radius.
This can be demonstrated with the validity of Tarrach’s
theorem in symmetric nuclear matter described by approx-
imately constant values of the relation hr�2Kþi1=2:f�Kþ as
shown in the last column of Table III. It is possible to
see this theorem is satisfied also in other works in literature
for pion and kaon in vacuum [4,5,33,58,59]. In Fig. 11,
we show the ratios of the in-medium to vacuum kaon
weak decay constant for the kaon in symmetric nuclear
matter, f�Kþ=fKþ , versus nuclear density, associated with
the light-front time component. The results show that f�Kþ

and f�Kþ=fKþ decreases as nuclear density increases (see
Table III).
For the pion case, the bound state mass does not change

so much in the nuclear medium, about ≈3.0 MeV. That is
consistent with the empirical findings supported by the
experiments [60], which yield ðf�πþ=fπþÞ2 ¼ 0.64 (associ-
ated with the time component) at density ρ ¼ 0.17 fm−3. In
the case of the pion, the present model was exploited in the
Ref. [6], producing a larger reduction. The similar behavior
is found also, for the kaon in the present work.
The kaon properties in symmetric nuclear matter are

summarized in Table II. In the table, we show that the kaon
bound state mass decreases with the nuclear density, which
is a feature different from the pion case, where the bound
state effective mass is almost constant in symmetric nuclear
matter [6]. Also, the quark mass m�

u decreases with the
nuclear density, and this is the same for the pion and kaon
[6,37]. The potential, related with the elastic electromag-
netic form factor, Eq. (24), is in the fourth row of Table II.
The third, fourth, fifth, and sixth columns in Table III are
the in-medium quantities calculated with the present model
respectively: kaon electromagnetic root-mean-square

charge radius, the ratio in-medium to vacuum electroweak
decay constant, the kaon electroweak decay constant and
the valence quark probability η�. In Fig. 12 one can see that
η� grows for larger values of nuclear densities, note that for
ρ > 1.2ρ0, η� > 1, it is possible to see in Eqs. (28) and (29),
sincem�

K > mK and η� ∝ 1=m�
K . This may indicate that Kþ

becomes a quasibound state and not anymore the pure jus̄i
composite state, but it contains more valence quarks.
As nuclear density increases, the probability of the

valence component in the kaon is enhanced, which is
again the effect of the decreasing of the effective quark
mass. This makes the light u quark to move more freely
inside the kaon. This effect has the same origin as the
increase of the kaon root-mean-square charge radius in
symmetric nuclear matter discussed above.
The results obtained in the Figs. 13–16 through the

Eqs. (26) and (27) show the behavior of the electromagnetic
form factor in vacuum and in medium, the contributions of

FIG. 11. Ratios the in-medium to vacuum electroweak decay
constant, for the mesons pion and kaon, with the light-front time
component, as function of the nuclear density.

FIG. 12. In-medium valence probability η�, as function of the
nuclear density.

FIG. 13. FKþðQ2Þ decomposition of quark contributions for the
vacuum case.
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the quark u, F�
KþðuÞ, and the strange antiquark, F�

Kþðs̄Þ with
the values of eu ¼ 2=3 and es̄ ¼ 1=3.
Analyzing these figures, we note that atQ2 ¼ 0, we have

that the contribution of the quark u is around 66.67%, while
that of the antiquark s̄ is 33.33%, see Table IV, and for
larger transferred momentum, equality in slopes does not
lead to equality in the results obtained for the total radius
and its partial contributions.
In Fig. 13, we show the behavior of the electromagnetic

form factor in vacuum ρ=ρ0 ¼ 0.00, and contributions of
the u quark and the strange antiquark. It is observed that
for values of transferred momentum-squared close to
Q2 ¼ 8 ½GeV=c�2, the contributions are close. Whereas
in Fig. 14 we show the behavior of the electromagnetic
form factor at ρ=ρ0 ¼ 0.50 for values of transferred
momentum-squared close to Q2 ¼ 2.2 ½GeV=c�2. Approxi-
mately, the curves of the partial contributions are close
again. But in Fig. 15 the behavior of the electromagnetic
form factor at ρ=ρ0 ¼ 0.75 are inverted for Q2 ¼
1.8 ½GeV=c�2, evidencing the greater contribution of the
u quark. This also happens at ρ=ρ0 ¼ 1.00 for values of
transferred momentum close to Q2 ¼ 1 ½GeV=c�2.

V. SUMMARY AND CONCLUSIONS

We have explored the modifications of the kaon proper-
ties in symmetric nuclear matter based on the light-front
constituent quark model [4,5,30,31], plus quark-meson
coupling (QMC) model [6,41–43]. The strategy adopted
here reproduces quite well the experimental data in vac-
uum, such as the electromagnetic elastic form factor, and
other observables, for example, electromagnetic root-mean-
square charge radius and the electroweak decay constant,
where we use the light-front plus component of the electro-
magnetic current [6,37]. In order to incorporate the nuclear
many-body effects on an equal footing, i.e., with the quark
degrees of freedom, we have employed the QMC model.
We have used the in-medium quark properties obtained in
the QMC model as input for the constituent up and strange
quarks. For the kaon the in-medium kaon mass is also
calculated by the QMC model and the vector potential at
normal nuclear matter density is slightly repulsive. Those
properties are summarized in Table II for the effective
kaon mass and in Table III for its electroweak properties.

FIG. 14. FKþðQ2Þ decomposition of quark contributions for
ρ=ρ0 ¼ 0.50.

FIG. 15. FKþðQ2Þ decomposition of quark contributions for
ρ=ρ0 ¼ 0.75.

FIG. 16. FKþðQ2Þ decomposition of quark contributions for
ρ=ρ0 ¼ 1.00.

TABLE IV. Decomposition of quark contributions for the kaon
electromagnetic elastic form factor at Q2 ¼ 0, with the param-
eters, ms̄ ¼ 508 MeV and mR ¼ 600 MeV. in nuclear medium.

ρ=ρ0 es̄Fs̄us̄ð0Þ euFus̄uð0Þ FKþð0Þ
0.0 0.2858 0.7142 1.0
0.5 0.2783 0.7213 1.0
0.75 0.2760 0.7240 1.0
1.00 0.2749 0.7251 1.0
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The kaon properties calculated in symmetric nuclear matter
are the elastic electromagnetic form factor, root-mean-
square charge radius, the weak decay constant, and the
valence probability of qq̄, for the kaon in-medium. Like
the pion case [4,6], the results indicate a rapid decrease
for electromagnetic elastic form factor in-medium with
increasing the nuclear density, and as a result an increase of
the kaon root-mean-square charge radius.
We have also computed the in-medium kaon decay

constant, which is associated with the light-front time
component. The decay constant decreases as nuclear
density increases, which is consistent with the analysis
of the pion case already obtained in the literature.
The corresponding ratio, f�Kþ=fKþ , obtained in the

present approach is decreased, or equivalently, the reduc-
tion of f�Kþ is larger. However, we must state that there is an
uncertainty in the change of kaon effective mass in the
medium, from which the value of the kaon decay constant
is calculated. Regarding the valence quark probability in
Kþ, our result shows that this probability increases with the
increase of density. We understand this effect in terms of
the decreasing of the effective constituent light up quark
mass in kaon, which allows for a larger kinematic dis-
tribution within the kaon and, in turn, results in an increase
in the probability of valence quark probability. The same

reasoning applies to the increase of the kaon charge
radius. Our next step may be extended the present approach
to the B, D, and ω mesons in vacuum and in nuclear
medium.
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