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We study the mass spectrum of light pseudoscalar and vector mesons in the presence of an external
uniform magnetic field B, considering the effects of the mixing with the axial-vector meson sector. The
analysis is performed within a two-flavor NJL-like model which includes isoscalar and isovector couplings
together with a flavor mixing 't Hooft-like term. The effect of the magnetic field on charged particles is
taken into account by retaining the Schwinger phases carried by quark propagators, and expanding the
corresponding meson fields in proper Ritus-like bases. The spin-isospin and spin-flavor decomposition of
meson mass states is also analyzed. For neutral pion masses it is shown that the mixing with axial vector
mesons improves previous theoretical results, leading to a monotonic decreasing behavior with B that is
in good qualitative agreement with lattice QCD (LQCD) calculations, both for the case of constant or
B-dependent couplings. Regarding charged pions, it is seen that the mixing softens the enhancement of
their mass with B. As a consequence, the energy becomes lower than the one corresponding to a pointlike
pion, improving the agreement with LQCD results. The agreement is also improved for the magnetic
behavior of the lowest p™ energy state, which does not vanish for the considered range of values of B—a
fact that can be relevant in connection with the occurrence of meson condensation for strong magnetic

fields.
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I. INTRODUCTION

The effects caused by magnetic fields larger than |eB| ~
AéCD on the properties of strong-interacting matter have

attracted a lot of attention along the last decades [1-3]. In
part, this is motivated by the realization that such magnetic
fields might play an important role in the study of the early
Universe [4,5], in the analysis of high-energy noncentral
heavy ion collisions [6,7] and in the description of compact
stellar objects like the magnetars [8,9]. In addition to this
phenomenological relevance, from the theoretical point
of view, external magnetic fields can be used to probe
QCD dynamics, allowing for a confrontation of theo-
retical results obtained through different approaches to
nonperturbative QCD. In this sense, several interesting
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phenomena have been predicted to be induced by the
presence of strong magnetic fields. They include the chiral
magnetic effect [10-12], the enhancement of the QCD
quark-antiquark condensate (magnetic catalysis) [13], the
decrease of critical temperatures for chiral restoration and
deconfinement QCD transitions (inverse magnetic catalysis)
[14,15], etc.

In this context, the understanding of the way in which
the properties of light hadrons are modified by the presence
of an intense magnetic field becomes a very relevant
task. Clearly, this is a nontrivial problem, since first-
principle theoretical calculations require to deal in general
with QCD in a low-energy nonperturbative regime. As a
consequence, the corresponding theoretical analyses have
been carried out using a variety of approaches. The effect of
intense external magnetic fields on 7 meson properties has
been studied e.g. in the framework of Nambu-Jona-Lasinio
(NJL)-like models [16-35], quark-meson models [36—40],
chiral perturbation theory (ChPT) [41-43], path integral
Hamiltonians [44,45], effective chiral confinement
Lagrangians [46,47] and QCD sum rules [48]. In addition,
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several results for the 7 meson spectrum in the presence of
background magnetic fields have been obtained from lattice
QCD (LQCD) calculations [14,49-53]. Regarding the p
meson sector, studies of magnetized p meson masses in the
framework of effective models and LQCD can be found in
Refs. [20,25,30,34,45,54-58] and Refs. [49-51,59-61],
respectively. The effect of an external magnetic field
on nucleon masses has also been considered in several
works [62-70].

In most of the existing model calculations of meson
masses the mixing between states of different spin/isospin
has been neglected. Although such mixing contributions are
usually forbidden by isospin and/or angular momentum
conservation, they can be nonzero (and may become
important) in the presence of the external magnetic field.
Effects of this kind have been studied recently by some of the
authors of the present work, for both neutral [71] and charged
mesons [72]. Those analyses have been performed in the
framework of an extended NJL-like model, where, for
simplicity, possible axial vector interactions have been
neglected. The aim of the present work is to study how
those previous results get modified when the presence of
axial vector mesons is explicitly taken into account. In fact,
due to symmetry reasons, in the context of the NJL model
and its extensions [73-75] vector and axial vector inter-
actions are expected to be considered on the same footing
(seee.g. Refs. [76,77]). This, in turn, implies the existence of
the so-called “z-a; mixing” even at vanishing external
magnetic field. Such a mixing has to be properly taken into
account in order to correctly identify the pion mass states.
Thus, the inclusion of the axial interactions is expected to be
particularly relevant for the analysis of lowest meson masses.

Regarding the explicit calculation, as shown in previous
works [26,29,72,78,79], one has to deal with the meson
wave functions that arise as solutions of the equations of
motion in the presence of the external magnetic field
(which we assume to be static and uniform). In particular,
in the case of charged mesons, it is seen that one-loop level
calculations involve the presence of Schwinger phases that
induce a breakdown of translational invariance in quark
propagators [80]. As a consequence, the corresponding
meson polarization functions are not diagonal for the
standard plane wave states. One should describe meson
states in terms of wave functions characterized by a set of
quantum numbers that include the Landau level £, which is
associated to the quantization of momentum in the plane
perpendicular to the magnetic field. It is worth mentioning

|

that although we consider a magnetic field that extends over
all space, in a realistic scenario—such as the core of a
neutron star, or a heavy ion collision—the existence of a
large magnetic field will be limited to a confined region. In
fact, if a charged meson is to be tracked by some detector,
the latter will be in general located away from the zone
affected by the magnetic field; thus, the theoretical analysis
would require the projection onto a proper basis determined
by the particular features of the experiment.

As for the model specifications, it is important to care
about the regularization of ultraviolet divergences, since the
presence of the external magnetic field can lead to spurious
results, such as unphysical oscillations of physical observ-
ables [81,82]. As in previous works [71,72], we use the
so-called magnetic field independent regularization (MFIR)
scheme [19,21,26,83], which has been shown to be free
from these oscillations; moreover, it is seen that within
this scheme the results are less dependent on model
parameters [82]. Concerning the effective coupling con-
stants of the model, we consider both the case in which
these parameters are kept constant and the case in which
they show some explicit dependence on the external
magnetic field. This last possibility, inspired by the
magnetic screening of the strong coupling constant occur-
ring for a large magnetic field [84], has been previously
explored in effective models [32,69,85-87] in order to
reproduce the inverse magnetic catalysis effect observed at
finite temperature LQCD calculations.

The paper is organized as follows. In Sec. II we introduce
the magnetized extended NJL-like lagrangian to be used in
our calculations, as well as the expressions of the relevant
mean field quantities to be evaluated, such as quark masses
and chiral condensates. In Sec. III and IV we present the
formalisms used to obtain neutral and charged meson
masses, respectively, in the presence the magnetic field.
In Sec. V we present and discuss our numerical results,
while in Sec. VI we provide a summary of our work,
together with our main conclusions. We also include
several appendixes to provide some technical details of
our calculations.

II. EFFECTIVE LAGRANGIAN
AND MEAN FIELD QUANTITIES

Let us start by considering the Lagrangian density for an
extended NJL two-flavor model in the presence of an
electromagnetic field. We have, in Minkowski space,

L=g(x)(iD = my(x) + g5 > _[@x)zw(x)? + @) irstow(x)*] = gy [(#(0)7, 7w ()2 + @ (x)r,rsTw(x))?]
a=0

— gv, ()7 (x))* = ga, 7 (X)7,75w (x))* + 2gp(ds +d_). (1)
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where w = (ud)”, 7, = (1,7), 7 being the usual Pauli-
matrix vector, and m, is the current quark mass, which is
assumed to be equal for # and d quarks. The model includes
isoscalar/isovector vector and axial vector couplings, as
well as a 't Hooft-like flavor-mixing term, where we have
defined d. = det[y(x)(1 = y5)w(x)]. The interaction be-
tween the fermions and the electromagnetic field A, is
driven by the covariant derivative

D, =0,+iQA, (2)

where Q = diag(Q,,.Q,), with 0, = 2¢/3 and Q, = —¢/3,
e being the proton electric charge. A summary of the
notation and conventions used throughout this work can be
found in Appendix A.

We consider here the particular case in_which one
has a homogenous stationary magnetic field B orientated
along axis 3, or z. Now, to write down the explicit form of
A* one has to choose a specific gauge. Some commonly
used gauges are the symmetric gauge (SG) in which
AH(x) = (0,—-Bx*/2,Bx'/2,0), the Landau gauge 1
(LG1) in which A#(x) = (0,-Bx?,0,0) and the Landau
gauge 2 (LG2), in which A*(x) = (0,0, Bx',0). In what
follows we refer to them as “standard gauges”. To test the
gauge independence of our results, all these gauges will be
considered in our analysis.

Since we are interested in studying meson properties, it is
convenient to bosonize the fermionic theory, introducing
scalar, pseudoscalar, vector and axial vector fields o, (x),
my(x), ph(x), d)y, with b = 0, 1, 2, 3, and integrating out the
fermion fields. The bosonized action can be written as

Shos = —i In det(iD) —419 / d*x [6(x)00(x) + 7(x) - 7 (x)
1

_M/d4x [E(x).g(x)Jrﬂo(x)ﬂo(x)]
+‘év/dét X [Pu(x) -7 (x) + @ (x) - @ ()]

1 / 1
+—— [ d*xpo,(x)ph(x) +—
oo [ ot

with
iD= W (x = X) [iD = mg — 7, (0 (x) + iysm, (x)

+ y”p/; (X) + y,u}/SQII; (X))] ’ (4)
where a direct product to an identity matrix in color space is

understood. For convenience we have introduced the
combinations

dp
: (5)
9gs +9p

g:gS+gD’ a =

so that the flavor mixing in the scalar-pseudoscalar sector is
regulated by the constant a. For @ = 0 quark flavors u and
d get decoupled, while for @ = 0.5 one has maximum
flavor mixing, as in the case of the standard version of the
NJL model.

We proceed by expanding the bosonized action in
powers of the fluctuations of the bosonic fields around
the corresponding mean field (MF) values. We assume that
the fields 6, (x) have nontrivial translational invariant MF
values given by 7,6, = diag(s,, 6,), while vacuum expect-
ation values of other bosonic fields are zero; thus, we write

Dx,x’ = DQ/IE + 5Dx,x" (6)
The MF piece is diagonal in flavor space. One has
DME = diag (D)5, DY), (7)
where

DM = —is@ (x — x')(i0 + QBx'y> = M), (8)
with f = u, d. Here My = m, + 64 is the quark effective
mass for each flavor f.

