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We study the mass spectrum of light pseudoscalar and vector mesons in the presence of an external
uniform magnetic field B⃗, considering the effects of the mixing with the axial-vector meson sector. The
analysis is performed within a two-flavor NJL-like model which includes isoscalar and isovector couplings
together with a flavor mixing ’t Hooft-like term. The effect of the magnetic field on charged particles is
taken into account by retaining the Schwinger phases carried by quark propagators, and expanding the
corresponding meson fields in proper Ritus-like bases. The spin-isospin and spin-flavor decomposition of
meson mass states is also analyzed. For neutral pion masses it is shown that the mixing with axial vector
mesons improves previous theoretical results, leading to a monotonic decreasing behavior with B that is
in good qualitative agreement with lattice QCD (LQCD) calculations, both for the case of constant or
B-dependent couplings. Regarding charged pions, it is seen that the mixing softens the enhancement of
their mass with B. As a consequence, the energy becomes lower than the one corresponding to a pointlike
pion, improving the agreement with LQCD results. The agreement is also improved for the magnetic
behavior of the lowest ρþ energy state, which does not vanish for the considered range of values of B—a
fact that can be relevant in connection with the occurrence of meson condensation for strong magnetic
fields.
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I. INTRODUCTION

The effects caused by magnetic fields larger than jeBj ∼
Λ2
QCD on the properties of strong-interacting matter have

attracted a lot of attention along the last decades [1–3]. In
part, this is motivated by the realization that such magnetic
fields might play an important role in the study of the early
Universe [4,5], in the analysis of high-energy noncentral
heavy ion collisions [6,7] and in the description of compact
stellar objects like the magnetars [8,9]. In addition to this
phenomenological relevance, from the theoretical point
of view, external magnetic fields can be used to probe
QCD dynamics, allowing for a confrontation of theo-
retical results obtained through different approaches to
nonperturbative QCD. In this sense, several interesting

phenomena have been predicted to be induced by the
presence of strong magnetic fields. They include the chiral
magnetic effect [10–12], the enhancement of the QCD
quark-antiquark condensate (magnetic catalysis) [13], the
decrease of critical temperatures for chiral restoration and
deconfinementQCD transitions (inversemagnetic catalysis)
[14,15], etc.
In this context, the understanding of the way in which

the properties of light hadrons are modified by the presence
of an intense magnetic field becomes a very relevant
task. Clearly, this is a nontrivial problem, since first-
principle theoretical calculations require to deal in general
with QCD in a low-energy nonperturbative regime. As a
consequence, the corresponding theoretical analyses have
been carried out using a variety of approaches. The effect of
intense external magnetic fields on π meson properties has
been studied e.g. in the framework of Nambu-Jona-Lasinio
(NJL)-like models [16–35], quark-meson models [36–40],
chiral perturbation theory (ChPT) [41–43], path integral
Hamiltonians [44,45], effective chiral confinement
Lagrangians [46,47] and QCD sum rules [48]. In addition,
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several results for the π meson spectrum in the presence of
background magnetic fields have been obtained from lattice
QCD (LQCD) calculations [14,49–53]. Regarding the ρ
meson sector, studies of magnetized ρ meson masses in the
framework of effective models and LQCD can be found in
Refs. [20,25,30,34,45,54–58] and Refs. [49–51,59–61],
respectively. The effect of an external magnetic field
on nucleon masses has also been considered in several
works [62–70].
In most of the existing model calculations of meson

masses the mixing between states of different spin/isospin
has been neglected. Although such mixing contributions are
usually forbidden by isospin and/or angular momentum
conservation, they can be nonzero (and may become
important) in the presence of the external magnetic field.
Effects of this kind have been studied recently by some of the
authors of the presentwork, for both neutral [71] and charged
mesons [72]. Those analyses have been performed in the
framework of an extended NJL-like model, where, for
simplicity, possible axial vector interactions have been
neglected. The aim of the present work is to study how
those previous results get modified when the presence of
axial vector mesons is explicitly taken into account. In fact,
due to symmetry reasons, in the context of the NJL model
and its extensions [73–75] vector and axial vector inter-
actions are expected to be considered on the same footing
(see e.g. Refs. [76,77]). This, in turn, implies the existence of
the so-called “π-a1 mixing” even at vanishing external
magnetic field. Such a mixing has to be properly taken into
account in order to correctly identify the pion mass states.
Thus, the inclusion of the axial interactions is expected to be
particularly relevant for the analysis of lowestmesonmasses.
Regarding the explicit calculation, as shown in previous

works [26,29,72,78,79], one has to deal with the meson
wave functions that arise as solutions of the equations of
motion in the presence of the external magnetic field
(which we assume to be static and uniform). In particular,
in the case of charged mesons, it is seen that one-loop level
calculations involve the presence of Schwinger phases that
induce a breakdown of translational invariance in quark
propagators [80]. As a consequence, the corresponding
meson polarization functions are not diagonal for the
standard plane wave states. One should describe meson
states in terms of wave functions characterized by a set of
quantum numbers that include the Landau level l, which is
associated to the quantization of momentum in the plane
perpendicular to the magnetic field. It is worth mentioning

that although we consider a magnetic field that extends over
all space, in a realistic scenario—such as the core of a
neutron star, or a heavy ion collision—the existence of a
large magnetic field will be limited to a confined region. In
fact, if a charged meson is to be tracked by some detector,
the latter will be in general located away from the zone
affected by the magnetic field; thus, the theoretical analysis
would require the projection onto a proper basis determined
by the particular features of the experiment.
As for the model specifications, it is important to care

about the regularization of ultraviolet divergences, since the
presence of the external magnetic field can lead to spurious
results, such as unphysical oscillations of physical observ-
ables [81,82]. As in previous works [71,72], we use the
so-called magnetic field independent regularization (MFIR)
scheme [19,21,26,83], which has been shown to be free
from these oscillations; moreover, it is seen that within
this scheme the results are less dependent on model
parameters [82]. Concerning the effective coupling con-
stants of the model, we consider both the case in which
these parameters are kept constant and the case in which
they show some explicit dependence on the external
magnetic field. This last possibility, inspired by the
magnetic screening of the strong coupling constant occur-
ring for a large magnetic field [84], has been previously
explored in effective models [32,69,85–87] in order to
reproduce the inverse magnetic catalysis effect observed at
finite temperature LQCD calculations.
The paper is organized as follows. In Sec. II we introduce

the magnetized extended NJL-like lagrangian to be used in
our calculations, as well as the expressions of the relevant
mean field quantities to be evaluated, such as quark masses
and chiral condensates. In Sec. III and IV we present the
formalisms used to obtain neutral and charged meson
masses, respectively, in the presence the magnetic field.
In Sec. V we present and discuss our numerical results,
while in Sec. VI we provide a summary of our work,
together with our main conclusions. We also include
several appendixes to provide some technical details of
our calculations.

II. EFFECTIVE LAGRANGIAN
AND MEAN FIELD QUANTITIES

Let us start by considering the Lagrangian density for an
extended NJL two-flavor model in the presence of an
electromagnetic field. We have, in Minkowski space,

L ¼ ψ̄ðxÞðiD −mcÞψðxÞ þ gS
X3
a¼0

�ðψ̄ðxÞτbψðxÞÞ2 þ ðψ̄ðxÞiγ5τbψðxÞÞ2
�
− gV

�ðψ̄ðxÞγμτ⃗ψðxÞÞ2 þ ðψ̄ðxÞγμγ5τ⃗ψðxÞÞ2
�

− gV0
ðψ̄ðxÞγμψðxÞÞ2 − gA0

ðψ̄ðxÞγμγ5ψðxÞÞ2 þ 2gDðdþ þ d−Þ; ð1Þ
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where ψ ¼ ðudÞT , τb ¼ ð1; τ⃗Þ, τ⃗ being the usual Pauli-
matrix vector, and mc is the current quark mass, which is
assumed to be equal for u and d quarks. The model includes
isoscalar/isovector vector and axial vector couplings, as
well as a ’t Hooft-like flavor-mixing term, where we have
defined d� ¼ det½ψ̄ðxÞð1� γ5ÞψðxÞ�. The interaction be-
tween the fermions and the electromagnetic field Aμ is
driven by the covariant derivative

Dμ ¼ ∂μ þ iQ̂Aμ; ð2Þ

where Q̂¼diagðQu;QdÞ, withQu ¼ 2e=3 andQd ¼ −e=3,
e being the proton electric charge. A summary of the
notation and conventions used throughout this work can be
found in Appendix A.
We consider here the particular case in which one

has a homogenous stationary magnetic field B⃗ orientated
along axis 3, or z. Now, to write down the explicit form of
Aμ one has to choose a specific gauge. Some commonly
used gauges are the symmetric gauge (SG) in which
AμðxÞ ¼ ð0;−Bx2=2; Bx1=2; 0Þ, the Landau gauge 1
(LG1) in which AμðxÞ ¼ ð0;−Bx2; 0; 0Þ and the Landau
gauge 2 (LG2), in which AμðxÞ ¼ ð0; 0; Bx1; 0Þ. In what
follows we refer to them as “standard gauges”. To test the
gauge independence of our results, all these gauges will be
considered in our analysis.
Since we are interested in studying meson properties, it is

convenient to bosonize the fermionic theory, introducing
scalar, pseudoscalar, vector and axial vector fields σbðxÞ,
πbðxÞ, ρμbðxÞ, aμb, with b ¼ 0, 1, 2, 3, and integrating out the
fermion fields. The bosonized action can be written as

Sbos¼−i ln detðiDÞ− 1

4g

Z
d4x
�
σ0ðxÞσ0ðxÞþ π⃗ðxÞ · π⃗ðxÞ�

−
1

4gð1−2αÞ
Z

d4x
�
σ⃗ðxÞ · σ⃗ðxÞþπ0ðxÞπ0ðxÞ

�
þ 1

4gV

Z
d4x
�
ρ⃗μðxÞ · ρ⃗μðxÞþ a⃗μðxÞ · a⃗μðxÞ

�
þ 1

4gV0

Z
d4xρ0μðxÞρμ0ðxÞþ

1

4gA0

Z
d4xa0μðxÞaμ0ðxÞ;

ð3Þ

with

iDx;x0 ¼ δð4Þðx − x0Þ�iD −m0 − τbðσbðxÞ þ iγ5πbðxÞ
þ γμρ

μ
bðxÞ þ γμγ5a

μ
bðxÞÞ

�
; ð4Þ

where a direct product to an identity matrix in color space is
understood. For convenience we have introduced the
combinations

g ¼ gS þ gD; α ¼ gD
gS þ gD

; ð5Þ

so that the flavor mixing in the scalar-pseudoscalar sector is
regulated by the constant α. For α ¼ 0 quark flavors u and
d get decoupled, while for α ¼ 0.5 one has maximum
flavor mixing, as in the case of the standard version of the
NJL model.
We proceed by expanding the bosonized action in

powers of the fluctuations of the bosonic fields around
the corresponding mean field (MF) values. We assume that
the fields σbðxÞ have nontrivial translational invariant MF
values given by τbσ̄b ¼ diagðσ̄u; σ̄dÞ, while vacuum expect-
ation values of other bosonic fields are zero; thus, we write

Dx;x0 ¼ DMF
x;x0 þ δDx;x0 : ð6Þ

The MF piece is diagonal in flavor space. One has

DMF
x;x0 ¼ diag

�
DMF;u

x;x0 ;DMF;d
x;x0

�
; ð7Þ

where

DMF;f
x;x0 ¼ −iδð4Þðx − x0Þði∂þQfBx1γ2 −MfÞ; ð8Þ

with f ¼ u, d. Here Mf ¼ mc þ σ̄f is the quark effective
mass for each flavor f.
The MF action per unit volume is given by

SMF
bos

Vð4Þ ¼ −
ð1 − αÞðσ̄2u þ σ̄2dÞ − 2ασ̄uσ̄d

8gð1 − 2αÞ
−
iNc

Vð4Þ
X
f¼u;d

Z
d4x d4x0 trD ln ðSMF;f

x;x0 Þ−1; ð9Þ

where trD stands for the trace over Dirac space, and
SMF;f
x;x0 ¼ ðiDMF;f

x;x0 Þ−1 is the MF quark propagator in the
presence of the magnetic field. Its explicit expression can
be written as

SMF;f
x;y ¼ eiΦQf

ðx;yÞ
Z

d4p
ð2πÞ4 e

−ipðx−yÞS̄fðpk; p⊥Þ; ð10Þ

where

S̄fðpk; p⊥Þ

¼ −i
Z

∞

0

dσ exp

�
−iσ
�
M2

f − p2
k þ p⃗2⊥

tanðσBfÞ
σBf

− iϵ

�	

×

�
ðpk · γk þMfÞð1 − sfγ1γ2 tanðσBfÞÞ −

p⃗⊥ · γ⃗⊥
cos2ðσBfÞ

	
;

ð11Þ

with Bf ¼ jBQfj and sf ¼ signðBQfÞ. Here we have
defined the “parallel” and “perpendicular” four-vectors

pμ
k ¼ ðp0; 0; 0; p3Þ; pμ

⊥ ¼ ð0; p1; p2; 0Þ; ð12Þ

MASSES OF MAGNETIZED PSEUDOSCALAR AND VECTOR … PHYS. REV. D 109, 054014 (2024)

054014-3



and equivalent definitions have been used for γk, γ⊥. The
function ΦQðx; yÞ in Eq. (10) is the so-called Schwinger
phase, which is shown to be a gauge-dependent quantity.
For the standard gauges one has

SG∶ ΦQðx; yÞ ¼ −
QB
2

ðx1y2 − y1x2Þ;

LG1∶ ΦQðx; yÞ ¼ −
QB
2

ðx2 þ y2Þðx1 − y1Þ;

LG2∶ ΦQðx; yÞ ¼
QB
2

ðx1 þ y1Þðx2 − y2Þ: ð13Þ

Let us consider the quark-antiquark condensates
ϕf ≡ hψ̄fψfi. For each flavor f ¼ u, d we have

ϕf ¼ iNc

Z
d4p
ð2πÞ4 trDS̄

fðpk; p⊥Þ: ð14Þ

The integral in this expression is divergent and has to be
properly regularized. As stated in the Introduction, we use
here the magnetic field independent regularization (MFIR)
scheme; for a given unregularized quantity, the correspond-
ing (divergent) B → 0 limit is subtracted and then it is
added in a regularized form. Thus, the quantities can be
separated into a (finite) “B ¼ 0” part and a “magnetic”
piece. Notice that, in general, the “B ¼ 0” part still depends
implicitly on B (e.g. through the values of the dressed quark
massesMf); hence, it should not be confused with the value
of the studied quantity at vanishing external field. To deal
with the divergent “B ¼ 0” terms we use here a proper time
(PT) regularization scheme. Thus, we obtain

ϕreg
f ¼ ϕ0;reg

f þ ϕmag
f ; ð15Þ

where

ϕ0;reg
f ¼ −NcMfI1f; ϕmag

f ¼ −NcMfI
mag
1f : ð16Þ

The expression of I1f obtained from the PT regularization,
Ireg1f , is given in Eq. (C15) in Appendix C, while the

“magnetic” piece Imag
1f reads

Imag
1f ¼ Bf

2π2

�
lnΓðxfÞ−

�
xf−

1

2

�
lnxfþxf−

ln2π
2

	
; ð17Þ

where xf ¼ M2
f=ð2BfÞ. The corresponding gap equations,

obtained from ∂SMF
bos=∂σ̄f ¼ 0, can be written as

Mu ¼ mc − 4g
�ð1 − αÞϕreg

u þ αϕreg
d

�
;

Md ¼ mc − 4g
�ð1 − αÞϕreg

d þ αϕreg
u
�
: ð18Þ

As anticipated, for α ¼ 0 these equations get decoupled.
For α ¼ 0.5 the right-hand sides become identical, thus one
has in that case Mu ¼ Md.

III. THE NEUTRAL MESON SECTOR

To determine the meson masses we have to consider the
terms in the bosonic action that are quadratic in meson
fluctuations. As expected from charge conservation, it is
easy to see that the terms corresponding to charged and
neutral mesons decouple from each other. In this section we
concentrate on the neutral meson sector; the charged meson
sector will be considered in Sec. IV.

