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Quantum properties of the state associated to the gluon Green’s function in the Balitsky-Fadin-Kuraev-
Lipatov approach are studied using a discretization in virtuality space. Considering the coupling constant as
imaginary, its density matrix corresponds to a pure state for any energy. Nonlinear corrections due to high
gluon densities are modeled through a suppression of infrared modes in the Hamiltonian making it no
longer Hermitian. This introduces quantum decoherence into the evolution equation. When the coupling is
real this leads to unbounded normalization of states which becomes bounded for sufficient saturation of
infrared modes. Physical quantum properties, such as a purity smaller than one or a positive von Neumann
entropy, hence are recovered when the infrared/ultraviolet original symmetry of the formalism is broken.
Similarly to the work of Armesto, Domínguez, Kovner, Lublinsky and Skokov in [J. High Energy Phys. 05
(2019) 025], an evolution equation of Lindblad type for the normalized density matrix describing the open
system is obtained.
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I. INTRODUCTION

Application of concepts of quantum information in the
context of hadronic reactions and the microscopic theory of
strong interactions, quantum chromodynamics (QCD), has
been a field of intense research during recent years. At the
heart of this interest lies the possible relation of the
confinement problem of strong interactions with entangle-
ment: Confinement of colored charges into colorless
hadrons is interpreted as a particularly strong form of
entanglement of microscopic degrees of freedom [1–13],
see Ref. [14] for a recent review. Several proposals [15–26]
have emerged in the literature that address different ways to
study entanglement in the context of hadronic reactions.
An interesting subset of such studies refers to the

creation of entanglement entropy in the so-called low x
limit of QCD. With Q2 being the resolution scale in a deep

inelastic scattering (DIS) event, Bjorken x is generically
defined as the ratio of this hard scale and the squared
center-of-mass energy s. The low x limit therefore refers to
the perturbative high energy limit of strong interactions.
Recent studies [26–36] explore entanglement and its
imprints in multiplicity distributions in the low x limit
using the color dipole model, where the evolution toward
large Y ¼ lnð1=xÞ is understood as the subsequent branch-
ing of color dipoles (see also [37,38] for studies within the
related color glass condensate framework).
In the present workwe take a slightly different perspective.

Instead ofmaking use of the color dipole picture, we study the
QCD density matrix in the low x limit within the Balitsky-
Fadin-Kuraev-Lipatov (BFKL) formalism [39–44]. This
framework identifies Reggeized gluons as the relevant
degrees of freedom in the t-channel of high energy factorized
scattering amplitudes, which form the starting point
for a resummation of high energy logarithms (see [45–52]
for a discussion and derivation of the BFKL evolution in the
context of an effective action framework, based onReggeized
gluon fields). For perturbative scattering amplitudes, high
energy factorization is achieved via the exchange of a single
Reggeized gluon which results at cross-section level into a
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two Reggeized gluon state in the overall color singlet state.
This constitutes the starting point for the resummation of
perturbative terms enhancedbypowersofY to all orders in the
strong coupling constant, generating a bound state of two
Reggeized gluons called the hard or BFKLPomeron (see [53]
for a recent work on the conformal properties of this
bound state).
This procedure generates a powerlike rise of cross-

sections with s. While such a rise has been observed in
experimental data (see, e.g., [54]), it eventually leads—if
continued to arbitrarily high center-of-mass energies—to a
violation of unitary bounds. To tame this growth, it is hence
needed to extend the resummation to the exchange of
multiple Reggeized gluons allowing for vertices changing
the number of exchanged Reggeized gluons in the
t-channel. For a sufficiently inclusive cross-section, the
simplest one is the 2 to 4 Reggeized gluon transition vertex
which in the multicolor limit turns into a triple Pomeron
vertex. Apart from slowing down the growth with energy,
inclusion of such number-changing elements also has an
important consequence in the dynamics of the transverse
momentum space. While the BFKL kernel is symmetric
with respect to incoming and outgoing t-channel momenta,
this symmetry is broken once number-changing elements,
such as the triple Pomeron vertex are included [55,56]. The
combination of linear BFKL evolution with these new
vertices results in a cancellation of infrared modes and the
evolution acquires an effective scale, known as saturation
scale [57,58], which increases with Y.
In the following we explore the consequences of such

dynamics using an explicit construction of a density matrix
for the two Reggeized gluon state, employing a matrix
representation of the leading order BFKL evolution equa-
tion first proposed in [59], which stems from a discretiza-
tion of the dynamics in transverse momentum space. This
approach is useful because it allows a transparent under-
standing of quantummechanical properties of the scattering
process.
The outline of our work is as follows: In Sec. II we

provide an introduction to the matrix representation of
BFKL evolution, while in Sec. III the corresponding
density matrix is investigated. Sec. IV introduces a modi-
fication of this framework due to infrared screening, while
in Sec. V we explore the consequences of the resulting non-
hermitian Hamiltonian and derive an evolution equation of
the Lindblad type. In Sec. VI we finally present the
conclusions and outlook for future work.

II. HAMILTONIAN IN MATRIX
REPRESENTATION

High energy scattering in QCD and supersymmetric
theories can be described by the BFKL approach when the
leading logarithms of the center-of-mass energy are

resummed [39–44]. Following the work in Ref. [59] we
consider the azimuthal-angle averaged forward BFKL
equation and discretize it in the virtuality space of t-channel
Reggeized gluons. After regularizing it in a finite-length
box we obtain a square-matrix representation of the
Hamiltonian. Its spectrum contains positive and negative
eigenvalues [59]. If the virtuality space for the propagators
of Reggeized gluons in the forward BFKL equation is
discretized, after azimuthal angle averaging, the following
matrix representation is obtained

∂

α∂Y
jϕðNÞi ¼ Ĥ□

N jϕðNÞi; ð2:1Þ

where α ¼ αsNc=π, see [59] for the details of this result.
Note that each iteration of this equation corresponds to a
contribution to the total cross section, structure functions in
DIS. The Hamiltonian matrix elements take the form

