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True muonium (TM)—the bound state of μþμ−—has not been discovered yet. It was demonstrated that
searching for TM via γγ fusions in heavy ion collisions is feasible due to the enhancement of the atom
number. We study the production of the true para-muonium (pTM) in the collisions of linearly polarized
photons in the experiments of heavy-ion collisions, calculate the production rate as well as the transverse
spectrum of pTM, and explore the discovery potential in nuclear experiments. Our results show that there is
a significant correlation between the linearly polarized photon distribution and the transverse momentum
distribution of pTM. The optimal kinematic region of the generated pTM is identified, which can provide a
theoretical guide to the detection of pTM in experiments.
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The μþμ− bound state, referred to as true muonium
(TM), is a short-lived, exotic atomlike particle composed of
a muon and its antiparticle, the antimuon. It is a purely
quantum electrodynamics (QED) bound state. The lightest
QED atom, the positronium (eþe− bound state), was
observed more than 75 years ago [1] and studied exten-
sively. Even the so-called muonium (μe bound state) [2], πμ
atom [3], and the dipositronium [4] [ðeþe−Þðeþe−Þ mol-
ecule] have been discovered and studied more, while the
TM remains unobserved, even though the possibility of its
existence was discussed [5] soon after the clarification of
the leptonic nature of the muon [6–8] in the mid-20th
century. The investigation of TM can contribute to our
broader understanding of the Standard Model of particle
physics and may offer clues to the existence of physics
beyond this well-established framework [9–12].
Muons are heavy, unstable relatives of electrons, with a

mass approximately 207 times that of an electron. Due to
the short lifetime of muons and their antimatter counter-
parts, TM exists only fleetingly [13–16], making it chal-
lenging to study and observe directly. The muon’s relatively
short lifetime, on the order of microseconds [17], restricts
the timescale for the formation and stability of TM. Many
sophisticated experimental techniques have been employed
to detect and study these ephemeral particles, often relying
on high-energy accelerators and advanced detection

methods. It was proposed to detect the TM in the physical
processes at high-energy experimental apparatus, such
as π−p → ðμþμ−Þn [13], γZ → ðμþμ−ÞZ [13,18], eZ →
eðμþμ−ÞZ [19–21], Z1Z2 → Z1Z2ðμþμ−Þ [18,22–26]
(where Z indicates a heavy nucleus), μþμ− collisions [14],
η → ðμþμ−Þγ [27,28], eþe− collisions [29–31], KL →
ðμþμ−Þγ [32], etc. Among these processes, the eþe− →
ðμþμ−Þ and γðμþμ−Þ is of particular interest because there
is no hadron involved and thus is a pure QED process.
It was demonstrated in Ref. [30] that the TM could be
discovered at electron-positron colliders, if the μþμ−
resonances above the threshold are also taken into account,
because the states with high-principal quantum numbers
cannot be distinguished from the resonances just above
the threshold due to the beam energy spread, which produc-
tion rates are enhanced by the Sommerfeld-Schwinger-
Sakharov factor [33]. Based on this, it was proposed
to search for TM with fool’s intersection storage rings
[eþe− → ðμþμ−Þ] discussed by Bjorken [34] in which the
electron and positron beams are arranged to merge at a
small angle in order to give rise to a strong boost for the
produced TM, and to search for the true para-muonium
(pTM) and true ortho-muonium (oTM) using the initial and
final radiation technology (eþe− → γðμþμ−Þ) on BESIII
and Belle-II experiments [35,36].
Another promising process is the heavy-ion collisions. If

