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The upper limit of the branching ratio of the rare Ξ−
b → Ξ−γ decay is obtained as BRðΞ−

b → Ξ−γÞ <
1.3 × 10−4 by the LHCb. In the present work we study this decay within the light cone QCD sum rules
employing the Ξb distribution amplitudes. At the first stage, the form factors entering the Ξ−

b → Ξ−γ decay
are obtained. Next, using the results for the form factors the corresponding branching ratio for this decay is
estimated to be BRðΞ−

b → Ξ−γÞ ¼ ð4.8� 1.3Þ × 10−5. This value lies below the upper limit established by
the LHCb collaboration. Our finding for the branching ratio is also compared with the results of the other
theoretical approaches existing in the literature.
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I. INTRODUCTION

The exclusive weak decays of hadrons governed by the
flavor-changing neutral current (FCNC) b → sðdÞ transi-
tions are forbidden in the Standard Model (SM) at the tree
level and occur only at the one-loop level. Consequently,
these decays hold exceptional significance for testing the
predictions of the SM at the loop level as well as looking for
the evidence of new physics beyond the SM. These decay
channels are strongly suppressed, and this makes their
experimental investigation difficult.
The rare exclusive radiative decay Ξ−

b → Ξ−γ induced by
b → s transition has not been observed experimentally yet,
and the LHCb collaboration imposed an upper limit on
its branching ratio, BRðΞ−

b → Ξ−γÞ < 1.3 × 10−4 [1]. This
decay was investigated within different approaches, such as
light-front quark model [2], relativistic quark-diquark
model [3], light cone QCD sum rules [4,5] using the Ξ
baryon distribution amplitudes, and in the framework of SU
(3) flavor symmetry [6]. The difference in the predictions
obtained in the Refs. [2–4,6], which are below the
experimental upper limit, and [5] and especially the differ-
ence between the predictions of Refs. [4] and [5] despite
being obtained using the same framework and same
distribution amplitudes (DA’s) for Ξ baryon, require a
more careful analysis of this decay channel. Therefore in

this work, we investigate the Ξ−
b → Ξ−γ decay in the

framework of light cone QCD sum rules by using the
DA’s of the Ξb heavy baryon. The light cone QCD sum
rules method (LCSR) [7] is an extension of the traditional
QCD sum rules [8], and one of the powerful approaches
among nonperturbative methods that yields predictions
consistent with the experimental observations. In the
LCSR the operator product expansion (OPE) is conducted
over the twist of the operators, rather than the dimension of
the operators as in the traditional QCD sum rules.
The organization of the work is as follows. In the next

section, the LCSR for the transition form factors respon-
sible for the Ξ−

b → Ξ−γ decay are obtained by using the Ξb
light cone DA’s. Section III is devoted to the numerical
analyses for the relevant form factors obtained in the
previous section. Moreover, the corresponding branching
ratio is attained using their numerical values. Discussions
and our conclusion are presented in Sec. IV.

II. FORM FACTORS FOR THE Ξ−
b → Ξ− γ DECAY

IN LIGHT CONE QCD SUM RULES

The rare b → s transition is described by the following
effective Hamiltonian:

Heff ¼ −
GFffiffiffi
2

p VtbV�
ts

"X6
i¼1

CiðμÞOiðμÞ þ C7γðμÞO7γðμÞ

þ C8GðμÞO8GðμÞ
#
; ð1Þ

where GF is Fermi coupling constant, CiðμÞ are the Wilson
coefficients, and Vtb and V�

ts are Cabibbo-Kobayashi-
Maskawa matrix elements. The Oi are the local operators
whose explicit forms can be found in Ref. [3]. Since the
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penguin operator O7γ gives the main contribution to the
b → sγ transition, the effective Hamiltonian for this tran-
sition is given as

Heff ¼ −
GFe

4π2
ffiffiffi
2

p VtbV�
tsCeff

7γ ðmbÞs̄σμν

×

�
mb

ð1þ γ5Þ
2

þms
ð1 − γ5Þ

2

�
bFμν; ð2Þ

where we use Ceff
7γ ðmbÞ from Ref. [3]. The amplitude of the

considered transition is obtained from the matrix element of
the Hamiltonian taken between the initial and final states,
which requires calculating the matrix element between the
baryon states which can be expressed in terms of the form
factors. In this section, we provide the details of the light
cone QCD sum rule calculations to obtain the form factors
for the Ξ−

b → Ξ−γ transition.
The basic object of the light cone QCD sum rules is the

correlation function that sandwiches the time-ordered
product of the interpolating current of the final baryon
state and the weak transition current between the vacuum
and the initial hadron state Ξb, i.e.,