ðĤ□

N Þi;j ¼
XN−1

n¼1

δjþn
i

n
þ
XN−1

n¼1

δjiþn

n
− 2hði − 1Þδji

¼ θði − jÞ
i − j

þ θðj − iÞ
j − i

− 2hði − 1Þδji : ð2:2Þ

hðiÞ is the harmonic number. To obtain this square N × N
matrix representation an upper cut-off in the virtuality
integrations is introduced. This corresponds to a one-
dimensional box. The limit to recover the original equation
corresponds to N → ∞. Equation (2.2) is built from shift
matrices,

H□

N ¼
XN−1

n¼1

ðŜIRÞn
n

þ
XN−1

n¼1

ðŜUVÞn
n

þ Ĝ; ð2:3Þ

where ðĜÞi;j ¼ −2hði − 1Þδji , ðŜIRÞi;j ¼ δjþ1
i and

ðŜUVÞi;j ¼ δjiþ1. This is natural since the Hamiltonian
generates the symmetric diffusion toward infrared and
ultraviolet values of the virtuality starting at the initial
condition, toward the quantum state at a generic Y. These
are driven, respectively, by ŜIR and ŜUV. Ĝ accounts for
Reggeized t-channel propagators, which correspond to the
generation of multiple rapidity gaps in the final state.
In order to operate in a Hilbert space of normalized

quantum states at any value of the energy, an analytic
continuation in the coupling constant to the line (with real
λ) α ¼ iλ is performed. A standard Schrödinger equation
then drives the dynamics:

i
∂

∂Y
jϕðNÞi ¼ −λĤ□

N jϕðNÞi: ð2:4Þ

The formal solution can be written in iterative form,
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jϕðNÞi ¼ eiλYĤ
□

N jφðN0Þ
0 i ¼

�
1þ

Z
Y

0

dy1ðiλĤ□

N Þ þ
Z

Y

0

dy1ðiλĤ□

N Þ
Z

y1

0

dy2ðiλĤ□

N Þ

þ
Z

Y

0

dy1ðiλĤ□

N Þ
Z

y1

0

dy2ðiλĤ□

N Þ
Z

y2

0

dy3ðiλĤ□

N Þ þ � � �
�
jφðN0Þ

0 i; ð2:5Þ

where the initial condition jφðN0Þ
0 i≡ ðφ0

1;φ
0
2;…;φ0

NÞT ex-
cites a single virtuality component: φ0

i ¼ δN0

i and corre-
sponds to the square of a single gluon propagator in the
t-channel, the tree level contribution to the scattering
amplitude in the forward limit. If jϕðNÞi ¼ ðϕ1;ϕ2;…;ϕNÞT
then

i
∂ϕj

∂Y
¼ −λ

XN
l¼1

�ð1 − δjlÞ
jl − jj − 2hðj − 1Þδjl

�
ϕl: ð2:6Þ

The growthwith energy in this square truncation depends on
thematrix size. TheN × Nmatrix Ĥ□

N is symmetric and real.
It can be diagonalized, it has normalized real eigenvectors

jψ ðNÞ
L i with real eigenvalues λðNÞ

L (L ¼ 1;…; N), and spec-
tral decomposition

Ĥ□

N ¼
XN
L¼1

λðNÞ
L jψ ðNÞ

L ihψ ðNÞ
L j: ð2:7Þ

As it is shown in Fig. 1, the spectrum of Ĥ□

N has a largest
positive eigenvalue for any N, which tends to 4 ln 2 when
N → ∞, with a gap with respect to the lower ones which are
mostly negative [59]. The number of positive eigenvalues
slowly grows with N (e.g., the second positive eigenvalue
appears when N ¼ 165).
Since any initial condition vector may be expanded in the

complete basis of eigenvectors,

jφðN0Þ
0 i ¼

XN
L¼1

cðN0Þ
L jψ ðNÞ

L i; ð2:8Þ

it is then possible to express the gluon Green’s function
state as

jϕðNÞi ¼ eiλYĤ
□

N jφðN0Þ
0 i ¼

XN
L¼1

cðN0Þ
L eiλYλ

ðNÞ
L jψ ðNÞ

L i; ð2:9Þ

where, for any Y, hϕðNÞjϕðNÞi ¼ 1 and hφðN0Þ
0 jφðN0Þ

0 i ¼P
N
L¼1 jcðN0Þ

L j2 ¼ 1.
For the sake of clarity, let us focus on the N ¼ 5 case

with Hamiltonian

Ĥ□

5 ¼

0
BBBBBBBB@

0 1 1
2

1
3

1
4

1 −2 1 1
2

1
3

1
2

1 −3 1 1
2

1
3

1
2

1 − 11
3

1

1
4

1
3

1
2

1 − 25
6

1
CCCCCCCCA
: ð2:10Þ

It has the eigenvalues ðλð5Þ1 ;…; λð5Þ5 Þ ¼ ð−4.9838;−4.07483;
−3.03006;−1.59174; 0.847101Þ. Since hψ ð5Þ

L jψ ð5Þ
M i ¼ δL;M

then, for a particular initial condition, e.g.,

jφð3Þ
0 i ¼

0
BBBBBB@

0

0

1

0

0

1
CCCCCCA

¼
X5
L¼1

cð3ÞL jψ ð5Þ
L i; ð2:11Þ

we have ðcð3Þ1 ;…; cð3Þ5 Þ ¼ ð0.166387; 0.753377; 0.278794;
0.492161;−0.291187Þ. The discretized version of the
Green’s function reads as in Eq. (2.9) (with η ¼ iλY):

jϕð5Þi≃

0
BBBBBB@

0.24 −0.28 0.031 0.014 −0.0006
0.13 0.23 −0.20 −0.15 −0.0040
0.08 0.24 0.08 0.6 0.028

0.06 0.19 0.14 −0.27 −0.11
0.041 0.12 0.10 −0.38 0.12

1
CCCCCCA

0
BBBBBB@

e0.85η

e−1.6η

e−3.0η

e−4.1η

e−5.0η

1
CCCCCCA
:

ð2:12Þ

In the following section we investigate different aspects
of this quantum system encoded in its density matrix which
is suited for the description not only of pure but mainly of
mixed states.

