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Tccðccūd̄Þþ has been reported by the LHCb experiment in 2022. The analysis using the Breit-Wigner
parametrization found the small binding energy, 0.273 MeV, which is measured from the threshold of
D�þD0. In this paper, we consider Tcc as a DD� hadronic molecule as a deuteronlike state. The one-boson
exchange model is employed as for the heavy meson interactions, where we determine the cutoff parameter
Λ to reproduce the reported binding energy of Tcc with IðJPÞ ¼ 0ð1þÞ. We discuss the properties of the
bound state and also search for Tcc with quantum numbers other than 0ð1þÞ. Furthermore, we analyze Tbb

as a bottom counterpart of Tcc, which involves two bottom quarks, and obtain several bound states. Finally,
we consider the light-cloud basis for wave functions of the doubly heavy tetraquarks in the heavy quark
limit. Using the basis, we find the spin multiplets of their bound states, indicating the spin structures of
diquarks in Tcc and Tbb with the finite quark masses.

DOI: 10.1103/PhysRevD.109.054016

I. INTRODUCTION

Most hadrons can be classified into baryons consisting of
three quarks qqq and mesons consisting of a quark and an
antiquark qq̄. However, hadrons with more than three
quarks are not prohibited in quantum chromodynamics
(QCD), which was already indicated by Gell-Mann and
Zweig [1–3]. Hadrons like these states which cannot be
explained by ordinary hadrons qq̄ and qqq are called exotic
hadrons. In the heavy quark sector, various exotic hadrons
such as X, Y, Z, and Pc have been reported since the report
on Xð3872Þ in 2003 [4–10]. The structures and interactions
of these states are not well understood, and these studies are
important subjects of current research in hadron physics.
In 2022, Tccðccūd̄Þþ has been reported by the LHCb

experiment. The Breit-Wigner mass relative to the D�þD0

mass threshold δmBW is

δmBW ¼ −273� 61� 5þ11
−14 keV=c2;

while the pole mass relative to the D�þD0 mass threshold
δmpole is

δmpole ¼ −360� 40þ4
−0 keV=c2;

respectively [9,11]. The charm number is 2 and the baryon
number is 0; thus, this state is considered as a genuine
exotic state. The isospin, spin, and parity are considered as
IðJPÞ ¼ 0ð1þÞ. Tcc has widely been studied before the
report on Tccðccūd̄Þþ by the LHCb experiment. In the
1980s, there were theoretical studies by using the non-
relativistic quark model [12–14]. Many theoretical studies
also have been conducted by using many models such as
the hadronic molecule [15–22], various quark models
[23–25], heavy quark symmetry [26,27], the string model
[28], QCD sum rules [29–33], lattice QCD [34–36], and so
on as summarized in recent reviews [10].
The small binding energy of Tcc from theDD� threshold

motivates us to study the DD� molecular structure. When
considering a hadronic molecule with heavy quarks, we
respect the heavy quark spin symmetry (HQS) [37–39].
The HQS leads to mass degeneracy of the heavy pseudo-
scalar and vector mesons because of suppression of the
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chromomagnetic interaction in the heavy quark limit. In
fact, the mass difference of D and D� is approximately
140 MeV, which is smaller than those in the light quark
sectors, e.g.,mρ−mπ∼630MeV andmK�−mK∼390MeV.
Thus, D and D� are considered as the HQS doublet. B and
B� are considered in the same way, because the mass
difference of B and B� is approximately 45 MeV. Thus, in a
hadronic molecular system of two mesons, these facts lead
to channel coupling of PP, PP�, and P�P� (P ¼ D, B
and P� ¼ D�; B�).
The HQS multiplets can be also seen in a hadronic

molecule by using the light-cloud basis (LCB)
[40–42]. The light-cloud basis can be obtained by a unitary
transformation of the hadronic-molecule basis (HMB),
where the spin wave function of the hadronic molecule is
decomposed into spins of heavy quarks and the light
cloud. Thus, we can see the spin structures of quarks in
the LCB, which are hidden in the HMB, and the states can
be classified by the quark spin structures. The HQS
multiplet of the hadronic molecule with a single heavy
quark has been discussed in Ref. [40]. In Ref. [42], the
author has classified the hidden-charm pentaquark Pc
by using the LCB. Interestingly, the HQS multiplets
indicate the existence of partners. Since states with the
same spin structures of diquarks belong to the same HQS
multiplets, the existence of one state indicates that of
partners.
In this paper, we study the doubly heavy tetraquarks Tcc

and the bottom counterpart Tbb as a hadronic molecule of
two mesons. In Ref. [16], the author has studied the doubly
heavy tetraquarks with several quantum numbers as the
hadronic molecules of Dð�ÞDð�Þ and Bð�ÞBð�Þ before the
LHCb observation. This study has used the one-pion
exchange potential (OPEP) and the one-boson exchange
potential (OBEP), with the addition of ρ and ω. We follow
the study in Ref. [16], and, in addition, we also consider the
one-σ meson exchange in the OBEP to construct a more
realistic interaction. We determine the cutoff parameter Λ
for the OBEP to reproduce the empirical binding energy of
Tcc with IðJPÞ ¼ 0ð1þÞ. We also study the properties of the
obtained bound state. Tcc with quantum numbers other than
0ð1þÞ is also investigated. Using the same potentials, we
discuss the existence ofTbb as theBð�ÞBð�Þ molecule. Finally,
we apply the LCB to the doubly heavy tetraquarks in the
heavy quark limit, where the bound states are classified by
their spin structures of heavy diquark and light antidiquark.
The obtained HQSmultiplet structure indicates the existence
of partner states of the tetraquark bound states.
This paper is organized as follows. In Sec. II, we

introduce the formalisms of the OPEP and the OBEP. In
Sec. III, we show our numerical results for the bound states
of Tcc and Tbb with given IðJPÞ and discuss the spin
structures of the bound states obtained by our analyses. In
Sec. IV, we summarize our results and discussions.

II. FORMALISM

A. Lagrangian

In the heavy quark limit (HQL), the heavy pseudoscalar
and heavy vector mesons which include the heavy quarks
are degenerate due to HQS. Therefore, we define the heavy
meson field Ha written as the direct sum of the heavy
pseudoscalar meson field Pa and the heavy vector meson
field P�

aμ as follows [37–39]:

Ha ¼
1þ v
2

½P�
aμγ

μ − Paγ5�; ð1Þ

H̄a ¼ γ0H
†
aγ0 ¼ ½P�†

aμγμ þ P†
aγ5�

1þ v
2

: ð2Þ

H̄a is the complex conjugate of Ha. Here, vμ is the four-
velocity of the heavy quark which satisfies v2 ¼ 1, v0 > 0
and ð1þ vÞ=2 is the projective operator which projects out
the positive-energy component in the heavy quark. Also,
the heavy meson field Ha is transformed as Ha →
DðΛÞHaD−1ðΛÞ under the Lorentz transformation and
Ha → SQHaU

†
q under the spin transformation for the heavy

quark and the chiral transformation for a light quark. Here,
DðΛÞ is the Lorentz transformation matrix, SQ is the spin
transformation matrix, and Uq is the chiral transformation
matrix. We construct the interaction effective Lagrangian
for a pseudoscalar meson [39]:

Lπ ¼ igTr½Hbγμγ5A
μ
baH̄a�: ð3Þ

Here, Aμ is the axial-vector current which is defined by

Aμ ¼
1

2
½ξ†ð∂μξÞ − ξð∂μξ†Þ�; ð4Þ

where ξ is the nonlinear representation written as

ξ ¼ exp

�
τ⃗ · π⃗
2fπ

�
ð5Þ

with the pion decay constant fπ ≃ 93 MeV. The pion field
π̂ is defined by

π̂ ¼ 1ffiffiffi
2

p
�

π0
ffiffiffi
2

p
πþffiffiffi

2
p

π− −π0

�
¼ 1ffiffiffi

2
p π⃗ · τ⃗; ð6Þ

where τ⃗ is the Pauli matrices. We obtain the interaction
effective Lagrangians for the πPð�ÞPð�Þ vertices by expand-
ing Eq. (3) [16]:

LπPP� ¼ −
g
fπ

ðP�†μ
a Pb þ P†

aP
�μ
b Þ∂μðπ⃗ · τ⃗Þba; ð7Þ
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LπP�P� ¼ i
g
fπ

ϵμναβvμP
�†
aνP�

bα∂βðπ⃗ · τ⃗Þba: ð8Þ

However, LπPP ¼ 0 due to the parity conservation.
We can also obtain the interaction effective Lagrangians

for vector mesons v and a σ meson [39,43]:

Lv ¼ −iβTr½HbvμρμH̄a� þ iλTr½Hbσ
μνFμνðρÞbaH̄a�; ð9Þ

Lσ ¼ gsTr½HσH̄�; ð10Þ

where

FμνðρÞ ¼ ∂μρν − ∂νρμ þ ½ρμ; ρν�; ð11Þ

gV ¼ mρffiffiffi
2

p
fπ

; ρμ ¼
igVffiffiffi
2

p ρ̂μ: ð12Þ

The vector meson fields ρ̂μ are defined by

ρ̂μ ¼
1ffiffiffi
2

p
�
ρ0 þ ω

ffiffiffi
2

p
ρþffiffiffi

2
p

ρ− −ρ0 þ ω

�
μ

¼ 1ffiffiffi
2

p ðτ⃗ · ρ⃗μ þ ωμ1Þ: ð13Þ

We calculate the Lagrangian for vPð�ÞPð�Þ and σPð�ÞPð�Þ
vertices [16]:

Lv ¼ LvPP þ LvPP� þ LvP�P� ; ð14Þ

Lσ ¼ LσPP þ LσP�P� ; ð15Þ

where

LvPP ¼
ffiffiffi
2

p
βgVPbPa

†v · ðρ̂Þba; ð16Þ

LvPP� ¼ −2
ffiffiffi
2

p
gVλϵμναβvμðP�†

νaPb þ P†
aP�

νbÞ∂αðρ̂βÞba; ð17Þ

LvP�P� ¼
ffiffiffi
2

p
βgVP�

bP
�†
a · ðρ̂Þba

þ i2
ffiffiffi
2

p
λgVP

�μ†
a P�ν

b ð∂μðρ̂νÞba − ∂νðρ̂μÞbaÞ; ð18Þ

LσPP ¼ −2gsP†Pσ; ð19Þ

LσP�P� ¼ 2gsP
�†
μ P�μσ: ð20Þ

B. Hamiltonian

The OBEP is obtained by using these Lagrangians [16].