the heavy ions collide with impact parameter larger than the
twice of the radius of the nuclei, i.e., the ultraperipheral
collisions (UPC), the strong interaction is suppressed,
ensuring γγ fusion in UPC a QED dominant process [37].
The electromagnetic field strength is scaled with the atom
number Z. Hence comparing with electron-positron colli-
sions, the production rate is enhanced by a factor Z4 in γγ
fusions in UPC. For example, in lead-lead collisions the
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rate will be enhanced by 824 ∼ 4.5 × 107. This makes the
study of rare processes possible in heavy-ion collisions. As
a consequence, the light-by-light scattering, predicted by
quantum theory but forbidden by classical electrodynam-
ics, was observed in Pbþ PbðγγÞ → Pb� þ Pb� þ γγ proc-
ess by ATLAS [38] and CMS [39], based on the approach
proposed in [40].
On the theory side, the calculation can be carried out

with the equivalent photon approximation where the virtual
photons are regarded as quasi-real photons, which is also
known as the Weizsäcker–Williams method [41–43]. The
quasi-real photons, radiated from the relativistic nuclei,
can be either unpolarized and linearly polarized. The
linearly polarized photon distribution is correlated with
the transverse momentum and the azimuthal distribution of
the produced particles. It was proposed that the linearly
polarized photon distribution can be extracted from the
azimuthal-asymmetries of the lepton pair production in
UPCs, see, e.g., Ref [44]. The cos 4ϕ asymmetry has been
measured by STAR collaboration [45].
The transverse momentum distribution provides useful

information for experimental research. Although the total
production rate of pTM in heavy-ion collisions has
been studied by previous works, however, the transverse
momentum distribution of pTM has never been extensively
explored, especially in the small transverse momentum
region. Moreover, the effect of the linearly polarized
photon is never explored. In this work, We will calculate
the transverse momentum dependent differential cross-
sections and study the effect of linearly polarized photons
on the transverse momentum distribution of the pTM.
The pTM—the 1S0 bound state of μ−μþ, can be produced

by γγ fusion, which is shown in Fig. 1. When the virtuality
of photon is small, one can utilize the equivalent photon
approximation to calculate the differential cross section. In
this work, we take the transverse momentum distribution
of pTM into account. If the transverse momentum of
pTM in the final state is small, the differential cross section
takes the form of transverse-momentum-dependent (TMD)
factorization [46–48],

dσ ¼ 1

2s
d3q

ð2πÞ32q0
Z

dxadxbd2paTd2pbTð2πÞ4δ4

× ðpa þ pb − qÞΓμν
A ðxa; paTÞΓρσ

B ðxb; pbTÞ
×Hμρ;νσðpa; pb; qÞ; ð1Þ

where
ffiffiffi
s

p
is the collision energy per nucleon pair in

the center-of-mass frame, pa and pb are the momenta of
the photons from nucleus A and B, respectively, and q is the
momentum of pTM. H is the partonic scattering amplitude
of γγ → pTM multiplied by its complex conjugate, and
ΓA;B is the photon correlation matrix of the nuclei A and B,
respectively, defined as the Fourier transform of the
correlator of electromagnetic tensor as

Γμνðx; kTÞ ¼
Z

dz−dz2T
x2Pþð2πÞ3 e

ik·zhPjFþμð0ÞFþνðzÞjPijzþ¼0

¼ −
1

2x
gμνT fγ1ðx; k2TÞ þ

1

x

�
1

2
gμνT þ kμTk

ν
T

k2T

�

× h⊥γ
1 ðx; k2TÞ; ð2Þ

where gμνT ¼ gμν − nμn̄ν − nνn̄μ is the transverse metric and
the light cone vectors are n ¼ 1ffiffi

2
p ð1; 0; 0;−1Þ and n̄ ¼

1ffiffi
2

p ð1; 0; 0; 1Þ. The transverse part of a vector a is then

expressed as aμT ¼ gμνT aν. Fμν ¼ ∂
μAν − ∂

νAμ is the electro-
magnetic tensor, and z ¼ z−n̄þ zT ; distinguished from the
gluon case, there is no Wilson line. fγ1 is the unpolarized
photon distribution function, while h⊥γ

1 is the distribution of
linearly polarized photons. The effect of h⊥γ

1 has not be
considered in the previous research of TM production. In
general case, h⊥γ