A. Neutral-meson polarization functions

For notational convenience we will denote isospin states
byM ¼ σ0; π0; ρ

μ
0; a

μ
0; σ3; π3; ρ

μ
3; a

μ
3. Here, σ0, π0, ρ0 and a0

correspond to the isoscalar states σ, η, ω, and f1, while σ3,
π3, ρ3, and a3 stand for the neutral components of the
isovector triplets a⃗0, π⃗, ρ⃗ and a⃗1, respectively. Thus, the
corresponding quadratic piece of the bosonized action can
be written as

Squad;neutralbos ¼−
1

2

Z
d4xd4x0

X
M;M0

δMðxÞ†GMM0 ðx;x0ÞδM0ðx0Þ:

ð19Þ

Notice that the meson indices M, M0, as well as the
functions GMM0 , include Lorentz indices in the case of
vector mesons. This also holds for the functions δMM0 ,
JMM0 , Σf

MM0 , GMM0 , etc., introduced below. In the corre-
sponding expressions, a contraction of Lorentz indices is
understood when appropriate. In particular, the functions
GMM0 ðx; x0Þ can be separated in two terms, namely

GMM0 ðx; x0Þ ¼ 1

2gM
δMM0δð4Þðx − x0Þ − JMM0 ðx; x0Þ; ð20Þ

where

1

gM
δMM0 ¼

8>>>>>>><
>>>>>>>:

1=g forM¼M0 ¼σ0;π3
1=½gð1−2αÞ� forM¼M0 ¼σ3;π0
−ημν=gV forMM0 ¼ρμ3ρ

ν
3;a

μ
3a

ν
3

−ημν=gV0
forMM0 ¼ρμ0ρ

ν
0

−ημν=gA0
forMM0 ¼aμ0a

ν
0

; ð21Þ

and δMM0 ¼ 0 otherwise. Here ημν is the Minkowski metric
tensor, which can be decomposed as ημν ¼ ημνk þ ημν⊥ ,
with ημνk ¼ diagð1; 0; 0;−1Þ, ημν⊥ ¼ diagð0;−1;−1; 0Þ (see
Appendix A). In turn, the polarization functions
JMM0 ðx; x0Þ can be separated into u and d quark pieces,

JMM0 ðx; x0Þ ¼ Σu
MM0 ðx; x0Þ þ εMεM0Σd

MM0 ðx; x0Þ: ð22Þ
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Here εM ¼ 1 for the isoscalarsM ¼ σ0; π0; ρ
μ
0; a

μ
0 and εM ¼

−1 for M ¼ σ3; π3; ρ
μ
3; a

μ
3, while the functions Σf

MM0 ðx; x0Þ
are given by

Σf
MM0 ðx; x0Þ ¼ −iNc trD

�
iSMF;f

x;x0 ΓM0
iSMF;f

x0;x ΓM
�
; ð23Þ

with

ΓM ¼

8>>><
>>>:

1 for M ¼ σ0; σ3
iγ5 for M ¼ π0; π3
γμ for M ¼ ρμ0; ρ

μ
3

γμγ5 for M ¼ aμ0; a
μ
3

: ð24Þ

As stated, since we are dealing with neutral mesons, the
contributions of Schwinger phases associated with the
quark propagators in Eq. (10) cancel out, and the polari-
zation functions depend only on the difference x − x0, i.e.,
they are translationally invariant. After a Fourier trans-
formation, the conservation of momentum implies that the
polarization functions turn out to be diagonal in the
momentum basis. Thus, in this basis the neutral meson
contribution to the quadratic action can be written as

Squad;neutralbos ¼ −
1

2

X
M;M0

Z
d4q
ð2πÞ4 δMð−qÞ†GMM0 ðqÞδM0ðqÞ:

ð25Þ

We have

GMM0 ðqÞ ¼ 1

2gM
δMM0 − JMM0 ðqÞ; ð26Þ

and the associated polarization functions can be written as

JMM0 ðqÞ ¼ Σu
MM0 ðqÞ þ εMεM0Σd

MM0 ðqÞ: ð27Þ

Here the functions Σf
MM0 ðqÞ read

Σf
MM0 ðqÞ ¼ −iNc

Z
d4p
ð2πÞ4 trD

�
iS̄fðpþ

k ; p
þ⊥Þ

× ΓM0
iS̄fðp−

k ; p
−⊥ÞΓM

�
; ð28Þ

where we have defined p�
a ¼ pa � qa=2, with a ¼ k;⊥,

and the quark propagators S̄fðpk; p⊥Þ in the presence of the
magnetic field are those given by Eq. (11). The explicit
expressions of the nonvanishing functions Σf

MM0 ðqÞ for
arbitrary four-momentum qμ are given in Appendix B.
Since we are interested in the determination of meson

masses, let us focus on the particular situation in which
mesons are at rest, i.e., qμ ¼ ðm; 0; 0; 0Þ, where m is the
corresponding meson mass. We denote by ĴMM0 the
resulting polarization functions. It can be shown that some

of these functions vanish, while the nonvanishing ones are
in general divergent. As we have done at the MF level, we
consider the magnetic field independent regularization
scheme, in which we subtract the corresponding unregu-
larized “B ¼ 0” contributions and then we add them in a
regularized form. Thus, for a given polarization function
ĴMM0 we have

ĴregMM0 ¼ Ĵ0;regMM0 þ Ĵmag
MM0 : ð29Þ

The “B ¼ 0” pieces of the polarization functions are
quoted in Appendix C, considering arbitrary four-
momentum qμ. In that appendix we give the expressions
for the unregularized functions J0;unregMM0 , and use a proper
time regularization scheme to get the regularized expres-
sions J0;regMM0 . The terms Ĵ0;regMM0 in Eq. (29) are then obtained
from these expressions by taking q2 ¼ m2. In the case of
the “magnetic” contributions Ĵmag

MM0 , we proceed as follows:
We take the full expressions for the polarization functions
JMM0 ðqÞ given in Appendix B, and subtract the unregu-
larized pieces J0;unregMM0 ; next, we take qμ ¼ ðm; 0; 0; 0Þ and
make use of the relations in Appendix D, performing some
integration by parts when convenient. After a rather long
calculation, it is found that Ĵmag

MM0 can be expressed in the
form given by Eq. (27), viz.

Ĵmag
MM0 ¼ Σ̂u;mag

MM0 þ εMεM0 Σ̂d;mag
MM0 ; ð30Þ

where the functions Σ̂f;mag
MM0 are given by

Σ̂f;mag
πbπb0 ¼ NcðImag

1f −m2Imag
2f Þ; ð31Þ

Σ̂f;magμν
ρμbρ

ν
b0

¼ NcðImag
4f ημν⊥ −m2Imag

5f δμ3δ
ν
3Þ; ð32Þ

Σ̂f;magμν
aμba

ν
b0

¼ −Nc

�
4M2

fI
mag
2f δμ0δ

ν
0 − ðImag

4f þ 2M2
fI

mag
7f Þημν⊥

þ ðm2Imag
5f − 4M2

fI
mag
2f Þδμ3δν3

�
; ð33Þ

Σ̂f;magμ
πbρ

μ

b0
¼ −Σ̂f;magμ

ρμbπb0
¼ −isfNcI

mag
3f δμ3; ð34Þ

Σ̂f;magμ
πba

μ

b0
¼ −Σ̂f;magμ

aμbπb0
¼ 2iNcmMfI

mag
2f δμ0; ð35Þ

Σ̂f;magμν
aμbρ

ν
b0

¼ Σ̂f;magνμ
ρνba

μ

b0
¼ sfNc

�ðImag
6f þMf=mImag

3f Þδμ0δν3
þ ðImag

6f −Mf=mImag
3f Þδμ3δν0

�
: ð36Þ

The expression for Imag
1f has been given in Eq. (17), whereas

the integrals Imag
nf for n ¼ 2;…; 7, read

Imag
2f ¼ 1

8π2

Z
1

0

dv

�
ψðx̄fÞ þ

1

2x̄f
− ln x̄f

	
; ð37Þ
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Imag
3f ¼ Mfm

8π2

Z
1

0

dv
1

x̄f
; ð38Þ

Imag
4f ¼ −Imag

1f −
Bf

4π2
X
s¼�1

Z
1

0

dv

�
x̄f þ

m2

4Bf
þ sv

2

�

×

�
ln x̄f − ψ

�
x̄f þ

1þ sv
2

�	
; ð39Þ

Imag
5f ¼ 1

8π2

Z
1

0

dvð1 − v2Þ
�
ψðx̄fÞ þ

1

2x̄f
− ln x̄f

	
; ð40Þ

Imag
6f ¼ m2

32π2

Z
1

0

dv
ð1 − v2Þ

x̄f
; ð41Þ

Imag
7f ¼ 1

8π2
X
s¼�1

Z
1

0

dv

�
ln x̄f − ψ

�
x̄f þ

1þ sv
2

�	
: ð42Þ

Here we have defined x̄f ¼ ½M2
f − ð1 − v2Þm2=4�=ð2BfÞ.

For m < 2Mf, the integrals in the above expressions are
well-defined, while for m ≥ 2Mf (i.e., beyond the qq̄
production threshold) they are divergent. Still, if this is
the case one can obtain finite results by performing analytic
extensions [71].

B. Box structure of the neutral meson mass matrix

The quadratic piece of the bosonized action in Eq. (25)
involves 20 meson states. However, it can be seen that some
of these states do not get mixed, i.e., the 20 × 20 mass
matrix can be separated into several blocks, or “boxes”.
The vector fields ρμ0 and ρμ3, as well as the axial vector

fields aμ0 and aμ3, can be written in a polarization vector
basis. Since the magnetic field defines a privileged direc-
tion in space, to exploit the symmetries of the physical
system it is convenient to choose one of the polarization
vectors ϵμ in such a way that the spatial part ϵ⃗ is parallel to
B⃗. A possible choice of a polarization vector set satisfying
this condition is introduced in Appendix E; the polarization
vector denoted by ϵμðq⃗; 2Þ is such that ϵ⃗ðq⃗; 2Þ is parallel
to the magnetic field, regardless of the three-momentum q⃗.
Now, as explained in Appendix F, the system has an
invariance related to the reflection on the plane
perpendicular to the magnetic field axis. If we associate
to this transformation an operator P3, the pseudoscalar
and scalar particle states transform under P3 by getting
phases ηπbP3

¼ −1 and ησbP3
¼ 1, respectively (here b ¼ 0, 3).

In general, the transformation of the vector and axial vector
states is more complicated, depending on their polariza-
tions. However, the choice of ϵμðq⃗; 2Þ as one of the
(orthogonal) polarization vectors guarantees a well-
definite behavior of vector particle states; indeed, consid-
ering the remaining polarization vectors in Appendix E,
which are denoted by ϵμðq⃗; cÞ with c ¼ 1, 3, L, one has

η
ρb;2
P3

¼η
ab;1
P3

¼η
ab;3
P3

¼η
ab;L
P3

¼−1 and η
ab;2
P3

¼ η
ρb;1
P3

¼ η
ρb;3
P3

¼
η
ρb;L
P3

¼ 1. Here we have introduced the notation ρb;c,
ab;c, where b ¼ 0 and b ¼ 3 correspond to isoscalar an
isovector states, respectively, and the index c (¼ 1; 2; 3; L)
indicates the polarization state.
To get rid of the Lorentz indices, it is convenient to deal

with a mass matrix G in which the vector and axial vector
meson entries are given by the corresponding projections
onto the polarization vector states. Taking into account the
matrix GMM0 in Eq. (25), and using the above mentioned
polarization basis, we have

Gsbs0b0
¼ Gsbs0b0

;

Gsbvb0 ;c ¼ Gμ
sbv

μ

b0
ϵμðq⃗; cÞ;

Gvb;csb0 ¼ ϵμðq⃗; cÞ�Gμ
vμbsb0

;

Gvb;cv0b0 ;c0 ¼ ϵμðq⃗; cÞ�Gμν
vμbv

0ν
b0
ϵνðq⃗; c0Þ; ð43Þ

where c; c0 ¼ 1; 2; 3; L. Here s and s0 stand for the scalar or
pseudoscalar states π, σ, while v and v0 stand for the vector
or axial vector states ρ, a. Now, as shown in Appendix F,
the fact that the system is invariant under the reflection in
the plane perpendicular to the magnetic field implies that
particles with different parity phases ηMP3

cannot mix;
therefore, the 20 × 20 matrix G turns out to be separated
into two 10 × 10 blocks. It can be written as

G ¼ Gð−Þ ⊕ GðþÞ; ð44Þ

where the corresponding meson subspaces are

Gð−Þ; states πb; ρb;2; ab;1; ab;3; ab;L; b ¼ 0; 3; ð45Þ

GðþÞ; states σb; ρb;1; ρb;3; ρb;L; ab;2; b ¼ 0; 3: ð46Þ

There are more symmetry properties that can still be
taken into account. Notice that, according to its definition,
the polarization vector ϵμðq⃗; 2Þ is invariant under
rotations around the axis 3, which implies that it is
an eigenvector of the operator Sμν3 ¼ iðδμ1δν2 − δμ2δ

ν
1Þ with

eigenvalue s3 ¼ 0. Moreover, the whole physical system is
invariant under rotations around the axis 3, and conse-
quently the third component of total angular momentum,
J3 ¼ ðx⃗ × q⃗Þ3 þ S3, has to be a good quantum number.
Thus, if we let q⃗⊥ ¼ 0⃗, the quantum number S3 will be a
good one to characterize the meson states.
Let us consider the polarization vectors defined in

Appendix E. As stated, ϵμðq⃗; 2Þ is an eigenvector of Sμν3 ,
while ϵμðq⃗; LÞ is defined as a “longitudinal” vector, in the
sense that its spatial part is parallel to q⃗. The remaining
polarization vectors, ϵμðq⃗; 1Þ and ϵμðq⃗; 3Þ, do not have in
general a simple interpretation. Now, if we let q⃗⊥ ¼ 0, they
reduce to
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ϵμðq⃗k;1Þ ¼
1ffiffiffi
2

p ð0;1; i;0Þ; ϵμðq⃗k;3Þ ¼
1ffiffiffi
2

p ð0;1;−i;0Þ;

ð47Þ

where q⃗k ¼ ð0; 0; q3Þ. Thus, it is seen that ϵ⃗ðq⃗k; 1Þ and
ϵ⃗ðq⃗k; 3Þ lie in the plane perpendicular to the magnetic field,
and meson states with polarizations ϵμðq⃗k; 1Þ and ϵμðq⃗k; 3Þ
are states of definite third component of the spin, with
eigenvalues s3 ¼ þ1 and s3 ¼ −1, respectively. The states
with polarizations ϵμðq⃗k; 2Þ and ϵμðq⃗k; LÞ are also eigen-
states of S3, with eigenvalue s3 ¼ 0. As stated, in this case
S3 is a good quantum number; this supports our choice of
using for vector and axial vector states the polarization
basis ρb;c, ab;c.
If mesons are taken to be at rest, i.e., if we take q⃗ ¼ 0, we

can identify the mesons with polarizations ϵμð0⃗; LÞ as spin-
zero states, and those with polarizations ϵμð0⃗; 2Þ as spin-
one (s3 ¼ 0) states. In this case one has simply

ϵμð0⃗; 2Þ ¼ ð0; 0; 0; 1Þ; ϵμð0⃗; LÞ ¼ ð1; 0; 0; 0Þ: ð48Þ

We notice, however, that our physical system is not fully
isotropic, but only invariant under rotations around the axis
3. Thus, jS⃗j2 is not a conserved quantum number, and in
general the states with polarizations L and 2 will get mixed.
For clarification, we find it convenient to distinguish

between the polarization three-vectors ϵ⃗ð0⃗; cÞ, c ¼ 1, 2, 3,
and the spin vectors of the S ¼ 1 vector and axial vector
states. We define the spin vector as the expected value

hS⃗ic ¼
ϵμð0⃗; cÞ�ðSμν1 ; Sμν2 ; Sμν3 Þϵνð0⃗; cÞ

ϵαð0⃗; cÞ�ϵαð0⃗; cÞ
; ð49Þ

with Sμνj ¼ iϵjklδ
μ
kδ

ν
l . A simple calculation leads to hS⃗i1 ¼

ð0; 0; 1Þ, hS⃗i3 ¼ ð0; 0;−1Þ and hS⃗i2 ¼ ð0; 0; 0Þ, showing
that for the polarization vectors ϵμð0⃗; 1Þ and ϵμð0⃗; 3Þ the
spin is parallel or antiparallel to the magnetic field, whereas
for the polarization vector ϵμð0⃗; 2Þ the spin has no preferred
direction. Notice that in Ref. [71] the ρμ states with
polarizations ϵμð0⃗; 2Þ and ϵμð0⃗; cÞ, c ¼ 1, 3 were denoted
as “perpendicular” (ρ⊥) and “parallel” (ρk), respectively.
Let us turn back to the mass matrix G. From the

regularized polarization functions in Eq. (29) we can obtain
a regularized matrix Ĝðm2Þ, where we have taken
qμ ¼ ðm; 0; 0; 0Þ. Notice that the regularization procedure
does not modify our previous analysis about the sym-
metries of the problem. Thus, according to the above
discussion, we can conclude that—for neutral mesons—
each one of the 10 × 10 submatrices of Ĝðm2Þ gets further
decomposed as a direct sum of a subspace of s3 ¼ 0 states
(that includes vector and axial vector mesons with polari-
zation states c ¼ 2; L), a subspace of s3 ¼ þ1 states

(polarization states c ¼ 1) and a subspace of s3 ¼ −1
states (polarization states c ¼ 3). In this way, the 20 × 20

matrix Ĝðm2Þ can be decomposed in “boxes” as

Ĝ¼ Ĝð0;−Þ⊕ Ĝð1;−Þ⊕ Ĝð−1;−Þ⊕ Ĝð0;þÞ⊕ Ĝð1;þÞ⊕ Ĝð−1;þÞ;

ð50Þ

where the superindices indicate the quantum numbers
ðs3; ηP3

Þ. The meson subspaces corresponding to each
box are the following:

Ĝð0;−Þ; states π0; π3; ρ0;2; ρ3;2; a0;L; a3;L;

Ĝð1;−Þ; states a0;1; a3;1;

Ĝð−1;−Þ; states a0;3; a3;3;

Ĝð0;þÞ; states σ0; σ3; ρ0;L; ρ3;L; a0;2; a3;2;

Ĝð1;þÞ; states ρ0;1; ρ3;1;

Ĝð−1;þÞ; states ρ0;3; ρ3;3: ð51Þ

Finally, it can also be seen that at the considered level of
perturbation theory the sigma mesons σb get decoupled
from other states. Thus, the matrix Ĝð0;þÞ can still be
decomposed as

Ĝð0;þÞ ¼ Ĝð0;þÞ
S ⊕ Ĝð0;þÞ

V : ð52Þ

The submatrices in the right hand side correspond to the
scalar meson subspace σb, with b ¼ 0, 3, and the meson
subspace ρb;L; ab;2, with b ¼ 0, 3, respectively.