(i) π:

Vπ
PP�−P�P ¼ 1

3

�
g

2fπ

�
2

½−ε⃗� · ε⃗Dðr;mπÞ

þ ε⃗� · ε⃗Cðr;mπÞ þ Sε�εTðr;mπÞ�τ⃗1 · τ⃗2;
ð21Þ

Vπ
PP�−P�P� ¼ −

1

3

�
g

2fπ

�
2

½−ε⃗� · T⃗Dðr;mπÞ

þ ε⃗� · T⃗Cðr;mπÞ þ Sε�TTðr;mπÞ�τ⃗1 · τ⃗2;
ð22Þ

Vπ
PP−P�P� ¼ 1

3

�
g

2fπ

�
2

½−ε⃗� · ε⃗�Dðr;mπÞ

þ ε⃗� · ε⃗�Cðr;mπÞ þ Sε�ε�Tðr;mπÞ�τ⃗1 · τ⃗2;
ð23Þ

Vπ
P�P�−P�P� ¼ 1

3

�
g

2fπ

�
2

½−T⃗ · T⃗Dðr;mπÞ

þ T⃗ · T⃗Cðr;mπÞ þ STTTðr;mπÞ�τ⃗1 · τ⃗2;
ð24Þ

(ii) vector mesons (ρ, ω):

Vv
PP−PP ¼

�
βgV
2mv

�
2

Cðr;mvÞτ⃗1 · τ⃗2; ð25Þ

Vv
PP�−PP� ¼

�
βgV
2mv

�
2

Cðr;mvÞτ⃗1 · τ⃗2; ð26Þ

Vv
PP�−P�P ¼ 1

3
ðλgVÞ2½−2ε⃗� · ε⃗Dðr;mvÞ

þ 2ε⃗� · ε⃗Cðr;mvÞ− Sε�εTðr;mvÞ�τ⃗1 · τ⃗2;
ð27Þ

Vv
PP�−P�P� ¼−

1

3
ðλgVÞ2½−2ε⃗� · T⃗Dðr;mvÞ

þ2ε⃗� · T⃗Cðr;mvÞ−SεTTðr;mvÞ�τ⃗1 · τ⃗2;
ð28Þ

Vv
PP−P�P� ¼ 1

3
ðλgVÞ2½−2ε⃗� · ε⃗�Dðr;mvÞ

þ2ε⃗� · ε⃗�Cðr;mvÞ−Sε�ε�Tðr;mvÞ�τ⃗1 · τ⃗2;
ð29Þ
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Vv
P�P�−P�P� ¼

�
βgV
2mv

�
2

Cðr;mvÞτ⃗1 · τ⃗2

þ 1

3
ðλgVÞ2½−2T⃗ · T⃗Dðr;mvÞ

þ 2T⃗ · T⃗Cðr;mvÞ− STTTðr;mvÞ�τ⃗1 · τ⃗2;
ð30Þ

(iii) σ:

Vσ
PP−PP ¼ −

�
gs
mσ

�
2

Cðr;mσÞ; ð31Þ

Vσ
PP�−PP� ¼ −

�
gs
mσ

�
2

Cðr;mσÞ; ð32Þ

Vσ
P�P�−P�P� ¼ −

�
gs
mσ

�
2

Cðr;mσÞ; ð33Þ

where we adopt a static approximation, which means that
energy transfers are neglected. The potentials considering
an energy transfer have been done in Ref. [22]. In the
following, we ignore the DðrÞ term, which implies the
delta function, because we focus on the long-range and
middle-range parts of the meson exchange forces. εμ is the
polarization vector, and T⃗ is the spin-one operator, which
are defined by

εð0Þμ ¼ ð0; 0; 0; 1Þ; ð34Þ

εð�Þμ ¼ 1ffiffiffi
2

p ð0; 1;�i; 0Þ; ð35Þ

T⃗ ¼ −iε⃗� × ε⃗; ð36Þ

respectively. S12ðq̂Þ ¼ SO1O2
ðq̂Þ is the tensor operator

defined by

S12ðq̂Þ ¼ SO1O2
ðq̂Þ ¼ 3ðO⃗1 · q̂ÞðO⃗2 · q̂Þ − O⃗1 · O⃗2; ð37Þ

where q̂ ¼ q⃗=jq⃗j. Cðr;mÞ and Tðr;mÞ are the central and
the tensor potentials, respectively, which are defined by

Cðr;mÞ ¼
Z

d3q
ð2πÞ3

m2

q⃗2 þm2
eiq⃗·r⃗Fðq⃗;mÞ2; ð38Þ

S12ðrÞTðr;mÞ ¼
Z

d3q
ð2πÞ3 S12ðq̂Þ

−q⃗2

q⃗2 þm2
eiq⃗·r⃗Fðq⃗;mÞ2;

ð39Þ

respectively. Here, we use

Fðq⃗;mÞ ¼ Λ2 −m2

Λ2 þ q⃗2
ð40Þ

as the form factor Fðq⃗;mÞ in order to consider a hadron
size, where Λ is a cutoff parameter. Inserting this form
factor into Eqs. (38) and (39), we obtain the central and the
tensor functions:

Cðr;mÞ ¼ m2

4π

�
e−mr

r
−
e−Λr

r
−
Λ2 −m2

2Λ
e−Λr

�
; ð41Þ

Tðr;mÞ ¼ 1

4π
ð3þ 3mrþm2r2Þ e

−mr

r3

−
1

4π
ð3þ 3Λrþ Λ2r2Þ e

−Λr

r3

þ 1

4π

m2 − Λ2

2
ð1þ ΛrÞ e

−Λr

r
: ð42Þ

We solve the Schrödinger equation in order to obtain the
binding energy, wave functions, and mixing ratios. Then,
let us show the Hamiltonian below:

HIðJPÞ ¼ KIðJPÞ þ
X

boson¼π;ρ;ω;σ

VHM
boson;IðJPÞ; ð43Þ

where KIðJPÞ is the kinetic energy and VHM
boson;IðJPÞ is the

OBEP in HMB.

III. NUMERICAL RESULTS

In this section, we show the numerical results. First, we
discuss the doubly charmed tetraquark Tcc. The cutoff
parameter Λ is determined to reproduce the empirical
binding energy of Tcc with 0ð1þÞ. We study the properties
of the 0ð1þÞ state and also the possible existence of the
bound states of Tcc with other quantum numbers. Second,
we discuss the doubly bottom tetraquark Tbb with given
IðJPÞ. Finally, we consider TQQ in the HQL in order to see
the HQS multiplets of the doubly heavy tetraquark. In
Table I, we show the masses of mesons and the parameters
used in this research. Here, the value of the coupling
constant of a σ meson gs is uncertainly. In this work, we use

TABLE I. The masses of mesons and the parameters [44–47].

Masses Parameters

mπ 138 MeV g 0.59
mρ 770 MeV gV

mρffiffi
2

p
fπ

mω 782 MeV β 0.9
mσ 500 MeV λ 0.56 GeV−1

mD 1868 MeV gs 3.4
mD� 2009 MeV
mB 5279 MeV
mB� 5325 MeV
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gs ¼ 3.4, which is determined to be one-third of the
coupling constant of a nucleon and a σ meson [44]. We
also vary the value of gs and discuss the gs dependence of
results.

A. Doubly charmed tetraquark Tcc

1. IðJPÞ = 0ð1+ Þ
As mentioned above, the pseudoscalar and vector mes-

ons are degenerate in the HQL. Here, we consider the heavy
pseudoscalar meson D and the heavy vector meson D�,
both of which include a charm quark. The mass difference
between D and D� is approximately 140 MeV. Then,
we consider D and D� as the HQS doublet. Thus, the
threshold energies of DD, DD�, and D�D� channels are

approximately degenerate. We consider these channels
coupled by the one-boson exchange interactions. Let us
show the possible channels for the IðJPÞ ¼ 0ð1þÞ state
ψHM
0ð1þÞ:

ψHM
0ð1þÞ ¼

0
BBB@

j½PP��−ð3S1Þi
j½PP��−ð3D1Þi
jP�P�ð3S1Þi
jP�P�ð3D1Þi

1
CCCA; ð44Þ

where we use the notations ½PP��� ¼ 1ffiffi
2

p ðPP� � P�PÞ.
Also, we calculate the kinetic energyK0ð1þÞ and potential

energies VHM
boson;0ð1þÞ:

K0ð1þÞ ¼ diag

�
−

1

2μPP�
△0;−

1

2μPP�
△2;−

1

2μP�P�
△0 þ ΔmPP� ;−

1

2μP�P�
△2 þ ΔmPP�

�
; ð45Þ

VHM
π;0ð1þÞ ¼

0
BBB@

−Cπ

ffiffiffi
2

p
Tπ 2Cπ

ffiffiffi
2

p
Tπffiffiffi

2
p

Tπ −Cπ − Tπ

ffiffiffi
2

p
Tπ 2Cπ − Tπ

2Cπ

ffiffiffi
2

p
Tπ −Cπ

ffiffiffi
2

p
Tπffiffiffi

2
p

Tπ 2Cπ − Tπ

ffiffiffi
2

p
Tπ −Cπ − Tπ

1
CCCA; ð46Þ

VHM
v;0ð1þÞ ¼

0
BBB@

C0
v − 2Cv −

ffiffiffi
2

p
Tv 4Cv −

ffiffiffi
2

p
Tv

−
ffiffiffi
2

p
Tv C0

v − 2Cv þ Tv −
ffiffiffi
2

p
Tv 4Cv þ Tv

4Cv −
ffiffiffi
2

p
Tv C0

v − 2Cv −
ffiffiffi
2

p
Tv

−
ffiffiffi
2

p
Tv 4Cv þ Tv −

ffiffiffi
2

p
Tv C0

v − 2Cv þ Tv

1
CCCA; ð47Þ

VHM
σ;0ð1þÞ ¼

0
BBB@

Cσ 0 0 0

0 Cσ 0 0

0 0 Cσ 0

0 0 0 Cσ

1
CCCA; ð48Þ

where

μPð�ÞPð�Þ ¼ mPð�ÞmPð�Þ

mPð�Þ þmPð�Þ
; ð49Þ

△l ¼
d2

dr2
−
lðlþ 1Þ

r2
; ð50Þ

ΔmPP� ¼ mP� −mP; ð51Þ

Cπ ¼
1

3

�
g

2fπ

�
2

Cðr;mπÞτ⃗1 · τ⃗2; ð52Þ

Tπ ¼
1

3

�
g

2fπ

�
2

Tðr;mπÞτ⃗1 · τ⃗2; ð53Þ

C0
v ¼

�
βgV
2mv

�
2

Cðr;mvÞτ⃗1 · τ⃗2; ð54Þ

Cv ¼
1

3
ðλgVÞ2Cðr;mvÞτ⃗1 · τ⃗2; ð55Þ

Tv ¼
1

3
ðλgVÞ2Tðr;mvÞτ⃗1 · τ⃗2; ð56Þ

Cσ ¼ −
�
gs
mσ

�
2

Cðr;mσÞ: ð57Þ

For an omega meson, we remove τ⃗1 · τ⃗2, because the
isospin of an omega meson is 0.
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First, we consider only the one-π exchange force in the
Dð�ÞDð�Þ molecule. In this case, no bound state of Tcc with
0ð1þÞ exists for reasonable Λ. However, considering the
OBEP as the interaction of a hadronic molecule, we obtain
the bound state of Tcc with 0ð1þÞ as shown in Fig. 1. The
binding energy of Tcc reported by LHCb, 0.273 MeV [9], is
obtained for Λ ¼ 1069.8 MeV. The bound state properties
with Λ ¼ 1069.8 MeV, the wave functions, the mixing
ratios, and the root-mean square distance (rms), are shown
in Fig. 2 and Table II. Here, the mixing ratios f and the rms
are defined by

fðchannelÞ ¼ hχchanneljχchanneli;ffiffiffiffiffiffiffiffi
hr2i

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hχjr2jχi

q
;

where χ ¼ rRðrÞ and χchannel is the wave function of a
channel. Also, the potential expectation values of the OBEP
are shown in Fig. 3 as like matrices. Each component in
Fig. 3 shows the expectation values of corresponding
potential component in Eqs. (46)–(48). For example,
0.47 in Fig. 3(a) is the expectation value of the (1,1)
component of Vπ. Our analyses show that considering only
the OPEP cannot earn the attractive force necessary to bind
Tcc. However, we get the bound state of Tcc in the case of
OBEP. In fact, Fig. 3(d) shows that the (1,1) component of
Vσ generates the strongest attraction among all potential
expectation values, indicating that the exchange of a σ
meson is the most significant. Also, the (1,2), (2,1), (1,4),
and (4,1) components of the OPEP tensor term in Fig. 3(a)
and the (1,1), (1,3), and (3,1) components of the ρ exchange
potential in Fig. 3(b) are important to produce an attraction.
Thus, the bound states of Tcc with 0ð1þÞ are obtained in the
case of the OBEP.
Finally, we note that a similar study with the on-shell

pion exchange was done in Ref. [22]. We find that the
bound state properties obtained in Ref. [22] and in the
current study are qualitatively the same. In both studies,
the cutoff parameter of the one-boson exchange potentials
is a free parameter and able to be determined within the
reasonable range of values to reproduce the empirical
binding energy of Tcc.
Next, we vary the value of the sigma coupling gs by

�10% because of the uncertainty of gs and study gs
dependence of the binding energy for Λ ¼ 1069.8 MeV,
as shown in Fig. 4. This analysis shows that we can obtain
the bound state of Tcc for gs ≥ 3.22, and the binding energy
of Tcc for Λ ¼ 1069.8 MeV varies greatly when we vary
gs. This analysis implies the binding energy highly depends
on gs. Furthermore, we also investigate gs dependence of
the cutoff parameter Λ to reproduce the experimental
binding energy of Tcc as shown in Fig. 5. This result
shows that, even if gs is varied as 3.06 ≤ gs ≤ 3.74, we
obtain the bound state with the empirical binding energy
having the reasonable cutoff as 1001.3 MeV ≤ Λ ≤
1147.1 MeV.

2. Other quantum numbers

In this section, we study Tcc with other quantum
numbers, 0ð0−Þ, 0ð1−Þ, 1ð0þÞ, 1ð0−Þ, 1ð1þÞ, and 1ð1−Þ.

FIG. 1. The binding energy of Tcc with 0ð1þÞ for Λ ¼
1030–1200 MeV. The vertical solid line indicates Λ ¼
1069.8 MeV and the horizontal dotted line does −0.273 MeV,
which is the experimental value of the Tcc binding energy [9].

FIG. 2. The wave function of each channel for Tcc with 0ð1þÞ.
The solid, dashed, dotted, and dash-dotted lines show the
wave functions of ½DD��−ð3S1Þ, ½DD��−ð3D1Þ, D�D�ð3S1Þ, and
D�D�ð3D1Þ channels, respectively.

TABLE II. The mixing ratios of each channel and the rms for
Tcc with 0ð1þÞ where Λ ¼ 1069.8 MeV.

Mixing ratio and rms

½DD��−ð3S1Þ 99.2%
½DD��−ð3D1Þ 0.467%
D�D�ð3S1Þ 0.229%
D�D�ð3D1Þ 0.0854%
rms 6.43 fm
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The possible channels of these quantum numbers are
shown in Table III, and the potential matrices are shown
in Appendix A. Here, we consider the case where
gs ¼ 3.06, 3.4, 3.74. We solve the Schrödinger equations
for these quantum numbers, but we obtain no bound states
of Tcc with other quantum numbers, as shown in Table IV.

B. Doubly bottom tetraquark Tbb

In this section, we consider Tbb as a hadronic molecule
of B and B�, including two bottom quarks. In Sec. III A, we
consider D and D� as a HQS doublet, because the mass
difference of D and D� is smaller than those in the light
quark sectors. Similarly, we think of B and B� as a HQS
doublet, since the mass difference of B and B� is approx-
imately 45 MeV, and the BB� − B�B� channel-coupling
effect is expected to be enhanced.

1. IðJPÞ = 0ð1+ Þ
First, we discuss the Tbb with 0ð1þÞ as a hadronic

molecule whose interaction is only π exchange force. By
solving the Schrödinger equation of the Bð�ÞBð�Þ two-body
system, we obtain the bound state for Tbb with 0ð1þÞ, while
Tcc does not bind only by the OPEP with the reasonable
cutoff as discussed in the previous section. The binding
energies with various cutoff Λ are shown in Fig. 6, where
the binding energy of Tbb increases as Λ increases. The
analysis with only the OPEP indicates that it is highly likely

that the bound state of Tbb exists, because additional
attractions from the short-range forces are also expected
as discussed below.
We also consider the case where the interaction of a

hadronic molecule is the OBEP. We use the same cutoff of
Tcc, Λ ¼ 1069.8 MeV, determined in the previous section,
and calculate the binding energy of Tbb with 0ð1þÞ. As a
result, we find that the binding energy is 46.0 MeVand also
get wave functions, mixing ratios, and the rms as shown in
Fig. 7 and Table V. These results show that the channel of

FIG. 3. The expectation values of the OBEP for Tcc with 0ð1þÞ. The value is given in units of MeV.

FIG. 4. The relation of the binding energy of Tcc and gs. The
vertical solid line indicates gs ¼ 3.4 and the horizontal dotted line
does −0.273 MeV, which is the experimental value.
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B�B�ð3S1Þ is important in addition to the one of
½BB��−ð3S1Þ unlike Tcc. The importance of the
B�B�ð3S1Þ channel is also seen in the potential expectation
values in Fig. 8. The expectation values of the one-σ
exchange potential in Fig. 8(d) show that the dominant

component is given by the (1,1) component, which is the
same in the case of Tcc as shown in Fig. 3(d). In addition,
the (3,3) component in Fig. 8(d) also produces the strong
attraction, whereas the corresponding component of Tcc is
not important. The other meson exchanges also have an
important role to generate the attraction. The (1,2), (2,1),
(1,4), and (4,1) components in Fig. 8(a) are important,
which implies the tensor force of the one-pion exchange
contributes to bind Tbb just like the case of Tcc. The (1,3)

TABLE III. The possible channels for each quantum number.
We use the notation ½PP��� ¼ 1ffiffi

2
p ðPP� � P�PÞ and 2Sþ1LJ ,

where S is the total spin, L is the orbital angular momentum,
and J is the total angular momentum [16].