1 is independent of fγ1 but there is an upper
bound jh⊥γ

1 j ≤ fγ1. However, when the photons carry very
small longitudinal momenta kþ, nearly all the photons are
linearly polarized, in this case one has h⊥γ

1 ðx; k2TÞ ≃
fγ1ðx; k2TÞ [44]. This relation will be utilized in the numeri-
cal discussions.
The function H can be expressed as

Hμρ;νσðpa; pb; qÞ ¼ Mμρðpa; pb; qÞM�
νσðpa; pb;qÞ; ð3Þ

where Mμρ is the amplitude of γγ → pTM. It can be
calculated as

iMμρ ¼
ffiffiffiffiffiffi
1

4π

r
Rð0Þ

ffiffiffiffiffiffiffiffiffi
1

8m3

r
Tr

(�
=q

2
−m

�
γ5

�
=q

2
þm

�

×

"
ð−ieγμÞ i

=q
2
− =pa −m

ð−ieγρÞ

þ ð−ieγρÞ i
=q
2
− =pb −m

ð−ieγμÞ
#)

; ð4Þ

where m is the mass of muon, Rð0Þ is radial wave function
of pTM at the origin. The mass of pTM is approximated by
2m. Simplify the expression, the amplitude becomes

(a) (b)

FIG. 1. Production of true para-muonium via γγ fusion in
heavy-ion collisions.
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iMμρ ¼ −
ffiffiffiffiffiffi
1

4π

r
Rð0Þ 2

ffiffiffi
2

p
e2ffiffiffiffi
m

p ϵμρT ; ð5Þ

where we have made the approximation pa ∼ xaP
þ
An and

pb ∼ xbP−
Bn̄ in the partonic amplitude, PA and PB are the

momenta of nucleus A and B (per nucleon), respectively.
The collision energy squared s (per nucleon pair) can be
expressed as s ¼ ðPA þ PBÞ2 ≈ 2Pþ

AP
−
B. The transverse

Levi-Civita tensor is ϵμρT ¼ ϵμρνσnνn̄σ. Then the differential
cross section becomes,

dσ
dydq2T

¼ 2π2

s
α5ζð3Þ

Z
d2paTd2pbTδ2ðpaT þ pbT − qTÞ

×

�
fγ1
�
xa; p2aT

�
fγ1
�
xb; p2bT

�
− h⊥γ

1

�
xa; p2aT

�

× h⊥γ
1

�
xb; p2bT

��2paT · p2bT
p2aTp

2
bT

− 1

��
; ð6Þ

where α ≈ 1=137 is the fine structure constant,
xa;b ¼ 2mffiffi

s
p e�y, and y≡ 1

2
ln qþ

q− is the rapidity of pTM, with

qþ and q− denoting the “þ” and “−” components of the
pTM momentum q in the light cone coordinate system,
respectively. A very similar formula for 1S0 quarkonium
production has been derived before, which is expressed in
terms of the gluon distributions [48,49]. When deriving the
above results we have adopted Rð0Þ2 ¼ α3m3

2n3 with n being
the principal quantum number; summing over n leads to a
factor ζð3Þ. It is interesting to note that the formula doesn’t
depend on the muon mass m at first glance because all
the m dependence is through the variables xa;b ¼ 2mffiffi

s
p e�y.