C. Neutral meson masses and wave functions

From the expressions in the previous subsections one can
obtain the model predictions for meson masses and wave
functions. Let us concentrate on the lightest pseudoscalar
and vector meson states, which can be identified with the
physical π0, η, ρ0 and ω mesons. The pole masses of the
neutral pion, the η, and the Sz ¼ 0 neutral ρ and ω mesons
are given by the solutions of

det Ĝð0;−Þ ¼ 0; ð53Þ

while the pole masses of Sz ¼ �1 vector meson states can
be obtained from

det Ĝð�1;þÞ ¼ 0: ð54Þ

Clearly, the symmetry under rotations around the axis 3,
or z, implies that the masses of Sz ¼ 1 and Sz ¼ −1 states
will be degenerate.
Once the mass eigenvalues are determined for each box,

the spin-isospin composition of the physical meson states
can be obtained through the corresponding eigenvectors.
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In the Sz ¼ 0 sector, the physical neutral pion state π̃0 can
be written as

jπ̃0i ¼ cπ̃
0

π3 jπ3i þ cπ̃
0

π0 jπ0i þ icπ̃
0

ρ3;2 jρ3;2i
þ icπ̃

0

ρ0;2 jρ0;2i þ cπ̃
0

a3;L ja3;Li þ cπ̃
0

a0;L ja0;Li; ð55Þ

and in a similar way one can define coefficients cM̃M for
other physical states M̃. On the other hand, in the Sz ¼ �1
sector it is convenient to write isospin states in terms of the
flavor basis ðρu;c; ρd;cÞ for c ¼ 1, 3, viz.

jρ0;ci¼
1ffiffiffi
2

p ðjρu;ciþjρd;ciÞ; jρ3;ci¼
1ffiffiffi
2

p ðjρu;ci− jρd;ciÞ:

ð56Þ

Since in this sector vector mesons do not mix with pseudo-
scalar or axial vector mesons, the states jρf;ci (f ¼ u, d) with
c ¼ 1 and c ¼ 3 turn out to be the mass eigenstates that
diagonalize the matrices Ĝð1;þÞ and Ĝð−1;þÞ, respectively.
This can be easily understood by noticing that the external
magnetic field distinguishes between quarks that carry differ-
ent electric charges, and in this case this represents the only
source of breakdown of the u–d flavor degeneracy.

IV. THE CHARGED MESON SECTOR

A. Charged-meson polarization functions

We address now the analysis of the charged mesons, i.e.,
the states s� ¼ ðs1 ∓ is2Þ=

ffiffiffi
2

p
and v�μ ¼ ðvμ1 ∓ ivμ2Þ=

ffiffiffi
2

p
,

with s ¼ σ, π and v ¼ ρ, a. We concentrate on the positive
charge sector, noticing that the analysis of negatively
charged mesons is completely equivalent. The correspond-
ing quadratic piece of the bosonized action can bewritten as

Squad;þbos ¼ −
1

2

Z
d4x d4x0

X
M;M0

δMðxÞ†GMM0 ðx; x0ÞδM0ðx0Þ;

ð57Þ

where, for notational convenience, we simply denote the
positively charged states by M;M0 ¼ σ; π; ρμ; aμ (a proper
contraction of Lorentz indices of vector mesons is under-
stood). The functions GMM0 ðx; x0Þ can be separated in two
terms; namely,

GMM0 ðx; x0Þ ¼ 1

2gM
δMM0δð4Þðx − x0Þ − JMM0 ðx; x0Þ; ð58Þ

where

1

gM
δMM0 ¼

8<
:
1=g forM¼M0 ¼π

1=½gð1−2αÞ� forM¼M0 ¼σ

−ημν=gV forMM0 ¼ρμρν;aμaν
; ð59Þ

and δMM0 ¼ 0 otherwise. The polarization functions
JMM0 ðx; x0Þ are given by

JMM0 ðx; x0Þ ¼ −2iNctrD
�
iSux;x0Γ

M0
iSdx0;xΓ

M
�
; ð60Þ

where, as in the case of neutral mesons, one has Γσ ¼ 1,
Γπ ¼ iγ5, Γρμ ¼ γμ and Γaμ ¼ γμγ5. Using Eq. (10) we
have

JMM0 ðx; x0Þ ¼ eiΦeðx;x0Þ
Z

d4t
ð2πÞ4 e

−itðx−x0ÞJMM0 ðtÞ; ð61Þ

where

JMM0 ðtÞ ¼ −2iNc

Z
d4p
ð2πÞ4 trD

�
iS̄uðpþ

k ; p
þ⊥Þ

× ΓM0
iS̄dðp−

k ; p
−⊥ÞΓM

�
: ð62Þ

Here we have defined p�
a ¼ pa � ta=2, where a ¼ k;⊥. In

addition, we have used Φeðx;x0Þ¼ΦQu
ðx;x0ÞþΦQd

ðx0;xÞ.
Thus, Φe is the Schwinger phase associated with positively
charged mesons.
Contrary to the neutral meson case discussed in the

previous section, here the Schwinger phases coming from
quark propagators do not cancel, due to their different
flavors. As a consequence, the polarization functions in
Eq. (61) do not become diagonal when transformed to the
momentum basis. Instead of using the standard plane wave
decomposition, to diagonalize the polarization functions it
is necessary to expand the meson fields in terms of a set of
functions associated to the solutions of the corresponding
equations of motion in the presence of a uniform magnetic
field. These functions can be specified by a set of four
quantum numbers that we denote by

q̄ ¼ ðq0;l; χ; q3Þ ð63Þ

(see e.g. Ref. [80] for a detailed analysis). As in the case of
a free particle, q0 and q3 are the eigenvalues of the
components of the four-momentum operator along the
time direction and the magnetic field direction, respec-
tively. The integer l is related with the so-called Landau
level, while the fourth quantum number, χ, can be con-
veniently chosen (although this is not strictly necessary)
according to the gauge in which the eigenvalue problem is
analyzed [80,88]. In particular, since for the standard
gauges SG, LG1 and LG2 one has unbroken continuous
symmetries, in those cases it is natural to consider quantum
numbers χ associated with the corresponding group gen-
erators. Usual choices are

SG∶ χ ¼ n; non-negative integer; associated toL3½80�;
ð64Þ
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LG1∶ χ ¼ q1; real number; eigenvalue of − i
∂

∂x1
;

ð65Þ

LG2∶ χ ¼ q2; real number; eigenvalue of − i
∂

∂x2
:

ð66Þ
To sum or integrate over these quantum numbers, we
introduce the shorthand notation

XZ
q̄

≡ 1

2π

X∞
l¼lmin

Z
dq0dq3

ð2πÞ2

8<
:

1
2π

P
n

for SG

1
2π

R
dqi for LGi; i ¼ 1; 2;

ð67Þ
where lmin ¼ 0 (−1) for spin-0 (spin-1) particles.
In this way, we can write

δσðxÞ¼
XZ
q̄

Fðx;q̄Þδσðq̄Þ; δπðxÞ¼
XZ
q̄

Fðx;q̄Þδπðq̄Þ;

δρμðxÞ¼
XZ
q̄

Rμνðx;q̄Þδρνðq̄Þ; δaμðxÞ¼
XZ
q̄

Rμνðx;q̄Þδaνðq̄Þ;

ð68Þ
where

Fðx; q̄Þ ¼ F eðx; q̄Þ; Rμνðx; q̄Þ ¼
X

λ¼−1;0;1
F eðx; q̄λÞϒμν

λ ;

ð69Þ
with q̄λ ¼ ðq0;l − sλ; χ; q3Þ, s ¼ signðBÞ. The function
FQðx; q̄Þ depends on the gauge choice; the explicit forms
that correspond to the standard gauges are given in
Appendix G. Regarding the tensors ϒμν

λ , one has various
possible choices; here we take

ϒμν
0 ¼ ημνk ; ϒμν

�1 ¼
1

2
ðημν⊥ ∓ Sμν3 Þ: ð70Þ

Given Eq. (68) we introduce the polarization functions in
q̄-space (or Ritus space). They read

J ss0 ðq̄; q̄0Þ ¼
Z

d4xd4x0 Fðx; q̄Þ�J ss0 ðx; x0ÞFðx0; q̄0Þ;

J μ
svμðq̄; q̄0Þ ¼

Z
d4xd4x0 Fðx; q̄Þ�J α

svαðx; x0ÞRμ
αðx0; q̄0Þ;

J μ
vμsðq̄; q̄0Þ ¼

Z
d4xd4x0Rμ

αðx; q̄Þ�J α
vαsðx; x0ÞFðx0; q̄0Þ;

J μν
vμv0νðq̄; q̄0Þ ¼

Z
d4xd4x0Rμ

αðx; q̄Þ�J αβ
vαv0βðx; x0ÞRν

βðx0; q̄0Þ;

ð71Þ

where s, s0 stand for the states σ or π, while v, v0 stand for ρ
or a. After a somewhat long calculation one can show that
all these q̄-space polarization functions are diagonal, i.e.,
one has

JMM0 ðq̄; q̄0Þ ¼ δ̂q̄q̄0JMM0 ðl; qkÞ; ð72Þ

where

δ̂q̄q̄0 ¼ ð2πÞ4δðq0 − q00Þδll0δχχ0δðq3 − q03Þ: ð73Þ

Here, δχχ0 stands for δnn0, δðq1 − q01Þ and δðq2 − q02Þ for
SG, LG1 and LG2, respectively. It is important to stress that
Eq. (72) holds for all three gauges; moreover, the functions
JMM0 ðl; qkÞ are independent of the gauge choice. The
explicit form of these functions for the various possible
MM0 combinations, together with some details of the
calculations, are given in Appendix H. The quadratic piece
of the bosonized action in Eq. (57) can now be expressed as

Squad;þbos ¼ −
1

2

XZ
q̄

X
M;M0

δMðq̄Þ†GMM0 ðl; qkÞδM0ðq̄Þ; ð74Þ

where

GMM0 ðl; qkÞ ¼
1

2gM
δMM0 − JMM0 ðl; qkÞ: ð75Þ

As in the case of neutral mesons, to determine the
charged meson masses it is convenient to write the vector
and axial vectors states in a polarization basis. A suitable
set of polarization vectors ϵμðl; q3; cÞ, where c ¼ 1; 2; 3; L
is the polarization index, is given in Appendix E. Here,
c ¼ L corresponds to the “longitudinally polarized”
charged mesons, which will be denoted by ρL and aL;
for these states the polarization vector ϵμðl; q3; LÞ is
defined only for l ≥ 0, and it is proportional to the
four-vector Πμ defined by Eq. (H10), evaluated at
q0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ð2lþ 1ÞBe þ ðq3Þ2

p
. Next, to get rid of the

Lorentz indices of vector and axial vector states, we
consider the mass matrix G and the polarization functions
J obtained in the basis given by the corresponding
projections onto the polarization vector states. We have

Gss0 ðl;Π2Þ ¼ 1

2gs
δss0 − Jss0 ðl;Π2Þ;

Gsvcðl;Π2Þ ¼ −Jsvcðl;Π2Þ;
Gvcsðl;Π2Þ ¼ −Jvcsðl;Π2Þ;

Gvcv0c0 ðl;Π2Þ ¼ −
1

2gv
ζcδvcv0c0 − Jvcv0c0 ðl;Π2Þ; ð76Þ

where
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Jss0 ðl;Π2Þ¼Jss0 ðl;qkÞ;
Jsvcðl;Π2Þ¼Jμsvμðl;qkÞϵμðl;q3;cÞ;
Jvcsðl;Π2Þ¼ ϵμðl;q3;cÞ�Jμvμsðl;qkÞ;

Jvcv0c0 ðl;Π2Þ¼ ϵμðl;q3;cÞ�Jμνvμv0νðl;qkÞϵνðl;q3;c0Þ: ð77Þ

In the above equations, s and s0 stand for the scalar
or pseudoscalar states π, σ, while v and v0 stand for the
vector or axial vector states ρ, a. We use once again the
definitions gπ ¼ g, gσ ¼ gð1 − 2αÞ, whereas ζc is defined
as ζc ¼ 1 for c ¼ L and ζc ¼ −1 for c ¼ 1, 2, 3. Moreover,
we have defined Π2 ¼ Π�

μΠμ. From Eq. (H10), one has
Π2 ¼ q2k − ð2lþ 1ÞBe.
To determine the physical meson pole masses corre-

sponding to a given Landau level l, we need to evaluate the
matrix elements of Gðl;Π2Þ at Π2 ¼ m2. However, as in
the case of the neutral meson sector, it turns out that many
of the corresponding polarization functions are divergent.
Once again, we consider the magnetic field independent
regularization scheme, according to which we have

Jregðl;Π2Þ ¼ J0;regðΠ2Þ þ Jmagðl;Π2Þ: ð78Þ

To obtain the regularized “B ¼ 0” matrix J0;regðΠ2Þ we
calculate the projections over polarization states as in
Eq. (77), replacing the functions JMM0 ðl; qkÞ by their
regularized expressions. The latter are obtained by taking
the corresponding regularized functions JregMM0 ðqÞ in
Appendix C, and performing the replacement qμ → Πμ.
On the other hand, to determine the “magnetic” contribu-
tion Jmagðl;Π2Þ we calculate the matrix elements of
Jðl;Π2Þ according to Eq. (77) [as stated, the functions
JMM0 ðl; qkÞ in that equation are quoted in Appendix H],
and then we subtract the corresponding unregularized
expressions in the above defined B → 0 limit. These can
be obtained from the unregularized functions JunregMM0 ðqÞ in
Appendix C, following the same procedure as for the
regularized ones.

B. Box structure of the charged meson mass matrix

As in the case of neutral mesons, the symmetries of the
system imply that not all charged mesons states mix with
each other. Firstly, it is clear that the mass matrix can be
separated into two equivalent sectors of positive and
negative charges. Next, restricting ourselves to positively
charged mesons, it is seen that one can exploit the
symmetry of the system under the reflection on the plane
perpendicular to the magnetic field to classify the meson
states into two groups. This is discussed in detail in
Appendix F, where the action of the operator P3, associated
to this symmetry transformation, is studied. Considering
the polarization basis introduced in the previous subsection,
it is found that charged meson statesM transform under P3

by getting phases ηMP3
¼ �1. In a similar way as in the case

of neutral meson states, the 10 × 10 mass matrix Gðl;Π2Þ
can be written as a direct sum of two 5 × 5 submatrices,

G ¼ Gð−Þ ⊕ GðþÞ; ð79Þ

where the corresponding meson subspaces are

Gð−Þ; states π; ρ2; aL; a1; a3; ð80Þ

GðþÞ; states σ; a2; ρL; ρ1; ρ3: ð81Þ

Now, it is worth noticing that while the above discussion
holds for Landau levels l ≥ 1, one should separately
consider the particular cases l ¼ −1 and l ¼ 0.
As mentioned above, one has lmin ¼ 0 for pseudoscalar
and scalar fields; moreover, as discussed in Appendix E,
for l ¼ −1 there is only one nontrivial polarization
vector, ϵμð−1; q3; 1Þ. Therefore, the charged mass matrix
Gð−1;Π2Þ is given by a direct sum of two 1 × 1 matrices
Gð−Þ and GðþÞ corresponding to the states a1 and ρ1,
respectively. These do not mix with any other state. The
case l ¼ 0 is also a particular one, since, as stated in
Appendix E, one cannot have a vector or axial vector meson
field polarized in the direction ϵμð0; q3; cÞwith c ¼ 3. In this
way, the charged mass matrix Gð0;Π2Þ is given by a direct
sum of two 4 × 4 matrices.