The MF action per unit volume is given by

Shoe _ _(1=—a)(5i +53) — 206,54
v 8g(1 —2a)
IN, 4. g4 1 MF.f\—1
- dxd*x wpIn (7)), (9)

where trp stands for the trace over Dirac space, and
MF.f /. yMF.f\_1
Sy’ =D ")

x,x

is the MF quark propagator in the

presence of the magnetic field. Its explicit expression can
be written as

, d*
SMF] lCDQf(X.))/( P4

e" P8 (py py),  (10)
27)

where

Sf(P”,PL)
[ , tan(6By)
=—i do exp|—ioc Mf p||+p ——— =€
0 GBf
PL-71 }
cos?(oBy)

(11)

with By = [BQ,| and s; = sign(BQ,). Here we have
defined the “parallel” and “perpendicular” four-vectors

X {(p y A Mp)(1 - sy'y* tan(cBy)) —

Py =(p".0.0.p%).  pi=(0.p'.p%0). (12)
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and equivalent definitions have been used for y|, y,. The
function @, (x,y) in Eq. (10) is the so-called Schwinger
phase, which is shown to be a gauge-dependent quantity.
For the standard gauges one has

SG: ®y(x,y) = —T(X'y2 —y'x?),
LGl: @y(x,y) = —%(XZ + ) (x = yh),
LG2: ®@y(x,y) :%(x1 +yH(x? = y?). (13)
Let us consider the quark-antiquark condensates

¢ = (pswy). For each flavor f = u, d we have

zN/

The integral in this expression is divergent and has to be
properly regularized. As stated in the Introduction, we use
here the magnetic field independent regularization (MFIR)
scheme; for a given unregularized quantity, the correspond-
ing (divergent) B — 0 limit is subtracted and then it is
added in a regularized form. Thus, the quantities can be
separated into a (finite) “B = 0” part and a “magnetic”
piece. Notice that, in general, the “B = 0” part still depends
implicitly on B (e.g. through the values of the dressed quark
masses M ;); hence, it should not be confused with the value
of the studied quantity at vanishing external field. To deal
with the divergent “B = 0 terms we use here a proper time
(PT) regularization scheme. Thus, we obtain

28 (p. po)- (14)

¢reg ¢§)C reg + ¢mag’ (15)

where

PYE = —NMIy;,  §F€ = —N M IE (16)

The expression of I, obtained from the PT regularization,
reg

Ii7, 1s given in Eq (C15) in Appendix C, while the
“magnetic” piece I} P ¢ reads

By 1 In27z
mag _ Pf
Ilfg_z—ﬂz[lnlﬂ(xf)—(xf——) 1an+Xf—T:|, (17)
where x; = szc /(2By). The corresponding gap equations,

obtained from Sy~ /05, = 0, can be written as

Mu =m;,— 49[(1 - a) e + ¢reg]’
My =m.—4g[(1 —a)p;® + adi®]. (18)

As anticipated, for a = 0 these equations get decoupled.
For a = 0.5 the right-hand sides become identical, thus one
has in that case M, = M.

III. THE NEUTRAL MESON SECTOR

To determine the meson masses we have to consider the
terms in the bosonic action that are quadratic in meson
fluctuations. As expected from charge conservation, it is
easy to see that the terms corresponding to charged and
neutral mesons decouple from each other. In this section we
concentrate on the neutral meson sector; the charged meson
sector will be considered in Sec. IV.

A. Neutral-meson polarization functions

For notational convenience we will denote isospin states
by M = 0y, ﬂo,pg, Clg, 03, 77.'3,[0#, ag. HCI'C, 00, g, Po and ap
correspond to the isoscalar states o, 17, @, and f, while o3,
73, p3, and a; stand for the neutral components of the
isovector triplets ay, 7, p and a;, respectively. Thus, the
corresponding quadratic piece of the bosonized action can
be written as

1
Spor "M== / d*xd*x”y M (x) Gy (x.x)5M' ().

MM

(19)

Notice that the meson indices M, M’, as well as the
functions G,,,,, include Lorentz indices in the case of
vector mesons. This also holds for the functions &y,
T mm's E{WM,, Gy etc., introduced below. In the corre-
sponding expressions, a contraction of Lorentz indices is
understood when appropriate. In particular, the functions
Gy (x,x') can be separated in two terms, namely

1
Gy (x.x') = 75MM’5(4) (x =) = Tpar (x,x7), (20)
M
where
1/g forM=M'=0,7;
1/[g(1-2a)] forM =M'=o03,x,
1
— Sy =< ="/ gy for MM' = plip4.diay,  (21)
o " /gy,  for MM'=ppf
1"/ ga, for MM’ = ayal

and 8, = 0 otherwise. Here #* is the Minkowski metric
tensor, which can be decomposed as 7 =" + 1,
with '7H = diag(1,0,0,-1), #” = diag(0,—1,-1,0) (see
Appendix A). In turn, the polarization functions
Ty (x, ') can be separated into u and d quark pieces,

T (x, %) =24 (6, x) + eye 24, (x.x). (22)

054014-4



MASSES OF MAGNETIZED PSEUDOSCALAR AND VECTOR ...

PHYS. REV. D 109, 054014 (2024)

Here £y, = 1 for the isoscalars M = o6, 7, pfy, afy and ey =
—1 for M = o3, n3, p4, a4, while the functions Z;,,M, (x,x)
are given by

>/

Jp (1.x) = —iN, trp [iSMTM SN T (23)

with

1 for M = 0(, 03

iys for M = ny, w3

v — (24)

r* o for M =pljph

r*ys for M = dj, d

As stated, since we are dealing with neutral mesons, the
contributions of Schwinger phases associated with the
quark propagators in Eq. (10) cancel out, and the polari-
zation functions depend only on the difference x — X/, i.e.,
they are translationally invariant. After a Fourier trans-
formation, the conservation of momentum implies that the
polarization functions turn out to be diagonal in the
momentum basis. Thus, in this basis the neutral meson
contribution to the quadratic action can be written as

d4
s = -3 3 [ S oM (=0) Gune )M a).
M M
(25)
We have
1
Gum(q) = 2—6MM’ — Iy (q). (26)
Im

and the associated polarization functions can be written as
T (9) = Zi00 (@) + emenr Zg00 (9)- (27)

Here the functions ZMM,(q) read

2 (@) ——zN/

x M8/ (p”,pL)F 1, (28)

trD lS P|| pL)

where we have defined p: = p, &+ ¢q,/2, with a = ||, L,
and the quark propagators S/ ( PP | ) in the presence of the
magnetic field are those given by Eq. (11). The explicit
expressions of the nonvanishing functions ZMM,(q) for
arbitrary four-momentum ¢* are given in Appendix B.
Since we are interested in the determination of meson
masses, let us focus on the particular situation in which
mesons are at rest, i.e., ¢ = (m,0,0,0), where m is the
corresponding meson mass. We denote by J,,. the
resulting polarization functions. It can be shown that some

of these functions vanish, while the nonvanishing ones are
in general divergent. As we have done at the MF level, we
consider the magnetic field independent regularization
scheme, in which we subtract the corresponding unregu-
larized “B = 0” contributions and then we add them in a
regularized form. Thus, for a given polarization function
J uy We have

qreg  _ 40.reg ymag
S = Yair T Do (29)
The “B = 0” pieces of the polarization functions are

quoted in Appendix C, considering arbitrary four-

momentum ¢*. In that appendix we give the expressions

0,unreg

for the unregularized functions J,,,, =, and use a proper

time regularization scheme to get the regularized expres-

sions J?W;f, The terms J%ff, in Eq. (29) are then obtained
from these expressions by taking g* = m*. In the case of
the “magnetic” contributions Jme M M,, we proceed as follows:
We take the full expressions for the polarization functions
Juw (q) given in Appendix B, and subtract the unregu-

larized pieces J°%; next, we take ¢* = (m,0,0,0) and
make use of the relations in Appendix D, performing some
integration by parts when convenient. After a rather long
calculation, it is found that J%‘Cj, can be expressed in the
form given by Eq. (27), viz.

ma, &L ma d,ma,
JMA%’ = ZMM’g + EMEM/ZMM;g, (30)

where the functions Zf ¢ are given by

Shint = N (1758 — m*13%), (31)
s, bmjg”” N (IS — m*I52838%). (32)
) 7)‘;‘2%"” = —N [4MAI37E 8,8 — (I3 + 2MI5 0 )Y
+ (M55 — AMI%) 8,84, (33)
! = ~EL = i, N I3t (34)

Sfmien — _SEM = 2iN mM 15555, (35)

JT;,a ahnb/
Zfbr;;gﬂv _ qum;gw =55 N, [( e Mf /m Imdg) 5/4 5y

+ (Igf® — My /mI5%)8,8]. (36)

The expression for / rlnjf'g has been given in Eq. (17), whereas

the integrals I:}fg forn=2,...,7, read

ma 11 - 1 i,
It = SHZA dv [l;/(xf) —I—gf—lnxf ., (37)
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Mm [1 1
e =1 /d —, 38
v =8 Jy % (38)
Imag_ Imag d 2 SU
o = g QCATTA )
s= il
1
x[ln)‘cf—l//<)"cf+ 2“])], (39)

ma; 1 ! - 1 =
Ing - QA dv(1 —1?) {w(xf) +2—)_Cf —lnxf], (40)

2 1 1— 2
e = 2 Adu( —v). (41)

3272 Xr
1 1+ sv
mag _ -
N R e

[M} —(1- v2)m2/4]/(2Bf).
For m < 2My, the integrals in the above expressions are
well-defined, while for m >2M, (i.e., beyond the gg
production threshold) they are divergent. Still, if this is
the case one can obtain finite results by performing analytic
extensions [71].

Here we have defined Xp=

B. Box structure of the neutral meson mass matrix

The quadratic piece of the bosonized action in Eq. (25)
involves 20 meson states. However, it can be seen that some
of these states do not get mixed, i.e., the 20 x 20 mass
matrix can be separated into several blocks, or “boxes”.

The vector fields pf; and p%, as well as the axial vector
fields af, and df, can be written in a polarization vector
basis. Since the magnetic field defines a privileged direc-
tion in space, to exploit the symmetries of the physical
system it is convenient to choose one of the polarization
vectors € in such a way that the spatial part € is parallel to

B. A possible choice of a polarization vector set satisfying
this condition is introduced in Appendix E; the polarization
vector denoted by ¢#(g,2) is such that €(g,2) is parallel
to the magnetic field, regardless of the three-momentum 4.
Now, as explained in Appendix F, the system has an
invariance related to the reflection on the plane
perpendicular to the magnetic field axis. If we associate
to this transformation an operator Ps, the pseudoscalar
and scalar particle states transform under P; by getting
phases 17, = —1 and 3 = 1, respectively (here b = 0, 3).
In general, the transformation of the vector and axial vector
states is more complicated, depending on their polariza-
tions. However, the choice of ¢“(g,2) as one of the
(orthogonal) polarization vectors guarantees a well-
definite behavior of vector particle states; indeed, consid-
ering the remaining polarization vectors in Appendix E,
which are denoted by ¢#(g, c) with ¢ = 1, 3, L, one has

ap,L

Ml =tp! =np’ =npt=—1 and np’ =p’ =iy’ =
17/7;3 = 1. Here we have introduced the notation Ph.c>
ay.., where b =0 and b = 3 correspond to isoscalar an
isovector states, respectively, and the index ¢ (= 1,2,3,L)
indicates the polarization state.