Πμðp;p0Þ ¼ i
Z

d4xeip
0·xh0jT fJΞðxÞJμð0ÞgjΞbðp;sÞi; ð3Þ

where T is the time ordering operator. For the considered
problem the form of the weak transition current is Jμ ¼
s̄σμνð1þ γ5Þqνb and JΞ is the interpolating current of the
Ξ− baryon

JΞ ¼ 2ϵabc½ðsaCdbÞγ5sc þ βðsaCγ5dbÞsc�; ð4Þ

where a, b, and c are color indices and C represents the
charge conjugation operator, β is an arbitrary parameter.
In the light cone QCD sum rules method, the correlation

function is calculated in terms of hadron and in terms of
quark gluon degrees of freedom, respectively. After match-
ing the results of both representations the desired sum rules
for the physical quantities are obtained.
The hadronic representation of the correlation function is

obtained by inserting a complete set of baryon states
carrying the same quantum numbers as the interpolating
current JΞ− in Eq. (3) and isolating the pole term of the Ξ−

baryon we get

ΠHad
μ ðp;p0Þ ¼ h0jJΞjΞðp0; s0ÞihΞðp0; s0ÞjJμjΞbðp;sÞi

m2
Ξ −p02 þ� � � :

ð5Þ

The first matrix element appearing in Eq. (5) is determined
in standard way and given as

h0jJΞjΞðp0; s0Þi ¼ λuðp0; s0Þ; ð6Þ

where λ and uðp0; s0Þ represent the residue and spinor of the
Ξ− baryon, respectively. The transition matrix element,
hΞðp0; s0ÞjJμjΞbðp; sÞi, is parametrized by the set of form
factors in the following way:

hΞðp0; s0Þjs̄iσμνqνð1þ γ5ÞbjΞbðp; sÞi

¼ ūðp0; s0Þ
�

fT1
mΞb

�
γμq2 −=qqμ

�þ ifT2σμνq
ν

þ gT1
mΞb

�
γμq2 − =qqμ

�
γ5 þ igT2σμνq

νγ5

�
uΞb

ðp; sÞ; ð7Þ

where mΞb
is the mass of the heavy Ξb baryon.

In the considered problem the photon is real. Con-
sequently, only two form factors, fT2 and gT2 , at q

2 ¼ 0

point contribute to the Ξ−
b → Ξγ decay. Therefore, in the

next calculations, we concentrate on the computations of
only the fT2 ð0Þ and gT2 ð0Þ form factors.
Substituting Eqs. (6) and (7) in the Eq. (5) and using the

completeness relation
P

uðp0; s0Þūðp0; s0Þ ¼ =pþmΞ the
correlation function for the hadronic side becomes

ΠHad
μ ðp; p0Þ ¼ λ

m2
Ξ − p02

n
fT2

	
−ðmΞb

þmΞÞqμ − 2mΞb
=qvμ

þ �
m2

Ξb
−m2

Ξ
�
γμ þ ðmΞb

þmΞÞ=qγμ þ =qqμ



þ gT2
	ðmΞb

−mΞÞqμ − 2mΞb
=qvμ

þ �
m2

Ξb
−m2

Ξ
�
γμ − ðmΞb

−mΞÞ=qγμ
þ =qqμ



γ5
o
uΞb

ðp; sÞ þ � � � ; ð8Þ

in which vμ is defined as vμ ¼ pμ

mΞb
.

The calculation of the correlation function for the QCD
side proceeds as follows. Using the interpolating current
for Ξ− baryon and the weak transition explicitly and after
contracting the s-quark fields via Wick theorem, we obtain
the correlation function as

ΠQCD
μ ðp; p0Þ ¼ i2ϵabc

Z
d4xeip

0·x
X2
1

ðAiÞαβðBiÞργ

×
�
iσμνqνð1þ γ5Þ

�
σζ

�
SγσðxÞh0jsaαðxÞdbβðxÞ

× bcζð0ÞjΞbðp; sÞi þ SασðxÞh0jsaγ ðxÞdbβðxÞ
× bcζð0ÞjΞbðp; sÞi

�
; ð9Þ

where SασðxÞ is the s-quark propagator, A1 ¼ C, A2 ¼ Cγ5,
B1 ¼ γ5 and B2 ¼ β. The matrix element in Eq. (9),
h0jsaαðxÞdbβðxÞbcζð0ÞjΞbðp; sÞi, is expressed in terms of
the light-cone distribution amplitudes (DA’s) of Ξ−

b baryon
that have been studied in Ref. [9]. Here we would like to
note that the light-cone distribution amplitudes are obtained
within the heavy quark effective theory. The relation
between the heavy baryon state and the heavy baryon state
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in the heavy quark effective theory is given by
jΞbðpÞi ¼ ffiffiffiffiffiffiffiffimΞb

p jΞbðvÞi. After these remarks, in Eq. (9)
we make the replacement, jΞbðpÞi → jΞbðvÞi, hence
appears the following matrix element