Integrating over qT, one can find that the term associated
with h⊥γ

1 h⊥γ
1 disappears and get

dσ
dy

¼2π2

s
α5ζð3Þ

Z
d2paTd2pbTf

γ
1ðxa;p2aTÞfγ1ðxb;p2bTÞ; ð7Þ

so the linearly polarized photon distribution will not modify
the qT integrated cross section, as well as the total cross
section. However, the linearly polarized photon will modify
the transverse momentum distribution of the pTM, as we
shall demonstrate below. The total cross section can be
derived by integrating out y,

σ ¼ 2π2

s
α5ζð3Þ

Z
dyfγ1

�
2mffiffiffi
s

p ey
�
fγ1

�
2mffiffiffi
s

p e−y
�
; ð8Þ

where fγ1ðxiÞ ¼
R
d2piTf

γ
1ðxi; p2iTÞ are the integrated pho-

ton distributions.
According to the Weizsäcker-Williams method, the un-

polarized photon distribution for a nucleus is

xfγ1ðx; p2TÞ ¼
Z2α

π2
p2T

ðp2T þ x2M2
pÞ2

F2ðp2T þ x2M2
pÞ; ð9Þ

whereMp is the proton mass, Z is the atom number and F is
the electric form factor of the nucleus. The form factor is
often parametrized using the Woods-Saxon distribution [50]

Fðjp⃗jÞ ¼
Z

d3reip⃗·r⃗
ρ0

1þ e
r−RWS

d

; ð10Þ

where ρ0 is the normalization factor, RWS is the radius, and
d is the skin depth. The exact analytical expression of the
form factor F can be derived by doing the Fourier integral.
The result reads

Fðjp⃗jÞ ¼ 4πdρ0
jp⃗j

	
π cschðπdjp⃗jÞ�πd sinðRWSjp⃗jÞ

× cothðπdjp⃗jÞ − RWS cosðRWSjp⃗jÞ
�

− d ImΦ
�
−e−

RWS
d ; 2;−idjp⃗j�
; ð11Þ

where Φðz; s; aÞ≡P∞
n¼0

zn
ðnþaÞs is the Hurwitz-Lerch tran-

scendent. The last line in the above expression is extremely
tiny because of the exponential, thus one can neglect it and
get an approximation of the Woods-Saxon distribution,

Fðjp⃗jÞ ≃ 4π2dρ0
jp⃗j cschðπdjp⃗jÞ�πd cothðπdjp⃗jÞ sinðRWSjp⃗jÞ

− RWS cosðRWSjp⃗jÞ
�
; ð12Þ

and the normalization factor ρ0 is evaluated as

ρ0 ¼
3

4π

1

RWSðd2π2 þ R2
WSÞ

: ð13Þ

Numerical result shows that Eq. (12) is a very good
approximation of Eq. (10), and we will adopt it for further
convenience in most of the numerical calculations. We note
that the same expression has been derived in Ref. [51].
Another commonly used form factor in literature is the one
from the STARlight Monte Carlo (MC) generator [52,53],

Fðjp⃗jÞ ¼ 4πρ0

Ajp⃗j3
	
sinðRAjp⃗jÞ−RAjp⃗j cosðRAjp⃗jÞ


 1

1þ a2p⃗2
;

ð14Þ

where RA ¼ 1.1A1=3 fm, A is the mass number of nuclei
and a ¼ 0.7 fm. The normalization factor ρ0 ¼ 3

4π
A
R3
A
is the

nuclear density. It is also a good approximation of the
Woods-Saxon distribution. In Fig. 2, we plot the Woods-
Saxon distribution, the form factor in Eq. (12), and the
STARlight form factor of Pb, where RWS ¼ 6.62 fm, and
d ¼ 0.546 fm. The comparison of the total cross sections
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computed from the two form factors will also be pre-
sented later.
Based on the above results, we present the numerical

analysis herein, for the Au-Au collisions at the RHIC and
the Pb-Pb collisions at the LHC. The nucleus radii are
RWS ¼ 6.38 fm for 197Au and RWS ¼ 6.62 fm for 207Pb,
while the corresponding skin depths are d ¼ 0.535 fm for
197Au and d ¼ 0.546 fm for 207Pb [54]. As discussed
earlier, one has h⊥γ