IðJPÞ Channels

0ð0−Þ ½PP��þð3P0Þ
0ð1þÞ ½PP��−ð3S1Þ; ½PP��−ð3D1Þ; P�P�ð3S1Þ; P�P�ð3D1Þ
0ð1−Þ PPð1P1Þ; ½PP��þð3P1Þ; P�P�ð1P1Þ; P�P�ð5P1Þ; P�P�ð5F1Þ
1ð0þÞ PPð1S0Þ; P�P�ð1S0Þ; P�P�ð5D0Þ
1ð0−Þ ½PP��−ð3P0Þ; P�P�ð3P0Þ
1ð1þÞ ½PP��þð3S1Þ; ½PP��þð3D1Þ; P�P�ð5D1Þ
1ð1−Þ ½PP��−ð3P1Þ; P�P�ð3P1Þ

TABLE IV. The binding energies (B) of Tcc with given IðJPÞ.
In the table, −B is displayed in units of MeV. The dependence of
the binding energy on Λ and gs is shown. The set of ðgs;ΛÞ is
determined to reproduce the experimental value of Tcc as shown
in Fig. 5.

gs 3.06 3.4 3.74
Λ [MeV] 1147.1 1069.8 1001.3
0ð0−Þ � � � � � � � � �
0ð1þÞ −0.273 −0.273 −0.273
0ð1−Þ � � � � � � � � �
1ð0þÞ � � � � � � � � �
1ð0−Þ � � � � � � � � �
1ð1þÞ � � � � � � � � �
1ð1−Þ � � � � � � � � �

FIG. 6. The relation between the binding energy of Tbb with
0ð1þÞ and Λ for OPEP.

FIG. 5. The relation between gs and Λ which reproduces the
experimental value of theTcc binding energy. Thevertical solid and
horizontal dotted lines indicate gs ¼ 3.4 and Λ ¼ 1069.8 MeV,
respectively.

FIG. 7. The wave function of each channel for Tbb with 0ð1þÞ.
The solid, dashed, dotted, and dash-dotted lines show the
wave functions of ½BB��−ð3S1Þ, ½BB��−ð3D1Þ, B�B�ð3S1Þ, and
B�B�ð3D1Þ channels, respectively.

TABLE V. The mixing ratios of each channel and rms for Tbb
with 0ð1þÞ where Λ ¼ 1069.8 MeV.

Mixing ratio and rms

½BB��−ð3S1Þ 70.7%
½BB��−ð3D1Þ 4.71%
B�B�ð3S1Þ 21.6%
B�B�ð3D1Þ 3.00%
rms 0.620 fm
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and (3,1) components in Fig. 8(b) primarily contributed by
the ρ meson exchange are important to generate the
attraction. These are because the mass difference of BB�
and B�B� is smaller than that ofDD� andD�D�. Therefore,
the channels ½BB��− and B�B� are more coupled with each
other. However, we emphasize that, similar to Tcc, the σ
meson exchange potential has the dominant contribution to
earn the attractive force binding the Tbb.

2. Other quantum numbers

In this section, we discuss Tbb with given IðJPÞ. The
obtained binding energies are summarized in Table VI. As a
result, many bound states of Tbb appear. Table VI shows the
ðgs;ΛÞ dependence of the Tbb binding energies, where the

parameter set ðgs;ΛÞ is determined to reproduce the
empirical binding energy of Tcc as shown in Table IV
and Fig. 5. Examining the ðgs;ΛÞ dependence is useful to
understand the natures of the different isospin states.
Table VI shows that, as gs increases and simultaneously
Λ decreases (the σ exchange is enhanced, while the other
meson exchanges are suppressed), the bound states of Tbb
with the isospin I ¼ 0 become shallower, while the ones
with the isospin I ¼ 1 become deeper. The difference
between the isospin states is caused by the isospin factor
τ⃗1 · τ⃗2 of the isovector π, ρ exchange potentials:

τ⃗1 · τ⃗2 ¼
�−3 for I ¼ 0;

1 for I ¼ 1:

Since the strength of the τ⃗1 · τ⃗2 factor of the I ¼ 0 channel
is 3 times larger than the one of the I ¼ 1 channel, the π, ρ
exchange potentials have a non-negligible role in the I ¼ 0
bound states, while it is suppressed in the case of I ¼ 1. It
can also be seen in the ðgs;ΛÞ dependence of the energy
expectation values in Table VII. For 0ð1þÞ, the off-diagonal
components are drastically reduced as Λ decreases, which
are mainly contributed by the isovector π, ρ exchange
potentials. The reduction of the expectation value is also
seen for the 0ð0−Þ state. On the other hand, the expectation
values of the I ¼ 1 bound states are more sensitive to the
change of gs, being the coupling constant of the σ exchange
in the diagonal components.

FIG. 8. The expectation values of the OBEP for Tbb with 0ð1þÞ. The value is given in units of MeV.

TABLE VI. The binding energies of Tbb with given IðJPÞ. The
same convention as Table IV is used.

gs 3.06 3.4 3.74
Λ [MeV] 1147.1 1069.8 1001.3
0ð0−Þ −30.7 −24.4 −19.2
0ð1þÞ −56.2 −46.0 −37.9
0ð1−Þ � � � � � � � � �
1ð0þÞ −3.70 −7.23 −10.8
1ð0−Þ � � � � � � � � �
1ð1þÞ −0.0254 −2.46 −6.98
1ð1−Þ � � � � � � � � �

ANALYSIS OF Tcc AND Tbb BASED ON THE … PHYS. REV. D 109, 054016 (2024)

054016-9



C. Doubly heavy tetraquarks TQQ in the heavy
quark limit

1. Light-cloud basis

Until now, we have discussed the hadronic molecules of
P and P� as Tcc and Tbb. In this section, by introducing the
LCB, we consider the HQS multiplet structure of the
molecules in the HQL. As discussed in Refs. [40–42],
HQS and LCB are useful to classify bound states by the
heavy quark spin and total angular momentum of the
light cloud.
We can obtain the LCB by implementing the unitary

transformation to the HMB [40–42]:

�
L
h
½SQ1

Sq1 �S1 ½SQ2
Sq2 �S2

i
S

�
J

→

�
½SQ1

SQ2
�SQ
h
L½Sq1Sq2 �Sq

i
Jl

�
J
; ð58Þ

where L is the orbital momentum and SQi
and Sqi (i ¼ 1,

2) are the spins of the heavy quark Qi and light antiquark

qi of the heavy meson Pð�Þ
i ¼ Qiq̄i with the spin Si,

respectively. S and J are the total spin and angular
momentum of two heavy mesons, SQ and Sq are the
spins of the heavy diquark and the light antidiquark, and
Jl is the spin of the light cloud. This transformation leads
to find the spin structures including the diquark spins
inside the hadronic molecule, which we cannot see in
the HMB.
Here, we implement this unitary transformation from the

HMB to the LCB for 0ð1þÞ as an example. First, the
transformation from the wave function in the HMB, ψHM

0ð1þÞ,
to that in the LCB, ψLC

0ð1þÞ, is given by

ψLC
0ð1þÞ ¼ U−1

0ð1þÞψ
HM
0ð1þÞ

¼

0
BBBBBBBBB@

���h½QQ�1½S½q̄q̄�0�0
i
1

E
���h½QQ�0½S½q̄q̄�1�1

i
1

E
���h½QQ�0½D½q̄q̄�1�1

i
1

E
���h½QQ�1½D½q̄q̄�0�2

i
1

E

1
CCCCCCCCCA
; ð59Þ

U0ð1þÞ ¼

0
BBBBBB@

− 1ffiffi
2

p 1ffiffi
2

p 0 0

0 0 1ffiffi
2

p − 1ffiffi
2

p

1ffiffi
2

p 1ffiffi
2

p 0 0

0 0 1ffiffi
2

p 1ffiffi
2

p

1
CCCCCCA
; ð60Þ

where U0ð1þÞ is the unitary matrix determined by the
Clebsch-Gordan coefficient. Second, using U0ð1þÞ, we
transform the potential matrices VHM

boson;0ð1þÞ in the HMB

to VLC
boson;0ð1þÞ in the LCB. Then we obtain the block-

diagonal potential matrices:

VLC
π;0ð1þÞ ¼ U−1

0ð1þÞV
HM
π;0ð1þÞU0ð1þÞ

¼

0
BBBBB@

−3Cπ 0 0 0

0 Cπ 2
ffiffiffi
2

p
Tπ 0

0 2
ffiffiffi
2

p
Tπ Cπ − 2Tπ 0

0 0 0 −3Cπ

1
CCCCCA;

ð61Þ

TABLE VII. Dependence of the energy expectation value of
Tbb for given IðJPÞ on the parameters ðgs;ΛÞ. Only the important
components are shown in the table. The expectation value is given
in units of MeV.

gs 3.06 3.40 3.74
Λ [MeV] 1147.1 1069.8 1001.3

0ð1þÞ (1, 1) −39 −40 −41
(1, 2) −8.6 −7.3 −6.2
(2, 1)
(1, 3) −16 −11 −6.7
(3, 1)
(1, 4) −7.4 −6.2 −5.1
(4, 1)
(2, 3) −5.5 −4.1 −2.9
(3, 2)
(3, 4) −4.8 −3.5 −2.4
(4, 3)
(3, 3) −17 −14 −10

0ð0−Þ V total −108 −90.6 −75.7

1ð0þÞ (1, 1) −13 −22 −30
(1, 2) −2.6 −1.8 −0.99
(2, 1)
(1, 3) −0.55 −0.74 −0.85
(3, 1)
(2, 2) −1.9 −1.3 −0.72

1ð1þÞ (1, 1) −0.72 −10 −21
(1, 2) −0.057 −0.4 −0.51
(2, 1)
(1, 3) −0.095 −0.76 −1.1
(3, 1)
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VLC
v;0ð1þÞ ¼ U−1