C. Charged meson masses and wave functions

Taking into account the results in the previous subsec-
tions, the pole masses of charged mesons can be obtained,
for each value of l, by solving the equations

detGð�Þðl; m2Þ ¼ 0: ð82Þ

Here we are interested in the determination of the energies
of the lowest lying meson states. As stated, for the Landau
mode l ¼ −1 the only available states are the vector meson
ρ1 and the axial vector meson a1, which do not mix
with each other. In turn, for l ¼ 0 one gets the lowest-
energy charged pion, which gets coupled through Gð−Þ to
the l ¼ 0 vector and axial vector mesons. In what follows
we analyze these two modes in detail.
As mentioned above, for l ¼ −1 the matrix GðþÞ has

dimension 1. Thus, according to Eqs. (76) and (78), the
pole mass of the ρ state can be obtained from

1

2gv
− Jregρ1ρ1ð−1; m2Þ ¼ 0; ð83Þ

where

Jregρ1ρ1ð−1; m2Þ ¼ J0;regρ1ρ1 ðm2Þ þ Jmag
ρ1ρ1ð−1; m2Þ: ð84Þ
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The functions on the rhs of this equation can be obtained
from the definitions in Sec. IVA; one has

J0;regρ1ρ1 ð−1; m2Þ ¼ −2bud;regρρ;1 ðm2Þ;
Jmag
ρ1ρ1ð−1; m2Þ ¼ −2

�
dρρ;2ð−1; m2 − BeÞ − bud;unregρρ;1 ðm2Þ�;

ð85Þ

where bud;regρρ;1 and bud;unregρρ;1 are given in Appendix C, while
the expression of dρρ;2 can be found in Appendix H.
Once the solution m2 ¼ m2

ρþ has been determined, we
can obtain the energy Eρþ of the lowest charged ρ state as

Eρþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ρþ þð2lþ1ÞBeþðq3Þ2
q

jl¼−1;q3¼0¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ρþ −Be

q
:

ð86Þ

In the case of the lowest charged pion state (l ¼ 0), we
consider the 4 × 4mass matrixGð−Þð0; m2Þ that couples the
states π, ρ2, a1 and aL. The pole mass can be found from

det

�
diag

�
1

2g
;
1

2gv
;
1

2gv
;−

1

2gv

�
−Jregð0;m2Þ

	
¼0; ð87Þ

where, according to Eq. (78),

Jregð0; m2Þ ¼ J0;regðm2Þ þ Jmagð0; m2Þ: ð88Þ

The nonvanishing matrix elements of J0;regðm2Þ read

J0;regππ ðm2Þ ¼ 2bud;regππ;1 ðm2Þ;
J0;regρ2ρ2 ðm2Þ ¼ −2bud;regρρ;1 ðm2Þ;
J0;regaLaLðm2Þ ¼ 2bud;regaa;2 ðm2Þ;
J0;rega1a1 ðm2Þ ¼ −2bud;regaa;1 ðm2Þ;
J0;regπaL ðm2Þ ¼ J0;regaLπ ðm2Þ� ¼ 2mbud;regπa;1 ðm2Þ; ð89Þ

where the functions on the right hand sides are given in
Appendix C. The matrix elements of Jmagð0; m2Þ, obtained
from the general expressions quoted in Appendix H, are
given in Appendix I. The lowest solution of Eq. (87) can be
identified with the charged pion-pole mass squared, m2

πþ .
Then the energy of the lowest charged pion reads

Eπþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

πþ þð2lþ1ÞBeþðq3Þ2
q

jl¼0;q3¼0¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

πþ þBe

q
:

ð90Þ

In the same way, higher solutions of Eq. (87) are to be
identified with vector meson pole masses; a similar analysis
can be done for the sector corresponding to the 4 × 4matrix
Gð−Þð0; m2Þ (which involves the σ meson). In addition, one

can obtain pole masses of other higher-charged meson
states by considering Landau levels l ≥ 1 (as stated, the
mass matrix separates in those cases into two boxes of
dimension 5).
Together with the determination of meson pole masses,

we can also obtain the spin-isospin composition of the
physical meson states as in the case of neutral mesons. For
l ¼ −1 there are just two states, ρ1 and a1, which do not
get mixed due to the above described reflection symmetry.
On the other hand, for l ≥ 0, one gets in general a
decomposition similar to that obtained in the case of
neutral states. Thus, in the particular case of the lowest
lying charged pion, the physical state πþ can be written as a
combination of l ¼ 0 states,

jπþi ¼ cπ
þ

π jπi þ icπ
þ

ρ2 jρ2i þ cπ
þ

a1 ja1i þ icπ
þ

aL jaLi: ð91Þ

V. NUMERICAL RESULTS

A. Model parametrization and magnetic catalysis

To obtain numerical results for particle properties it is
necessary to fix the model parameters. In addition to the
usual requirements for the description of low-energy phe-
nomenology, we find it adequate to choose a parameter set
that also takes into account LQCD results for the behavior of
quark-antiquark condensates under an external magnetic
field. As stated, in our framework divergent quantities
are regularized using the MFIR scheme, with a proper
time cutoff. Within this scenario, we take the parameter
set mc ¼ 7.01 MeV, Λ ¼ 842 MeV, g ¼ 5.94=Λ2 and
α ¼ 0.114. For vanishing external field, this parametrization
leads to effective quark massesMf ¼ 400 MeV and quark-
antiquark condensates ϕ0

u;d ¼ ð−227 MeVÞ3. Moreover, it
properly reproduces the empirical values the pion mass, the
eta mass and the pion decay constant in vacuum, namely
mπ ¼ 140 MeV, mη ¼ 548 MeV and fπ ¼ 92.2 MeV,
respectively. Regarding the vector couplings, we take
gV ¼ 3.947=Λ2, which for B ¼ 0 leads to the empirical
valuemρ ¼ 775 MeV and to a phenomenologically accept-
ablevalue of about 1020MeV for thea1mass.Notice that, as
usual in this type of model, the a1 mass is found to lie above
the quark-antiquark production threshold and can be deter-
mined only after some extrapolation. For the sake of
simplicity, the remaining coupling constants of the vector
and axial vector sector are taken to be gV0

¼ gA0
¼ gV ,

which leads to mω ¼ mρ and mf1 ¼ ma1 .
As mentioned in the Introduction, while most NJL-like

models are able to reproduce the effect of magnetic
catalysis at vanishing temperature, they fail to describe
the inverse magnetic catalysis effect observed in lattice
QCD at finite temperature (an interesting exception is the
case of models which include nonlocal interactions
[89,90]). One of the simplest approaches to partially cure
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this behavior consists of allowing the model couplings to
depend on the magnetic field, so as to incorporate the sea
effect produced by the backreaction of gluons to magnet-
ized quarks loops. Thus, we consider here both the situation
in which the couplings are constant and the one in which
they vary with the magnetic field. For definiteness, we
adopt for gðBÞ the form proposed in Ref. [21]; namely,

gðBÞ ¼ gF ðBÞ; ð92Þ

where

F ðBÞ ¼ κ1 þ ð1 − κ1Þe−κ2ðeBÞ2 ; ð93Þ

with κ1 ¼ 0.321 and κ2 ¼ 1.31 GeV−2. Concerning the
vector couplings, given the common gluonic origin of g and
gV , we assume that they get affected in a similar way by the
magnetic field; hence, we take gVðBÞ ¼ gVF ðBÞ.
The effect of magnetic catalysis can be observed from

Fig. 1, where we show the behavior of the normalized
averaged light quark condensate as a function of the
magnetic field, for eB up to 1 GeV2. Following Ref. [91],
we use the definitions

ΔΣ̄ðBÞ ¼ ΔΣuðBÞ þ ΔΣdðBÞ
2

;

ΔΣfðBÞ ¼ −
2mc½ϕfðBÞ − ϕ0

f�
D4

; ð94Þ

where D ¼ ð135 × 86Þ1=2 MeV is a phenomenological
normalization constant. Solid and dashed lines correspond

to constant and B-dependent couplings, respectively.
Although the curves do not show an accurate fit to lattice
data (gray band, taken from Ref. [91]), it is seen that the
model is able to reproduce qualitatively the effect of
magnetic catalysis. We have seen that a better agreement
could be achieved using a parameter set that leads to lower
values of the quark masses; however, this would hinder the
analysis of the rho meson mass, since the latter would lie
below the quark-antiquark production threshold even for
B ¼ 0. Additionally, we have checked that the choice of a
3D cutoff (within the MFIR scheme) leads in general to
even lower values of ΔΣ̄, increasing the difference with
LQCD results.

B. Neutral mesons

Let us analyze our results for the effect of the magnetic
field on meson masses. We start with the neutral sector. As
is well-known, for vanishing external field pseudoscalar
mesons mix with “longitudinal” axial vector mesons. Now,
as discussed in Sec. III B, for nonzero B the mixing also
involves neutral vector mesons with spin projection Sz ¼ 0
(corresponding to the polarization state c ¼ 2). The four
lowest-mass states of this sector are to be identified with the
physical states π̃0, η̃, ρ̃0 and ω̃, where the particle names are
chosen according to the spin-isospin composition of the
states in the limit of vanishing external field, see Eq. (55).
The masses of these particles can be determined from

Eq. (53). In Fig. 2 we show their behavior with the
magnetic field, for constant and B-dependent couplings
(solid and dashed lines, respectively). In the case of ρ̃0 and
ω̃ mesons, for B ¼ 0 one has mρ ¼ mω ¼ 775 MeV, close
to the quark-antiquark production threshold—which arises
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FIG. 1. Normalized average qq̄ condensate as a function of eB.
Solid and dashed lines correspond to constant and B-dependent
couplings. LQCD results from Ref. [91] (gray band) are added for
comparison.
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FIG. 2. Masses of neutral mesons with spin projection Sz ¼ 0
as functions of eB. Solid (dashed) lines correspond to constant
(B-dependent) couplings.
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from the lack of confinement of the model—given by
2MdðB ¼ 0Þ ¼ 800 MeV. As can be seen from the figure,
since mρ̃0 and mω̃ increase with the magnetic field, they
overcome the threshold (shown by the dotted line) at
relatively low values of eB. Beyond this limit, although
one could obtain some results through analytic continuation
[33,71], pole masses would include an unphysical absorp-
tive part, becoming relatively less reliable. For clarity, we
display in Fig. 2 just the curves for mρ̃0 and mω̃ that
correspond to the case of a constant value of the coupling g;
in the case of the B-dependent coupling gðBÞ, the situation
is entirely similar. It is also worth mentioning that the
results for the η̃ and ω̃ masses should be taken only as
indicative, since a more realistic calculation would require a
three-flavor version of the model in which flavor-mixing
effects could be fully taken into account.
Regarding the neutral pion mass, in Fig. 3 we compare

our results with those obtained in previous works [21,71]
and those corresponding to LQCD calculations, in which
quenched Wilson fermions [51], dynamical staggered
quarks [14,51,92] and improved staggered quarks [52]
are considered. Although LQCD studies do not take into
account flavor mixing (they deal with individual flavor
states), according to the analysis in Ref. [71] the lightest
meson mass is expected to be approximately independent
of the value of the mixing parameter α. It is also worth
noticing that LQCD results have been obtained using
different methods and values of the pion mass at B ¼ 0.
In the figure we show the results obtained for NJL-like
models in which different meson sectors have been
taken into account. Left and right panels correspond to
g ¼ constant and g ¼ gðBÞ [given by Eqs. (92) and (93)],
respectively. If one considers just the pseudoscalar sector
(red dotted lines), when g is kept constant the behavior of
mπ̃0 with the magnetic field is found to be nonmonotonic,

deviating just slightly from its value at B ¼ 0. In contrast,
as seen from the right panel of Fig. 3, if one lets g to
depend on the magnetic field the mass shows a mono-
tonic decrease, reaching a reduction of about 30% at
eB ¼ 1 GeV2. This suppression is shown to be in good
agreement with LQCD results. When the mixing with the
vector sector is considered, the results for both constant and
B-dependent couplings (red dash-dotted lines in left and
right panels) are similar to each other and monotonically
decreasing, lying however quite below LQCD predictions.
Finally, if the mixing with axial vector mesons is also
included (solid lines) we obtain, for both constant and
B-dependent couplings, a monotonic decrease which is in
good qualitative agreement with LQCD calculations for the
studied range of eB. One may infer that the incorporation of
axial vector mesons, being the chiral partners of vector
mesons, leads to cancellations that help to alleviate the
magnitude of the neutral pion mass suppression. Their
inclusion into the full picture leads to relatively more robust
results, in good agreement with LQCD calculations, and is
in fact one of the main takeaways of this work.
Let us discuss the composition of the π̃0 state. The values

of the coefficients associated with the spin-isospin decom-
position given in Eq. (55) are quoted in the upper part of
Table I for eB ¼ 0, 0.5 GeV2 and 1 GeV2. Those asso-
ciated with the spin-flavor decomposition, defined in the
same way as in Eq. (56), are given in the lower part of the
table. We quote the values corresponding to the model in
which the couplings constants do not depend on the
magnetic field; the results are qualitatively similar for
the case of B-dependent couplings. One finds that while
the mass eigenvalues do not depend on whether B is
positive or negative, the corresponding eingenvectors do;
the relative signs in Table I correspond to the choice B > 0.
We consider first the results for vanishing magnetic field.
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FIG. 3. Normalized mass of the π̃0 meson as a function of eB, for the case of constant (left panel) and B-dependent couplings
(right panel). Red dotted and dash-dotted lines show the results from models that do not include the axial vector meson sector. The bands
and the fat squares correspond to LQCD results quoted in Refs. [14,51,52,92].
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It is seen that, due to the well-known π-a1 mixing, the π̃0

state has already some axial vector component. We also
note that even though α is relatively small (in our para-
metrization we have taken α ¼ 0.114, to be compared with
its maximum possible value 1=2), the effect of flavor
mixing is already very strong; the spin-isospin composition
is clearly dominated by the π3 component, which is given
by an antisymmetric equal-weight combination of u and d
quark flavors. This can be understood by noticing that, as
soon as α is different from zero, the Uð1ÞA symmetry gets
broken. The state π3 is then the only one that remains being
a pseudo-Goldstone boson, which forces the lowest-mass
state π̃0 to be dominated by the π3 component. In the
presence of the magnetic field, the mixing is expected to be
modified, since the external field distinguishes between
flavor components πu and πd instead of isospin states. From
the upper part of Table I it is seen that, even for the
relatively small value of α considered here, the mass state
π̃0 is dominated by the π3 component (jcπ̃0π3 j2 ≳ 0.97) for the
full range of values of eB up to 1 GeV2. This means that the
dominance of the flavor composition over the isospin
composition will occur only for extremely large values
of eB. In any case, from the values in Table I one can still
observe some effect of the magnetic field on the compo-
sition of the π̃0 state: when eB increases, it is found that
there is a slight decrease of the π3 component in favor of the
others. In addition, a larger weight is gained by the u-flavor
components, as one can see by looking at the entries
corresponding to the spin-flavor states (lower part of
Table I); one has jcπ̃0πu j2 þ jcπ̃0ρu;2 j2 þ jcπ̃0au;L j2 ¼ 0.50ð0.64Þ
for eB ¼ 0ð1.0Þ GeV2. This can be understood by noticing
that the magnetic field is known to reduce the mass of
the lowest neutral meson state [49,51,52]; for large eB
one expects the lowest mass state (π̃0) to have a larger

component of the quark flavor that couples more strongly
to the magnetic field (i.e., the u quark). Concerning the
vector meson components of the π̃0 state, it is seen that they
are completely negligible at low values of eB, reaching a
contribution similar to the one of the axial vector meson
(≃0.5%) at eB ¼ 1 GeV2.
In addition, as discussed in Sec. III B, the neutral sector

includes states with spin projections Sz ¼ �1, i.e., spin
parallel to the direction of the magnetic field. We consider
here the effect of the magnetic field on vector meson states,
whose masses can be obtained from the submatrices
Ĝð�1;þÞ in Eq. (50). Since in this sector vector meson
and axial vector meson states do not mix, the analysis is
entirely equivalent to the one carried out in Ref. [71], where
the axial vector sector was not taken into account. As stated
in Sec. III C, it is easy to see that the mass matrices
involving the states ρ0;c and ρ3;c, with c ¼ 1, 3 are
diagonalized by rotating from the isospin basis to a flavor
basis ðρu;c; ρd;cÞ given by Eq. (56); moreover, the masses of
these mesons turn out to be equal for polarization states
c ¼ 1 (Sz ¼ þ1) and c ¼ 3 (Sz ¼ −1).
The numerical results for ρu and ρd meson masses as

functions of the magnetic field are shown in Fig. 4. It is
seen that both masses increase with B, the enhancement
being larger in the case of the ρu mass; this can be
understood from the larger (absolute) value of the u-quark
charge, which measures the coupling with the magnetic
field. The results are similar for the case of constant and
B-dependent couplings, corresponding to solid and dashed
lines in the figure, respectively. The dotted lines indicate
the mass thresholds for qq̄ pair production, given by

mðthÞ
ρf ¼ Md þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

d þ 2Bd

q
. As discussed in Ref. [71], this

TABLE I. Composition of the π̃0 meson mass eigenstate for
selected values of eB. Relative signs hold for the choice B > 0.
The upper table corresponds to the spin-isospin decomposition,
as given in Eq. (55), while the lower one corresponds to a spin-
flavor decomposition.

eB½GeV2�
Spin-isospin composition

cπ̃
0

π3 cπ̃
0

π0 cπ̃
0

ρ3;2 cπ̃
0

ρ0;2 cπ̃
0

a3;L cπ̃
0

a0;L

0 0.998 0 0 0 −0.067 0
0.5 0.993 0.084 0.016 0.060 −0.063 −0.011
1.0 0.987 0.141 0.010 0.057 −0.058 −0.012

Spin-flavor composition

eB ½GeV2� cπ̃
0

πu cπ̃
0

πd cπ̃
0

ρu;2 cπ̃
0

ρd;2 cπ̃
0

au;L cπ̃
0

ad;L

0 0.706 −0.706 0 0 −0.047 0.047
0.5 0.707 −0.704 0.011 0.006 −0.047 0.047
1.0 0.798 −0.598 0.048 0.033 −0.050 0.032
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FIG. 4. Masses of ρ mesons with spin projection Sz ¼ �1 as
functions of eB. Solid and dashed lines correspond to constant
and B-dependent couplings; dotted lines indicate qq̄ production
thresholds. LQCD data for ρu from Ref. [51] are included for
comparison.
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threshold is given by a situation in which the spins of both
the quark and antiquark components of the ρf meson are
aligned (or anti-aligned) with the magnetic field; thus, one
of the fermions lies in its lowest Landau level, while the
other one lies in its first excited Landau level. In compari-
son with the Sz ¼ 0 threshold 2Md, for Sz ¼ �1 the

thresholdmðthÞ
ρf grows faster with B. For a constant coupling

g, this allows the values of mρu and mρd to remain below
the threshold for the studied range of magnetic fields.
On the other hand, in the case of a B-dependent coupling
gðBÞ the ρu meson is found to become unstable for eB
somewhat larger than 0.6 GeV2. Our results for the ρu mass
are found to be in agreement, within errors, with values
obtained through LQCD calculations, also shown in
Fig. 4 [51].