ϵabch0jsaαðxÞdbβðxÞbcζð0ÞjΞbðvÞi: ð10Þ

This matrix element can be written in terms of Ξb baryon
DA’s [9] as

ϵabch0jsaαðt1nÞdbβðt2nÞhcζð0ÞjΞbðvÞi ¼
X4
j¼1

ajðΓjÞαβuζðvÞ;

ð11Þ

where the light cone vectors n and n̄ and as well as ti are
defined as

nα ¼
1

vx
xα;

n̄α ¼ 2vα −
1

vx
xα;

ti ¼ vxi; ð12Þ

and hð0Þ is the heavy quark effective field coming from the
replacement of heavy quark field bð0Þ → hð0Þ. Here

a1 ¼
1

8
fð2Þψ2ðt1; t2Þ Γ1 ¼ =̄nγ5C;

a2 ¼ −
1

8
fð1Þψ3σðt1; t2Þ Γ2 ¼ iσξφn̄ξnφγ5C;

a3 ¼
1

4
fð1Þψ3sðt1; t2Þ Γ3 ¼ γ5C;

a4 ¼
1

8
fð2Þψ4ðt1; t2Þ Γ4 ¼ =nγ5C; ð13Þ

and ψ2, ψ3σðψ3sÞ, and ψ4 are the DA’s with twist 2, 3,
and 4, respectively and t1 ¼ t2 ¼ vx. The DA’s ψðt1; t2Þ are
defined as

ψðt1; t2Þ ¼
Z

∞

0

dww
Z

1

0

due−iwðt1uþt2ūÞψðu; wÞ; ð14Þ

with ū ¼ 1 − u and w being the total momentum of the
light quarks.
Choosing the coefficients of the structures=qvμ and=qγ5vμ

for the QCD part of the correlation function we have

ΠQCD
μ ðp; p0Þ ¼

Z
du

Z
dw

��
1

Δ

h
3ð1þ βÞfð1Þψ̂3σðu; wÞ þ ðβ − 1Þfð2Þmswψ2ðu; wÞ

þ ð1þ 5βÞfð1ÞðmΞb
− wÞwψ3sðu; wÞ

i
þ 1

Δ2
ðmΞb

− wÞ
h
ðβ − 1Þfð2Þms

�
ψ̂2ðu; wÞ − ψ̂4ðu; wÞ

�

þ 2ð1þ βÞfð1Þψ̂3σðu; wÞq:v
i�
ð=qγ5vμ þ =qvμÞ þ � � �

�
; ð15Þ

where � � � represent the contributions coming from other
structures, the function ψ̂ðu; wÞ is defined as

ψ̂ðu; wÞ ¼
Z

w

0

dττψðu; τÞ; ð16Þ

and

Δ ¼ −m2
s −mΞb

wþ w2 þ p02


1 −

w
mΞb

�
: ð17Þ

Matching the coefficients of the structures written in the
above equation explicitly, =qvμ and =qγ5vμ, obtained in both
hadronic and QCD sides, and performing the Borel trans-
formation with respect to the variable p02, we attain the
following desired sum rules for the form factors fT2 ð0Þ
and gT2 ð0Þ:

−2fT2 ð0ÞmΞb
λe−

m2
Ξ

M2 ¼ ΠB
1 ;

−2gT2 ð0ÞmΞb
λe−

m2
Ξ

M2 ¼ ΠB
2 ; ð18Þ

where ΠB
1 and ΠB

2 represent the Borel transformed results
obtained from the QCD side for the structures =qvμ and
=qγ5vμ, respectively. From Eq. (15) it follows that ΠB

1 ¼ ΠB
2 ,

hence fT2 ð0Þ ¼ gT2 ð0Þ which is consistent with the endpoint
relations discussed in Ref. [10]. To obtain the results after
Borel-transformation and continuum subtraction, we apply
the master formula given as
Z