1 ðx; k2TÞ ≃ f1ðx; k2TÞ, i.e., all photons
are linearly polarized. The case that photons are partially
polarized will be discussed later.
To delve into the differential cross section dependence

on
ffiffiffi
s

p
, we fix y ¼ 0. The resulting plot illustrates the

differential cross section versus transverse momentum qT
of pTM. We consider three distinct center-of-mass energies
per nucleon pair:

ffiffiffi
s

p ¼ 100 GeV, 200 GeV, and 300 GeV
of Au–Au collisions, which are around the RHIC collision
energy

ffiffiffi
s

p ¼ 200 GeV per nucleon pair. The graphical
representation is depicted in Fig. 3. Integrating over the
rapidity y one can have the y-integrated differential cross
section dσ=dq2T , which is shown in Fig. 4. One can find that
the differential cross section increases with the rising of

ffiffiffi
s

p
,

which is because that the photon density increases when x
goes smaller.
To see how the produced pTM is distributed with its

rapidity, we integrate over qT and get the qT-integrated
differential cross section dσ=dy as a function of y—the
rapidity of pTM—which is presented in Fig. 5 for Au-Au
collisions and Fig. 6 for the Pb-Pb collisions. Once more,
we let

ffiffiffi
s

p ¼ 100 GeV, 200 GeV, 300 GeV for the Au-Au
mode, and take

ffiffiffi
s

p ¼ 2.76 TeV, 5.02 TeV for the Pb-Pb
mode which corresponds to the center-of-mass energy
per nucleon pair at the LHC. One can find that the rapidity
of pTM at the RHIC is around jyj≲ 5, while jyj≲ 8
at the LHC.

FIG. 2. The Woods-Saxon form factor, the form factor adopted
by this work, and the form factor in STARlight MC generator
of Pb, where RWS ¼ 6.62 fm, and d ¼ 0.546 fm. Too see the
differences between the form factors more clearly, we “zoom in”
by plotting in a particular region.

FIG. 3. The differential cross section as a function of the pTM
transverse momentum qT in Au Au collisions. We take the
collision energy per nucleon pair as

ffiffiffi
s

p ¼ 100 GeV, 200 GeV,
300 GeV that are near the RHIC energy. The differential cross
section exhibits an increase with the rising values of

ffiffiffi
s

p
.

FIG. 4. The y-integrated differential cross section as a function
of qT with the collisions energy

ffiffiffi
s

p ¼ 100 GeV, 200 GeV,
300 GeV per nucleon pair in Au-Au collisions, where y is the
rapidity of pTM.

FIG. 5. The qT integrated differential cross section dσ=dy as a
function of y in Au-Au collisions, where y denotes the rapidity of
pTM, and the collision energy

ffiffiffi
s

p ¼ 100 GeV, 200 GeV,
300 GeV per nucleon pair in the center-of-mass frame.
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To see how the polarization of photon affects the
production of pTM, we introduce the degree of polari-
zation r, which is defined as the ratio of the linearly
polarized and unpolarized photon distributions, i.e., r≡
h⊥γ
1 ðx; k2TÞ=fγ1ðx; k2TÞ. r is generally a function, but for the

sake of simplicity, we assume r is a number and present the
differential cross sections with r ¼ 0; 1=2, 1 in Fig. 7.
When r ¼ 0, there is no linearly polarized photon, while for
r ¼ 1 all of the photons are linearly polarized. One can find

that the linearly polarized photons strongly effect the
transverse momentum dependence in the small-qT region,
while for larger qT the differential cross section is not
affected. It is interesting to figure out that, the differential
cross section for fully linearly polarized photons decreases
to zero when qT → 0, and the differential cross section
approaches the maximum value around several MeV.
Integrating out y and qT leads to the total cross section.