FIG. 1. Set of eigenvalues for the N × N Hamiltonian with
N ¼ 10, 50, 100, 200, 300.
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III. DENSITY MATRIX IN VIRTUALITY SPACE

The vector state jϕðNÞi represents a system isolated from
any external information which evolves with energy fol-
lowing (2.4). Unitary evolution is driven by the operator
ÛðYÞ ¼ eiλYĤ

□

N . In the N-dimensional Hilbert space of
discretized virtualities there exists a pure-state operator

describing the initial condition (2.8) at Y ¼ 0; ρ̂ðN;N0Þ
pure ð0Þ ¼

jφðN0Þ
0 ihφðN0Þ

0 j.
Its evolution with Y is

ρ̂ðN;N0Þ
pure ðYÞ ¼ jϕðNÞðYÞihϕðNÞðYÞj

¼
XN

L;M¼1

ðρ̂ðN;N0Þ
pure ðYÞÞL;Mjψ ðNÞ

L ihψ ðNÞ
M j: ð3:1Þ

This is a (real) hermitian matrix with elements

ðρ̂ðN;N0Þ
pure ðYÞÞL;M ¼ cðN0Þ

L ðcðN0Þ
M Þ�eiλYðλðNÞ

L −λðNÞ
M Þ. For an infini-

tesimal energy interval dY,

ρ̂ðN;N0Þ
pure ðY þ dYÞ ≃ ρ̂ðN;N0Þ

pure ðYÞ þ iλdY
�
Ĥ□

N ; ρ̂
ðN;N0Þ
pure ðYÞ�:

ð3:2Þ
Therefore

dρ̂ðN;N0Þ
pure

iλdY
¼ �

Ĥ□

N ; ρ̂
ðN;N0Þ
pure

�

¼
XN

L;M¼1

cðN0Þ
L ðcðN0Þ

M Þ�ðλðNÞ
L − λðNÞ

M Þ

× eiλYðλ
ðNÞ
L −λðNÞ

M Þjψ ðNÞ
L ihψ ðNÞ

M j; ð3:3Þ

a Liouville-von Neumann equation for the pure-density
state operator (3.1). Its trace is unity and time independent,

Trðρ̂ðN;N0Þ
pure ðYÞÞ ¼

XN
L;M¼1

ðρ̂ðN;N0Þ
pure ðYÞÞL;Mhψ ðNÞ

M jψ ðNÞ
L i

¼
XN
L¼1

jcðN0Þ
L j2 ¼ 1: ð3:4Þ

This implies that ρ̂ðN;N0Þ
pure allows for the proper evaluation of

expectation values of operators, hÂiY ¼ TrðÂρ̂ðN;N0Þ
pure Þ.

Since it is an idempotent matrix with trace one, it has a
single nonzero eigenvalue λ

ρ̂
ðN;N0Þ
pure

¼ 1. It is a projector onto

a one-dimensional subspace within the Hilbert space of
possible quantum states. There exists a complete knowl-
edge of the state of the system at any Y. This density matrix

is called a pure state; its purity is one: Trðρ̂ðN;N0Þ
pure Þ2 ¼ 1.

The fact that the rank of the density matrix associated to
the Green’s function state is one for any value of Y implies
that its von Neumann entropy,

SðN;N0Þ
vN ðYÞ ¼ −Trðρ̂ðN;N0Þ

pure ðYÞlog2ρ̂ðN;N0Þ
pure ðYÞÞ

¼ −λ
ρ̂
ðN;N0Þ
pure

ðYÞlog2λρ̂ðN;N0Þ
pure

ðYÞ; ð3:5Þ

given in terms of the single nonzero eigenvalue of the
density matrix, is zero. This is natural since it is a measure
of the amount of uncertainty or lack of information
associated to a quantum state.
In order to have a mixed state multiple nonzero eigen-

values must be present in the spectrum of the density
matrix. The effective dimension of a mixed state is defined
as the inverse of its purity, deffðρ̂ðNÞÞ ¼ ðTrðρ̂ðNÞðηÞÞ2Þ−1
and provides a measure of how many pure states contribute
significantly to the mixture.
In the next section we focus on how to modify this

picture when nonlinear higher-order corrections are intro-
duced in the formalism. This is a very complicated problem
if treated in full generality. It is nevertheless possible to
study how one of its main effects, the suppression of
infrared components, affects the Hermiticity and spectrum
of eigenvalues of the BFKL Hamiltonian in the theoretical
framework under discussion in this work.

IV. SCREENING OF INFRARED DIFFUSION

An important consequence of introducing the interaction
of the BFKL Pomeron with multiple Reggeized gluon
states, is the suppression of diffusion into low virtualities
(see, e.g., [55,56]). In order to investigate the implication of
this effect in the quantum properties of the BFKL states we
will study a modification of the original Hamiltonian in
Eq. (2.1) which has been already investigated in [59]. This
amounts to introducing an asymmetry between infrared and
ultraviolet diffusion by suppressing the former in the form

ðĤdressed
N Þi;j ¼

XN−1

n¼1

�
j
i

�
κ δjþn

i

n
þ
XN−1

n¼1

δjiþn

n
− 2hði − 1Þδji

¼
�
j
i

�
κ θði − jÞ

i − j
þ θðj − iÞ

j − i
− 2hði − 1Þδji :

ð4:1Þ

We will study in which range of the real-valued positive
parameter κ it is possible to operate with a proper quantum
state in any region of the coupling constant complex plane.
The infrared-dressed Hamiltonian (4.1) is no longer