To get rid of the Lorentz indices, it is convenient to deal
with a mass matrix G in which the vector and axial vector
meson entries are given by the corresponding projections
onto the polarization vector states. Taking into account the
matrix Gy in Eq. (25), and using the above mentioned
polarization basis, we have

Gsbs;, = GSbS;, >

G‘Yb”b/,(; = Gl; 1/‘ 6‘”(6_]), C),
G, ,, =€,(q.c)G

VpeSy! vhsy?

Gva.v’b/.v/ = eﬂ(q’ C)*GI;]’?U'?I EU(C_]), C/)v (43)

where ¢, ¢’ = 1,2,3, L. Here s and s’ stand for the scalar or
pseudoscalar states 7, o, while v and v’ stand for the vector
or axial vector states p, a. Now, as shown in Appendix F,
the fact that the system is invariant under the reflection in
the plane perpendicular to the magnetic field implies that
particles with different parity phases ;71%’3 cannot mix;
therefore, the 20 x 20 matrix G turns out to be separated
into two 10 x 10 blocks. It can be written as

G=GY G, (44)
where the corresponding meson subspaces are

G(_),states Ty Pb2sAp 15 Ap3, Ap L s b= 0,3, (45)

G(+>, states OpsPb,1>Pb3sPbL>Ab2s b= 0,3 (46)

There are more symmetry properties that can still be
taken into account. Notice that, according to its definition,
the polarization vector €#(g,2) is invariant under
rotations around the axis 3, which implies that it is
an eigenvector of the operator S5 = i(&/8 — 8,8%) with
eigenvalue s; = 0. Moreover, the whole physical system is
invariant under rotations around the axis 3, and conse-
quently the third component of total angular momentum,
J3 = (X% ¢); + S3, has to be a good quantum number.

Thus, if we let g, = 6, the quantum number S5 will be a
good one to characterize the meson states.

Let us consider the polarization vectors defined in
Appendix E. As stated, €/(g,2) is an eigenvector of S5,
while €#(q, L) is defined as a “longitudinal” vector, in the
sense that its spatial part is parallel to g. The remaining
polarization vectors, €“(g, 1) and (g, 3), do not have in
general a simple interpretation. Now, if we let g, = 0, they
reduce to
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6”(6?”, 1) :%(0, l,i,O), 6‘”(6“,3) :%(0, ],—i,O),
(47)

where g, = (0.0, ¢*). Thus, it is seen that é(gy.1) and
€(gy 3) lie in the plane perpendicular to the magnetic field,
and meson states with polarizations (g, 1) and €”(gy, 3)
are states of definite third component of the spin, with
eigenvalues 53 = +1 and s3 = —1, respectively. The states
with polarizations ¢(gy,2) and €”(g, L) are also eigen-
states of S5, with eigenvalue s; = 0. As stated, in this case
S5 is a good quantum number; this supports our choice of
using for vector and axial vector states the polarization
basis p,, ., a, .

If mesons are taken to be at rest, i.e., if we take g = 0, we
can identify the mesons with polarizations e* (6, L) as spin-

zero states, and those with polarizations e”(6, 2) as spin-
one (s3 = 0) states. In this case one has simply

e"(0,2) = (0,0,0,1),  ¢*(0,L) =(1,0,0,0).  (48)
We notice, however, that our physical system is not fully
isotropic, but only invariant under rotations around the axis

3. Thus, |S | is not a conserved quantum number, and in
general the states with polarizations L and 2 will get mixed.
For clarification, we find it convenient to distinguish
between the polarization three-vectors €(0,c), ¢ = 1, 2, 3,
and the spin vectors of the S = 1 vector and axial vector
states. We define the spin vector as the expected value

<§>C — 6#(0’ c)*(ﬁlluj’ Sgb’ S:;y)el/(o’ C) , (49)
€,(0,¢)*e*(0, ¢)

with 87" = ie;,6/8;. A simple calculation leads to (8), =
(0,0,1), (S); = (0,0,—1) and (S), = (0,0,0), showing

that for the polarization vectors e”(a, 1) and e”(a, 3) the
spin is parallel or antiparallel to the magnetic field, whereas

for the polarization vector ¢/ (6, 2) the spin has no preferred
direction. Notice that in Ref. [71] the p* states with
polarizations ¢/ (6 2) and ¢* (6 ¢), ¢ =1, 3 were denoted
as “perpendicular” (p_ ) and “parallel” (p|), respectively.
Let us turn back to the mass matrix G. From the
regularized polarization functions in Eq. (29) we can obtain
a regularized matrix G(m?), where we have taken
¢* = (m,0,0,0). Notice that the regularization procedure
does not modify our previous analysis about the sym-
metries of the problem. Thus, according to the above
discussion, we can conclude that—for neutral mesons—
each one of the 10 x 10 submatrices of G (m?) gets further
decomposed as a direct sum of a subspace of 53 = 0 states
(that includes vector and axial vector mesons with polari-
zation states ¢ =2,L), a subspace of s3 = 41 states

(polarization states ¢ = 1) and a subspace of s3 = —1
states (polarization states ¢ = 3). In this way, the 20 x 20

matrix G(m?) can be decomposed in “boxes” as

A

G=G""oG" oG oG " aG! G,
(50)
where the superindices indicate the quantum numbers

(s3.11p,). The meson subspaces corresponding to each
box are the following:

G states 7y, 73,002+ P32+ Q0.1 4315

G(l’—), states ag 1, ds;

G(-l"), states ag 3, a3 3;

G(O’H’ states o, 63, Po.L,P3.L> 402, 4325

G states Po.15P3.15

(A;(—lr*')’ states po 3, P33- (51)

Finally, it can also be seen that at the considered level of
perturbation theory the sigma mesons o, get decoupled

from other states. Thus, the matrix GO can stll be
decomposed as

GO = GOV @ GO (2

The submatrices in the right hand side correspond to the
scalar meson subspace ¢, with b = 0, 3, and the meson
subspace p;, 1, ap,, with b = 0, 3, respectively.

C. Neutral meson masses and wave functions

From the expressions in the previous subsections one can
obtain the model predictions for meson masses and wave
functions. Let us concentrate on the lightest pseudoscalar
and vector meson states, which can be identified with the
physical 7°, #, p° and @ mesons. The pole masses of the
neutral pion, the 5, and the S, = 0 neutral p and w mesons
are given by the solutions of

det GO =0, (53)

while the pole masses of §, = £1 vector meson states can
be obtained from

det GEIH) =0, (54)

Clearly, the symmetry under rotations around the axis 3,
or z, implies that the masses of S, = 1 and §, = —1 states
will be degenerate.

Once the mass eigenvalues are determined for each box,
the spin-isospin composition of the physical meson states
can be obtained through the corresponding eigenvectors.
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In the S, = 0 sector, the physical neutral pion state 7° can
be written as

~ ~0 = . =0
|70) = ¢ |ms) + cZ |mo) + icp. |p32)

+ iC’ZZZ 1po2) + CZ:_L|03,L> + CZE,L|00,L>’ (55)

and in a similar way one can define coefficients cM for
other physical states /. On the other hand, in the S, ==1
sector it is convenient to write isospin states in terms of the
flavor basis (p, .. p4.) for c =1, 3, viz.

1 1

|p0,c> :_(|pu,c> + |pd,c>)’ |p3,c> :_(|pu.c> - |pd,c>)'

[\
[\S)

(56)

Since in this sector vector mesons do not mix with pseudo-
scalar or axial vector mesons, the states |p; .) (f = u, d) with
¢ =1 and ¢ =3 turn out to be the mass eigenstates that
diagonalize the matrices G and GE), respectively.
This can be easily understood by noticing that the external
magnetic field distinguishes between quarks that carry differ-
ent electric charges, and in this case this represents the only
source of breakdown of the u—d flavor degeneracy.

IV. THE CHARGED MESON SECTOR

A. Charged-meson polarization functions

We address now the analysis of the charged mesons, i.e.,
the states s* = (s, F is,)/v2 and v = (v} F ivh)/V/2,
with s = o, 7 and v = p, a. We concentrate on the positive
charge sector, noticing that the analysis of negatively
charged mesons is completely equivalent. The correspond-
ing quadratic piece of the bosonized action can be written as

d. 1
Sphadt = =-3 d*x d‘Uc’ZéM(x)

MM

"Guwr (x, x")oM' (x'),
(57)

where, for notational convenience, we simply denote the
positively charged states by M, M’ = ¢, x, p*, a* (a proper
contraction of Lorentz indices of vector mesons is under-
stood). The functions Gy (x, x) can be separated in two
terms; namely,

Gumr (%, X') = —5MM’5(4) (x =) = Tyar (%, X'),  (58)
9m
where
. 1/g forM=M'=nx
—umr =4 1/[9(1-2a)] forM=M"=0¢ , (39)
I - /gy for MM' = p#p¥,a*a”

and 6y, =0 otherwise.
Ty (x, X') are given by

The polarization functions

T (x,X') = =2iN ey [iS* ,TM'isd, TM],  (60)

where, as in the case of neutral mesons, one has I = 1,
I =iy>, I’ =y and T'* = y#y>. Using Eq. (10) we
have

N att .
Ty (5. = ) [ G 1), (61)
where
T wum (1) = =2iN., / trD lS“ pH .P7)

x TM'j§d (p” ,pJ_)F ]. (62)

Here we have defined p = p, ,
addition, we have used @, (x,x') =@, (x,x')+ @y (x',x).
Thus, @, is the Schwinger phase associated with positively
charged mesons.