C. Charged mesons

As discussed in Sec. IV, to study the lowest lying
charged meson states in the presence of the magnetic field
one has to consider the Landau modes l ¼ −1 and l ¼ 0.
For l ¼ −1, the lowest mass state is the one that we have
denoted as ρ1, which does not get mixed with any other
state. The corresponding pole mass mρþ can be obtained
from Eq. (83), while the lowest energy for this state is given

by Eρþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ρþ − Be

q
, see Eq. (86).

In Fig. 5 we show our numerical results for Eρþ as a
function of eB, normalized by the value of the ρ mass at

B ¼ 0. Black solid and dashed lines correspond to the cases
of constant and B-dependent couplings, respectively, where
gðBÞ is given by Eqs. (92) and (93). It can be seen that for
g ¼ constant the results differ considerably from those
obtained in a similar model [72] which instead does not
take into account the presence of axial vector mesons (red
dotted line in the figure). On the contrary, for g ¼ gðBÞ (red
dash-dotted line) they remain basically unchanged. In fact,
here the differences between models that include or not
axial vector mesons do not arise from direct mixing effects
(the ρ1 state does not mix with axial vectors) but from the
fact that axial vector states mix with pions already for
B ¼ 0; this leads to some change in the model parameters
so as to get consistency with the phenomenological inputs.
In any case, it is found that—as in the case of neutral
mesons—the results from the full model (black solid and
dashed lines) appear to be rather robust; they show a similar
behavior either for constant or B-dependent couplings, and
this behavior is shown to be in good agreement with LQCD
calculations [45,51,59], also shown in the figure. Notice
that our results, as those from LQCD, are not consistent
with ρþ condensation for the considered range of values of
eB. The curve corresponding to the lowest-energy state
of a pointlike ρþ meson as a function of eB is shown for
comparison.
It is worth mentioning that our results are qualitatively

different from those obtained in other works in the
framework of two-flavor NJL-like models [18,30], which
do find ρþ meson condensation for eB ∼ 0.2 GeV2 to
0.6 GeV2. As discussed in Refs. [72,80], in those works
Schwinger phases are neglected and it is assumed that
charged π and ρ mesons lie in zero three-momentum states
(i.e., meson wave functions are approximated by plane
waves). Here we use, instead, an expansion of meson fields
in terms of the solutions of the corresponding equations of
motion for nonzero B, taking properly into account the
presence of Schwinger phases in quark propagators. In fact,
as shown in Ref. [80], the plane wave approximation may
have a dramatic incidence on these numerical results,
implying a substantial change in the behavior of the ρþ
mass for the l ¼ −1 Landau mode.
In the case of the mode l ¼ 0, as discussed in Sec. IV,

the lowest mass state πþ is given in general by a mixing
between the states that we have denoted as π, ρ2, aL and a1.
The corresponding pole mass mπþ can be obtained from
Eq. (87), while the lowest energy for this state is given by

Eπþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

πþ þ Be

q
, see Eq. (90). Our numerical results are

presented in Fig. 6, where, for the sake of comparison with
LQCD values, we plot the values of the difference
EπþðBÞ2 − Eπþð0Þ2 as a function of eB. Once again, black
solid and dashed lines correspond to the cases of constant
and B-dependent couplings, respectively. We also include
for comparison the results obtained from similar NJL-like
models that just include the pseudoscalar meson sector
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FIG. 5. Energy of the ρþ meson as a function of eB for the
lowest Landau mode l ¼ −1 and vanishing component of the
momentum in the direction of B⃗. Values are normalized to the ρþ
mass at zero external field. Black solid and dashed lines
correspond to constant and B-dependent couplings, respectively.
Red dotted and dash-dotted lines show results from models that
do not include axial vector mesons, while the light gray line
corresponds to a pointlike ρþ. For comparison, lattice QCD data
quoted in Refs. [45,51,59] are also included.

MASSES OF MAGNETIZED PSEUDOSCALAR AND VECTOR … PHYS. REV. D 109, 054014 (2024)

054014-15



(red dotted line), or just include the mixing between the
pseudoscalar and vector meson sectors (red dash-dotted
line), neglecting the effect of the presence of axial vector
mesons. It can be seen that the inclusion of the axial vector
meson sector leads to an improvement of the agreement
with LQCD data quoted in Refs. [14,45,52], also shown in
the figure.
It is interesting to point out that, for large external

magnetic fields, the values from LQCD shown in Fig. 6 lie
well below the curve that corresponds to a pointlike pion.
From Eq. (90), it is easy to see that to reproduce these
results one should get a negative value of the pole mass
squared, m2

πþ < 0. In fact, this is what we obtain from our
NJL-like model if we assume that the coupling constants do
not depend on B (solid line in the figure). The appearance
of an imaginary pole mass does not signal the existence
of a meson condensation, since meson energies are still
positive quantities; indeed, the presence of the magnetic
field generates a zero-point motion in the plane
perpendicular to B⃗ that induces an “effective magnetic

mass”
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

πþ þ Be

q
. Notice that in this case some analytical

expressions have to be revised. The corresponding changes,
basically related with the normalization of polarization
vectors, are indicated in Appendix E. In contrast, for
B-dependent couplings one does not observe a large
variation of the πþ pole mass for the studied range of
eB; the energy is essentially dominated by the magnetic
field. Thus, the curve shown in Fig. 6 (black dashed line)

turns out to be approximately coincident with the one
corresponding to a pointlike charged pion. We remark that
our numerical results indicate a monotonic enhancement of
the charged pion energy with the magnetic field, in contrast
with the nonmonotic behavior found in some recent LQCD
simulations (green circles in the figure) [52]. It would be
interesting to get more insight on this open issue from other
effective models and further LQCD calculations.
To conclude this section, let us discuss the state

composition of the charged pion mass state. In Table II
we quote our results for the coefficients of the linear
combination in Eq. (91) for some values of eB, considering
both the cases g ¼ constant and gðBÞ (upper and lower
parts of the table, respectively). We also include the values
of the normalized squared πþ pole masses. For B ¼ 0, as
well-known, in these type of model the pion mass eigen-
state is obtained from a mixing between the pseudoscalar
state π and the longitudinal part of the axial-vector state
(aL, in our notation). Then, for nonzero B, the mixing
between the states ρ2 and a1 is also turned on. As stated, for
g ¼ constant the value of m2

πþ becomes negative if the
magnetic field is increased; this occurs at eB ≃ 0.5 GeV2.
As shown in the upper part of Table II, when approaching
this point the mass eigenstate turns out to be strongly
dominated by the axial vector states a1 and aL, which have
similar weights. For larger values of eB the absolute value
ofm2

πþ gets increased, and once again the πþ state becomes
dominated by the pseudoscalar π contribution. Notice,
however, that for eB ¼ 1 GeV the contributions of other
states are non-negligible; moreover, it is seen that the
coefficients cπ

þ
a1 and cπ

þ
aL become imaginary. On the con-

trary, as shown in the lower part of the table, for g ¼ gðBÞ
these effects are not observed in the studied range of values
of the external field. As mentioned above, in this case the
πþ pole mass does not show qualitative changes with eB;
the main effect of the magnetic field is the enhancement of
axial vector components, each of them reaching about 1=4
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FIG. 6. Squared energy of the πþ mass eigenstate for the
Landau mode l ¼ 0 and vanishing component of the momentum
in the direction of B⃗. Values are given with respect to the squared
πþ mass for vanishing external field. Black solid and dashed lines
correspond to constant and B-dependent couplings, respectively.
Red dotted and dash-dotted lines show results from models that
do not include axial vector mesons, while the light gray line
corresponds to a pointlike πþ. For comparison, lattice QCD data
quoted in Refs. [14,45,52] are also included.

TABLE II. Normalized squared pole mass and composition of
the πþ meson mass eigenstate for selected values of eB.

eB
½GeV2� mπþðBÞ2=mπþð0Þ2

State composition (g ¼ constant)

cπ
þ

π cπ
þ

ρ2 cπ
þ

a1 cπ
þ

aL

0 1 0.998 0 0 −0.067
0.5 0.006 0.174 −0.025 0.697 0.697
1.0 −10.29 0.879 −0.210 −0.201i −0.378i

eB
½GeV2� mπþðBÞ2=mπþð0Þ2

State composition (g ¼ gðBÞ)
cπ

þ
π cπ

þ
ρ2 cπ

þ
a1 cπ

þ
aL

0 1 0.998 0 0 −0.067
0.5 1.18 0.924 −0.137 0.287 0.214
1.0 0.95 0.651 −0.168 0.545 0.501
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of the state composition at eB ¼ 1 GeV2, while the
remaining 1=2 fraction is almost saturated by the π
component. As stated, recent LQCD data support a
negative value of m2

πþ for large magnetic fields. It would
be also interesting to get information from lattice calcu-
lations on the state composition, in particular, in the
region eB ∼ 1 GeV2.

VI. SUMMARY AND CONCLUSIONS

In this work we have studied the mass spectrum of light
pseudoscalar and vector mesons in the presence of an
external uniform and static magnetic field B⃗, introducing
the effects of the mixing with the axial-vector meson sector.
The study has been performed in the framework of a two-
flavor NJL-like model that includes isoscalar and isovector
couplings in the scalar-pseudoscalar and vector-axial vector
sector, as well as a flavor mixing term in the scalar-
pseudoscalar sector. For simplicity, the coupling constants
of the vector and axial vector sector have been taken to be
equal. The ultraviolet divergences associated to the non-
renormalizability of the model have been regularized using
the magnetic field independent regularization method,
which has been shown to be free from unphysical oscil-
lations and to reduce the dependence of the results on the
model parameters [82]. Additionally, we have explored the
possibility of using magnetic field dependent coupling
constants gðBÞ to account for the effect of the magnetic
field on sea quarks.
As is well-known, for vanishing external field pseudo-

scalar mesons mix with “longitudinal” axial vector mesons.
Now, the presence of an external uniform magnetic field
breaks isospin (due to the different quark electric charges)
and full rotational symmetry, allowing for a more complex
meson mixing pattern than in vacuum. The mixing structure
is constrained by the remaining unbroken symmetries, in
such a way that the mass matrices—written in a basis of
polarization states—can be separated into several “boxes”.
In the case of neutral mesons, Schwinger phases cancel

and the polarization functions become diagonal in the usual
momentum basis. Since mesons can be taken at rest,
rotational invariance around B̂ implies that Sz (the spin
in the field direction) is a good quantum number to
characterize these states. The aforementioned symmetries
restrict the allowed mixing in the original 20 × 20 mass
matrix, which can be decomposed as a direct sum of
subspaces of states with sz ¼ −1, 0, and 1. For sz ¼ �1

(spin parallel to B⃗), it is seen that vector mesons do not mix
with other sectors, and the mass eigenstates are those of the
flavor basis (ρu, ρd). We have shown that the corresponding
masses increase with B in qualitative agreement with
LQCD, within uncertainties. For sz ¼ 0 (spin perpendi-
cular to B⃗), scalar mesons turn out to get decoupled from
other states and therefore have been disregarded in our
analysis. Meanwhile, pseudoscalar mesons mix with vector

and axial vector mesons whose polarization states are
parallel to B⃗. The four lowest-mass states of this sector
are to be identified with the physical states π̃0, η̃, ρ̃0 and ω̃.
Regarding mρ̃0 and mω̃, we have found that they get
increased with the magnetic field, in such a way that they
overcome a qq̄ decay threshold—which arises from the
lack of confinement of the model—at relatively low values
of eB. Concerningmη̃, a slight decrease with B is observed.
The impact of the inclusion of the axial vector meson

sector on the mass of the lightest state π̃0, identified with
the neutral pion, is actually one of the main focus of our
work. We have found that when axial vector mesons are
taken into account, mπ̃0 displays a monotonic decreasing
behavior with B in the studied range eB < 1 GeV2, which
is in good qualitative agreement with LQCD calculations
for both g ¼ constant and gðBÞ. Thus, our current results
represent an improvement over previous analyses that take
into account just the mixing with the vector meson sector,
or no mixing at all. When no mixing is considered, the
behavior of mπ̃0 with B is nonmonotonic when g is kept
constant, deviating just slightly from its value at B ¼ 0.
Only when g is allow to depend on the magnetic field one
obtains a decreasing behavior which resembles LQCD
results. Even though the inclusion of the vector sector
leads to a reduction in mπ̃0 together with a consistent
decreasing trend, the values lie quite below LQCD pre-
dictions, for both g and gðBÞ. We therefore conclude that
the inclusion of axial mesons is important since it leads to
more robust results for the neutral pion mass, even
independently of the assumption of a magnetic field
dependent coupling constant. Regarding the composition
of the π̃0 state, we have found that it is largely dominated by
the isovector component π3 (jcπ̃0π3 j2 ≳ 0.97) for the studied
range of values of eB. In terms of flavor composition, a
larger weight is gained by u-flavor components for large
values of B, which can be understood from the fact that the
u quark couples more strongly to the magnetic field.
In the case of charged mesons, the corresponding

polarization functions are diagonalized by expanding
meson fields in appropriate Ritus-like bases, so as to
account for the effect of nonvanishing Schwinger phases.
Once again, the symmetries of the system constrain the
allowed mixing matrices, which also depend on the value of
the meson Landau level l. For l ¼ −1 one has only one
vector and one axial vector polarization states. Moreover,
they do not mix with any other particle state. Thus, for
l ¼ −1 the effect of the inclusion of axial vector mesons on
the ρþ mass comes solely from the model parametrization,
which is affected by the presence of π-a1 mixing at B ¼ 0.
Our results show that when the axial vector sector is

included, the energy Eρþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ρþ − Be

q
of this state under-

goes a considerable reduction, leading to a decreasing
behavior which is in qualitative agreement with LQCD
predictions, independently of the assumption of a
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B-dependent coupling constant. However—in accordance
to LQCD calculations and with our previous results within
NJL-like models that do not include axial vectors [72,80]—
we find that Eρþ does not vanish for any considered value
of the magnetic field, a fact that can be relevant in
connection with the occurrence of ρþ meson condensation
for strong magnetic fields.
For l ¼ 0 only three polarization vectors are linearly

independent, and the pion mixing subspace is given by
πþ − ρþ − aþ1 for only certain polarizations states. The
lowest-mass state in this sector can be identified with the

πþ, whose lowest energy is given by Eπþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

πþ þ Be

q
.

Our results show that, even though vector mixing already
induces a softening in the enhancement of the pion energy
with B, the inclusion of the axial vector meson sector
reinforces this softening, leading to an improved agreement
with LQCD predictions. Remarkably, for a constant cou-
pling g and magnetic fields stronger than eB ¼ 0.4 GeV2,
we obtain values of the pion energy which lie well below
the ones correspoding to a pointlike pion, in concordance
with LQCD results in Refs. [45,52]. On the other hand, in
the case of a B-dependent coupling we find that the pole
mass becomes approximately constant; as a result, the
energy is basically coincident with the one corresponding
to a pointlike charged pion. As for the πþ state compo-
sition, we have seen that in general the magnetic field
induces a mixing between all states by increasing the
contribution from vector and axial vector components.
In view of the above results, one can conclude that the

inclusion of axial vector mesons leads to more robust
results and improves the agreement between NJL-like
models and LQCD calculations. Still, issues about meson
masses and mass eigenstate compositions at large magnetic
fields are still open, and further results from LQCD and
effective models of strong interactions would be welcome.
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APPENDIX A: CONVENTIONS AND NOTATION

Throughout this section we use the Minkowski metric
ημν ¼ diagð1;−1;−1;−1Þ, while for a space-time coordi-
nate four-vector xμ we adopt the notation xμ ¼ ðt; x⃗Þ,
with x⃗ ¼ ðx1; x2; x3Þ.
We study interactions between charged particles and an

external electromagnetic field AμðxÞ. The electromagnetic
field strength Fμν and its dual F̃μν are given by

Fμν ¼ ∂
μAν − ∂

νAμ; F̃μν ¼ 1

2
ϵμναβFαβ; ðA1Þ

where the convention ϵ0123 ¼ þ1 is used. We consider in
particular the situation in which one has a static and
uniform magnetic field B⃗; without losing generality, we
choose the axis 3 to be parallel to B⃗, i.e., we take
B⃗ ¼ ð0; 0; BÞ (note that B can be either positive or
negative). Moreover, defining

F̂μν ¼ 1

B
Fμν; ˆ̃F

μν ¼ 1

B
F̃μν; ðA2Þ

for i, j ¼ 1, 2, 3 one has

F̂0ν ¼ 0; F̂ij ¼ −ϵij3;
ˆ̃F
ij ¼ 0; ˆ̃F

0k ¼ −ϵ0kijϵij3=2; ðA3Þ

i.e., the relevant components of the tensors are F̂12 ¼
−F̂21 ¼ −1, ˆ̃F

03 ¼ − ˆ̃F
30 ¼ −1.