We plot the total cross sections as the functions of
ffiffiffi
s

p
for

both Au-Au and Pb-Pb collisions, which is shown in Fig. 8.
Again, one can conclude that the total cross section
increases when

ffiffiffi
s

p
increases. We list the total cross sections

in Table I. The cross sections of pTM production reported
in [22] are 0.15 μb for gold-gold mode at RHIC, and
1.35 μb for lead-lead collisions at LHC. Our results in
Table I are larger, but in agreement with their results in
magnitude. As a coproduct of this analysis, the cross
sections for the production of para-positronium (pPM) and
true para-tauonium (pTT) are also presented in Table I. We
note that the total cross section for true tauonium produc-
tion via two photon fusions in UPCs was calculated in
Refs. [55–57]; our result is larger because the UPC events
are not singled out in the traditional TMD formalism.
In Fig. 9, we explore the effects of different choices of

nuclei form factors on the total cross sections. It indicates
that the result calculated with the form factor in Eq. (12)
matches well with the result calculated with the form factor
adopted by STARlight, especially when

ffiffiffi
s

p
is not too large;

FIG. 6. The qT integrated differential cross section dσ=dy as a
function of y in Pb-Pb collisions, where y denotes the rapidity of
pTM. We take the collision energy

ffiffiffi
s

p ¼ 2.76 TeV and 5.02 TeV
per nucleon pair in the center-of-mass frame.

FIG. 7. The differential cross section computed with r ¼ 0, r ¼
1=2 and r ¼ 1, in Au-Au collisions, where r is the degree of
photon polarization, and y is the rapidity of pTM. The collision
energy per nucleon pair is taken as

ffiffiffi
s

p ¼ 200 GeV.

FIG. 8. The total cross sections of pTM production in Au-Au
and Pb-Pb collisions.

TABLE I. The total cross sections of pTM production in two gamma fusion in Au-Au and Pb-Pb collisions. In the
second row we list the cross sections of para-positronium production, while in the third row we list the cross sections
for true para-tauonium.
ffiffiffi
s

p
(TeV) 0.2 (Au-Au) 2.76 (Pb-Pb) 5.02 (Pb-Pb)

pTM cross section (μb) 0.20 1.20 1.59
pPM cross section (μb) 1.36 × 105 5.85 × 105 4.01 × 106

pTT cross section (μb) 9.68 × 10−6 6.55 × 10−4 1.08 × 10−3
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when
ffiffiffi
s

p
is large, there may be visible differences between

the two cross sections.
It is also intriguing to explore the average transverse

momentum of pTM. We define the average transverse
momentum as

hqTi≡
R
dydq2TqT

dσ
dydq2TR

dydq2T
dσ

dydq2T

: ð15Þ

With the differential cross sections calculated above, one
can compute the numerical results of hqTi, which is plotted
in Fig. 10. We take the Au-Au collisions as an example. At
the RHIC energy

ffiffiffi
s

p ¼ 200 GeV, hqTi ≃ 1.4 MeV. One
can find that the average transverse momentum decreases
when

ffiffiffi
s

p
increases. We plot hqTi for both r ¼ 0 and r ¼ 1

cases, and find that the two curves coincides. Therefore,
although the linearly polarized photons modify the shape of
qT distribution, the average value hqTi is not affected by the
polarization.
To summarize, we study the true para-muonium pro-

duction with photon-photon fusions in heavy ion collisions.
The transverse distribution of true para-muonium is taken
into explored, and to achieve this purpose after taking the
linearly polarized photon distribution into account. Our
results indicate that the differential cross section of true

para-muonium production in the small qT region is affected
by the linearly polarized photons in nuclei significantly,
and exhibits a maximum when qT is around several to
10 MeV at the RHIC, while the maximum of differential
cross section is located at lower qT at the LHC. Detecting
pTMs with such low momenta presents a challenge in
current experiments at the LHC, as the minimum transverse
momentum measured is approximately 1 GeV [58–61].
However, it is crucial to acknowledge that transverse
momentum distributions have the potential to serve as
valuable guides for future experimental analyses. The total
cross section is also computed, indicating that significantly
considerable amounts of true para-muonium should be
produced. Our work can also be extend to the true ortho-
muonium production.
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