0ð1þÞV
HM
v;0ð1þÞU0ð1þÞ ¼

0
BBB@

C0
v − 6Cv 0 0 0

0 C0
v þ 2Cv −2

ffiffiffi
2

p
Tv 0

0 −2
ffiffiffi
2

p
Tv C0

v þ 2Cv þ 2Tv 0

0 0 0 C0
v − 6Cv

1
CCCA; ð62Þ

VLC
σ;0ð1þÞ ¼ U−1

0ð1þÞV
HM
σ;0ð1þÞU0ð1þÞ ¼

0
BBB@

Cσ 0 0 0

0 Cσ 0 0

0 0 Cσ 0

0 0 0 Cσ

1
CCCA: ð63Þ

Since states with different SQ or Jl are decoupled in the
HQL, the off-diagonal components mixing these states
vanish in the LCB. Hence, if a bound state is obtained, it is
an eigenstate corresponding to one of the components
which is characterized by SQ and Jl. Thus, these ψLC

IðJPÞ and

matrices VLC
boson;0ð1þÞ enable us to find the spin structures of

the diquark.
We note that the matrix elements of the block-diagonal

potential coincide with those of the meson exchange
potential between corresponding light quarks. In this study,
we employ only the light meson exchange interactions
which work between light quarks and the rest heavy quark
is a spectator. Thus, using the transformation from the
HMB to LCB, the potentials between heavy mesons are
rewritten as those between the light quarks inside the heavy
mesons.
The diquark spins SQ and Jl also indicate the HQS

multiplet structure of bound states. We define that states
with the same ðSQ; JlÞ but with different J form an HQS

multiplet, where J⃗ ¼ S⃗Q þ J⃗l [40–42]. For instance, the
first component of Eq. (59) has SQ ¼ 1 and Jl ¼ 0. Since
only J ¼ 1 can be generated from SQ ¼ 1 and Jl ¼ 0, the
bound state for this component should belong to the HQS
singlet, and, hence, it has no HQS partner.1 Similarly, the
coupled channel system of the second and third compo-
nents has SQ ¼ 0 and Jl ¼ 1. Thus, the bound state is in the
HQS singlet. Therefore, from the LCB of the 0ð1þÞ state,

we find that if there is a S-wave bound state, it belongs to
the HQS singlet. On the other hand, the fourth component
having SQ ¼ 1 and Jl ¼ 2 with L ¼ 2 may have the HQS
partners with high J, because both SQ and Jl are nonzero.
We also show an example of the unitary transformation

for 0ð0−Þ and 0ð1−Þ, where we can see the HQS multiplet
structure of them. As seen in the case of 0ð1þÞ states, the
light-cloud basis ψLC

0ð0−Þ and ψLC
0ð1−Þ and the one-boson

exchange potential matrices VLC
boson;0ð0−Þ and VLC

boson;0ð1−Þ
can be obtained under the unitary transformations as

ψLC
0ð0−Þ ¼

�
−
���h½QQ�1½P½q̄q̄�1�1

i
0

E�
; ð64Þ

ψLC
0ð1−Þ ¼ U−1

0ð1−Þψ
HM
0ð1−Þ ¼

0
BBBBBBBBBBBB@

���h½QQ�0½P½q̄q̄�0�1
i
1

E
���h½QQ�1½P½q̄q̄�1�0

i
1

E
���h½QQ�1½P½q̄q̄�1�1

i
1

E
���h½QQ�1½P½q̄q̄�1�2

i
1

E
���h½QQ�1½F½q̄q̄�1�2

i
1

E

1
CCCCCCCCCCCCA
; ð65Þ

VLC
π;0ð0−Þ ¼ ðCπ þ 2TπÞ; ð66Þ

VLC
π;0ð1−Þ ¼ U−1

0ð1−ÞV
HM
π;0ð1−ÞU0ð1−Þ ¼

0
BBBBBBBB@

−3Cπ 0 0 0 0

0 Cπ − 4Tπ 0 0 0

0 0 Cπ þ 2Tπ 0 0

0 0 0 Cπ − 2
5
Tπ

6
ffiffi
6

p
5
Tπ

0 0 0 6
ffiffi
6

p
5
Tπ Cπ − 8

5
Tπ

1
CCCCCCCCA
; ð67Þ

1We note that, since J ¼ 1, this state forms a spin triplet.
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where only the one-pion exchange potentials are shown as
an example. Comparing the potential matrices in Eqs. (66)
and (67) shows the same components, Cπ þ 2Tπ , where
their spin structures are also the same, SQ ¼ 1 and Jl ¼ 1.
It is also found for the other one-boson exchange matrices.
Thus, the eigenstates of the corresponding Hamiltonian
component in the 0ð0−Þ and 0ð1−Þ states are degenerate in
the HQL and belong to the HQS multiplet. In addition,
since a combination of SQ ¼ 1 and Jl ¼ 1 generates J ¼ 0,
1, 2, i.e., SQ ⊗ Jl ¼ 1 ⊗ 1 ¼ 0 ⊕ 1 ⊕ 2, we also expect
that the 0ð2−Þ state has the same component, and the
corresponding components of 0ð0−Þ, 0ð1−Þ, and 0ð2−Þ
belong to the same HQS triplet.
We note that the block diagonal nature of the

Hamiltonian and the HQS multiplet appears because of
the HQS in the HQL. In the finite mass region, however, a
mass splitting of pseudoscalar and vector mesons violates
the symmetry, and, hence, the block diagonal nature
disappears. In fact, as we discuss later, the 0ð0−Þ and

0ð1−Þ bound states are degenerate, which have been already
expected to belong to the same HQS multiplet in the HQL
as seen in Eqs. (66) and (67). However, in the bottom
sector, the 0ð0−Þ bound state is obtained while the 0ð1−Þ
one is absent. Hence, the block diagonal nature of these
states is broken in the finite mass region.
We also obtain the other ψLC

IðJPÞ and VLC
boson;IðJPÞ summa-

rized in Appendix B.

2. TQQ in HQL and the spin structure

We calculate the binding energy of TQQ with given IðJPÞ
in the HQL. In fact, the Schrödinger equations for TQQ

cannot be solved numerically, because the reduced masses
of the two mesons diverge. To demonstrate a computation
in the HQL, we takemP ¼ mP� ¼ 5mB� , which implies that
the masses of the pseudoscalar meson and the vector meson
are degenerate. Using these masses, we discuss the HQS
multiplet structure for Tcc. These results are shown in
Tables VIII–XIV.

TABLE VIII. Energy eigenvalues E (¼−B with binding en-
ergies B) and mixing ratios of each channel for 0ð1þÞ in the HQL
(mP ¼ mP� ¼ 5mB� ). The energy is given in units of MeV.

E [MeV]
½PP��−
ð3S1Þ

½PP��−
ð3D1Þ

P�P�

ð3S1Þ
P�P�

ð3D1Þ
Ground −162 41.9% 8.07% 41.9% 8.07%
1st −77.4 38.9% 11.1% 38.9% 11.1%
2nd −25.9 50.0% 0% 50.0% 0%
3rd −25.4 37.2% 12.8% 37.2% 12.8%
4th −3.07 37.3% 12.7% 37.3% 12.7%

TABLE IX. Energy eigenvalues E (¼−B with binding energies
B) for 0ð0−Þ in the HQL (mP ¼ mP� ¼ 5mB� ). The energy is
given in units of MeV.

E [MeV]

Ground −141
1st −60.1
2nd −15.6
3rd −0.796

TABLE X. Energy eigenvalues E (¼−B with binding energies B) and mixing ratios of each channel for 0ð1−Þ in
the HQL (mP ¼ mP� ¼ 5mB� ). The energy is given in units of MeV.

E [MeV] PPð1P1Þ ½PP��þð3P1Þ P�P�ð1P1Þ P�P�ð5P1Þ P�P�ð5F1Þ
Ground −141 25.0% 25.0% 8.33% 41.7% 0%
1st −104 32.4% 32.4% 10.8% 2.16% 22.3%
2nd −60.1 25.0% 25.0% 8.33% 41.7% 0%
3rd −38.7 30.4% 30.4% 10.1% 2.03% 27.1%
4th −15.6 25.0% 25.0% 8.33% 41.7% 0%
5th −6.40 29.8% 29.8% 9.93% 1.99% 28.5%
6th −4.37 25.0% 0% 75.0% 0% 0%
7th −0.796 25.0% 25.0% 8.33% 41.7% 0%

TABLE XI. Energy eigenvalues E (¼−B with binding energies
B) and mixing ratios of each channel for 1ð0þÞ in the HQL
(mP ¼ mP� ¼ 5mB� ). The energy is given in units of MeV.

E [MeV] PPð1S0Þ P�P�ð1S0Þ P�P�ð5D0Þ
Ground −87.0 25.0% 75.0% 0%
1st −33.4 58.5% 19.5% 22.1%
2nd −21.8 25.0% 75.0% 0%
3rd −7.61 43.0% 14.3% 42.6%
4th −0.561 25.0% 75.0% 0%

TABLE XII. Energy eigenvalues E (¼−B with binding ener-
gies B) and mixing ratios of each channel for 1ð1þÞ in the HQL
(mP ¼ mP� ¼ 5mB� ). The binding energy is given in units of
MeV.