Since isotropy is broken by the particular direction of the
external field B⃗, it is convenient to separate the metric
tensor into “parallel” and “perpendicular” pieces,

ημνk ¼diagð1;0;0;−1Þ; ημν⊥ ¼diagð0;−1;−1;0Þ: ðA4Þ

In addition, given a four-vector vμ, it is useful to define
“parallel” and “perpendicular” vectors,

vμk ¼ ðv0; 0; 0; v3Þ; vμ⊥ ¼ ð0; v1; v2; 0Þ: ðA5Þ

APPENDIX B: NEUTRAL-MESON
POLARIZATION FUNCTIONS

According to Eq. (27), the polarization functions for
neutral mesons can be written as a sum of flavor-dependent
functions Σf

MM0 ðqÞ. The latter, in turn, can be written in
terms of a set of Lorentz covariant tensors as

Σf
MM0 ðqÞ ¼

X
i¼1;nmm0

cfmm0;iðq2⊥; q2kÞOðiÞ
MM0 ðqÞ: ðB1Þ

Here, M ¼ πb; ρ
μ
b; a

μ
b correspond to m ¼ π, ρ, a, and the

same is understood for M0 and m0. The coefficients cfmm0;i
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are scalar functions, while the tensors OðiÞ
MM0 carry the

corresponding Lorentz structures. Notice that the number
of terms in the sum, nmm0 , depends on the combinationmm0
considered. The scalar coefficients can be expressed as

cfmm0;iðq2⊥; q2kÞ ¼
Nc

8π2

Z
∞

0

dz
Z

1

−1
dv e−zϕ

f
0
ðq⊥;qk;v;zÞ

× γfmm0;iðq2⊥; q2k; v; zÞ; ðB2Þ

where

ϕf
0ðq⊥; qk; v; zÞ ¼ M2

f −
1 − v2

4
q2k

þ coshðzBfÞ − coshðvzBfÞ
2zBf sinhðzBfÞ

q⃗2⊥; ðB3Þ

with Bf ¼ jBQfj. In the following we list the sums
associated to each polarization function, together with
the explicit expressions of the functions γfmm0;iðq2⊥; q2k; v; zÞ
corresponding to the coefficients cfmm0;iðq2⊥; q2kÞ. For bre-
vity, the arguments of cfmm0;i and γfmm0;i are not explicitly
written.
The ππ polarization function is a scalar, therefore there is

only one coefficient cfππ;1, and Oð1Þ
πbπb0 ðqÞ ¼ 1. One has

Σf
πbπb0 ðqÞ ¼ cfππ;1; ðB4Þ

while the associated function γfππ;1 is given by

γfππ;1 ¼
�
M2

f þ
1

z
þ 1 − v2

4
q2k

�
Bf

tanhðzBfÞ

þ B2
f

sinh2ðzBfÞ
�
1 −

coshðzBfÞ − coshðvzBfÞ
2Bf sinhðzBfÞ

q⃗2⊥
	
:

ðB5Þ

Analogously, for the σσ polarization function we have

Σf
σbσb0 ðqÞ ¼ cfσσ;1; ðB6Þ

while

γfσσ;1 ¼
�
−M2

f þ
1

z
þ 1 − v2

4
q2k

�
Bf

tanhðzBfÞ

þ B2
f

sinh2ðzBfÞ
�
1 −

coshðzBfÞ − coshðvzBfÞ
2Bf sinh½zBf�

q⃗2⊥
	
:

ðB7Þ

For the ρρ polarization the sum in Eq. (B1) includes five
terms. We find

Σfμν
ρμbρ

ν
b0
ðqÞ ¼ cfρρ;1η

μν
k þ cfρρ;2η

μν
⊥ þ cfρρ;3q

μ
kq

ν
k

þ cfρρ;4q
μ
⊥qν⊥ þ cfρρ;5ðqμ⊥qνk þ qμkq

ν⊥Þ; ðB8Þ

while the functions γfρρ;i read

γfρρ;1 ¼ −
�
M2

f þ
1 − v2

4
q2k

�
Bf

tanhðzBfÞ
−

B2
f

sinh2ðzBfÞ

þ Bf½coshðzBfÞ − coshðvzBfÞ�
2sinh3½zBf�

q⃗2⊥;

γfρρ;2 ¼ −
�
M2

f þ
1

z
þ 1 − v2

4
q2k

�
Bf coshðvzBfÞ
sinhðzBfÞ

þ Bf½coshðzBfÞ − coshðvzBfÞ�
2sinh3½zBf�

q⃗2⊥;

γfρρ;3 ¼ ð1 − v2Þ Bf

2 tanh½zBf�
;

γfρρ;4 ¼ Bf
coshðzBfÞ − coshðvzBfÞ

sinh3ðzBfÞ
;

γfρρ;5 ¼ Bf
coshðvzBfÞ − v cothðzBfÞ sinhðvzBfÞ

2 sinhðzBfÞ
: ðB9Þ

For the aa polarization function we get

Σfμν
aμba

ν
b0
ðqÞ ¼ cfaa;1η

μν
k þ cfaa;2η

μν
⊥ þ cfaa;3q

μ
kq

ν
k

þ cfaa;4q
μ
⊥qν⊥ þ cfaa;5ðqμ⊥qνk þ qμkq

ν⊥Þ; ðB10Þ

while the functions γfaa;i are given by

γfaa;1 ¼ −
�
−M2

f þ
1 − v2

4
q2k

�
Bf

tanhðzBfÞ
−

B2
f

sinh2ðzBfÞ

þ Bf½coshðzBfÞ − coshðvzBfÞ�
2sinh3½zBf�

q⃗2⊥;

γfaa;2 ¼ −
�
−M2

f þ
1

z
þ 1 − v2

4
q2k

�
Bf coshðvzBfÞ
sinhðzBfÞ

þ Bf½coshðzBfÞ − coshðvzBfÞ�
2sinh3½zBf�

q⃗2⊥;

γfaa;i ¼ γfρρ;i for i ¼ 3; 4; 5: ðB11Þ

For the πρ and ρπ polarization functions we get

Σf μ
πbρ

μ

b0
ðqÞ ¼ Σf μ

ρμbπb0
ðqÞ� ¼ cfπρ;1

ˆ̃F
μα
qkα ðB12Þ

and
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γfπρ;1 ¼ −isfBfMf; ðB13Þ

with sf ¼ signðBQfÞ.
For the πa and aπ polarization functions we get

Σf μ
πba

μ

b0
ðqÞ ¼ Σf μ

aμbπb0
ðqÞ� ¼ cfπa;1q

μ
k þ cfπa;2q

μ
⊥; ðB14Þ

and

γfπa;1 ¼ −iMf
Bf

tanhðzBfÞ
;

γfπa;2 ¼ −iMf
Bf coshðvzBfÞ
sinhðzBfÞ

: ðB15Þ

For the σρ and ρσ polarization functions we get

Σf μ
σbρ

μ

b0
ðqÞ ¼ Σf μ

ρμbσb0
ðqÞ� ¼ cfσρ;1F̂

μαq⊥α; ðB16Þ

and

γfσρ;1 ¼ isfBfMf
coshðzBfÞ coshðvzBfÞ − 1

sinh2ðzBfÞ
: ðB17Þ

Finally, for the aρ and ρa polarization functions we have

Σf μν
ρμba

ν
b0
ðqÞ ¼ Σf νμ

aνbρ
μ

b0
ðqÞ ¼ cfaρ;1ð ˆ̃F

μα
qαkqνk − qμkqαk

ˆ̃F
ανÞ

þ cfaρ;2ð ˆ̃F
μα
qαkqν⊥ − qμ⊥qαk ˆ̃F

ανÞ þ cfaρ;3
ˆ̃F
μν
;

ðB18Þ

and

γfaρ;1¼
sf
4
Bfð1−v2Þ;

γfaρ;2¼−
sf
2
Bf

�
vsinhðvzBfÞ
sinhðzBfÞ

þ1−coshðzBfÞcoshðvzBfÞ
sinh2ðzBfÞ

	
;

γfaρ;3¼−sfBfM2
f: ðB19Þ

APPENDIX C: THE “B= 0” POLARIZATION
FUNCTIONS

To perform the MFIR we need to obtain the meson
“B ¼ 0” polarization functions J0MM0 ðqÞ in both their
unregularized (unreg) and regularized (reg) forms. As
stated in Sec. II, although these polarization functions
are calculated from the propagators in the B → 0 limit, they
still depend implicitly on B through the values of the
magnetized dressed quark masses Mf. Hence, they should
not be confused with the polarization functions that one
would obtain in the case of vanishing external field.
Moreover, they will be in general different for neutral

and charged mesons. In the case of neutral mesons (i.e.,
M;M0 ¼ σb; πb; ρ

μ
b; a

μ
b, with b ¼ 0, 3) one can write

J0;λMM0 ðqÞ ¼ Fuu;λ
MM0 ðqÞ þ εMεM0Fdd;λ

MM0 ðqÞ; ðC1Þ

where λ stands for “reg” or “unreg”, and εM is equal to
either 1 or −1 [see text below Eq. (22)]. On the other hand,
for charged mesons (M;M0 ¼ σ; π; ρμ; aμ) one has

J0;λMM0 ðqÞ ¼ 2Fud;λ
MM0 ðqÞ: ðC2Þ

The functions Fff0;λ
MM0 ðqÞ can be written in terms of scalar

functions bff
0;λ

mm0;iðq2Þ, with m;m0 ¼ π, ρ, a, as follows:

Fff0;λ
ππ ðqÞ ¼ bff

0;λ
ππ;1 ðq2Þ; ðC3Þ

Fff0;λμν
ρμρν ðqÞ ¼ bff

0;λ
ρρ;1 ðq2Þ

�
ημν −

qμqν

q2

�
þ bff

0;λ
ρρ;2 ðq2Þ

qμqν

q2
;

ðC4Þ

Fff0;λμν
aμaν ðqÞ ¼ bff

0;λ
aa;1 ðq2Þ

�
ημν −

qμqν

q2

�
þ bff

0;λ
aa;2 ðq2Þ

qμqν

q2
;

ðC5Þ

Fff0;λμ
πaμ ðqÞ ¼ Fff0;λμ

aμπ ðqÞ� ¼ bff
0;λ

πa;1 ðq2Þqμ: ðC6Þ

For the unregularized functions we find

bff
0;unreg

mm0;i ðq2Þ¼ Nc

8π2

Z
1

−1
dv
Z

∞

0

dz
z
e−zϕ

ff0 ðv;q2Þωff0
mm0;iðq2;v;zÞ;

ðC7Þ

where

ϕff0 ðv; q2Þ ¼ 1

2
ðM2

f þM2
f0 Þ −

v
2
ðM2

f −M2
f0 Þ −

ð1 − v2Þ
4

q2

ðC8Þ

and
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ωff0
ππ;1 ¼ MfMf0 þ

2

z
þ 1 − v2

4
q2;

ωff0
ρρ;1 ¼ −MfMf0 −

1

z
−
1 − v2

4
q2;

ωff0
ρρ;2 ¼ −MfMf0 −

1

z
þ 1 − v2

4
q2;

ωff0
aa;1 ¼ MfMf0 −

1

z
−
1 − v2

4
q2;

ωff0
aa;2 ¼ MfMf0 −

1

z
þ 1 − v2

4
q2;

ωff0
πa;1 ¼ −

i
2

�ð1 − vÞMf þ ð1þ vÞMf0
�
: ðC9Þ

To express the regularized functions bff
0;reg

mm0;i ðq2Þ it is
convenient to introduce the ultraviolet divergent integrals

I1f ¼ 4i
Z

d4p
ð2πÞ4

1

p2 −M2
f þ iϵ

; ðC10Þ

I2ff0 ðq2Þ ¼ 2i
Z

d4p
ð2πÞ4

1

ðp2þ −M2
f þ iϵÞðp2

− −M2
f0 þ iϵÞ ;

ðC11Þ

where p� ¼ p� q=2. Now we can consider some regu-
larization scheme to obtain regularized integrals Ireg1f and
Ireg
2ff0 ðq2Þ. Using the definitions

M̄ ¼ Mf þMf0

2
; Δ ¼ Mf −M0

f; ðC12Þ

and introducing the shorthand notation

Ī1 ¼
Ireg1f þ Ireg

1f0

2
; I2 ¼ Ireg

2ff0 ðq2Þ;

I02 ¼ Ireg
2ff0 ð0Þ; I002 ¼ dIreg

2ff0 ðq2Þ
dq2

����
q2¼0

; ðC13Þ

we obtain

bff
0;reg

ππ;1 ¼ Nc½Ī1 − ðq2 − Δ2ÞI2�;

bff
0;reg

ρρ;1 ¼ Nc

3

��
4M̄2 þ Δ2 −

4M̄2Δ2

q2

�
ðI2 − I02Þ − ð3Δ2 − 2q2ÞI2 þ 16M̄2Δ2I002

	
;

bff
0;reg

ρρ;2 ¼ −NcΔ2

�
I2 −

4M̄2

q2
ðI2 − I02Þ

	
;

bff
0;reg

aa;1 ¼ Nc

3

��
4M̄2 þ Δ2 −

4M̄2Δ2

q2

�
ðI2 − I02Þ − ð12M̄2 − 2q2ÞI2 þ 16M̄2Δ2I002

	
;

bff
0;reg

aa;2 ¼ −4NcM̄2

�
I2 −

Δ2

q2
ðI2 − I02Þ

	
;

bff
0;reg

πa;1 ¼ 2iNcM̄

�
I2 −

Δ2

q2
ðI2 − I02Þ

	
: ðC14Þ

To regularize the vacuum loop integrals I1f and I2ff0 ðq2Þ
we use the proper time scheme. We get in this way

Ireg1f ¼ Λ2

4π2
E2ðM2

f=Λ2Þ; ðC15Þ

Ireg
2ff0 ðq2Þ ¼ −

1

16π2

Z
1

−1
dvE1ðϕff0 ðv; q2Þ=Λ2Þ; ðC16Þ

where EnðxÞ ¼
R
∞
1 dt t−n expð−txÞ is the exponential inte-

gral function. The regularization requires the introduction
of a dimensionful parameter Λ, which plays the role of an
ultraviolet cutoff.

APPENDIX D: USEFUL RELATIONS

We quote here a few relations that are found to be useful
in order to obtain the neutral meson polarization functions,
see Sec. III A. These are [93]Z

1

−1
dvð1 − v2Þezð1−v2Þ=4 ¼ 4

z
þ
�
1 −

2

z

�Z
1

−1
dv ezð1−v2Þ=4;

ðD1ÞZ
∞

0

dz
z
e−βz

�
cosh½vz�
sinh½z� −

1

z

	
¼ β

�
1 − ln

β

2

�
− ln 2π

þ
X
s¼�1

lnΓ
�
β þ svþ 1

2

�
;

ðD2Þ
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Z
∞

0

dze−βz
�
cosh½vz�
sinh½z� −

1

z

	
¼ ln

β

2
−
1

2

X
s¼�1

ψ

�
βþsvþ1

2

�
;

ðD3Þ

with Re β > 0. For v ¼ 1, the last relation leads to

Z
∞

0

dz e−βz
�
coth z −

1

z

	
¼ ln

β

2
−
1

β
− ψ

�
β

2

�
: ðD4Þ

APPENDIX E: POLARIZATION VECTORS

1. Neutral mesons

For arbitrary three-momentum q⃗, a convenient choice for
the polarization vectors of neutral mesons is

ϵμðq⃗; 1Þ ¼ 1ffiffiffi
2

p
mð0Þ

⊥ mð0Þ
2⊥

�
qþðE; 0; 0; q3Þ þmð0Þ

⊥
2ð0; 1; i; 0Þ�

ϵμðq⃗; 2Þ ¼ 1

mð0Þ
⊥

ðq3; 0; 0; EÞ

ϵμðq⃗; 3Þ ¼ 1ffiffiffi
2

p
mmð0Þ

2⊥

�
q−ðE; 0; 0; q3Þ þ

q�þq−
2

ð0; 1; i; 0Þ

þmð0Þ
2⊥

2ð0; 1;−i; 0Þ
	
; ðE1Þ

where q� ¼ q1 � iq2, and we have used the definitions

mð0Þ
⊥ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ q⃗2⊥

q
; mð0Þ

2⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ q⃗2⊥=2

q
; ðE2Þ

with q⃗2⊥ ¼ ðq1Þ2 þ ðq2Þ2. One has in this case

E2 ¼ ðq3Þ2 þ q⃗2⊥ þm2: ðE3Þ

In addition, as stated in the main text, one can introduce a
fourth “longitudinal” polarization vector

ϵμðq⃗; LÞ ¼ 1

m
ðE; q1; q2; q3Þ: ðE4Þ

These four polarization vectors satisfy

ϵμðq⃗; cÞ�ϵμðq⃗; c0Þ ¼
�
ζc for c ¼ c0

0 for c ≠ c0
; ðE5Þ

where ζc ¼ −1 forc ¼ 1, 2, 3 and ζc ¼ 1 forc ¼ L.Note that
for q⃗ ¼ 0 they reduce to those given by Eqs. (47) and (48).