Hermitian. This has an important effect on the spectrum
of the theory. It still consists of real eigenvalues where the
largest, positive, onegets rapidly reduced as κ increases [59].
This is easy to understand since as κ → ∞ the Hamiltonian
becomes a triangular matrix whose eigenvalues correspond
to the diagonal elements −2hði − 1Þ, with i ¼ 1; 2;…. This
is shown for N ¼ 5, 50, 200 in Fig. 2. For example, for
κ ¼ 0.5, N ¼ 5 the original spectrum is modified to
ð−4.92985;−4.00719;−2.94808;−1.52508; 0.576859Þ.
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The associatedGreen’s function state for the initial condition
of Eq. (2.11) reads

jϕð5Þi≃

0
BBBBBB@

0.28 −0.34 0.04 0.01 0.00

0.11 0.30 −0.25 −0.16 0.00

0.06 0.26 0.10 0.55 0.03

0.04 0.18 0.15 −0.26 −0.10
0.02 0.11 0.10 −0.34 0.10

1
CCCCCCA

0
BBBBBB@

e0.58η

e−1.53η

e−2.95η

e−4.01η

e−4.93η

1
CCCCCCA
:

ð4:2Þ

As we have already discussed, when κ ¼ 0 the norm of
the BFKL state along the line α ¼ iλ is one for any Y. Even
if it is non-Hermitian, the dressed Hamiltonian does not
generate complex eigenvalues although its eigenvectors do
not form an orthogonal set. This implies that the quantum
state is no longer normalized to unity. In Fig. 3 this
normalization is shown for N ¼ 5 and different values
of the screening parameter κ. With oscillations in λY, the
scaling variable, the norm is larger than one for nonzero
values of κ. It is possible to interpret this change in the
normalization of the state as a consequence of the inter-
action with diagrams containing multiple Reggeized gluon
states. Their influence in the system is parametrized by κ. A
study where this idea is put forward can be found in
Ref. [56] where it is shown that in nonlinear evolution
equations in the zero conformal spin sector (as the one
considered here) the Green’s functions receives the bulk of
the contributions from anti-collinear configurations where
the infrared/ultraviolet symmetry is manifestly broken.
To study the quantum state in the physical region it is

needed to analytically continue to the real line for α. For
this the path α ¼ λþ ie−σλ tanhðσλÞ with σ ¼ 50 is chosen
(see Fig. 4). This particular choice is arbitrary but it allows
us to transit from a region of bounded normalization of the
quantum state, very close to the imaginary axis, toward the
physical region of real coupling smoothly, while keeping
the modulus of the coupling small. Our conclusions are

independent of the choice of path (as they also are of the
size of N).
As expected from the generic properties of the BFKL

Pomeron, a fast rise of the norm of the BFKL quantum state
appears when the system approaches the region of physical
coupling. This effect is larger for larger values of Y and is
plotted in Fig. 5 (top). This drastically changes when
introducing the infrared screening as can be seen in Fig. 5
(down). In this case the normalization of the state is smaller
than one for any value of the coupling near the real line and
decreases as the energy increases. In Fig. 6 (top) it is
shown, for α ≃ 0.2, N ¼ 5 and increasing values of κ,
how the infrared dressing removes a large fraction of
the probability associated to the state as Y increases.
The infrared suppression saturates its effect at κ ∼Oð5Þ.
This final state configuration at larger κ is invariant with N,
see Fig. 6 (down) for N ¼ 100.
Along the real line for the coupling, and upon evolution,

the original system (with κ ¼ 0) rearranges itself from the
initial pure state at Y ¼ 0 into the asymptotic configuration.
After a finite amount of evolution in energy the different
virtuality components of the quantum state converge to the
same stable configuration. This is seen in Fig. 7 where five

FIG. 2. Largest eigenvalue for Hamiltonians with different N as
a function of κ. FIG. 3. Normalization of the BFKL quantum state along the

line α ¼ iλ for the coupling. It scales with the product λY. The flat
line corresponds to H□

5 while the oscillatory ones corresponds to
Ĥdressed

5 with different values of the screening parameter κ.

0.1 0.2 0.3 0.4 0.5
Re(�)

–0.1

0.0

0.1

0.2

0.3

Im(� )

FIG. 4. Analytic continuation path for the coupling α ¼ λþ
ie−σλ tanhðσλÞ with σ ¼ 50.
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distinct pure state initial conditions, exciting different
virtuality modes, are plotted. It can be seen how the five
(for N ¼ 5) component state loses “memory” of the initial
condition very rapidly. For real coupling and sufficiently
large κ, the rapidity evolution of the quantum state can
become stable in a given range of Y. An example is Fig. 8
where, for N ¼ 5 and κ ¼ 5, we see how all virtuality
modes reach a flat behavior at large values of Y.
Non-Hermitian Hamiltonians appear in open quantum

systems where some sort of interaction with an external
environment is present. In the BFKL system this external
actor would be the higher-order nonlinear quantum cor-
rections. In the next section we investigate the possibility of
generating decoherence effects due to the suppression of
infrared modes and how this is related to the normalization
of the quantum state. We will also show how to regain a
probabilistic picture within this setup.

V. NON-HERMITIAN HAMILTONIAN

As we have seen, the original formulation of the BFKL
Hamiltonian along the line α ¼ iλ transforms pure states into
pure states since the trace of the associated density matrix,
which is a projector, is one. This cannot be the case for the
infrared dressed Hamiltonian since the normalization of
the state changes with the variable λY, Fig. 3. This implies
that the trace and purity of the density matrix grow to values
bigger than one and hence spoil the quantum properties of the
system. It is therefore mandatory to return to the physical
region for the coupling to investigate how pure states evolve
into mixed ones generated by the decoherence process
introduced through the infrared dressing, considered as an
effective description of higher-order quantum nonlinearities.
If this is done for the original BFKL formalism, Fig. 9 (top),
instabilities in the purity of the state soon appear when Y and
thevalueof the coupling are large enough.The structure of the
quantum state is not properly defined especially when being
very close to physical values of the coupling.
This situation largely improves if the infrared dressing is

implemented. In Fig. 9 (down) it can be seen that for
Ĥdressed

N a smooth transition emerges for any nonzero value
of Y from a pure state when the coupling tends to zero
toward a highly mixed state in its physical region. This
process of decoherence takes place at a faster pace as Y
rises. If the coupling is fixed to α ≃ 0.2 and the Y
dependence of the purity is studied, Fig. 10 (top), a rapid
rise for the original Ĥ□

N is found. The dressed Hamiltonian,
Ĥdressed

N , leads on the other hand to a rapid transition, faster
as κ ≥ 4 grows, from the initial pure state toward a highly
mixed state at large values of Y. This picture is not modified
as N grows, see Fig. 10 (down) for N ¼ 100.
In order to deal with an open system driven by a non-

Hermitian Hamiltonian such as the dressed hamiltonian in
Eq. (4.1), it is useful to express it as a sum of symmetric and
antisymmetric parts, i.e.,

FIG. 5. Normalization of the BFKL quantum state as a function
of λ with coupling α ¼ λþ ie−σλ tanhðσλÞ, σ ¼ 50, for different
values of Y and N ¼ 5, in the original formulation (top) and with
infrared suppression (down).