∞

0

dw
ρðu; wÞ
Δk ¼ ð−1Þk

Z
w0

0

dwe−
s

M2

×
ρðu; wÞ

ðk − 1Þ!
�
1 − w

mΞb

�
kðM2Þk−1

−

2
4ð−1Þk−1
ðk − 1Þ! e

− s
M2

Xk−1
j¼1

1

ðM2Þk−j−1
1

s0

×



d
dw

1

s0

�
j−1 ρðu; wÞ�

1 − w
mΞb

�
k

3
5
w¼w0

; ð19Þ
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where s ¼ m2
s

ð1− w
mΞb

Þ þ wmΞb
, and w0 is the solution of the

equation s ¼ s0, where s0 is the continuum threshold.
Using the matrix element given in the Eq. (7) the decay

width of the rare Ξ−
b → Ξ−γ radiative decay is

Γ ¼ G2
Fαem
64π4

jVtbV�
tsj2m2

bjCð0Þeff
7γ ðmbÞj2



m2

Ξb
−m2

Ξ

mΞb

�
3

×

�

1þ ms

mb

�
2

jfT2 ð0Þj2 þ


1−

ms

mb

�
2

jgT2 ð0Þj2
�
; ð20Þ

where Cð0Þeff
7γ ðmbÞ ¼ −0.310 [3,11], GF ¼ ð1.166 ×

10−5Þ GeV−2 and the fine structure constant is αem ≡
e2
4π ¼ 1

137
.

III. NUMERICAL ANALYSES

In the previous section, the sum rules for the form factors
fT2 and gT2 at q2 ¼ 0 point are derived. In the present
section, we perform the numerical analyses of sum rules for
the form factors. Moreover, using the obtained results for
fT2 ð0Þ and gT2 ð0Þ we estimate the corresponding branch-
ing ratio.
The main input parameters for the LCSR are the

distribution amplitudes (DA’s), which are the DA’s of Ξb
baryon in our case. These DA’s were obtained in Ref. [9],
and their expressions are

ψ2ðu; wÞ ¼ w2ūu
X2
n¼0

an
ε4n

C3=2
n ð2u − 1Þ
jC3=2

n j2
e−w=εn ;

ψ4ðu; wÞ ¼
X2
n¼0

an
ε2n

C1=2
n ð2u − 1Þ
jC1=2

n j2
e−w=εn ;

ψ ðσ;sÞ
3 ðu; wÞ ¼ w

2

X2
n¼0

an
ε3n

C1=2
n ð2u − 1Þ
jC1=2

n j2
e−w=εn ; ð21Þ

for which the values of the parameters a0, a1, a2, and ε0, ε1,
ε2 are given in Ref. [12] with A ¼ 1

2
, Cλ

nð2u − 1Þ is the
Gegenbauer polynomial, and

jCλ
nj2 ¼

Z
1

0

du
	
Cλ
nð2u − 1Þ
2: ð22Þ

The values of the other input parameters are as follows:
For the residue λ, we have used the result of Ref. [13]
obtained for λ̃2 with λ̃ ¼ ð2πÞ2λ. In our analysis to get
numerical values for λ we have used the numerical values
of the condensates given in Ref. [13] and the thresh-
old and Borel parameters are varied in the ranges
2.5GeV2≤ s00≤2.8GeV2 and 1.0GeV2≤M02≤1.5GeV2,
respectively. The parameters fð1Þ and fð2Þ are taken as
fð1Þ ¼ fð2Þ ¼ ð2.23� 0.35Þ × 10−2 GeV3 [14]. The input

parameters taken from PDG [15] are jVtbj ¼ 1.014�
0.029, jVtsj¼ ð41.5�0.9Þ×10−3, mb¼4.78�0.06GeV,
ms ¼ 93.4þ8.6

−3.4 MeV, mΞ−
b
¼ ð5797.0� 0.6Þ MeV, mΞ− ¼

ð1321.71� 0.07Þ MeV, τΞ−
b
¼ ð1.572� 0.040Þ × 10−12 s.

The sum rules also contain following auxiliary param-
eters: Borel parameter, M2, threshold parameter s0, and the
parameter β entering to the interpolating current. The
continuum threshold s0 is determined from the analyses
of two-point QCD sum rules, namely its value is obtained
from the condition that the mass sum rule reproduces the
experimentally measured values within 10% accuracy.
This analysis leads to the result 2.5 GeV2 ≤ s0 ≤
2.8 GeV2. The working region of the M2 is determined
by demanding that the power corrections and the con-
tinuum contributions be suppressed compared to the lead-
ing twist-2 contribution. Taking these conditions into
account, we obtain the following domain for this parameter:
1.7 GeV2 ≤ M2 ≤ 2.5 GeV2.
Using the DA’s for Ξb baryon given in Eq. (21), in Fig. 1