Contrary to the neutral meson case discussed in the
previous section, here the Schwinger phases coming from
quark propagators do not cancel, due to their different
flavors. As a consequence, the polarization functions in
Eq. (61) do not become diagonal when transformed to the
momentum basis. Instead of using the standard plane wave
decomposition, to diagonalize the polarization functions it
is necessary to expand the meson fields in terms of a set of
functions associated to the solutions of the corresponding
equations of motion in the presence of a uniform magnetic
field. These functions can be specified by a set of four
quantum numbers that we denote by

7=("7%2.9) (63)

(see e.g. Ref. [80] for a detailed analysis). As in the case of
a free particle, ¢° and ¢> are the eigenvalues of the
components of the four-momentum operator along the
time direction and the magnetic field direction, respec-
tively. The integer £ is related with the so-called Landau
level, while the fourth quantum number, y, can be con-
veniently chosen (although this is not strictly necessary)
according to the gauge in which the eigenvalue problem is
analyzed [80,88]. In particular, since for the standard
gauges SG, LG1 and LG2 one has unbroken continuous
symmetries, in those cases it is natural to consider quantum
numbers y associated with the corresponding group gen-
erators. Usual choices are

SG: y =n, non-negative integer, associated to L3;[80];

(64)
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LGl: y = q', real number, eigenvalue of — i

E;
(65)

LG2: y = ¢°, real number, eigenvalue of — isa
x
(66)

To sum or integrate over these quantum numbers, we
introduce the shorthand notation

1
f-i 5 e
=322 ] 0 i
g ﬂf:fmin ( ﬂ:) z_lﬂ.qu

where £ ;, = 0 (—1) for spin-0 (spin-1) particles.
In this way, we can write

5o<x>=ItF<x,zz>6o<zz>, 6n<x)=§fﬂx,zz>5n<a>,

for SG

forLGi,i = 1,2,
(67)

5pﬂ<x>zijwv<x,z]>app<q>, «sa”(x):ijwwx,q)&ay(a),

(68)

R(rg) = 3 Foleg) T

A=-1,0,1

(69)

with g, = (¢°, ¢ — sAx.q?), s = sign(B). The function
Fo(x,q) depends on the gauge choice; the explicit forms
that correspond to the standard gauges are given in
Appendix G. Regarding the tensors T4, one has various
possible choices; here we take

v v v 1 v v
et Y= ESS (0)

Given Eq. (68) we introduce the polarization functions in
g-space (or Ritus space). They read

jss’(q’ q/) = / d4Xd4x/ [F(x’ Q)*jss’ ()C, x’)[F(x', q/)’

k-_\\ ——

T4 (q.q) d*xd*x' F(x, G) T (x, X" )RE(X', G,

jﬁ"s(é? q/) = d4Xd4x/ Rz(x’ ZI)*jv"s(x X )D:(X/, q/)’

d'xd*x' Rly(x. )" T% ,(x. X' )R, (x'. 7).

v

jvuw(_ _l) =
(71)

where s, s’ stand for the states ¢ or z, while v, v’ stand for p
or a. After a somewhat long calculation one can show that
all these g-space polarization functions are diagonal, i.e.,
one has

Tum(3.7') = 5"’JMM’(f q)) (72)

where
b = (22)*8(q° = 4°)6408,,8(4° — ¢°).  (73)

Here, 6,, stands for §,,, 6(¢' — ¢') and &(q* — ¢”*) for
SG, LGI1 and LG2, respectively. It is important to stress that
Eq. (72) holds for all three gauges; moreover, the functions
Jum (¢, q)) are independent of the gauge choice. The
explicit form of these functions for the various possible
MM’ combinations, together with some details of the
calculations, are given in Appendix H. The quadratic piece
of the bosonized action in Eq. (57) can now be expressed as

g IZ&M ) Gy (€.q))5M'(q),  (74)
MM
where
GMM’(f ‘]H) 5MM'—JMM/(f 4||) (75)

As in the case of neutral mesons, to determine the
charged meson masses it is convenient to write the vector
and axial vectors states in a polarization basis. A suitable
set of polarization vectors €*(¢, ¢°, ¢), where ¢ = 1,2,3, L
is the polarization index, is given in Appendix E. Here,
¢ =L corresponds to the “longitudinally polarized”
charged mesons, which will be denoted by p; and a;;
for these states the polarization vector €*(¢,q>,L) is
defined only for # >0, and it is proportional to the
four-vector I1* defined by Eq. (H10), evaluated at
q" = /m> + (2¢ + 1)B, + (¢°). Next, to get rid of the
Lorentz indices of vector and axial vector states, we
consider the mass matrix G and the polarization functions
J obtained in the basis given by the corresponding
projections onto the polarization vector states. We have

1
(ETP) = — 685y — Joo (£, 112
Gss ( ’ ) 2gs 55 Jss ( ’ )v
Gsv(;(f’ Hz) = _Jm,v‘ (Z’ﬂv Hz),
Gv(.s (f’ Hz) - _Jy(.S (f’ H2)7
1
Gfucv"/ (f’ Hz) = _2_5051; v JL v /(f’ Hz)’ (76)
c gv cU ¢ cU ¢
where
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Jss’ ss’(f cIH)
SL“(f q||) (f q3,C),
=e,(¢.4°.¢) T (?.q)).

=e,(0.¢.c) I (Coqpet.q. ). (T7)

J
J

(@,
(S
Jos(Z,

(

In the above equations, s and s’ stand for the scalar
or pseudoscalar states 7, o, while v and v’ stand for the
vector or axial vector states p, a. We use once again the
definitions g, = g, g, = g(1 — 2a), whereas (. is defined
as{, = 1forc =Land{, = —1 forc = 1, 2, 3. Moreover,
we have defined IT* = IT;II¥. From Eq. (H10), one has
l‘[zzq”—(Zf—l—l) .

To determine the physical meson pole masses corre-
sponding to a given Landau level Z, we need to evaluate the
matrix elements of G(#,T1?) at 1> = m?. However, as in
the case of the neutral meson sector, it turns out that many
of the corresponding polarization functions are divergent.
Once again, we consider the magnetic field independent
regularization scheme, according to which we have

Jreg(l/ﬂ7 HZ) — JO,reg(HZ) + Jmag(l/ﬂ7 HZ) (78)
To obtain the regularized “B = 0” matrix JO°¢(T1%) we
calculate the projections over polarization states as in
Eq. (77), replacing the functions Jy,(¢,q)) by their
regularized expressions. The latter are obtained by taking
the corresponding regularized functions J}7 . (g) in
Appendix C, and performing the replacement g* — IT¥.
On the other hand, to determine the “magnetic” contribu-
tion JM(¢£,T1?) we calculate the matrix elements of
J(¢,T1%) according to Eq. (77) [as stated, the functions
Jum (¢, q)) in that equation are quoted in Appendix H],
and then we subtract the corresponding unregularized
expressions in the above defined B — 0 limit. These can
be obtained from the unregularized functions J;,-%(g) in
Appendix C, following the same procedure as for the
regularized ones.

B. Box structure of the charged meson mass matrix

As in the case of neutral mesons, the symmetries of the
system imply that not all charged mesons states mix with
each other. Firstly, it is clear that the mass matrix can be
separated into two equivalent sectors of positive and
negative charges. Next, restricting ourselves to positively
charged mesons, it is seen that one can exploit the
symmetry of the system under the reflection on the plane
perpendicular to the magnetic field to classify the meson
states into two groups. This is discussed in detail in
Appendix F, where the action of the operator P3, associated
to this symmetry transformation, is studied. Considering
the polarization basis introduced in the previous subsection,
it is found that charged meson states M transform under P5

by getting phases 1771‘;’3 = +1. In a similar way as in the case

of neutral meson states, the 10 x 10 mass matrix G(Z, I1?)
can be written as a direct sum of two 5 x 5 submatrices,

G=GO ®GH), (79)
where the corresponding meson subspaces are

G, states 7. py, ap,a,as; (80)

G, states o,a,,p1,p1.pP3- (81)

Now, it is worth noticing that while the above discussion
holds for Landau levels #Z > 1, one should separately
consider the particular cases ¢ = -1 and ¢ =0.
As mentioned above, one has 7,,;, = 0 for pseudoscalar
and scalar fields; moreover, as discussed in Appendix E,
for £ = —1 there is only one nontrivial polarization
vector, eﬂ(—l, q°, 1). Therefore, the charged mass matrix
G(—1,T1%) is given by a direct sum of two 1 x 1 matrices
G and G*) corresponding to the states a; and p,
respectively. These do not mix with any other state. The
case £ =0 is also a particular one, since, as stated in
Appendix E, one cannot have a vector or axial vector meson
field polarized in the direction €, (0, ¢*, ¢) with ¢ = 3. In this
way, the charged mass matrix G (0, I1?) is given by a direct
sum of two 4 x 4 matrices.

C. Charged meson masses and wave functions

Taking into account the results in the previous subsec-
tions, the pole masses of charged mesons can be obtained,
for each value of Z, by solving the equations

detG™H) (£, m?) = 0. (82)
Here we are interested in the determination of the energies
of the lowest lying meson states. As stated, for the Landau
mode £ = —1 the only available states are the vector meson
p1 and the axial vector meson a;, which do not mix
with each other. In turn, for # = 0 one gets the lowest-
energy charged pion, which gets coupled through G- to
the £ = 0 vector and axial vector mesons. In what follows
we analyze these two modes in detail.

As mentioned above, for £ = —1 the matrix G(t) has
dimension 1. Thus, according to Egs. (76) and (78), the
pole mass of the p state can be obtained from

1 r
3~ Wb (1w =0, (83)
where
T 0,1 ma,
J!i%’l( 2) = Jpl/flg (mZ) + Jﬂlpgl (_1’ mz)' (84)
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The functions on the rhs of this equation can be obtained
from the definitions in Sec. IVA; one has

oo (=1.m?) = =200 (m?),

s (=1m?) = =2[d,,,(~1.m* = B,) = bUo " (m?)],

(85)

where bZﬁeg and b“d'umg are given in Appendix C, while
the expression of d,,,2 can be found in Appendix H.
Once the solution m? = mf has been determined, we

can obtain the energy E,- of the lowest charged p state as

(613)2|£:—1,q3:0 =4/ m/2,+ -B,.

(86)

Ep+:\/mﬁ+—|—(2f—|—l)Be+

In the case of the lowest charged pion state (Z = 0), we
consider the 4 x 4 mass matrix G(=)(0, m?) that couples the
states 7, p,, a; and a;. The pole mass can be found from

det [dlag(l L1 - ! >_Jf°g(0,m2)] =0, (87)

29'29,29," 29,

where, according to Eq. (78),

Jreg(o’ mZ) — JO,reg(mZ) +Jmag(o7m2). (88)

The nonvanishing matrix elements of J*™2(m?) read
d,

2 (m?) = fmrfg(m ),

0 ud

Jpsps (m?) = by, 1o (m?),

Yaias (m?) = Z;’ 3E(m?),

Jalet (m2) = —2blyq"¥ (m?),

Yot (m?) = 2;%8( %) = 2mby ' (m?). (89)

where the functions on the right hand sides are given in
Appendix C. The matrix elements of J™¢(0, m?), obtained
from the general expressions quoted in Appendix H, are
given in Appendix I. The lowest solution of Eq. (87) can be
identified with the charged pion-pole mass squared, mfﬁ.
Then the energy of the lowest charged pion reads

E;[+ :\/m721'++(2l€+l)Be+(q3)2|f:0’q3:(): mi++Be‘

(90)

In the same way, higher solutions of Eq. (87) are to be
identified with vector meson pole masses; a similar analysis
can be done for the sector corresponding to the 4 x 4 matrix
G- (0, m?) (which involves the ¢ meson). In addition, one

can obtain pole masses of other higher-charged meson
states by considering Landau levels Z > 1 (as stated, the
mass matrix separates in those cases into two boxes of
dimension 5).