E [MeV] ½PP��þð3S1Þ ½PP��þð3D1Þ P�P�ð5D1Þ
Ground −33.4 77.9% 5.52% 16.5%
1st −7.61 57.4% 10.7% 32.0%
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For the 0ð1þÞ state in the HQL, the result summarized in
Table VIII shows that there are five bound states. However,
the origin of these states is different, which is indicated by
their mixing ratios. The mixing ratios f of the ground state
and first, third, and fourth excited states in the HMB are

fð½PP��−ð3S1ÞÞ∶fðP�P�ð3S1ÞÞ ¼ 1∶1;

fð½PP��−ð3D1ÞÞ∶fðP�P�ð3D1ÞÞ ¼ 1∶1;

obtained as the S-D mixing states. These relations show
that these bound states are composed of

0
B@
���h½QQ�0½S½q̄q̄�1�1

i
1

E
���h½QQ�0½D½q̄q̄�1�1

i
1

E
1
CA ð68Þ

components in Eq. (59) in the LCB. Thus, we also find that
the diquark spins of these bound states are SQ ¼ 0 and
Sq ¼ 1. On the other hand, the mixing ratio of the
remaining state, the second excited state, is

fð½PP��−ð3S1ÞÞ ¼ fðP�P�ð3S1ÞÞ ¼ 50%;

fð½PP��−ð3D1ÞÞ ¼ fðP�P�ð3D1ÞÞ ¼ 0%;

having no D-wave state. Therefore, this bound state is built
by the j½½QQ�1½S½q̄q̄�0�0�1i component in Eq. (59) in the
LCB, where the diquark spins are obtained by SQ ¼ 1

and Sq ¼ 0.
These results are obtained in the HQL, while in experi-

ments, it is possible to observe doubly heavy tetraquarks
with finite quark mass. Next, by reducing the heavy meson

masses toward to the bottom and charmed meson regions,
we connect the results of TQQ in the HQL, Tbb, and Tcc
where the HQS is not held exactly in the finite quark mass
region. Figure 9 shows the heavy vector meson mass
dependence of ΔmP ¼ mP� −mP. By fitting the experi-
mental data of the meson masses, we obtainΔmP ¼ 2.00 ×
106=m1.25

P� as a function ofmP� [48]. By using this function,
we obtain the mass dependence of the energy eigenvalue
and mixing ratios of TQQ with each quantum number, as
shown in Figs. 10–13. The curves in these figures are
continuous; thus, we can see the origin of Tcc and Tbb in the
HQL. As for 0ð1þÞ, Fig. 10 shows that the origin of Tcc and
Tbb bound states obtained in this paper is the ground state
of TQQ in the HQL with the spin structures SQ ¼ 0, Sq ¼ 1,
indicating that this TQQ state belongs to the HQS singlet.
Thus, the Tcc state reported by LHCb is originated from the
HQS singlet state in the HQL, and the HQS partner is not
present.
In Ref. [23], the author analyzed the doubly heavy

tetraquark by using the quark model and found two bound
states of Tbb with 0ð1þÞ. One is the deeply bound state, and
the other is the shallow one. The author considered the
difference in the two internal structures: The deeply bound
state has a very compact structure, while the shallow one is
a molecular state. When the author changed the bottom
quark to charm or strange quark for the deeply bound state,
this binding energy decreased in order of the reduced
masses of the diquarks. This behavior was explained by the
color electric force which provides attraction for the color 3̄
QQ diquark. This color structure indicates that the deeply
bound state in Ref. [23] has the spin structure SQ ¼ 1,
Sq ¼ 0 because of the Fermi-Dirac statistics. However, in
our analysis, Tcc and Tbb with 0ð1þÞ having the spin
structures SQ ¼ 0, Sq ¼ 1 are obtained as the ground state,
which means these states contain the color 6 QQ diquark.

FIG. 9. Heavy vector meson mass dependence of ΔmP ¼
mP� −mP. The dots are the experimental data of K�, D�, and
B� from left to right. The solid line is a refitting result referring to
Ref. [48], and this result is ΔmP ¼ 2.00 × 106=mP�1.25.

TABLE XIII. Energy eigenvalues E (¼−B with binding
energies B) and mixing ratios of each channel for 1ð0−Þ in the
HQL (mP ¼ mP� ¼ 5mB� ). The binding energy is given in units
of MeV.

E [MeV] ½PP��−ð3P0Þ P�P�ð3P0Þ
Ground −42.5 50.0% 50.0%
1st −33.9 50.0% 50.0%
2nd −6.09 50.0% 50.0%
3rd −4.27 50.0% 50.0%

TABLE XIV. Energy eigenvalues E (¼−B with binding
energies B) and mixing ratios of each channel for 1ð1−Þ in the
HQL (mP ¼ mP� ¼ 5mB� ). The binding energy is given in units
of MeV.

E [MeV] ½PP��−ð3P1Þ P�P�ð3P1Þ
Ground −42.5 50.0% 50.0%
1st −4.27 50.0% 50.0%
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The color electric force does not provide an attraction in the
color 6 QQ diquark, while the tensor force of the meson
exchange does. As mentioned in Secs. III A 1 and III B 1,
the tensor force of the OPEP is important. The strong tensor
force prefers the spin structures SQ ¼ 0, Sq ¼ 1 as the
origins of Tcc and Tbb with 0ð1þÞ.

For TQQ with 0ð0−Þ and 0ð1−Þ in the HQL, Tables IX
and X show that every bound state of TQQ with 0ð0−Þ is
degenerate with a certain bound state of TQQ with 0ð1−Þ
because of the HQS. As an example, the ground state of
TQQ with 0ð0−Þ is degenerate with that of 0ð1−Þ. In fact,
VLC
boson;0ð0−Þ and VLC

boson;0ð1−Þ have the same component, and,

hence, these bound states belong to the same HQS
multiplet. Figure 11 shows that the Tbb bound state for
0ð0−Þ continuously connects to the ground state of TQQ in
the HQL, having the spin structure ðSQ; Sq; JlÞ ¼ ð1; 1; 1Þ.
Thus, the origin of the Tbbð0ð0−ÞÞ bound state should
belong to the HQS triplet, where 0ð1−Þ and 0ð2−Þ states are
present to be the HQS partners. However, in our analysis,
no bound state for these quantum numbers is found even for
the bottom quark mass region. We expect that these states
are found as a resonance above the thresholds. The
resonances with 0ð1−Þ and 0ð2−Þ have been discussed in
the literature [16,24].
We also study the TQQ states for the isotriplet channel.

For 1ð0þÞ and 1ð1þÞ states, Tables XI and XII show that
every bound state of TQQ with 1ð1þÞ is degenerate with a
certain bound state of TQQ with 1ð0þÞ. For the ground
states in the HQL, their spin structures are ðSQ; Sq; JlÞ ¼
ð0; 0; 0Þ for 1ð0þÞ and ðSQ; Sq; JlÞ ¼ ð1; 1; 1Þ for 1ð1þÞ.

FIG. 12. The mass dependence of the binding energy of TQQ with 1ð0þÞ for the ground state. The same convention as Fig. 11 is used.

FIG. 10. The mass dependence of the binding energy and mixing ratios of TQQ with 0ð1þÞ for the ground state. The horizontal axis
shows the mass of P�. The vertical dashed and dotted lines indicate mP� ¼ mD� and mP� ¼ mB� , respectively.

FIG. 11. The mass dependence of the binding energy of TQQ
with 0ð0−Þ for the ground state. The horizontal axis shows the
ratio between the mass of the heavy vector meson P� and
that of B�.
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These spin structures indicate that the 1ð0þÞ and 1ð1þÞ
ground states belong to the HQS singlet and triplet,
respectively. However, the TQQð1ð1þÞÞ ground state is
degenerate with the first excited state of TQQð1ð0þÞÞ as
shown in Tables XI and XII. Figures 12 and 13 show that
the TQQ ground states continuously connect to the Tbb

bound states. In Table VI, the binding energies of
Tbbð1ð0þÞÞ and Tbbð1ð1þÞÞ are similar. However, as found
in the TQQ, the origins of these Tbb bound states in the HQL
are different.
Finally, we study the 1ð0−Þ and 1ð1−Þ states. We could

not find a bound state for Tcc and Tbb, while some bound
states are obtained in the HQL. Tables XIII and XIV show
that every bound state of TQQ with 1ð1−Þ is degenerate with
a certain bound state of TQQ with 1ð0−Þ. The ground states
have the same spin structure ðSQ; Sq; JlÞ ¼ ð1; 0; 1Þ, indi-
cating that TQQð1ð0−ÞÞ and TQQð1ð1−ÞÞ are in the same
HQS triplet. The remaining state should exist in 1ð2−Þ.