FIG. 6. Normalization of the quantum state with infrared
dressing κ as a function of Y with coupling α ≃ λ ¼ 0.2.
N ¼ 5 (top) and N ¼ 100 (down).
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Ĥdressed
N ¼ Ĥþ

N þ Ĥ−
N; ð5:1Þ

Ĥþ
N ¼ ðĤþ

NÞT ¼ 1

2

�
Ĥdressed

N þ ðĤdressed
N ÞT	; ð5:2Þ

Ĥ−
N ¼ −ðĤ−

NÞT ¼ 1

2

�
Ĥdressed

N − ðĤdressed
N ÞT	: ð5:3Þ

The evolution with energy of the quantum state is now
expressed in terms of these two Hamiltonians. For a
coupling of the form α ¼ λþ ifðλÞ, with λ; f∈ℜ, it reads

∂

∂Y
jϕðNÞi ¼ ðλþ ifðλÞÞĤþ

N jϕðNÞi þ ðλþ ifðλÞÞĤ−
N jϕðNÞi;

ð5:4Þ

∂

∂Y
hϕðNÞj ¼ ðλ − ifðλÞÞhϕðNÞjĤþ

N − ðλ − ifðλÞÞhϕðNÞjĤ−
N:

ð5:5Þ

For the density matrix ρ̂ðNÞðYÞ ¼ jϕðNÞihϕðNÞj this implies
an evolution driven by commutators and anticommutators,

∂

∂Y
ρ̂ðNÞ ¼ λfĤþ

N; ρ̂
ðNÞg þ ifðλÞ½Ĥþ

N; ρ̂
ðNÞ�

þ λ½Ĥ−
N; ρ̂

ðNÞ� þ ifðλÞfĤ−
N; ρ̂

ðNÞg: ð5:6Þ

The derivative of its trace is

∂

∂Y
Trðρ̂ðNÞÞ ¼ 2λTrðĤþ

N ρ̂
ðNÞÞ: ð5:7Þ

This translates into the purity Trððρ̂ðNÞÞ2Þ ¼ ðPN
L¼1 jϕLj2Þ2

of the quantum state:

∂

∂Y
Trððρ̂ðNÞÞ2Þ ¼ 4λTrðρ̂ðNÞÞTrðĤþ

N ρ̂
ðNÞÞ: ð5:8Þ

The corresponding von Neumann entropy of the quantum
system

SðNÞ
vN ¼ −Trðρ̂ðNÞlog2ρ̂ðNÞÞ ð5:9Þ

is studied in Fig. 11. It can be seen how a very fast
decoherence process takes place at small energy. After
reaching a maximum at a small value of Y, with an entropy,

SðNÞ
vN ≃ 0.5, corresponding to a highly but not completely

FIG. 7. Original BFKL evolution for N ¼ 5 with different initial pure states.
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mixed state, there is a phase of monotonic decrease to a
finite constant value of entropy when N; Y → ∞. The
physical origin of this asymptotic finite von Neumann
entropy is an interesting source of study for future works.
To evaluate quantum averages of operators, hOiY ¼

TrðÔΩ̂ðNÞÞ, it is needed to use a normalized density matrix
with trace one see, e.g. [60]),

Ω̂ðNÞ ≡ ρ̂ðNÞ

Trðρ̂ðNÞÞ : ð5:10Þ

This is idempotent, since Trððρ̂ðNÞÞ2Þ ¼ ðTrðρ̂ðNÞÞÞ2. Its
energy derivative follows

∂

∂Y
Ω̂ðNÞ ¼ ifðλÞ½Ĥþ

N; Ω̂
ðNÞ� þ ifðλÞfĤ−

N; Ω̂ðNÞg
þ λfĤþ

N; Ω̂
ðNÞg þ λ½Ĥ−

N; Ω̂ðNÞ� − 2λΩ̂ðNÞhĤþ
NiY:

ð5:11Þ
The nonlinear last term ensures probability conservation,
∂

∂Y TrðΩ̂ðNÞÞ ¼ 0. It is interesting to observe that hĤþ
NiY

tends to zero in the large Y limit (Fig. 12) if the values of κ
are sufficiently large to stabilize the entropy.

There are very interesting approaches in the literature
which have investigated the concept of a density matrix in
nonlinear evolution equations. A particular one, in the
context of the color glass condensate is that of Ref. [37].
Although it is a much more sophisticated approach than the
one presented here, they also found a decrease of purity
with energy and were able to describe the system
with a Linbland equation associated to an open system
(it is also known as Franke-Gorini-Kossakowski-Lindblad-
Sudarshan equation [61–63]).
The evolution equation in (5.11) can be written in

Lindblad form once Ĥþ
N ¼ L̂T

NL̂N , with L̂N ¼ D̂NQ̂N ,
D̂N ¼ diagð ffiffiffiffiffi

μ1
p

;…;
ffiffiffiffiffiffi
μN

p Þ, where μi are the eigenvalues
of Ĥþ

N , i.e.