Together with the determination of meson pole masses,
we can also obtain the spin-isospin composition of the
physical meson states as in the case of neutral mesons. For
¢ = —1 there are just two states, p; and a;, which do not
get mixed due to the above described reflection symmetry.
On the other hand, for Z >0, one gets in general a
decomposition similar to that obtained in the case of
neutral states. Thus, in the particular case of the lowest
lying charged pion, the physical state z* can be written as a
combination of £ = O states,

[7t) = &' |x) +ick |pa) + % |ay) + ick |ag).  (91)

V. NUMERICAL RESULTS

A. Model parametrization and magnetic catalysis

To obtain numerical results for particle properties it is
necessary to fix the model parameters. In addition to the
usual requirements for the description of low-energy phe-
nomenology, we find it adequate to choose a parameter set
that also takes into account LQCD results for the behavior of
quark-antiquark condensates under an external magnetic
field. As stated, in our framework divergent quantities
are regularized using the MFIR scheme, with a proper
time cutoff. Within this scenario, we take the parameter
set m. =7.01 MeV, A =842 MeV, g=1594/A> and
a = 0.114. For vanishing external field, this parametrization
leads to effective quark masses M, = 400 MeV and quark-
antiquark condensates qﬁu 4 = (=227 MeV)3. Moreover, it
properly reproduces the empirical values the pion mass, the
eta mass and the pion decay constant in vacuum, namely
m, =140 MeV, m, =548 MeV and f, =92.2 MeV,
respectively. Regarding the vector couplings, we take
gy = 3.947/A%, which for B =0 leads to the empirical
value m, =775 MeV and to a phenomenologically accept-
able value of about 1020 MeV for the a; mass. Notice that, as
usual in this type of model, the a; mass is found to lie above
the quark-antiquark production threshold and can be deter-
mined only after some extrapolation. For the sake of
simplicity, the remaining coupling constants of the vector
and axial vector sector are taken to be gy, = ga, = gy,
which leads to m,, = m, and m; = m,, .

As mentioned in the Introduction, while most NJL-like
models are able to reproduce the effect of magnetic
catalysis at vanishing temperature, they fail to describe
the inverse magnetic catalysis effect observed in lattice
QCD at finite temperature (an interesting exception is the
case of models which include nonlocal interactions
[89,90]). One of the simplest approaches to partially cure
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this behavior consists of allowing the model couplings to
depend on the magnetic field, so as to incorporate the sea
effect produced by the backreaction of gluons to magnet-
ized quarks loops. Thus, we consider here both the situation
in which the couplings are constant and the one in which
they vary with the magnetic field. For definiteness, we
adopt for g(B) the form proposed in Ref. [21]; namely,

9(B) = gF(B), (92)
where
F(B) =k + (1 —k;)e (B, (93)

with x; = 0.321 and k, = 1.31 GeV~2. Concerning the
vector couplings, given the common gluonic origin of g and
gy, we assume that they get affected in a similar way by the
magnetic field; hence, we take gy(B) = gy F(B).

The effect of magnetic catalysis can be observed from
Fig. 1, where we show the behavior of the normalized
averaged light quark condensate as a function of the
magnetic field, for eB up to 1 GeV>. Following Ref. [91],
we use the definitions

_ AZ,(B) + AZ,(B)

AS(B) — - ,
AS,(B) = — 2melds gf) ~ 7l (94)

where D = (135 x 86)'/> MeV is a phenomenological
normalization constant. Solid and dashed lines correspond

1.2 — T y
U
/
—— g=const 4
1.0F ----g(B) d
LQCD /!
/
/
0.8 J .
/
/
/
/I
13|
< 0.6 ,/ -
/
/
/
4
4
0.4 e 4
7/’
,l
4
,l
0.2} B i
P
0.0 T | L | L | L | L
0.0 0.2 0.4 0.6 0.8 1.0
eB [GeV?]
FIG. 1. Normalized average ¢g condensate as a function of eB.

Solid and dashed lines correspond to constant and B-dependent
couplings. LQCD results from Ref. [91] (gray band) are added for
comparison.

to constant and B-dependent couplings, respectively.
Although the curves do not show an accurate fit to lattice
data (gray band, taken from Ref. [91]), it is seen that the
model is able to reproduce qualitatively the effect of
magnetic catalysis. We have seen that a better agreement
could be achieved using a parameter set that leads to lower
values of the quark masses; however, this would hinder the
analysis of the rho meson mass, since the latter would lie
below the quark-antiquark production threshold even for
B = 0. Additionally, we have checked that the choice of a
3D cutoff (within the MFIR scheme) leads in general to
even lower values of AY, increasing the difference with
LQCD results.

B. Neutral mesons

Let us analyze our results for the effect of the magnetic
field on meson masses. We start with the neutral sector. As
is well-known, for vanishing external field pseudoscalar
mesons mix with “longitudinal” axial vector mesons. Now,
as discussed in Sec. III B, for nonzero B the mixing also
involves neutral vector mesons with spin projection S, = 0
(corresponding to the polarization state ¢ = 2). The four
lowest-mass states of this sector are to be identified with the
physical states #°, 77, p° and @, where the particle names are
chosen according to the spin-isospin composition of the
states in the limit of vanishing external field, see Eq. (55).

The masses of these particles can be determined from
Eq. (53). In Fig. 2 we show their behavior with the
magnetic field, for constant and B-dependent couplings
(solid and dashed lines, respectively). In the case of 5° and
@ mesons, for B = 0 one has m, = m,, =775 MeV, close
to the quark-antiquark production threshold—which arises

1.0 T T T T T T T

oor 1

0.8 p o o*
0.7 p, 0

—— g=const |

)
Threshold

0.6 T

05 = n —

(B) [GeV]
!

Y]

-
-
- -
L - i
€ 0.4 - -

0.3 T

02 .

0.1 ==

L L | L | L L
0.0 0.2 0.4 0.6 0.8 1.0
eB [GeV?]
FIG. 2. Masses of neutral mesons with spin projection S, = 0

as functions of eB. Solid (dashed) lines correspond to constant
(B-dependent) couplings.
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FIG. 3.

Normalized mass of the 7° meson as a function of eB, for the case of constant (left panel) and B-dependent couplings

(right panel). Red dotted and dash-dotted lines show the results from models that do not include the axial vector meson sector. The bands
and the fat squares correspond to LQCD results quoted in Refs. [14,51,52,92].

from the lack of confinement of the model—given by
2M 4(B = 0) = 800 MeV. As can be seen from the figure,
since mz and m; increase with the magnetic field, they
overcome the threshold (shown by the dotted line) at
relatively low values of eB. Beyond this limit, although
one could obtain some results through analytic continuation
[33,71], pole masses would include an unphysical absorp-
tive part, becoming relatively less reliable. For clarity, we
display in Fig. 2 just the curves for my and mg; that
correspond to the case of a constant value of the coupling g;
in the case of the B-dependent coupling g(B), the situation
is entirely similar. It is also worth mentioning that the
results for the # and & masses should be taken only as
indicative, since a more realistic calculation would require a
three-flavor version of the model in which flavor-mixing
effects could be fully taken into account.

Regarding the neutral pion mass, in Fig. 3 we compare
our results with those obtained in previous works [21,71]
and those corresponding to LQCD calculations, in which
quenched Wilson fermions [51], dynamical staggered
quarks [14,51,92] and improved staggered quarks [52]
are considered. Although LQCD studies do not take into
account flavor mixing (they deal with individual flavor
states), according to the analysis in Ref. [71] the lightest
meson mass is expected to be approximately independent
of the value of the mixing parameter a. It is also worth
noticing that LQCD results have been obtained using
different methods and values of the pion mass at B = 0.
In the figure we show the results obtained for NJL-like
models in which different meson sectors have been
taken into account. Left and right panels correspond to
g = constant and g = g(B) [given by Egs. (92) and (93)],
respectively. If one considers just the pseudoscalar sector
(red dotted lines), when ¢ is kept constant the behavior of
m;o with the magnetic field is found to be nonmonotonic,

deviating just slightly from its value at B = 0. In contrast,
as seen from the right panel of Fig. 3, if one lets g to
depend on the magnetic field the mass shows a mono-
tonic decrease, reaching a reduction of about 30% at
eB =1 GeV?. This suppression is shown to be in good
agreement with LQCD results. When the mixing with the
vector sector is considered, the results for both constant and
B-dependent couplings (red dash-dotted lines in left and
right panels) are similar to each other and monotonically
decreasing, lying however quite below LQCD predictions.
Finally, if the mixing with axial vector mesons is also
included (solid lines) we obtain, for both constant and
B-dependent couplings, a monotonic decrease which is in
good qualitative agreement with LQCD calculations for the
studied range of ¢B. One may infer that the incorporation of
axial vector mesons, being the chiral partners of vector
mesons, leads to cancellations that help to alleviate the
magnitude of the neutral pion mass suppression. Their
inclusion into the full picture leads to relatively more robust
results, in good agreement with LQCD calculations, and is
in fact one of the main takeaways of this work.

Let us discuss the composition of the #° state. The values
of the coefficients associated with the spin-isospin decom-
position given in Eq. (55) are quoted in the upper part of
Table I for ¢eB =0, 0.5 GeV? and 1 GeV2. Those asso-
ciated with the spin-flavor decomposition, defined in the
same way as in Eq. (56), are given in the lower part of the
table. We quote the values corresponding to the model in
which the couplings constants do not depend on the
magnetic field; the results are qualitatively similar for
the case of B-dependent couplings. One finds that while
the mass eigenvalues do not depend on whether B is
positive or negative, the corresponding eingenvectors do;
the relative signs in Table I correspond to the choice B > 0.
We consider first the results for vanishing magnetic field.
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TABLE 1. Composition of the #° meson mass eigenstate for
selected values of eB. Relative signs hold for the choice B > 0.
The upper table corresponds to the spin-isospin decomposition,
as given in Eq. (55), while the lower one corresponds to a spin-
flavor decomposition.