the dependence of the form factor, fT2 ð0Þ, at zero momen-
tum transfer squared on M2 at fixed values of s0 and
β ¼ −1, is presented. We see that the form factor, fT2 ð0Þ,
exhibits good stability when M2 varies in the working
region, as can be seen. In order to find the working region
of β, in Fig. 2 we present the dependence of fT2 ð0Þ on cos θ,
where tan θ ¼ β, at fixed values of M2 and s0 from their
working regions. From this figure we observe that, when
cos θ varies in the region −0.8 ≤ cos θ ≤ 0.5, the form
factor fT2 ð0Þ exhibits good stability on the variation of
cos θ. Besides in this region the required criteria for Borel
parameter, M2, and threshold parameter s0 including the
convergence of the OPE, are satisfied.
To analyze the stability of our predictions on all of the

determined parameter space, the parameters, s0, s00, M
2,

M02, and cos θ, are randomly selected inside the chosen
region. The histogram of 5000 such computations are
shown in Fig. 3. From these data, the mean and the

FIG. 1. Variation of the form factor fT2 ð0Þ as function of M2 at
different values of threshold parameter s0 and β ¼ −1.
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standard deviation of our predictions on the form factors are

��fT2 ð0Þ�� ¼��gT2 ð0Þ�� ¼ 0.31� 0.04: ð23Þ

Note that from the two-point sum rules results of Ref. [13],
the sign of λ cannot be predicted. Hence we only show the
absolute values of the form factors at q2 ¼ 0. Note also that
the relative size of standard deviation is a measure of the
stability of our predictions within the chosen region in
the parameter space.
After the determination of the form factors, fT2 ð0Þ and

gT2 ð0Þ, we can determine the decay width applying Eq. (20).

Using the lifetime for Ξ−
b baryon, τΞ−

b
¼ ð1.572� 0.040Þ×

10−12 s, we get the branching ratio as

BR
�
Ξ−
b → Ξ−γ

� ¼ ð4.8� 1.3Þ × 10−5: ð24Þ

At the end of this section we compare our result on
branching ratio of Ξ−

b → Ξ−γ with the existing results
in literature and with the experimental upper bound,
BRðΞ−

b → Ξ−γÞ < 1.3 × 10−4 [1]. The results are pre-
sented in the Table I. From the table, it follows that the
result of Ref. [5] exceeds the predictions of all other works
by one order and even exceeds the experimental upper
limit. Our result has consistent order of magnitude with
the results of all the works, except that of Ref. [5]. The
measurement of the branching ratio of Ξ−

b → Ξ−γ decay
may be useful for distinguishing the right picture.

IV. SUMMARY AND CONCLUSION

By using the heavy Ξb baryon distribution amplitudes
the rare radiative Ξ−

b → Ξ−γ decay is studied within the
light cone QCD sum rules. The sum rules for the relevant
form factors are derived and their numerical values are
determined at q2 ¼ 0 point. Using the results of the form
factors the branching ratio is estimated. Moreover, we
perform a comparison between our finding and the results
of other works in the literature on the branching ratio of
Ξ−
b → Ξ−γ decay. We obtained that the branching ratio,

BRðΞ−
b → Ξ−γÞ ¼ ð4.8� 1.3Þ × 10−5, has consistent order

of magnitude with results given in Refs. [2–4,6] and below
the experimental upper limit [1]. Besides, it is smaller than
the result given in Ref. [5]. Our final remark to this work
is that the results presented here can be improved by taking
into account OðαsÞ corrections to the distribution ampli-
tudes, as well as improving the values of parameters
appearing in them.

FIG. 2. Variation of the form factor jfT2 ð0Þj as function of cos θ
at fixed values of threshold parameter s0 and Borel parameterM2

in their working regions.

FIG. 3. The histogram of the form factor fT2 ð0Þ obtained using
arbitrary values of the auxiliary parameters, s0, s00, M

2, M02, and
cos θ from their working intervals.

TABLE I. The branching ratio, (BR), for Ξ−
b → Ξ−γ obtained in

different frameworks and the experimental upper bound.

References The branching ratio values

This work ð4.8� 1.3Þ × 10−5

Experiment [1] < 1.3 × 10−4

Light front quark model [2] ð1.1� 0.1Þ × 10−5

Relativistic quark model [3] ð0.95� 0.15Þ × 10−5

Light cone QCD sum rules [4] ð1.08þ0.63
−0.49 Þ × 10−5

Light cone sum rules [5] ð3.03� 0.1Þ × 10−4

SU(3) flavor symmetry [6] ð1.23� 0.64Þ × 10−5
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