IV. SUMMARY

In this paper, we analyzed the doubly heavy tetraquarks
as a hadronic molecule of two open-heavy mesons. In the
HQL, the heavy pseudoscalar and the heavy vector mesons
are degenerate because of the HQS. Thus, we took into
account possible Pð�ÞPð�Þ channel couplings.
As for Tcc which has been reported by LHCb in 2022,

we considered one-meson exchange force where the cutoff
parameter Λ is determined to reproduce the experimental
value of the Tcc binding energy for IðJPÞ ¼ 0ð1þÞ.
However, in the case of the OPEP model, we were not
able to find a bound state with the reasonable cutoff Λ. By
adding the ρ, ω, and σ exchanges (OBEP), we were able to
obtain Λ ¼ 1069.8 MeV, which reproduces the experi-
mental value of Tcc. We also calculated the bound-state
properties, the wave functions, mixing ratios, and

ffiffiffiffiffiffiffiffi
hr2i

p
,

and it can be seen that the channel ½DD��−ð3S1Þ is a
dominant one. Next, we discussed gs dependence of the
binding energy, because the coupling constant gs for the σ

meson is uncertain. We obtained that this dependence is
large. However, by tuning the value ofΛwithin a reasonable
range, we found the set of ðgs;ΛÞ which reproduces the
experimental binding energy of Tcc. Also, we studied bound
states ofTcc with given IðJPÞ other than 0ð1þÞ. However, we
found no bound states of Tcc except for 0ð1þÞ.
As for Tbb in the bottom sector, the Tbb bound state with

0ð1þÞ was found for Λ ≥ 1010 MeV even in the OPEP
model. This enables us to expect that the Tbb bound state
with 0ð1þÞ is likely to exist. Also using the OBEP, we
calculated the binding energy of Tbb with 0ð1þÞ for
Λ ¼ 1069.8 MeV, which reproduces the experimental
value of Tcc. The binding energy of Tbb is 46.0 MeV,
and we also obtained the wave functions, mixing ratios, andffiffiffiffiffiffiffiffi
hr2i

p
. Then, we found the ½BB��−ð3S1Þ channel is dom-

inant, and, in addition, the B�B�ð3S1Þ one is also important
unlike Tcc. This reason can be understood because the mass
difference of B and B� is smaller than that of D and D�.
This small mass difference leads to the deeply bound state
in Tbb. Next, we calculated the bound states of Tbb with
given IðJPÞ other than 0ð1þÞ and got bound states. gs
dependence of these bound states is different between I ¼
0 and I ¼ 1. As gs increases, the binding energy decreases
for I ¼ 0, but the binding energy increases for I ¼ 1. This
difference is caused by the isospin factor τ⃗1 · τ⃗2. For I ¼ 0,
the π and ρ exchange potentials contribute significantly in
addition to the σ exchange potential. Therefore, as gs
increases, i.e., Λ decreases, the binding energy becomes
smaller. On the other hand, for I ¼ 1, since the σ exchange
potential is dominant, the binding energy is larger as gs
increases. This enables us to study the σ exchange potential
in detail by searching Tbb for I ¼ 1.
Finally, we considered the spin multiplets of the bound

states in the HQL. We have reviewed the light-cloud basis
and applied it to Tcc with given IðJPÞ. In the HQL, we
obtained many bound states for each quantum number and
were able to find that some pairs with different J were
degenerate. In this analysis, we found that in the HQL the
origin of Tcc with 0ð1þÞ, which is reported by the LHCb,

FIG. 13. The mass dependence of the binding energy and mixing rations of TQQ with 1ð1þÞ for the ground state. The same convention
as Fig. 11 is used.
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had the spin structure SQ ¼ 0, Sq ¼ 1. Thus, this state
belongs to the HQS singlet, which has no HQS partner in
the HQL. We were also able to see that the origin of the
bound states of Tbb with 0ð0−Þ, 1ð0þÞ, and 1ð1þÞ have
the spin structures ðSQ; Sq; JlÞ ¼ ð1; 1; 1Þ, (0, 0, 0), and
(1, 1, 1), respectively. In the HQL, every bound state of
TQQ with 0ð0−Þ is degenerate with a certain bound state of
TQQ with 0ð1−Þ. In the bottom sector, however, the bound
state of Tbb with 0ð1−Þ does not exist in our study, while the
resonant state may exist. In the isovector channels, we
obtained the Tbb bound states with 1ð0þÞ and 1ð1þÞ. The
spin structure in the HQL showed that the origins of these
bound states in the HQL were different. In fact, the state of
Tbb with 1ð0þÞ is a singlet state, while the state of Tbb
with 1ð1þÞ is a triplet state. Therefore, the resonant states of
Tbb with 1ð0þÞ and 1ð2þÞ which are partners of 1ð1þÞ
may exist.
We have considered only the bound states in this

study. As future works, we will investigate the resonant
states of Tcc and Tbb and check the predictions noted

above. We expect to find the bound states and the resonant
states of the Pð�ÞPð�Þ hadronic molecules in future
experiments.
As shown in Table V, the obtained size of the Tbb bound

state is small,
ffiffiffiffiffiffiffiffi
hr2i

p
¼ 0.620 fm. Thus, the pure hadronic

molecular picture would not be suitable to describe such a
deeply bound state with the small size. The quark dynamics
as discussed by the quark model, etc., would become more
important in comparison with the case of Tcc. We remain
further studies including the quark dynamics in the frame-
work as a future work.
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APPENDIX A: HAMILTONIAN MATRIX

In this section, we show the kinetic and potential matrices
for given IðJPÞ in the hadronic-molecule basis [16].

1. Kinetic energy matrix

The kinetic energy matrices for given IðJPÞ are

K0ð0−Þ ¼ diag

�
−

1

2μPP�
△1

�
;

K0ð1þÞ ¼ diag

�
−

1

2μPP�
△0;−

1

2μPP�
△2;−

1

2μP�P�
△0 þ ΔmPP� ;−

1

2μP�P�
△2 þ ΔmPP�

�
;

K0ð1−Þ ¼ diag

�
−

1

2μPP
△1;−

1

2μPP�
△1 þ ΔmPP� ;−

1

2μP�P�
△1 þ 2ΔmPP� ;

−
1

2μP�P�
△1 þ 2mPP� ;−

1

2μP�P�
△3 þ 2mPP�

�
;

K1ð0þÞ ¼ diag

�
−

1

2μPP
△0;−

1

2μP�P�
△0 þ 2ΔmPP� ;−

1

2μP�P�
△2 þ 2ΔmPP�

�
;

K1ð0−Þ ¼ diag

�
−

1

2μPP�
△1;−

1

2μP�P�
△1 þ ΔmPP�

�
;

K1ð1þÞ ¼ diag

�
−

1

2μPP�
△0;−

1

2μPP�
△2;−

1

2μP�P�
△2 þ ΔmPP�

�
;

K1ð1−Þ ¼ diag
�
−

1

2μPP�
△1;−

1

2μP�P�
△1 þ ΔmPP�

�
;

where

μPð�ÞPð�Þ ¼ mPð�ÞmPð�Þ

mPð�Þ þmPð�Þ
; △l ¼

d2

dr2
−
lðlþ 1Þ

r2
; ΔmPP� ¼ mP� −mP:

2. Potential matrix in the hadronic-molecule basis

The potential matrices in the hadronic-molecule basis are shown as follows.
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(i) 0ð1þÞ:

VHM
π;0ð1þÞ ¼

0
BBB@

−Cπ

ffiffiffi
2

p
Tπ 2Cπ

ffiffiffi
2

p
Tπffiffiffi

2
p

Tπ −Cπ − Tπ

ffiffiffi
2

p
Tπ 2Cπ − Tπ

2Cπ

ffiffiffi
2

p
Tπ −Cπ

ffiffiffi
2

p
Tπffiffiffi

2
p

Tπ 2Cπ − Tπ

ffiffiffi
2

p
Tπ −Cπ − Tπ

1
CCCA;

VHM
v;0ð1þÞ ¼

0
BBB@

C0
v − 2Cv −

ffiffiffi
2

p
Tv 4Cv −

ffiffiffi
2

p
Tv

−
ffiffiffi
2

p
Tv C0

v − 2Cv þ Tv −
ffiffiffi
2

p
Tv 4Cv þ Tv

4Cv −
ffiffiffi
2

p
Tv C0

v − 2Cv −
ffiffiffi
2

p
Tv

−
ffiffiffi
2

p
Tv 4Cv þ Tv −

ffiffiffi
2

p
Tv C0

v − 2Cv þ Tv

1
CCCA;

VHM
σ;0ð1þÞ ¼

0
BBB@

Cσ 0 0 0

0 Cσ 0 0

0 0 Cσ 0

0 0 0 Cσ

1
CCCA;

(ii) 0ð0−Þ:

VHM
π;0ð0−Þ ¼ ðCπ þ 2TπÞ; VHM

v;0ð0−Þ ¼ ðC0
v þ 2Cv − 2TvÞ; VHM

σ;0ð0−Þ ¼ ðCσÞ;

(iii) 0ð1−Þ:

VHM
π;0ð1−Þ ¼

0
BBBBBBBBBBBB@

0 0 −
ffiffiffi
3

p
Cπ −2

ffiffi
3
5

q
Tπ 3

ffiffi
2
5

q
Tπ

0 Cπ − Tπ 0 −3
ffiffi
3
5

q
Tπ −3

ffiffi
2
5

q
Tπ

−
ffiffiffi
3

p
Cπ 0 −2Cπ

2ffiffi
5

p Tπ −
ffiffi
6
5

q
Tπ

−2
ffiffi
3
5

q
Tπ −3

ffiffi
3
5

q
Tπ

2ffiffi
5

p Tπ Cπ − 7
5
Tπ

ffiffi
6

p
5
Tπ

3
ffiffi
2
5

q
Tπ −3

ffiffi
2
5

q
Tπ −

ffiffi
6
5

q
Tπ

ffiffi
6

p
5
Tπ Cπ − 8

5
Tπ

1
CCCCCCCCCCCCA
;

VHM
v;0ð1−Þ ¼

0
BBBBBBBBBBBB@

C0
v 0 −2

ffiffiffi
3

p
Cv 2

ffiffi
3
5

q
Tv −3

ffiffi
2
5

q
Tv

0 C0
v þ 2Cv þ Tv 0 3

ffiffi
3
5

q
Tv 3

ffiffi
2
5

q
Tv

−2
ffiffiffi
3

p
Cv 0 C0

v − 4Cv − 2ffiffi
5

p Tv

ffiffi
6
5

q
Tv

2
ffiffi
3
5

q
Tv 3

ffiffi
3
5

q
Tv − 2ffiffi

5
p Tv C0

v þ 2Cv þ 7
5
Tv −

ffiffi
6

p
5
Tv

−3
ffiffi
2
5

q
Tv 3

ffiffi
2
5

q
Tv

ffiffi
6
5

q
Tv −

ffiffi
6

p
5
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v þ 2Cv þ 8
5
Tv

1
CCCCCCCCCCCCA
;

VHM
σ;0ð1−Þ ¼

0
BBBBBBBB@

Cσ 0 0 0 0

0 Cσ 0 0 0

0 0 Cσ 0 0

0 0 0 Cσ 0

0 0 0 0 Cσ

1
CCCCCCCCA
;
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(iv) 1ð0þÞ:

VHM
π;1ð0þÞ ¼

0
B@

0 −
ffiffiffi
3

p
Cπ

ffiffiffi
6

p
Tπ

−
ffiffiffi
3

p
Cπ −2Cπ −

ffiffiffi
2

p
Tπffiffiffi

6
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ffiffiffi
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p
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1
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ffiffiffi
3

p
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ffiffiffi
6

p
Tv
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ffiffiffi
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p
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v−4Cv

ffiffiffi
2

p
Tv

−
ffiffiffi
6
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ffiffiffi
2

p
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1
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VHM
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0
B@
Cσ 0 0