Spin-isospin composition

eBIGeV)] i, i h, b,y

0 0.998 0 0 0 —0.067 0

0.5 0.993 0.084 0.016 0.060 -0.063 -0.011

1.0 0.987 0.141 0.010 0.057 -0.058 -0.012
Spin-flavor composition

eB[GeV?] ¢h, kG G Ch, iy

0 0.706 -0.706 0O 0 —0.047 0.047

0.5 0.707 -0.704 0.011 0.006 —0.047 0.047

1.0 0.798 -0.598 0.048 0.033 —0.050 0.032

It is seen that, due to the well-known z-a; mixing, the 70
state has already some axial vector component. We also
note that even though « is relatively small (in our para-
metrization we have taken a = 0.114, to be compared with
its maximum possible value 1/2), the effect of flavor
mixing is already very strong; the spin-isospin composition
is clearly dominated by the z; component, which is given
by an antisymmetric equal-weight combination of « and d
quark flavors. This can be understood by noticing that, as
soon as « is different from zero, the U(1), symmetry gets
broken. The state 73 is then the only one that remains being
a pseudo-Goldstone boson, which forces the lowest-mass
state 7° to be dominated by the 73 component. In the
presence of the magnetic field, the mixing is expected to be
modified, since the external field distinguishes between
flavor components z,, and 7, instead of isospin states. From
the upper part of Table I it is seen that, even for the
relatively small value of o considered here, the mass state
7" is dominated by the 73 component (|cZ |> Z 0.97) for the
full range of values of eB up to 1 GeV?. This means that the
dominance of the flavor composition over the isospin
composition will occur only for extremely large values
of eB. In any case, from the values in Table I one can still
observe some effect of the magnetic field on the compo-
sition of the 7° state: when eB increases, it is found that
there is a slight decrease of the 73 component in favor of the
others. In addition, a larger weight is gained by the u-flavor
components, as one can see by looking at the entries
corresponding to the spin-flavor states (lower part of

Table 1); one has [cZ 2+ [cZ [>+|cZ > = 0.50(0.64)
for eB = 0(1.0) GeV?. This can be understood by noticing
that the magnetic field is known to reduce the mass of
the lowest neutral meson state [49,51,52]; for large eB

one expects the lowest mass state (7°) to have a larger

component of the quark flavor that couples more strongly
to the magnetic field (i.e., the u quark). Concerning the
vector meson components of the 7 state, it is seen that they
are completely negligible at low values of eB, reaching a
contribution similar to the one of the axial vector meson
(=0.5%) at eB = 1 GeV>.

In addition, as discussed in Sec. III B, the neutral sector
includes states with spin projections S, = %1, i.e., spin
parallel to the direction of the magnetic field. We consider
here the effect of the magnetic field on vector meson states,
whose masses can be obtained from the submatrices

GEY) in Eq. (50). Since in this sector vector meson
and axial vector meson states do not mix, the analysis is
entirely equivalent to the one carried out in Ref. [71], where
the axial vector sector was not taken into account. As stated
in Sec. IIIC, it is easy to see that the mass matrices
involving the states py. and p;,., with ¢ =1, 3 are
diagonalized by rotating from the isospin basis to a flavor
basis (p,.., pa.) given by Eq. (56); moreover, the masses of
these mesons turn out to be equal for polarization states
c=1(S,=+1)and c =3 (S, =-1).

The numerical results for p, and p,; meson masses as
functions of the magnetic field are shown in Fig. 4. It is
seen that both masses increase with B, the enhancement
being larger in the case of the p, mass; this can be
understood from the larger (absolute) value of the u-quark
charge, which measures the coupling with the magnetic
field. The results are similar for the case of constant and
B-dependent couplings, corresponding to solid and dashed
lines in the figure, respectively. The dotted lines indicate
the mass thresholds for gg pair production, given by

myt) = My + /M2 + 2B,. As discussed in Ref. [71], this

1.7 - T

1.6

T o15¢

—— g =const R
I 1 ---9(B)
0.9 » p,-LQCD T
08 n 1 n 1 n 1 n 1 n
0.0 0.2 0.4 0.6 0.8 1.0
eB [GeV?]

FIG. 4. Masses of p mesons with spin projection S, = £1 as
functions of eB. Solid and dashed lines correspond to constant
and B-dependent couplings; dotted lines indicate gg production
thresholds. LQCD data for p, from Ref. [51] are included for
comparison.
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threshold is given by a situation in which the spins of both
the quark and antiquark components of the p, meson are
aligned (or anti-aligned) with the magnetic field; thus, one
of the fermions lies in its lowest Landau level, while the
other one lies in its first excited Landau level. In compari-

son with the S, =0 threshold 2M,, for S, = £1 the

threshold m,(,tfh) grows faster with B. For a constant coupling

g, this allows the values of m, and m,, to remain below
the threshold for the studied range of magnetic fields.
On the other hand, in the case of a B-dependent coupling
g(B) the p, meson is found to become unstable for eB
somewhat larger than 0.6 Ge V2. Our results for the p, mass
are found to be in agreement, within errors, with values
obtained through LQCD calculations, also shown in
Fig. 4 [51].

C. Charged mesons

As discussed in Sec. IV, to study the lowest lying
charged meson states in the presence of the magnetic field
one has to consider the Landau modes £ = —1 and #Z = 0.
For # = —1, the lowest mass state is the one that we have
denoted as p;, which does not get mixed with any other
state. The corresponding pole mass m,- can be obtained
from Eq. (83), while the lowest energy for this state is given

by E,- =, /mi+ — B,, see Eq. (86).

In Fig. 5 we show our numerical results for E,+ as a
function of eB, normalized by the value of the p mass at
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FIG. 5. Energy of the p™ meson as a function of eB for the
lowest Landau mode ¢ = —1 and vanishing component of the

momentum in the direction of B. Values are normalized to the pt
mass at zero external field. Black solid and dashed lines
correspond to constant and B-dependent couplings, respectively.
Red dotted and dash-dotted lines show results from models that
do not include axial vector mesons, while the light gray line
corresponds to a pointlike p™. For comparison, lattice QCD data
quoted in Refs. [45,51,59] are also included.

B = 0. Black solid and dashed lines correspond to the cases
of constant and B-dependent couplings, respectively, where
g(B) is given by Egs. (92) and (93). It can be seen that for
g = constant the results differ considerably from those
obtained in a similar model [72] which instead does not
take into account the presence of axial vector mesons (red
dotted line in the figure). On the contrary, for g = g(B) (red
dash-dotted line) they remain basically unchanged. In fact,
here the differences between models that include or not
axial vector mesons do not arise from direct mixing effects
(the p; state does not mix with axial vectors) but from the
fact that axial vector states mix with pions already for
B = 0; this leads to some change in the model parameters
S0 as to get consistency with the phenomenological inputs.
In any case, it is found that—as in the case of neutral
mesons—the results from the full model (black solid and
dashed lines) appear to be rather robust; they show a similar
behavior either for constant or B-dependent couplings, and
this behavior is shown to be in good agreement with LQCD
calculations [45,51,59], also shown in the figure. Notice
that our results, as those from LQCD, are not consistent
with p™ condensation for the considered range of values of
eB. The curve corresponding to the lowest-energy state
of a pointlike p™ meson as a function of eB is shown for
comparison.

It is worth mentioning that our results are qualitatively
different from those obtained in other works in the
framework of two-flavor NJL-like models [18,30], which
do find p* meson condensation for eB ~ 0.2 GeV? to
0.6 GeV2. As discussed in Refs. [72,80], in those works
Schwinger phases are neglected and it is assumed that
charged 7 and p mesons lie in zero three-momentum states
(i.e., meson wave functions are approximated by plane
waves). Here we use, instead, an expansion of meson fields
in terms of the solutions of the corresponding equations of
motion for nonzero B, taking properly into account the
presence of Schwinger phases in quark propagators. In fact,
as shown in Ref. [80], the plane wave approximation may
have a dramatic incidence on these numerical results,
implying a substantial change in the behavior of the p*
mass for the £ = —1 Landau mode.

In the case of the mode # = 0, as discussed in Sec. IV,
the lowest mass state 7 is given in general by a mixing
between the states that we have denoted as z, p,, a; and a;.
The corresponding pole mass m,+ can be obtained from
Eq. (87), while the lowest energy for this state is given by

E.+ = /mfr+ + B,, see Eq. (90). Our numerical results are

presented in Fig. 6, where, for the sake of comparison with
LQCD values, we plot the values of the difference
E,-(B)* — E,+(0)? as a function of eB. Once again, black
solid and dashed lines correspond to the cases of constant
and B-dependent couplings, respectively. We also include
for comparison the results obtained from similar NJL-like
models that just include the pseudoscalar meson sector
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FIG. 6. Squared energy of the z" mass eigenstate for the
Landau mode # = 0 and vanishing component of the momentum
in the direction of B. Values are given with respect to the squared
7" mass for vanishing external field. Black solid and dashed lines
correspond to constant and B-dependent couplings, respectively.
Red dotted and dash-dotted lines show results from models that
do not include axial vector mesons, while the light gray line
corresponds to a pointlike z*. For comparison, lattice QCD data
quoted in Refs. [14,45,52] are also included.

(red dotted line), or just include the mixing between the
pseudoscalar and vector meson sectors (red dash-dotted
line), neglecting the effect of the presence of axial vector
mesons. It can be seen that the inclusion of the axial vector
meson sector leads to an improvement of the agreement
with LQCD data quoted in Refs. [14,45,52], also shown in
the figure.

It is interesting to point out that, for large external
magnetic fields, the values from LQCD shown in Fig. 6 lie
well below the curve that corresponds to a pointlike pion.
From Eq. (90), it is easy to see that to reproduce these
results one should get a negative value of the pole mass
squared, mi+ < 0. In fact, this is what we obtain from our
NJL-like model if we assume that the coupling constants do
not depend on B (solid line in the figure). The appearance
of an imaginary pole mass does not signal the existence
of a meson condensation, since meson energies are still
positive quantities; indeed, the presence of the magnetic
field generates a zero-point motion in the plane

perpendicular to B that induces an “effective magnetic

mass” /mfr+ + B,. Notice that in this case some analytical

expressions have to be revised. The corresponding changes,
basically related with the normalization of polarization
vectors, are indicated in Appendix E. In contrast, for
B-dependent couplings one does not observe a large
variation of the z* pole mass for the studied range of
eB; the energy is essentially dominated by the magnetic
field. Thus, the curve shown in Fig. 6 (black dashed line)

TABLE II. Normalized squared pole mass and composition of
the #7 meson mass eigenstate for selected values of eB.