2. Charged mesons

In the case of charged mesons, for l ≥ 1 one finds three
linearly independent polarization vectors. A convenient
choice is

ϵμðl;q3;1Þ¼ 1ffiffiffi
2

p
m⊥m2⊥

�
ΠþðE;0;0;q3Þþm2⊥ð0;1;is;0Þ

�
;

ϵμðl;q3;2Þ¼ 1

m⊥
ðq3;0;0;EÞ;

ϵμðl;q3;3Þ¼ 1ffiffiffi
2

p
mm2⊥

�
Π−ðE;0;0;q3Þþ

Π�þΠ−

2
ð0;1;is;0Þ

þm2
2⊥ð0;1;−is;0Þ

	
; ðE6Þ

where we have used the definitions

m⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ð2lþ 1ÞBe

q
;

m2⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ lBe

q
;

Πþ ¼ −Π1ðl; qkÞ þ isΠ2ðl; qkÞ ¼ −i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðlþ 1ÞBe

p
;

Π− ¼ −Π1ðl; qkÞ − isΠ2ðl; qkÞ ¼ i
ffiffiffiffiffiffiffiffiffiffiffi
2lBe

p
; ðE7Þ

with BQ ¼ jQBj. One has

E2 ¼ ðq3Þ2 þ ð2lþ 1ÞBQ þm2; ðE8Þ

while the four-vector Πμ is given in Eq. (H10).
For l ¼ 0, two independent nontrivial transverse polari-

zation vectors can be constructed. A suitable choice is

ϵμð0;q3;1Þ¼ 1ffiffiffi
2

p
m⊥m2⊥

�
ΠþðE;0;0;q3Þþm2⊥ð0;1; is;0Þ

�
;

ϵμð0;q3;2Þ¼ 1

m⊥
ðq3;0;0;EÞ; ðE9Þ

where m⊥, m2⊥, Πþ and E are understood to be evaluated
at l ¼ 0.
For l ¼ −1, there is only one nontrivial polarization

vector, which can be conveniently written as

ϵμð−1; q3; 1Þ ¼ 1ffiffiffi
2

p ð0; 1; is; 0Þ: ðE10Þ

Finally, for l ≥ 0 one can also define a “longitudinal”
polarization vector that we denote as ϵμðl; q3; LÞ; it is
given by

ϵμðl; q3; LÞ ¼ 1

m
Πμðl; qkÞjq0¼E: ðE11Þ

For l ¼ −1 no longitudinal vector is introduced (notice
that Πμ has been defined only for l ≥ 0).
In a similar way as in the neutral case, the above

polarization vectors satisfy
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ϵμðl; q3; cÞ�ϵμðl; q3; c0Þ ¼
�
ζc for c ¼ c0

0 for c ≠ c0
; ðE12Þ

where the indices c and c0 run only over the allowed
polarizations for the corresponding value of l, while ζc is
defined below Eq. (E5).
As stated in Sec. V C, for some range of values of the

magnetic field one can get m2 < 0. In that case, in
Eq. (E12) one should replace ζc → ζ̃c, where ζ̃c depends
on the value of l. For l ¼ 0, ζ̃c ¼ −1ðþ1Þ for c ¼ L; 2ð1Þ.

APPENDIX F: REFLECTION SYMMETRY AND
BOX STRUCTURE OF G MATRICES

1. Reflection at the plane perpendicular
to the magnetic field

As is well-known, the electromagnetic interaction is
invariant under a parity transformation,

xμ!P xμ: ðF1Þ

However, it is not easy to deal with this transformation in
the presence of an external uniform magnetic field. This is
due to the fact that the description of spatial reflections at a
plane parallel to the magnetic field requires to choose a
gauge. Instead, we can focus on the spatial reflection at the
plane perpendicular to the magnetic field, say PB̂. Since, as
customary (and without losing generality), we choose the
axis 3 to be in the direction of the magnetic field, in what
follows we denote this transformation by P 3̂.
The transformationP 3̂ distinguishes between the parallel

and perpendicular components of xμ. Namely,

xμk !
P3̂

xkμ; xμ⊥!
P3̂

xμ⊥: ðF2Þ

For a plane wave associated to a neutral particle we have

e�iqðP3̂xÞ ¼ e�iðP3̂qÞx; ðF3Þ

with

qμk!
P3̂

qkμ; qμ⊥!
P3̂ qμ⊥: ðF4Þ

The wave functions of charged particles can be written in
terms of the functions FQðx; qÞ discussed in Appendix G.
In this case we have

FQðP 3̂x; q̄Þ ¼ FQðx;P 3̂q̄Þ; ðF5Þ

with P 3̂q̄ ¼ ðq0;l; χ;−q3Þ, independently of the
chosen gauge.
It is easy to see that the transformation P3̂ is equivalent

to a parity transformation (denoted by P) followed by a
rotation of angle π around the axis 3, i.e., P3̂ ¼ R3̂ðπÞP.
Therefore, the action of the transformation P 3̂ on meson
fields can be obtain as a combination of these two
operations. For sigma and pion mesons we have

P 3̂σbðxÞP−1
3̂

¼ σbðP 3̂xÞ; b ¼ 0; 1; 2; 3; ðF6Þ

P 3̂πbðxÞP−1
3̂

¼ −πbðP3̂xÞ; b ¼ 0; 1; 2; 3; ðF7Þ

while for vector and axial vector fields we get

P3̂ρ
μ
bkðxÞP−1

3̂
¼ ρbkμðP 3̂xÞ; P 3̂ρ

μ
b⊥ðxÞP−1

3̂
¼ ρμb⊥ðP3̂xÞ; b ¼ 0; 1; 2; 3; ðF8Þ

P 3̂a
μ
bkðxÞP−1

3̂
¼ −abkμðP 3̂xÞ; P 3̂a

μ
b⊥ðxÞP−1

3̂
¼ −aμb⊥ðP 3̂xÞ; b ¼ 0; 1; 2; 3: ðF9Þ

We emphasize that Eqs. (F6)–(F9) are valid for both neutral
and charged mesons.
In the case of fermionic fields there is an ambiguity, since

one can take a rotation of angle π or −π. One has

P 3̂ψfðxÞP−1
3̂

¼ �iηfPψfðP 3̂xÞ; ðF10Þ

where P ¼ Σ3γ0, with Σ3 ¼ iγ1γ2. Anyway, since in our
calculations quark fields always appear in bilinear oper-
ators, we can choose all fermionic phases in such a way that
�iηf ¼ 1. It is important to notice that the fermion
propagator Sfðx; x0Þ satisfies

SfðP3̂x;P 3̂x
0Þ ¼ PSfðx; x0ÞP†: ðF11Þ

2. Particle states under reflection at the plane
perpendicular to the magnetic field

In terms of creation and annihilation operators, the
fields describing neutral scalar and vector mesons can be
written as

sbðxÞ ¼
Z

d3q
ð2πÞ32Es

½asbðq⃗Þe−iqx þ a†sbðq⃗Þeiqx�; ðF12Þ
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vμbðxÞ ¼
Z

d3q
ð2πÞ32Ev

X3
c¼1

�
avbðq⃗; cÞe−iqxϵμðq⃗; cÞ

þ a†vbðq⃗; cÞeiqxϵμðq⃗; cÞ�
�
; ðF13Þ

where q0 ¼ E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q⃗2 þm2

p
, s ¼ σ, π, and v ¼ ρ, a, while

b ¼ 0 (b ¼ 3) for isoscalar (isovector) states. The polari-
zation vectors ϵμðq⃗; cÞ are given in Eq. (E1); as stated, we
can also define a “longitudinal” polarization ϵμðq⃗; LÞ given
by Eq. (E4), which can be obtained from a derivative of the
scalar field.
In the case of the scalar and pseudoscalar fields, the

action of P 3̂ yields

sbðP3̂xÞ ¼
Z

d3q
ð2πÞ32Es

�
asbðq⃗Þe−iqP3̂x þ a†sbðq⃗ÞeiqP3̂x

�

¼
Z

d3q
ð2πÞ32Es

�
asbðP 3̂q⃗Þe−iqx þ a†sbðP 3̂q⃗Þeiqx

�
;

ðF14Þ

where we have used Eq. (F3) followed by a change
q3 → −q3 in the integral. Then, from Eqs. (F6) and (F7)
we conclude

P3̂a
†
σbðq⃗ÞP−1

3̂
¼ a†σbðP 3̂q⃗Þ; P3̂a

†
πbðq⃗ÞP−1

3̂
¼ −a†πbðP3̂q⃗Þ:

ðF15Þ

In the case of vector and axial vector fields, we
have to consider the behavior of the polarization vectors
under the P 3̂ transformation. From Eqs. (E1) and (E4) we
have

ϵμðP 3̂q⃗; cÞ ¼
�
ϵkμðq⃗; cÞ þ ϵμ⊥ðq⃗; cÞ for c ¼ 1; 3; L;

−ϵkμðq⃗; cÞ for c ¼ 2:

ðF16Þ

Using these relations together with Eq. (F3) one has

vμbkðP 3̂xÞ ¼
Z

d3q
ð2πÞ32Ev

X
c¼1;3;L

�
avbðP 3̂q⃗; cÞe−iqxϵkμðq⃗; cÞ þ a†vbðP 3̂q⃗; cÞeiqxϵkμðq⃗; cÞ�

�

þ
Z

d3q
ð2πÞ32Ev

�
−avbðP 3̂q⃗; 2Þe−iqxϵkμðq⃗; 2Þ − a†vbðP 3̂q⃗; 2Þeiqxϵkμðq⃗; 2Þ�

�
;

vμb⊥ðP 3̂xÞ ¼
Z

d3q
ð2πÞ32Ev

X
c¼1;3;L

�
avbðP 3̂q⃗; cÞe−iqxϵμ⊥ðq⃗; cÞ þ a†vbðP3̂q⃗; cÞeiqxϵμ⊥ðq⃗; cÞ�

�
: ðF17Þ

This leads a to a different behavior of creation operators depending on the polarization state; namely,

P3̂a
†
ρbðq⃗; cÞP−1

3̂
¼ a†ρbðP3̂q⃗; cÞ; P 3̂a

†
abðq⃗; cÞP−1

3̂
¼ −a†abðP 3̂q⃗; cÞ for c ¼ 1; 3; L;

P3̂a
†
ρbðq⃗; cÞP−1

3̂
¼ −a†ρbðP 3̂q⃗; cÞ; P 3̂a

†
abðq⃗; cÞP−1

3̂
¼ a†abðP 3̂q⃗; cÞ for c ¼ 2: ðF18Þ

This analysis can be extended to charged scalar and
vector mesons. A detailed description of charged meson
fields can be found in Ref. [80]. Briefly, for s ¼ σ, π and
v ¼ ρ, a one has (as in the main text, we consider positively
charged mesons)

sðxÞ ¼
XZ
fq̄Eg

1

2Es

�
aþs ðq̆ÞF eðx; q̄Þ þ a−s ðq̆Þ†F−eðx; q̄Þ�

�
;

ðF19Þ

vμðxÞ ¼
XZ
fq̄Eg

1

2Ev

X3
c¼1

�
aþv ðq̆; cÞWμ

eðx; q̄; cÞ

þ a−v ðq̆; cÞ†Wμ
−eðx; q̄; cÞ�

�
; ðF20Þ

where q̆¼ðl;χ;q3Þ and Wμ
eðx;q̄;cÞ¼Rμνðx;q̄Þϵνðl;q3;cÞ,

withRμνðx; q̄Þ and ϵμðl; q3; cÞ given by Eqs. (69) and (E6),
respectively. We have also used the notation

XZ
fq̄Eg

≡XZ
q̄

2πδðq0 − EÞ; ðF21Þ

where E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ Beð2lþ 1Þ þ ðq3Þ2

p
. As stated, for

l ≥ 0 one can also define a “longitudinal” polarization
vector, given by Eq. (E11). Taking into account Eq. (F5)
and the explicit forms of the polarization vectors, one can
show the relations,
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WμðP3̂x; q̄; cÞ ¼
�Wkμðx;P3̂q̄; cÞ þWμ

⊥ðx;P 3̂q̄; cÞ for c ¼ 1; 3; L;

−Wkμðx;P3̂q̄; cÞ for c ¼ 2:
ðF22Þ

Taking into account these equations together with Eq. (F5) for the case of scalar and pseudoscalar particles, we obtain

P 3̂a
Q†ðq̆Þ
σ P−1

3̂
¼ aQ†

σ ðP 3̂q̆Þ; P 3̂a
Q†
π ðq̆ÞP−1

3̂
¼ −aQ†

π ðP3̂q̆Þ;
P 3̂a

Q†
ρ ðq̆; cÞP−1

3̂
¼ aQ†

ρ ðP 3̂q̆; cÞ; P 3̂a
Q†
a ðq̆; cÞP−1

3̂
¼ −aQ†

a ðP 3̂q̆; cÞ for c ¼ 1; 3; L;

P 3̂a
Q†
ρ ðq̆; cÞP−1

3̂
¼ −aQ†

ρ ðP 3̂q̆; cÞ; P 3̂a
Q†
a ðq̆; cÞP−1

3̂
¼ aQ†

a ðP 3̂q̆; cÞ for c ¼ 2: ðF23Þ

These transformation laws indicate how meson states transform under P3̂, namely

P 3̂jMðqÞi ¼ P 3̂a
†
Mðq⃗Þj0i ¼ ηMP3

jMðP3̂qÞi for neutral mesons; ðF24Þ

P3̂jMðq̄Þi ¼ P3̂a
†
Mðq̆Þj0i ¼ ηMP3

jMðP 3̂q̄Þi for charged mesons; ðF25Þ

with

ηMP3
¼
�
1 for M ¼ σb; ρb;1; ρb;3; ρb;L; ab;2;

−1 for M ¼ πb; ab;1; ab;3; ab;L; ρb;2:
ðF26Þ

Here the index b runs from 0 to 3, covering both charged
and neutral mesons.
The fact that our system is invariant under the reflection

in the plane perpendicular to the magnetic field implies that
particles with different parity phase ηMP3

cannot mix.

3. Box structure of meson mass matrices

We outline here how the previous assertion is realized
in our model. The masses of charged and neutral mesons
are obtained by equations of the form det G ¼ 0, where
GMM0 ¼ ð2gMÞ−1δMM0 − JMM0 . From Eqs. (27), (72) and
(H1)–(H4), it is seen that the matrices J can be written in
terms of the functions,

Σff0
MM0 ðqÞ ¼ −iNc

Z
d4p
ð2πÞ4 trD

�
iS̃fðpþ

k ; p
þ⊥Þ

× ΓM0
iS̃f

0 ðp−
k ; p

−⊥ÞΓM
�
; ðF27Þ

[notice that for charged particles JMM0 ðqÞ ¼ 2Σud
MM0 ðqÞ,

see Eq. (62)]. Now, if the system is invariant under a
reflection at the plane perpendicular to the axis 3, the
solutions of detG ¼ 0 should be invariant under the change
q → P 3̂q and q̄ → P3̂q̄ for neutral and charged mesons,
respectively. Performing such a transformation on the
functions Σff0

MM0 ðqk; q⊥Þ one has

Σff0
MM0 ðP3̂qÞ ¼ −iNc

Z
d4p
ð2πÞ4 trD

�
iS̃fðP 3̂p

þ
k ; p

þ⊥Þ

× ΓM0
iS̃f

0 ðP 3̂p
−
k ; p

−⊥ÞΓM
�
; ðF28Þ

where a change p3 → −p3 has been performed in the
integral. Taking into account the result in Eq. (F11) we get

Σff0
MM0 ðP3̂qÞ ¼ −iNc

Z
d4p
ð2πÞ4 trD

�
iS̃fðpþ

k ; p
þ⊥Þ

× Γ̄M0
iS̃f

0 ðp−
k ; p

−⊥ÞΓ̄M
�
; ðF29Þ

where we have defined

Γ̄M ¼ P†ΓMP: ðF30Þ

For the cases of our interest we have

P†P ¼ 1; P†γμP ¼ γkμ þ γμ⊥;
P†iγ5P ¼ −iγ5;P†γμγ5P ¼ −ðγkμ þ γμ⊥Þγ5:

For neutral and charged mesons, the above changes are
complemented by the transformations of the polarization
vectors and the functions Wμ

Qðx; q̄; cÞ, respectively [see
Eqs. (F16) and (F22)]. In this way it is easy to see that for

ηMP3
≠ ηM

0
P3

one has Σff0
MM0 ðP 3̂qÞ ¼ −Σff0

MM0 ðqÞ, and conse-

quently Σff0
MM0 ðqÞ ¼ 0 and JMM0 ¼ 0.