TrðĤþ
NΩ̂

ðNÞÞ ¼ TrðL̂NΩ̂ðNÞL̂T
NÞ: ð5:12Þ

Finally, the evolution equation reads

∂

∂Y
Ω̂ðNÞ ¼ ðλþ ifðλÞÞĤdressed

N Ω̂ðNÞ þ H:c:

− 2λΩ̂ðNÞTrðL̂NΩ̂ðNÞL̂T
NÞ: ð5:13Þ

FIG. 8. Five solutions of the N ¼ 5 system with different initial conditions as pure states when the largest eigenvalue is suppressed by
the dressing operator.
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This corresponds to a driven open quantum system with no
dissipation but some external fluctuations acting to pre-
serve probability. On the real line, f ¼ 0, it can also be
written as

∂

∂Y
Ω̂ðNÞ ¼ λðĤ−

N þ L̂T
NL̂NÞΩ̂ðNÞ þ H:c:

− 2λΩ̂ðNÞTrðL̂NΩ̂ðNÞL̂T
NÞ: ð5:14Þ

This equation has quasi-Lindbladian structure where Ĥ−
N

corresponds to coherent evolution of a system inside a
quantum environment which generates dissipation repre-
sented by L̂T

NL̂N, minus quantum fluctuations responsible
for probability conservation. Instead of having N2 − 1
Lindblad operators as in the standard Lindblad equation
there is only one, L̂N .
The associated entropy, Fig. 11, reaches a plateau at a

nonzero value for large Y. This follows a fast period of
Lindblad decoherence. The roles of system and environ-
ment are somehow reversed from what one would naively
argue. It would be more natural to obtain a picture where
the Hermitian Hamiltonian Ĥþ

N drives the evolution, receiv-
ing corrections encoded in Ĥ−

N , but just the opposite
appears. It is also noteworthy that the corrections due to
quantum fluctuations, after the period of decoherence,
generate a small and negative contribution to the derivative
of the density matrix (Fig. 12 times −2λΩ̂ðNÞ). Interpreted

FIG. 10. Purity of the BFKL quantum state as a function of Y
with coupling α ≃ λ ¼ 0.2 in the original formulation and with
infrared suppression (κ ≠ 0). N ¼ 5 (top), N ¼ 100 (down).

FIG. 9. Purity of the BFKL quantum state as a function of λ
with coupling α ¼ λþ ie−κλ tanhðκλÞ, κ ¼ 50, for different val-
ues of Y, in the original formulation (top) and with infrared
suppression (down).

FIG. 11. Von Neumann entropy as a function of Y for coupling
α ≃ λ ¼ 0.2 with infrared suppression.

FIG. 12. TrðĤþ
NΩ̂

ðNÞÞ as a function of Y for coupling α ≃ λ ¼
0.2 with infrared suppression.
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as a gain and loss system we find that the environment
provides the latter while the non-Hermitian contribution
provides a source of the former where now the trace of the
density matrix is conserved.

VI. CONCLUSIONS

The resummation of high energy logarithms present in
scattering amplitudes in QCD and supersymmetric theories
leads to the BFKL equation. By discretizing the space of
virtualities in loop corrections and regularizing it inside a
box, it is possible to explore quantum properties of the state
associated to the gluon Green’s function. For imaginary
values of the coupling its normalization is bounded and
preserved under rapidity evolution. This implies that pure
states of well defined virtuality are evolved into pure states
characterized by a density matrix with purity one.
As a model of nonlinear corrections, which introduce

contributions to unitarity via suppression of the diffusion
intro infrared modes, we study the spectrum of a modified
Hamiltonian whose largest positive eigenvalue can become
arbitrarily small. This introduces quantum decoherence
which affects the normalization of the state forcing to
analytically continue the coupling to the real line. This
shows how the rapidity evolution of the state generates
unbounded normalization for usual BFKL while a bounded
one for enough saturation of infrared modes. This implies
that to obtain correct quantum properties at high energies
such as a purity smaller than one or a positive von-
Neumann entropy it is needed to break the infrared/ultra-
violet original symmetry of the BFKL equation.

Stemming from a non-Hermitian Hamiltonian, the den-
sity matrix describing the open system, when normalized,
fulfils an evolution equation of Lindblad type with dis-
sipation and quantum fluctuations, Eq. (5.14). Much work
remains to be done for the future. This includes the
introduction of higher order corrections both in QCD
and supersymmetric theories and the implementation of
a more precise model of unitarization corrections to allow
for a more complete comparison to previous works where
the Lindblad equation of an open system appears [37,64].
Although the results here presented are robust, it is
desirable to connect with other approaches in forthcoming
works.

ACKNOWLEDGMENTS

The work of G. C. was supported by the Fundação para a
Ciência e a Tecnologia (Portugal) under project CERN/FIS-
PAR/0032/2021 and contract “Investigador FCT—
Individual Call/03216/2017” and by project EXPL/FIS-
PAR/1195/2021. M. H. would like to thank the IFT UAM/
CSIC for hospitality. The work of A. S. V. is partially
supported by the Spanish Research Agency (Agencia
Estatal de Investigación) through the Grant IFT Centro
de Excelencia Severo Ochoa No. CEX2020-001007-S,
funded by MCIN/AEI/10.13039/501100011033 and the
Spanish Ministry of Science and Innovation Grant
No. PID2019–110058 GB-C21/ C22. It has also received
funding from the European Union’s Horizon 2020 research
and innovation programme under Grant agreement
No. 824093.

[1] W. Gong, G. Parida, Z. Tu, and R. Venugopalan, Phys. Rev.
D 106 (2022), L031501.

[2] W. A. de Jong, K. Lee, J. Mulligan, M. Płoskoń, F. Ringer,
and X. Yao, Phys. Rev. D 106, 054508 (2022).

[3] T. Li, X. Guo, W. K. Lai, X. Liu, E. Wang, H. Xing, D.-B.
Zhang, and S.-L. Zhu (QuNu Collaboration), Phys. Rev. D
105, L111502 (2022).

[4] J. Barata and C. A. Salgado, Eur. Phys. J. C 81, 862 (2021).
[5] Z. Davoudi, I. Raychowdhury, and A. Shaw, Phys. Rev. D

104, 074505 (2021).
[6] R. A. Briceño, J. V. Guerrero, M. T. Hansen, and A. M.

Sturzu, Phys. Rev. D 103, 014506 (2021).
[7] J. Liu and Y. Xin, J. High Energy Phys. 12 (2020) 011.
[8] B. Chakraborty, M. Honda, T. Izubuchi, Y. Kikuchi, and A.

Tomiya, Phys. Rev. D 105, 094503 (2022).
[9] H. Lamm, S. Lawrence, and Y. Yamauchi (NuQS Collabo-

ration), Phys. Rev. Res. 2, 013272 (2020).
[10] N. Mueller, A. Tarasov, and R. Venugopalan, Phys. Rev. D

102, 016007 (2020).