State composition (g = constant)

eB

[GeV?] m,-(B)?/m,-(0)? e CZZ c’a’f CZZ

0 1 0998 0 0 -0.067

0.5 0.006 0.174 -0.025 0.697 0.697
1.0 —-10.29 0.879 -0.210 -0.201i -0.378i
3 State composition (g = g(B))

e

[GeV?] my+(B)?/m,+(0)? e CZ: CZI+ CZZ

0 1 0.998 0 0 -0.067

0.5 1.18 0.924 -0.137 0.287 0214
1.0 0.95 0.651 —-0.168 0.545 0.501

turns out to be approximately coincident with the one
corresponding to a pointlike charged pion. We remark that
our numerical results indicate a monotonic enhancement of
the charged pion energy with the magnetic field, in contrast
with the nonmonotic behavior found in some recent LQCD
simulations (green circles in the figure) [52]. It would be
interesting to get more insight on this open issue from other
effective models and further LQCD calculations.

To conclude this section, let us discuss the state
composition of the charged pion mass state. In Table II
we quote our results for the coefficients of the linear
combination in Eq. (91) for some values of eB, considering
both the cases g = constant and g(B) (upper and lower
parts of the table, respectively). We also include the values
of the normalized squared z* pole masses. For B = 0, as
well-known, in these type of model the pion mass eigen-
state is obtained from a mixing between the pseudoscalar
state 7 and the longitudinal part of the axial-vector state
(ay, in our notation). Then, for nonzero B, the mixing
between the states p, and a; is also turned on. As stated, for
g = constant the value of mfz+ becomes negative if the

magnetic field is increased; this occurs at eB ~ 0.5 GeV?2.
As shown in the upper part of Table II, when approaching
this point the mass eigenstate turns out to be strongly
dominated by the axial vector states a; and a;, which have
similar weights. For larger values of ¢B the absolute value
of mf[+ gets increased, and once again the 7z state becomes
dominated by the pseudoscalar 7 contribution. Notice,
however, that for ¢eB = 1 GeV the contributions of other
states are non-negligible; moreover, it is seen that the
coefficients cZI+ and CZZ become imaginary. On the con-
trary, as shown in the lower part of the table, for g = ¢g(B)
these effects are not observed in the studied range of values
of the external field. As mentioned above, in this case the
7t pole mass does not show qualitative changes with eB;
the main effect of the magnetic field is the enhancement of
axial vector components, each of them reaching about 1/4
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of the state composition at eB = 1 GeV?, while the
remaining 1/2 fraction is almost saturated by the z
component. As stated, recent LQCD data support a
negative value of m}zt+ for large magnetic fields. It would
be also interesting to get information from lattice calcu-
lations on the state composition, in particular, in the
region eB ~ 1 GeV2.

VI. SUMMARY AND CONCLUSIONS

In this work we have studied the mass spectrum of light
pseudoscalar and vector mesons in the presence of an
external uniform and static magnetic field B, introducing
the effects of the mixing with the axial-vector meson sector.
The study has been performed in the framework of a two-
flavor NJL-like model that includes isoscalar and isovector
couplings in the scalar-pseudoscalar and vector-axial vector
sector, as well as a flavor mixing term in the scalar-
pseudoscalar sector. For simplicity, the coupling constants
of the vector and axial vector sector have been taken to be
equal. The ultraviolet divergences associated to the non-
renormalizability of the model have been regularized using
the magnetic field independent regularization method,
which has been shown to be free from unphysical oscil-
lations and to reduce the dependence of the results on the
model parameters [82]. Additionally, we have explored the
possibility of using magnetic field dependent coupling
constants g(B) to account for the effect of the magnetic
field on sea quarks.

As is well-known, for vanishing external field pseudo-
scalar mesons mix with “longitudinal” axial vector mesons.
Now, the presence of an external uniform magnetic field
breaks isospin (due to the different quark electric charges)
and full rotational symmetry, allowing for a more complex
meson mixing pattern than in vacuum. The mixing structure
is constrained by the remaining unbroken symmetries, in
such a way that the mass matrices—written in a basis of
polarization states—can be separated into several “boxes”.

In the case of neutral mesons, Schwinger phases cancel
and the polarization functions become diagonal in the usual
momentum basis. Since mesons can be taken at rest,
rotational invariance around B implies that S, (the spin
in the field direction) is a good quantum number to
characterize these states. The aforementioned symmetries
restrict the allowed mixing in the original 20 x 20 mass
matrix, which can be decomposed as a direct sum of
subspaces of states with s, = —1, 0, and 1. For s, = £1

(spin parallel to E), it is seen that vector mesons do not mix
with other sectors, and the mass eigenstates are those of the
flavor basis (p,, p;). We have shown that the corresponding
masses increase with B in qualitative agreement with
LQCD, within uncertainties. For s, =0 (spin perpendi-
cular to E), scalar mesons turn out to get decoupled from
other states and therefore have been disregarded in our
analysis. Meanwhile, pseudoscalar mesons mix with vector

and axial vector mesons whose polarization states are
parallel to B. The four lowest-mass states of this sector
are to be identified with the physical states 7°, 77, p° and @.
Regarding mz and mg;, we have found that they get
increased with the magnetic field, in such a way that they
overcome a qgq decay threshold—which arises from the
lack of confinement of the model—at relatively low values
of eB. Concerning my, a slight decrease with B is observed.

The impact of the inclusion of the axial vector meson
sector on the mass of the lightest state 7°, identified with
the neutral pion, is actually one of the main focus of our
work. We have found that when axial vector mesons are
taken into account, mjo displays a monotonic decreasing
behavior with B in the studied range eB < 1 GeV?, which
is in good qualitative agreement with LQCD calculations
for both g = constant and g(B). Thus, our current results
represent an improvement over previous analyses that take
into account just the mixing with the vector meson sector,
or no mixing at all. When no mixing is considered, the
behavior of m; with B is nonmonotonic when g is kept
constant, deviating just slightly from its value at B = 0.
Only when g is allow to depend on the magnetic field one
obtains a decreasing behavior which resembles LQCD
results. Even though the inclusion of the vector sector
leads to a reduction in mj together with a consistent
decreasing trend, the values lie quite below LQCD pre-
dictions, for both g and g(B). We therefore conclude that
the inclusion of axial mesons is important since it leads to
more robust results for the neutral pion mass, even
independently of the assumption of a magnetic field
dependent coupling constant. Regarding the composition
of the #° state, we have found that it is largely dominated by
the isovector component 73 (|c§: |> 2 0.97) for the studied
range of values of eB. In terms of flavor composition, a
larger weight is gained by u-flavor components for large
values of B, which can be understood from the fact that the
u quark couples more strongly to the magnetic field.

In the case of charged mesons, the corresponding
polarization functions are diagonalized by expanding
meson fields in appropriate Ritus-like bases, so as to
account for the effect of nonvanishing Schwinger phases.
Once again, the symmetries of the system constrain the
allowed mixing matrices, which also depend on the value of
the meson Landau level #. For # = —1 one has only one
vector and one axial vector polarization states. Moreover,
they do not mix with any other particle state. Thus, for
¢ = —1 the effect of the inclusion of axial vector mesons on
the p* mass comes solely from the model parametrization,
which is affected by the presence of 7-a; mixing at B = 0.
Our results show that when the axial vector sector is

included, the energy E,+ = ,/m>, — B, of this state under-
P P e
goes a considerable reduction, leading to a decreasing

behavior which is in qualitative agreement with LQCD
predictions, independently of the assumption of a
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B-dependent coupling constant. However—in accordance
to LQCD calculations and with our previous results within
NJL-like models that do not include axial vectors [72,80]—
we find that E,+ does not vanish for any considered value
of the magnetic field, a fact that can be relevant in
connection with the occurrence of p™ meson condensation
for strong magnetic fields.

For # = 0 only three polarization vectors are linearly
independent, and the pion mixing subspace is given by
nt —pt —a] for only certain polarizations states. The
lowest-mass state in this sector can be identified with the

7+, whose lowest energy is given by E + = ,/mlzZ+ + B,.

Our results show that, even though vector mixing already
induces a softening in the enhancement of the pion energy
with B, the inclusion of the axial vector meson sector
reinforces this softening, leading to an improved agreement
with LQCD predictions. Remarkably, for a constant cou-
pling g and magnetic fields stronger than eB = 0.4 GeV?,
we obtain values of the pion energy which lie well below
the ones correspoding to a pointlike pion, in concordance
with LQCD results in Refs. [45,52]. On the other hand, in
the case of a B-dependent coupling we find that the pole
mass becomes approximately constant; as a result, the
energy is basically coincident with the one corresponding
to a pointlike charged pion. As for the z* state compo-
sition, we have seen that in general the magnetic field
induces a mixing between all states by increasing the
contribution from vector and axial vector components.

In view of the above results, one can conclude that the
inclusion of axial vector mesons leads to more robust
results and improves the agreement between NJL-like
models and LQCD calculations. Still, issues about meson
masses and mass eigenstate compositions at large magnetic
fields are still open, and further results from LQCD and
effective models of strong interactions would be welcome.
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APPENDIX A: CONVENTIONS AND NOTATION

Throughout this section we use the Minkowski metric
" = diag(1,—1,—1,—1), while for a space-time coordi-
nate four-vector x* we adopt the notation x* = (f,X),
with ¥ = (x!, x2, x%).