APPENDIX G: FUNCTIONS FQðx; q̄Þ
IN STANDARD GAUGES

In this appendix we quote the expressions for the
functions FQðx; q̄Þ in the standard gauges SG, LG1 and
LG2. As in the main text, we choose the axis 3 in the
direction of the magnetic field, and use the notation
BQ ¼ jQBj, s ¼ signðQBÞ.
It is worth pointing out that the functions FQðx; q̄Þ can

be determined up to a global phase, which in general can
depend on l. In the following expressions for SG, LG1 and
LG2 the corresponding phases have been fixed by requiring
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FQðx; q̄Þ to satisfy Eqs. (H5) and (H6), with fQ;ll0 ðt⊥Þ
given by Eq. (H7).

1. Symmetric gauge

In the SG we take χ ¼ n, where n is a non-negative
integer. Thus, the set of quantum numbers used to character-
ize a given particle state is q̄ ¼ ðq0;l; n; q3Þ. In addition, we
introduce polar coordinates r;φ to denote the vector x⃗⊥ ¼
ðx1; x2Þ that lies in the plane perpendicular to the magnetic
field. The functions FQðx; q̄Þ in this gauge are given by

FQðx; q̄ÞðSGÞ ¼
ffiffiffiffiffiffi
2π

p
e−iðq0x0−q3x3Þe−isðl−nÞφRl;nðrÞ; ðG1Þ

where

Rl;nðrÞ ¼ Nl;nvðl−nÞ=2e−v=2Ll−n
n ðvÞ; ðG2Þ

with v ¼ BQr2=2. Here we have used the definition
Nl;n ¼ ðBQn!=l!Þ1=2, while Lm

j ðxÞ are generalized
Laguerre polynomials.

2. Landau gauges LG1 and LG2

For the gauges LG1 and LG2 we take χ ¼ qj with j ¼ 1

and j ¼ 2, respectively. Thus, we have q̄ ¼ ðq0;l; qj; q3Þ.
The corresponding functions FQðx; q̄Þ are given by

FQðx; q̄ÞðLG1Þ ¼ ð−isÞlNle−iðq
0x0−q1x1−q3x3ÞDl

�
ρð1Þs
�
;

ðG3Þ

FQðx; q̄ÞðLG2Þ ¼ Nle−iðq
0x0−q2x2−q3x3ÞDl

�
ρð2Þs
�
; ðG4Þ

where ρð1Þs ¼ ffiffiffiffiffiffiffiffiffi
2BQ

p ðx2 þ sq1=BQÞ, ρð2Þs ¼ ffiffiffiffiffiffiffiffiffi
2BQ

p ðx1 −
sq2=BQÞ and Nl ¼ ð4πBQÞ1=4=

ffiffiffiffiffi
l!

p
. The cylindrical para-

bolic functionsDlðxÞ in the above equations are defined as

DlðxÞ ¼ 2−l=2e−x
2=4Hlðx=

ffiffiffi
2

p
Þ; ðG5Þ

where HlðxÞ are Hermite polynomials, with the standard
convention H−1ðxÞ ¼ 0.

APPENDIX H: CHARGED MESON
POLARIZATION FUNCTIONS

We quote here our results for the polarization functions
of charged mesons. Starting from Eq. (71) and using
Eq. (69) we get

J ss0 ðq̄; q̄0Þ ¼
Z

d4t
ð2πÞ4 J ss0 ðtÞheðq̄; q̄0; tÞ; ðH1Þ

J μ
svμðq̄;q̄0Þ¼

Z
d4t
ð2πÞ4

X
λ

J α
svαðtÞðϒλÞαμheðq̄;q̄0λ;tÞ; ðH2Þ

J μ
vμsðq̄;q̄0Þ¼

Z
d4t
ð2πÞ4

X
λ

ðϒλÞμαJ α
vαsðtÞheðq̄λ; q̄0;tÞ; ðH3Þ

J μν
vμv0νðq̄; q̄0Þ

¼
Z

d4t
ð2πÞ4

X
λ;λ0

ðϒλÞμαJ αβ
vαv0βðtÞðϒλ0 Þβνheðq̄λ; q̄0λ0 ;tÞ; ðH4Þ

where s; s0 ¼ σ, π and v; v0 ¼ ρ, a. Here we have defined

hQðq̄;q̄0;tÞ

¼
Z

d4xd4x0FQðx;q̄Þ�FQðx0;q̄0ÞeiΦQðx;x0Þe−itðx−x0Þ: ðH5Þ

As shown in Ref. [80], explicit calculations in any of the
standard gauges lead to

hQðq̄; q̄0; tÞ ¼ δχχ0 ð2πÞ4δð2Þðqk − q0kÞð2πÞ2

× δð2Þðqk − tkÞfQ;ll0 ðt⊥Þ; ðH6Þ

where δχχ0 stands for δnn0, δðq1 − q01Þ and δðq2 − q02Þ for
SG, LG1 and LG2, respectively, while

fQ;ll0 ðt⊥Þ ¼
4πð−iÞlþl0

BQ

ffiffiffiffiffiffi
l!
l0!

r �
2⃗t2⊥
BQ

�l0−l
2

× Ll0−l
l

�
2⃗t2⊥
BQ

�
e−⃗t

2⊥=BQeisðl−l0Þφ⊥ : ðH7Þ

We recall that here BQ ¼ jQBj and s ¼ signðQBÞ. Since
we are considering positively charged mesons, we
have Q ¼ e, e being the proton charge. This implies that
BQ ¼ ejBj and s ¼ signðBÞ for all considered mesons.
As mentioned in the main text, using Eqs. (H6) and (H7),

and after a somewhat long but straightforward calculation,
one can show that

JMM0 ðq̄; q̄0Þ ¼ ð2πÞ4δðq0 − q00Þδll0
× δχχ0δðq3 − q03ÞJMM0 ðl; qkÞ; ðH8Þ

where the function JMM0 ðl; qkÞ can be written in general as

JMM0 ðl; qkÞ ¼
Xnmm0

i¼1

dmm0;iðl; q2kÞPðiÞ
MM0 ðΠÞ: ðH9Þ

Here, mðm0Þ ¼ π, ρ, a correspond to MðM0Þ ¼ π; ρμ; aμ.
The Lorentz structure is carried out by the set of functions

PðiÞ
MM0 ðΠÞ, where the four-vector Πμ is given by
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Πμ ¼
 
q0; i

ffiffiffiffiffiffiffi
BM

2

r � ffiffiffiffiffiffiffiffiffiffiffi
lþ 1

p
−

ffiffiffi
l

p �
;

− s

ffiffiffiffiffiffiffi
BM

2

r � ffiffiffiffiffiffiffiffiffiffiffi
lþ 1

p þ
ffiffiffi
l

p �
; q3
!
: ðH10Þ

In turn, the coefficients dmm0;iðl; q2kÞ can be expressed as

dmm0;iðl; q2kÞ ¼
Nc

4π2

Z
∞

0

dz
Z

1

−1
dv

e−zϕ
udðv;q2kÞ

αþ

�
α−
αþ

�
l
βmm0;i

× ðl; q2k; v; zÞ; ðH11Þ

where ϕff0 ðv; q2Þ is given by Eq. (C8), and we have
introduced the definitions

tu ¼ tanh ½ð1 − vÞzBu=2�; td ¼ tanh ½ð1þ vÞzBd=2�;
ðH12Þ

together with

α� ¼ tu
Bu

þ td
Bd

� Be
tu
Bu

td
Bd

: ðH13Þ

The terms of the sum in Eq. (H9) for each MM0, as well
as the explicit form of the corresponding functions
βmm0;iðl; q2k; v; zÞ are listed in what follows. Notice that
the number of terms, nmm0 , depends on the mm0

combination. In addition, for l ¼ 0 and l ¼ −1 some of
the coefficients dmm0;iðl; q2kÞ are zero; therefore, for each

function βmm0;iðl; q2k; v; zÞ we explicitly indicate the range

of values of l to be taken into account. For brevity, the
arguments of dmm0;i and βmm0;i are omitted.
For the ππ polarization function one has only a scalar

contribution, i.e., nππ ¼ 1. Thus,

Jππðl; qkÞ ¼ dππ;1; ðH14Þ

the corresponding function βmm0;1 is given by

βππ;1 ¼ ð1 − tutdÞ
�
MuMd þ

1

z
þ ð1 − v2Þ

q2k
4

	

þ ð1 − t2uÞð1 − t2dÞ
α− þ lðα− − αþÞ

αþα−
; ½l ≥ 0�:

ðH15Þ

For the ρμρν polarization function we find 7 terms,
namely

Jμνρμρνðl;qkÞ¼dρρ;1η
μν
k þdρρ;2η

μν
⊥ þdρρ;3Π

μ
kΠ

ν�
k þdρρ;4Π

μ
⊥Πν�⊥

þdρρ;5ðΠμ
kΠ

ν�⊥ þΠμ
⊥Πν�

k Þ−dρρ;6isF̂
μν

þdρρ;7isðF̂μ
αΠα⊥Πν�

k þΠμ
kΠ

α�⊥ F̂ ν
αÞ; ðH16Þ

the corresponding functions βρρ;i are

βρρ;1 ¼ ψþ
1 ; βρρ;2 ¼ ψþ

2 þ ψþ
3 þ ð2lþ 1Þψ4; βρρ;3 ¼ ψ5; βρρ;4 ¼ 2ψ4=Be;

βρρ;5 ¼ ψþ
6 þ ψþ

7 ; βρρ;6 ¼ ψþ
2 − ψþ

3 þ ψ4; βρρ;7 ¼ −ψþ
6 þ ψþ

7 ; ðH17Þ
where

ψ�
1 ¼ −ð1 − tutdÞ

�
�MuMd þ ð1 − v2Þ

q2k
4

	
−
α− þ lðα− − αþÞ

αþα−
ð1 − t2uÞð1 − t2dÞ; ½l ≥ 0�;

ψ�
2 ¼ −

1

2

α−
αþ

ð1þ tuÞð1þ tdÞ
�
�MuMd þ

1

z
þ ð1 − v2Þ

q2k
4

	
; ½l ≥ −1�;

ψ�
3 ¼ −

1

2

αþ
α−

ð1 − tuÞð1 − tdÞ
�
�MuMd þ

1

z
þ ð1 − v2Þ

q2k
4

	
; ½l ≥ 1�;

ψ4 ¼
αþ − α−
2αþα−

ð1 − t2uÞð1 − t2dÞ; ½l ≥ 1�;

ψ5 ¼
1 − v2

2
ð1 − tutdÞ; ½l ≥ 0�;

ψ�
6 ¼ 1

2αþ

�
1þ v
2

tuð1þ tuÞð1 − t2dÞ
Bu

� 1 − v
2

tdð1þ tdÞð1 − t2uÞ
Bd

	
; ½l ≥ 0�;

ψ�
7 ¼ 1

2α−

�
1þ v
2

tuð1 − tuÞð1 − t2dÞ
Bu

� 1 − v
2

tdð1 − tdÞð1 − t2uÞ
Bd

	
: ½l ≥ 1�: ðH18Þ
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For the aμaν polarization function we have

Jμνaμaνðl; qkÞ ¼ daa;1η
μν
k þ daa;2η

μν
⊥ þ daa;3Π

μ
kΠ

ν�
k þ daa;4Π

μ
⊥Πν�⊥ þ daa;5ðΠμ

kΠ
ν�⊥ þ Πμ

⊥Πν�
k Þ − daa;6isF̂

μν

þ daa;7isðF̂μ
αΠα⊥Πν�

k þ Πμ
kΠ

α�⊥ F̂ ν
α Þ; ðH19Þ

the functions βaa;i are in this case given by

βaa;1 ¼ ψ−
1 ; βaa;2 ¼ ψ−

2 þ ψ−
3 þ ð2lþ 1Þψ4; βaa;3 ¼ ψ5; βaa;4 ¼ 2ψ4=Be;

βaa;5 ¼ ψþ
6 þ ψþ

7 ; βaa;6 ¼ ψ−
2 − ψ−

3 þ ψ4; βaa;7 ¼ −ψþ
6 þ ψþ

7 : ðH20Þ

For the πρμ and ρμπ polarization functions we obtain

Jμπρμðl; qkÞ ¼ Jμρμπðl; qkÞ� ¼ dπρ;1s
ˆ̃F
μ
αΠα�

k ; ðH21Þ

the function βπρ;1 reads

βπρ;1¼−
i
2
ðtu− tdÞ½ðMuþMdÞ−vðMu−MdÞ�; ½l≥ 0�:

ðH22Þ

For the πaμ and aμπ polarization functions we have

Jμπaμðl;qkÞ¼ Jμaμπðl;qkÞ�
¼ dπa;1Π

μ�
k þdπa;2Π

μ�
⊥ −dπa;3isF̂

μ
αΠα�⊥ ; ðH23Þ

the functions βπa;i are given by

βπa;1 ¼−
i
2
ð1− tutdÞ½ðMuþMdÞ−vðMu−MdÞ�; ½l≥ 0�;

βπa;2 ¼ψ8þψ9; βπa;3¼−ψ8þψ9; ðH24Þ

where

ψ8 ¼ −
i

2αþ

�
Mu

tuð1þ tuÞð1 − t2dÞ
Bu

þMd
tdð1þ tdÞð1 − t2uÞ

Bd

	
; ½l ≥ 0�;

ψ9 ¼ −
i

2α−

�
Mu

tuð1 − tuÞð1 − t2dÞ
Bu

þMd
tdð1 − tdÞð1 − t2uÞ

Bd

	
: ½l ≥ 1�: ðH25Þ

Finally, for the aμρν and ρμaν polarization functions we get

Jμνaμρνðl; qkÞ ¼ Jνμρνaμðl; qkÞ� ¼ daρ;1s
ˆ̃F
μν þ daρ;2s

� ˆ̃Fμ
αΠα

kΠ
ν�
k − Πμ

kΠ
α�
k
ˆ̃F

ν
α

�þ daρ;3s
� ˆ̃Fμ

αΠα
kΠ

ν�⊥ − Πμ
⊥Πα�

k
ˆ̃F

ν
α

�
þ daρ;4i

� ˆ̃Fμ
αΠα

kΠ
β�
⊥ F̂ ν

β − F̂μ
αΠα⊥Π

β�
k
ˆ̃F

ν
β

�
; ðH26Þ

the corresponding coefficients βaρ;i are

βaρ;1 ¼ −MuMdðtu − tdÞ; ½l ≥ 0�;

βaρ;2 ¼
1 − v2

4
ðtu − tdÞ; ½l ≥ 0�;

βaρ;3 ¼ ψ−
6 − ψ−

7 ; βaρ;4 ¼ −ψ−
6 − ψ−

7 : ðH27Þ

APPENDIX I: MATRIX ELEMENTS
OF Jmagðl;m2Þ FOR l= 0

In this appendix we list the elements of the matrix
Jmagðl; m2Þ for l ¼ 0, i.e., the case considered in Eq. (88).
The expressions are given in terms of the coefficients
bud;unregmm0;i ðq2Þ given in Appendix C and the coefficients

dmm0;iðl; q2kÞ quoted in Appendix H. In the expressions

below, it is understood that they are evaluated at q2 ¼ m2

and ðl; q2kÞ ¼ ð0; m2 þ BeÞ, respectively.
We obtain (for m2 > 0)

Jmag
ππ ¼ dππ;1 − 2bud;unregππ;1 ; ðI1Þ

Jmag
πρ2 ¼ Jmag�

ρ2π ¼ −sm⊥dπρ;1; ðI2Þ

Jmag
πaL ¼Jmag�

aLπ ¼ 1

m

�
m2⊥dπa;1−2Bedπa;2−2m2bud;unregπa;1

�
; ðI3Þ

Jmag
πa1 ¼ Jmag�

a1π ¼ −i
ffiffiffiffiffiffi
Be

p
m⊥

m
ðdπa;1 − 2dπa;2Þ; ðI4Þ
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Jmag
ρ2ρ2 ¼ −dρρ;1 þ 2bud;unregρρ;1 ; ðI5Þ

Jmag
aLρ2 ¼Jmag

ρ2aL
� ¼−

sm⊥
m

ð−daρ;1þm2⊥daρ;2−2Bedaρ;3Þ; ðI6Þ

Jmag
a1ρ2 ¼ Jmag

ρ2a1
� ¼ −i

s
ffiffiffiffiffiffi
Be

p
m

ð−daρ;1 þm2⊥daρ;2 − 2m2⊥daρ;3Þ;
ðI7Þ

Jmag
aLaL ¼ 1

m2

�
m2⊥daa;1 − 2Bedaa;2 þm4⊥daa;3 − 4m2⊥Bedaa;5

− 2m2bud;unregaa;2

�
; ðI8Þ

Jmag
aLa1 ¼ Jmag

a1aL
� ¼ −i

ffiffiffiffiffiffi
Be

p
m⊥

m2

�
daa;1 − 2daa;2 þm2⊥daa;3

− 2ðm2⊥ þ BeÞdaa;5
�
; ðI9Þ

Jmag
a1a1 ¼

Be

m2

�
daa;1 −

2m2⊥
Be

daa;2 þm2⊥daa;3

− 4m2⊥daa;5 þ
2m2

Be
bud;unregaa;1

�
: ðI10Þ
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