[11] S. R. Beane, D. B. Kaplan, N. Klco, and M. J. Savage, Phys.
Rev. Lett. 122, 102001 (2019).

[12] D. E. Kharzeev and E. M. Levin, Phys. Rev. D 95, 114008
(2017).

[13] I. R. Klebanov, D. Kutasov, and A. Murugan, Nucl. Phys.
B796, 274 (2008).

[14] D. Beck, J. Carlson, Z. Davoudi, J. Formaggio, S.
Quaglioni, M. Savage, J. Barata, T. Bhattacharya, M.
Bishof, I. Cloet et al., arXiv:2303.00113.

[15] A. Dumitru, A. Kovner, and V. V. Skokov, Phys. Rev. D 108,
014014 (2023).

[16] H. Duan, A. Kovner, and V. V. Skokov, Phys. Rev. D 105,
056009 (2022).

[17] A.Dumitru andE.Kolbusz, Phys. Rev.D 105, 074030 (2022).
[18] G. S. Ramos and M. V. T. Machado, Phys. Rev. D 105,

094009 (2022).
[19] W. Kou, X. Wang, and X. Chen, Phys. Rev. D 106, 096027

(2022).
[20] P. J. Ehlers, Ann. Phys. (Amsterdam) 452, 169290 (2023).

CHACHAMIS, HENTSCHINSKI, and SABIO VERA PHYS. REV. D 109, 054015 (2024)

054015-10

https://doi.org/10.1103/PhysRevD.106.L031501
https://doi.org/10.1103/PhysRevD.106.L031501
https://doi.org/10.1103/PhysRevD.106.054508
https://doi.org/10.1103/PhysRevD.105.L111502
https://doi.org/10.1103/PhysRevD.105.L111502
https://doi.org/10.1140/epjc/s10052-021-09674-9
https://doi.org/10.1103/PhysRevD.104.074505
https://doi.org/10.1103/PhysRevD.104.074505
https://doi.org/10.1103/PhysRevD.103.014506
https://doi.org/10.1007/JHEP12(2020)011
https://doi.org/10.1103/PhysRevD.105.094503
https://doi.org/10.1103/PhysRevResearch.2.013272
https://doi.org/10.1103/PhysRevD.102.016007
https://doi.org/10.1103/PhysRevD.102.016007
https://doi.org/10.1103/PhysRevLett.122.102001
https://doi.org/10.1103/PhysRevLett.122.102001
https://doi.org/10.1103/PhysRevD.95.114008
https://doi.org/10.1103/PhysRevD.95.114008
https://doi.org/10.1016/j.nuclphysb.2007.12.017
https://doi.org/10.1016/j.nuclphysb.2007.12.017
https://arXiv.org/abs/2303.00113
https://doi.org/10.1103/PhysRevD.108.014014
https://doi.org/10.1103/PhysRevD.108.014014
https://doi.org/10.1103/PhysRevD.105.056009
https://doi.org/10.1103/PhysRevD.105.056009
https://doi.org/10.1103/PhysRevD.105.074030
https://doi.org/10.1103/PhysRevD.105.094009
https://doi.org/10.1103/PhysRevD.105.094009
https://doi.org/10.1103/PhysRevD.106.096027
https://doi.org/10.1103/PhysRevD.106.096027
https://doi.org/10.1016/j.aop.2023.169290


[21] P. Asadi and V. Vaidya, Phys. Rev. D 108, 014036 (2023).
[22] W. Kou and X. Chen, Phys. Lett. B 846, 138199 (2023).
[23] K. Kutak, arXiv:2310.18510.
[24] U. Gürsoy, D. E. Kharzeev, and J. F. Pedraza, arXiv:2306.

16145.
[25] J. Barata, W. Gong, and R. Venugopalan, arXiv:2308.

13596.
[26] M. Hentschinski, D. E. Kharzeev, K. Kutak, and Z. Tu,

Phys. Rev. Lett. 131, 241901 (2023).
[27] M. Hentschinski, K. Kutak, and R. Straka, Eur. Phys. J. C

82, 1147 (2022).
[28] M. Hentschinski and K. Kutak, Eur. Phys. J. C 82, 111

(2022).
[29] Y. Liu, M. A. Nowak, and I. Zahed, arXiv:2302.01380.
[30] Y. Liu, M. A. Nowak, and I. Zahed, Phys. Rev. D 108,

094025 (2023).
[31] Y. Liu, M. A. Nowak, and I. Zahed, Phys. Rev. D 108,

034017 (2023).
[32] Y. Liu, M. A. Nowak, and I. Zahed, Phys. Rev. D 107,

054010 (2023).
[33] Y. Liu, M. A. Nowak, and I. Zahed, Phys. Rev. D 105,

114028 (2022).
[34] Y. Liu, M. A. Nowak, and I. Zahed, Phys. Rev. D 105,

114027 (2022).
[35] Y. Liu, M. A. Nowak, and I. Zahed, Phys. Rev. D 105,

114021 (2022).
[36] Y. Liu, M. A. Nowak, and I. Zahed, Phys. Rev. D 105,

054021 (2022).
[37] N. Armesto, F. Dominguez, A. Kovner, M. Lublinsky, and

V. Skokov, J. High Energy Phys. 05 (2019) 025.
[38] H. Duan, C. Akkaya, A. Kovner, and V. V. Skokov, Phys.

Rev. D 101, 036017 (2020).
[39] L. N. Lipatov, Zh. Eksp. Teor. Fiz. 90, 1536 (1986) [Sov.

Phys. JETP 63, 904 (1986)].
[40] L. N. Lipatov, Yad. Fiz. 23, 642 (1976) [Sov. J. Nucl. Phys.

23, 338 (1976)].
[41] V. S. Fadin, E. A. Kuraev, and L. N. Lipatov, Phys. Lett. B

60, 50 (1975).

[42] E. A. Kuraev, L. N. Lipatov, and V. S. Fadin, Zh. Eksp. Teor.
Fiz. 71, 840 (1976) [Sov. Phys. JETP 44, 443 (1976)].

[43] E. A. Kuraev, L. N. Lipatov, and V. S. Fadin, Zh. Eksp. Teor.
Fiz. 72, 377 (1977) [Sov. Phys. JETP 45, 199 (1977)].