0 Cσ 0

0 0 Cσ

1
CA;

(v) 1ð0−Þ:

VHM
π;1ð0−Þ ¼

�−Cπ − 2Tπ 2Cπ − 2Tπ

2Cπ − 2Tπ −Cπ − 2Tπ

�
;

VHM
π;1ð0−Þ ¼

�
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4Cv þ 2Tv C0
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�
;

VHM
σ;1ð0−Þ ¼

�
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0 Cσ

�
;

(vi) 1ð1þÞ:

VHM
π;1ð1þÞ ¼

0
B@

Cπ −
ffiffiffi
2

p
Tπ −

ffiffiffi
6

p
Tπ

−
ffiffiffi
2

p
Tπ Cπ þ Tπ −

ffiffiffi
3

p
Tπ

−
ffiffiffi
6

p
Tπ −

ffiffiffi
3

p
Tπ Cπ − Tπ

1
CA;

VHM
v;1ð1þÞ ¼

0
B@

C0
v þ 2Cv

ffiffiffi
2

p
Tv

ffiffiffi
6

p
Tvffiffiffi

2
p

Tv C0
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ffiffiffi
3

p
Tvffiffiffi
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ffiffiffi
3
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1
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VHM
σ;1ð1þÞ ¼

0
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1
CA;

(vii) 1ð1−Þ:

VHM
π;1ð1−Þ ¼

�−Cπ þ Tπ 2Cπ þ Tπ

2Cπ þ Tπ −Cπ þ Tπ

�
;

VHM
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�
;
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;
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Cπ ¼
1

3

�
g

2fπ

�
2

Cðr;mπÞτ⃗1 · τ⃗2; Tπ ¼
1

3

�
g

2fπ

�
2

Tðr;mπÞτ⃗1 · τ⃗2; C0
v ¼

�
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2mv

�
2
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Cv ¼
1
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1

3
ðλgVÞ2Tðr;mvÞτ⃗1 · τ⃗2; Cσ ¼ −

�
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mσ

�
2

Cðr;mσÞ:

APPENDIX B: LIGHT-CLOUD BASIS

The possible channels, the light-cloud bases, and the potential matrices in the light-cloud basis are shown as follows.
(i) 0ð1þÞ:

ψHM
0ð1þÞ ¼

0
BBB@

j½PP��−ð3S1Þi
j½PP��−ð3D1Þi
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v;0ð1þÞ ¼ U−1

0ð1þÞV
HM
v;0ð1þÞU0ð1þÞ ¼

0
BBBBB@

C0
v − 6Cv 0 0 0

0 C0
v þ 2Cv −2

ffiffiffi
2

p
Tv 0

0 −2
ffiffiffi
2

p
Tv C0

v þ 2Cv þ 2Tv 0

0 0 0 C0
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1
CCCCCA;

VLC
σ;0ð1þÞ ¼ U−1

0ð1þÞV
HM
σ;0ð1þÞU0ð1þÞ ¼

0
BBBBB@

Cσ 0 0 0

0 Cσ 0 0

0 0 Cσ 0

0 0 0 Cσ

1
CCCCCA;

(ii) 0ð0−Þ:

ψHM
0ð0−Þ ¼

	
j½PP��þð3P0Þi



; ψLC

0ð0−Þ ¼
�
−
���hhQQ�

1
½P½q̄q̄�1�1

i
0

E�
;

VHM
π;0ð0−Þ ¼ ðCπ þ 2TπÞ; VHM

v;0ð0−Þ ¼ ðC0
v þ 2Cv − 2TvÞ; VHM

σ;0ð0−Þ ¼ Cσ;
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(iii) 0ð1−Þ:

ψHM
0ð1−Þ ¼

0
BBBBBB@

jPPð1P1Þi
j½PP��þð3P1Þi
jP�P�ð1P1Þi
jP�P�ð5P1Þi
jP�P�ð5F1Þi

1
CCCCCCA
;

ψLC
0ð1−Þ ¼ U−1

0ð1−Þψ
HM
0ð1−Þ ¼

0
BBBBBBBBBBBB@

���h½QQ�0½P½q̄q̄�0�1
i
1

E
���h½QQ�1½P½q̄q̄�1�0

i
1

E
���h½QQ�1½P½q̄q̄�1�1

i
1

E
���h½QQ�1½P½q̄q̄�1�2

i
1

E
���h½QQ�1½F½q̄q̄�1�2

i
1

E

1
CCCCCCCCCCCCA
;

U0ð1−Þ ¼

0
BBBBBBBB@

1
2

ffiffi
3

p
6

1
2

ffiffiffiffi
15

p
6

0

0
ffiffi
3

p
3

1
2

−
ffiffiffiffi
15

p
6

0ffiffi
3

p
2

− 1
6

−
ffiffi
3

p
6

−
ffiffi
5

p
6

0

0
ffiffi
5

p
3

−
ffiffiffiffi
15

p
6

1
6

0

0 0 0 0 1

1
CCCCCCCCA
;

VLC
π;0ð1−Þ ¼

0
BBBBBBBB@

−3Cπ 0 0 0 0

0 Cπ − 4Tπ 0 0 0

0 0 Cπ þ 2Tπ 0 0

0 0 0 Cπ − 2
5
Tπ

6
ffiffi
6

p
5
Tπ

0 0 0 6
ffiffi
6

p
5
Tπ Cπ − 8

5
Tπ

1
CCCCCCCCA
;

VLC
v;0ð1−Þ ¼

0
BBBBBBBB@

C0
v − 6Cv 0 0 0 0

0 C0
v þ 2Cv þ 4Tv 0 0 0

0 0 C0
v þ 2Cv − 2Tv 0 0

0 0 0 C0
v þ 2Cv þ 2

5
Tv − 6

ffiffi
6

p
5
Tv

0 0 0 − 6
ffiffi
6

p
5
Tv C0

v þ 2Cv þ 8
5
Tv

1
CCCCCCCCA
;

VLC
σ;0ð1−Þ ¼

0
BBBBBBBB@

Cσ 0 0 0 0

0 Cσ 0 0 0

0 0 Cσ 0 0

0 0 0 Cσ 0

0 0 0 0 Cσ

1
CCCCCCCCA
;
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(iv) 1ð0þÞ:

ψHM
1ð0þÞ ¼

0
B@

jPPð1S0Þi
jP�P�ð1S0Þi
jP�P�ð5D0Þi

1
CA;

ψLC
1ð0þÞ ¼ U−1

1ð0þÞψ
HM
1ð0þÞ ¼

0
BBBBB@

���h½QQ�0½S½q̄q̄�0�0
i
0

E
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i
0
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���h½QQ�1½D½q̄q̄�1�1

i
0

E

1
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U1ð0þÞ ¼

0
B@

1
2

ffiffi
3

p
2

0ffiffi
3

p
2

− 1
2

0

0 0 1

1
CA;

VLC
π;1ð0þÞ ¼

0
BB@

−3Cπ 0 0

0 Cπ 2
ffiffiffi
2

p
Tπ

0 2
ffiffiffi
2

p
Tπ Cπ − 2Tπ

1
CCA;

VLC
v;1ð0þÞ ¼

0
BB@

C0
v − 6Cv 0 0

0 C0
v þ 2Cv −2

ffiffiffi
2

p
Tv

0 −2
ffiffiffi
2

p
Tv C0
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1
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VLC
σ;1ð0þÞ ¼

0
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Cσ 0 0

0 Cσ 0

0 0 Cσ

1
CCA;

(v) 1ð0−Þ:

ψHM
1ð0−Þ ¼

� j½PP��−ð3P0Þi
jP�P�ð3P0Þi

�
;

ψLC
1ð0−Þ ¼ U−1

1ð0−Þψ
HM
1ð0−Þ ¼

0
B@
���h½QQ�0½P½q̄q̄�1�0

i
0

E
���h½QQ�1½P½q̄q̄�0�1

i
0

E
1
CA;

U1ð0−Þ ¼
 1ffiffi

2
p − 1ffiffi

2
p

1ffiffi
2

p 1ffiffi
2

p

!
;

VLC
π;1ð0−Þ ¼

�Cπ − 4Tπ 0

0 −3Cπ

�
;

VLC
π;1ð0−Þ ¼

�C0
v þ 2Cv þ 4Tv 0

0 C0
v − 6Cv

�
;

VLC
σ;1ð0−Þ ¼

�Cσ 0

0 Cσ

�
;

ANALYSIS OF Tcc AND Tbb BASED ON THE … PHYS. REV. D 109, 054016 (2024)

054016-21



(vi) 1ð1þÞ:

ψHM
1ð1þÞ ¼

0
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j½PP��þð3S1Þi
j½PP��þð3D1Þi
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1
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0
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1
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ψHM
1ð1−Þ ¼
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�
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0
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2
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!
;
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;
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�
;
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�Cσ 0
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�
:
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