[44] I. I. Balitsky and L. N. Lipatov, Yad. Fiz. 28, 1597 (1978)
[Sov. J. Nucl. Phys. 28, 822 (1978)].

[45] L. N. Lipatov, Nucl. Phys. B452, 369 (1995).
[46] L. N. Lipatov, Phys. Rep. 286, 131 (1997).
[47] M. Hentschinski, Phys. Rev. D 97, 114027 (2018).
[48] M. Hentschinski and A. Sabio Vera, Phys. Rev. D 85,

056006 (2012).
[49] M. Gómez Bock, M. Hentschinski, and A. Sabio Vera, Eur.

Phys. J. C 80, 1193 (2020).
[50] M. Hentschinski, From the Past to the Future (World

Scientific, Singapore, 2021).
[51] M. Hentschinski, K. Kutak, and A. van Hameren, Eur. Phys.

J. C 81, 112 (2021); 81, 262(E) (2021).
[52] M. Hentschinski, Phys. Rev. D 104, 054014 (2021).
[53] G. Chachamis and A. Sabio Vera, J. High Energy Phys. 07

(2022) 109.
[54] M. Hentschinski, A. Sabio Vera, and C. Salas, Phys. Rev.

Lett. 110, 041601 (2013).
[55] A. Mueller and D. Triantafyllopoulos, Nucl. Phys. B640,

331 (2002).
[56] J. Bartels and K. Kutak, Eur. Phys. J. C 53, 533 (2008).
[57] L. V. Gribov, E. M. Levin, and M. G. Ryskin, Phys. Rep.

100, 1 (1983).
[58] L. D. McLerran and R. Venugopalan, Phys. Rev. D 49, 2233

(1994).
[59] N. Bethencourt de León, G. Chachamis, A. Romagnoni, and

A. Sabio Vera, Eur. Phys. J. C 80, 549 (2020).
[60] A. Sergi and K. G. Zloshchastiev, Phys. Rev. A 91, 062108

(2015).
[61] V. A. Franke, Teor. Mat. Fiz. 27, 172 (1976).
[62] V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, J. Math.

Phys. (N.Y.) 17, 821 (1976).
[63] G. Lindblad, Commun. Math. Phys. 48, 119 (1976).
[64] M. Li and A. Kovner, J. High Energy Phys. 05 (2020) 036.

VON NEUMANN ENTROPY AND LINDBLAD DECOHERENCE IN … PHYS. REV. D 109, 054015 (2024)

054015-11

https://doi.org/10.1103/PhysRevD.108.014036
https://doi.org/10.1016/j.physletb.2023.138199
https://arXiv.org/abs/2310.18510
https://arXiv.org/abs/2306.16145
https://arXiv.org/abs/2306.16145
https://arXiv.org/abs/2308.13596
https://arXiv.org/abs/2308.13596
https://doi.org/10.1103/PhysRevLett.131.241901
https://doi.org/10.1140/epjc/s10052-022-11122-1
https://doi.org/10.1140/epjc/s10052-022-11122-1
https://doi.org/10.1140/epjc/s10052-022-10056-y
https://doi.org/10.1140/epjc/s10052-022-10056-y
https://arXiv.org/abs/2302.01380
https://doi.org/10.1103/PhysRevD.108.094025
https://doi.org/10.1103/PhysRevD.108.094025
https://doi.org/10.1103/PhysRevD.108.034017
https://doi.org/10.1103/PhysRevD.108.034017
https://doi.org/10.1103/PhysRevD.107.054010
https://doi.org/10.1103/PhysRevD.107.054010
https://doi.org/10.1103/PhysRevD.105.114028
https://doi.org/10.1103/PhysRevD.105.114028
https://doi.org/10.1103/PhysRevD.105.114027
https://doi.org/10.1103/PhysRevD.105.114027
https://doi.org/10.1103/PhysRevD.105.114021
https://doi.org/10.1103/PhysRevD.105.114021
https://doi.org/10.1103/PhysRevD.105.054021
https://doi.org/10.1103/PhysRevD.105.054021
https://doi.org/10.1007/JHEP05(2019)025
https://doi.org/10.1103/PhysRevD.101.036017
https://doi.org/10.1103/PhysRevD.101.036017
https://doi.org/10.1016/0370-2693(75)90524-9
https://doi.org/10.1016/0370-2693(75)90524-9
https://doi.org/10.1016/0550-3213(95)00390-E
https://doi.org/10.1016/S0370-1573(96)00045-2
https://doi.org/10.1103/PhysRevD.97.114027
https://doi.org/10.1103/PhysRevD.85.056006
https://doi.org/10.1103/PhysRevD.85.056006
https://doi.org/10.1140/epjc/s10052-020-08751-9
https://doi.org/10.1140/epjc/s10052-020-08751-9
https://doi.org/10.1140/epjc/s10052-021-08902-6
https://doi.org/10.1140/epjc/s10052-021-08902-6
https://doi.org/10.1140/epjc/s10052-021-08999-9
https://doi.org/10.1103/PhysRevD.104.054014
https://doi.org/10.1007/JHEP07(2022)109
https://doi.org/10.1007/JHEP07(2022)109
https://doi.org/10.1103/PhysRevLett.110.041601
https://doi.org/10.1103/PhysRevLett.110.041601
https://doi.org/10.1016/S0550-3213(02)00581-3
https://doi.org/10.1016/S0550-3213(02)00581-3
https://doi.org/10.1140/epjc/s10052-007-0501-6
https://doi.org/10.1016/0370-1573(83)90022-4
https://doi.org/10.1016/0370-1573(83)90022-4
https://doi.org/10.1103/PhysRevD.49.2233
https://doi.org/10.1103/PhysRevD.49.2233
https://doi.org/10.1140/epjc/s10052-020-8098-0
https://doi.org/10.1103/PhysRevA.91.062108
https://doi.org/10.1103/PhysRevA.91.062108
https://doi.org/10.1063/1.522979
https://doi.org/10.1063/1.522979
https://doi.org/10.1007/BF01608499
https://doi.org/10.1007/JHEP05(2020)036