We study interactions between charged particles and an
external electromagnetic field .4#(x). The electromagnetic
field strength F** and its dual F* are given by

PP = A — P A

- 1
P =S F, (Al

where the convention €°'?*> = +1 is used. We consider in

particular the situation in which one has a static and
uniform magnetic field B; without losing generality, we
choose the axis 3 to be parallel to B, i.e., we take

B=(0,0,B) (note that B can be either positive or
negative). Moreover, defining

po—lpe L (A2)
B B
for i, j =1, 2, 3 one has
IA?OD = 0, FU = _€ij3’
Fl=0,  F"=—%ic 2, (A3)

i.e., the relevant components of the tensors are F'> =
B o N S o

Since isotropy is broken by the particular direction of the
external field B, it is convenient to separate the metric
tensor into “parallel” and “perpendicular” pieces,

n““”:diag(l,0,0,—l), Y =diag(0,—1,-1,0). (A4)
In addition, given a four-vector v*, it is useful to define
“parallel” and “perpendicular” vectors,

Uﬁ = (2°,0,0, %),

v = (0,0',2%,0). (A5)

APPENDIX B: NEUTRAL-MESON
POLARIZATION FUNCTIONS

According to Eq. (27), the polarization functions for
neutral mesons can be written as a sum of flavor-dependent
functions ZLM,(q). The latter, in turn, can be written in
terms of a set of Lorentz covariant tensors as

Z C}];m’,i(‘ﬁ_v Qﬁ)ﬁ)xl)M’ (CI)

lil,nmm/

>/

MM’(Q) = (Bl)

Here, M = g, p)y, d}, correspond to m = x, p, a, and the
S

mm' i

same is understood for M’ and m'. The coefficients ¢
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are scalar functions, while the tensors ®1<lil)M’ carry the
corresponding Lorentz structures. Notice that the number
of terms in the sum, n,,,,, depends on the combination mm’

considered. The scalar coefficients can be expressed as

Cl};m i qJ_ LI” / dZ/ dve” Z‘/’f (91.9)-v.2)
x ymm’,i(qjg QH9 v, Z), (Bz)
where
1 -2
¢{)(%_, q),, Z) = M? — Tqﬁ
cosh(zBf) — cosh(vzBy) _
( f) ( f) ) (B3)

2:B,sinh(zB,) 1V

with B, = [BQy|. In the following we list the sums
associated to each polarization function, together with

the explicit expressions of the functions yﬁm,_i(qi, qﬁ, v,2)
corresponding to the coefficients cf;m,. A(qh. qﬁ) For bre-

vity, the arguments of ¢, ., and yfnm,i are not explicitly

written.
The 7 polarization function is a scalar, therefore there is

only one coefficient Cﬁ;z,p and @22%, (¢) = 1. One has

Zgb”b’ (q) = Cizclr.l’ (B4)

while the associated function 75;7[,1 is given by

1 1= B
f 2 i L
= M -
Yar. ( T z Ty q|> tanh(zB/)
cosh(zBy) — cosh(vzBy) _,
2B, sinh(zBy) i

B2
+ sinh?(zB;) [ B
(B5)

Analogously, for the oo polarization function we have

E";b”b/ (Q) = cf

oo,1’

(B6)

while

1 1-22 B
1 2 z !
= —M -
Yoo.1 ( Fr z Ty q”> tanh(zBy)
cosh(zBy) — cosh(vzBy) _,
2B, sinh[zB,] i

BZ
+ sinh?(zB;) { B
(B7)

For the pp polarization the sum in Eq. (B1) includes five
terms. We find

T (@) = e+ et + ¢, da
+cda + Cff,,.s(q’iQﬁ +4)9"). (B8)
while the functions y/’jp’ ; read
f e v o\ By B}
Yoot = "\Mr T 7491 ) tanh(zB;) ~ sinh®(<B,)
By[cosh(zB) — cosh(vzBy)] _,
2sinh’ [zB/] 1L
y/ _ M2—|—l—|—l_/lj2 BfCOSh(UZBf)
pp2 Iy 4 H sinh(zB/)
By[cosh(zBy) — cosh(vzBy)] _,
2sinh’[zBy] 15
B
f = (1= 2 S
Tops = (1= )2tanh[zBf}’
s . cosh(zBy) —cosh(vzBy)
Topd = B sinh®(zB;) '
cosh(vzBy) — v coth(zBy) sinh(vzBy)
7/;Z)C/),S = Bf . : \ ] (B9)
2sinh(zBy)
For the aa polarization function we get
Zf’w (‘]) = Caa 1’7ﬂ + Caa ML+ Caa 3‘1||‘1H
+ choadi dh + chas(dia + dgt).  (BIO)

while the functions yf

wa.i are given by

1 -2 B )
; 5 P f S
. e _M -
Yaa.l < Ftg q”) tanh(zB;) sinh*(zBy)

By[cosh(zBy) — cosh(vzBy)] _,

2sinh[2B] 1L
- 1 1-v* )\ Bycosh(vzBy)
foo_ 2 f f
= —(-M2 4=
Yaa2 < ;T z T ”) sinh(zB/)

Bj[cosh(zB/) — cosh(vzB/)] -

. q ’
2sinh?[zB/] +
Vhai =1, fori=3.45. (B11)
For the zp and pz polarization functions we get
i * - Gha
o (0 =EL (@) = cpuF e (B12)

and

054014-19



COPPOLA, GOMEZ DUMM, NOGUERA, and SCOCCOLA

PHYS. REV. D 109, 054014 (2024)

vl =—is;B;M;. (B13)

with s, = sign(BQ/).
For the wa and arx polarization functions we get

S _ v/ « _ S S
Zﬂ:a’;, (q) - Za‘b‘ﬂnh/ (Q) - Cﬂ:a,lqﬁ + cn:a,Zq’Jl_’ (B14)
and
B
f : £
= — M D E—
}’rzai l ftanh(zBf)

B, cosh(vzB
thoo = —ina, PLENUD) (B15)

’ sinh(zBy)

For the op and po polarization functions we get

o (4) = S (@) = b Fq1,. (B16)
and
, cosh(zBy) cosh(vzBy) — 1
7h,1 = isgBM; ! f (B17)

sinh?(zB;)

Finally, for the ap and pa polarization functions we have

T (@) = Z0% (q) = ¢yt (F 40y af = dljaa F*)

yar, ayply
2 ua 2q 2
+ch 2 (F gyt — ¢ F*) + ¢l sF".
(B13)

and

s
yfzp,l :Zfo(l _UZ)’
sy [vsinh(vzBy)
72 =75 Br|—
°: 2 sinh(zBj)

}’Zp’3 = —Sfoszc

1 —cosh(zBy)cosh(vzBy)
sinh?(zB) '
(B19)

APPENDIX C: THE “B=0” POLARIZATION
FUNCTIONS

To perform the MFIR we need to obtain the meson
“B =0 polarization functions J9,,,(g) in both their
unregularized (unreg) and regularized (reg) forms. As
stated in Sec. II, although these polarization functions
are calculated from the propagators in the B — 0 limit, they
still depend implicitly on B through the values of the
magnetized dressed quark masses M ;. Hence, they should
not be confused with the polarization functions that one
would obtain in the case of vanishing external field.
Moreover, they will be in general different for neutral

and charged mesons. In the case of neutral mesons (i.e.,
M. M' = oy, my, pl,, a,, with b = 0, 3) one can write

IO () = U4 (q) + eye Fi%h(q),  (C1)

where A stands for “reg” or “unreg”, and €, is equal to
either 1 or —1 [see text below Eq. (22)]. On the other hand,
for charged mesons (M, M’ = o, x, p*, a") one has

I8 (q) = 2F4 (q). (C2)

The functions F%,I’}(q) can be written in terms of scalar

functions bf; };/1 (q?), with m,m’ = x, p, a, as follows:

A A
Fre'(q) = 0 ().

am,1

(C3)

"2 12 q"q" "2 q"q"
FI (q) = bl (q2)<f7"”— ) b5 )

2 pp.2 2
q q

(C4)

£ " q9"q" 10 q"q"
FIL(q) = blL i (g?) <77"” -z ) + bl (@)

F(a) = Fii " (@) = b (@)a

ra’ atm ra,l

(Co)

For the unregularized functions we find

ol N 1 oo dZ ! /
S unreg 2y TVe G = (0.?) S 2
bmm/,i (q ) 87[2/‘_1dl}/0‘ - e a)mm,,i(q ,U,Z),

(C7)
where
o 1 v (1 - Uz)
¢ (v.q4*) = B (M% +M7) - B (M% - Mj%/) - TQQ
(C8)
and
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A v
w}m’,l = Mfo/ +;+ 4 qz,
) 1 1=
I 2
a)pp,l ——Mfo/—g— 4 q-,

Lyy(q?) = 2i / 'p !
v 2n)* (P2 = M7+ ie)(p2 = M3, + i)
(Cc11)

where p. = p + ¢/2. Now we can consider some regu-

4 ’ larization scheme to obtain regularized integrals Irf}? and
: 1 1-2? L%, (q?). Using the definiti
ff .(g7). Using the definitions
Wig = MMy =~ = — =", 2y (@) Using
1-1? o My +Mp _ /
0)%:1 - _é [(1 —o)M;+ (1+ v)Mf/]. (C9) and introducing the shorthand notation
To express the regularized functions b{nf; 7E(g?) it s 7. — I + 1 I = I, (g?)
convenient to introduce the ultraviolet divergent integrals = 2 ’ 27 YD)
d*p 1 19 = I5%,(0) 0= % (C13)
Ly = 4i/ 4,2 2 | . (C10) 2 ? dq? 2o
(2m)* p* = M7 +ie q
we obtain
I = N[y = (¢* = AV,
, N. _ 4M>A? _
fflreg _ Ve
b = 5 {<4M2 + A% - 7 )(12 =19 - (3A? =241, + 16M2A21’20] ,
/ 4M?
bii’éreg = —NCAZ |:12 - 7(12 - Ig):| N
: N.[(, - 4M2A? _ _
biee = ? {(41\42 + A% - 7 ) (I, = 9) = (12M* = 2¢*)1, + 16M2A21’20] ,
J1' reg Ve A? 0
boar ™ = —4NM 12—?(12—12) ;
£f e y A2
bﬂa..l ¢ ZZZNCM{IZ—?(IZ—IQ)} (C14)

To regularize the vacuum loop integrals s and I,/ (g?)
we use the proper time scheme. We get in this way

2
reg A

Ilf - 47[2

Ea(M3/A2) (c1s)

1o ,
I;efgjr(qz) — _—1677:2/ dv El (¢ff (U, qz)/AZ)’ (C16)

-1

where E,(x) = [{°dt 1" exp(—tx) is the exponential inte-
gral function. The regularization requires the introduction
of a dimensionful parameter A, which plays the role of an
ultraviolet cutoff.

APPENDIX D: USEFUL RELATIONS

We quote here a few relations that are found to be useful
in order to obtain the neutral meson polarization functions,
see Sec. III A. These are [93]

/1 d/u(l _ UZ)eZ(1—1;2)/4 — i + (1 _ g) /1 dU ez(l—vz)/4’
—1 Z Z -1

(D1)
©dz _, [cosh[vz] 1] B
A 76 s [sinh[z} —E} —ﬂ<1 —ln2> —In2z

+ Z 1nr<w>,

s==+1

(D2)
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© s fcoshlvz] 1] p 1 f+sv+1
A dze” [sinh[z] _E} _lni ZSﬂW< 2 >’
(D3)

with Re f > 0. For v = 1, the last relation leads to
o 1 g1 p
dze P |cothz——| =In=———w (). D4
A { Z] 2 p W(2> (B4)

APPENDIX E: POLARIZATION VECTORS

1. Neutral mesons

For arbitrary three-momentum ¢, a convenient choice for
the polarization vectors of neutral mesons is

2 .
¢(d.1) = —=—g—g7 [4+(E.0,0.¢°) + m{"*(0,1,7,0)]

1
0
\/fmi nmyy

R 1
€(q.2) = —4;(¢°.0.0. E)
my

¢(3,3) [q_(E, 0,0,4%) + q+2q‘ (0,1,4,0)

1
= 70
+m{?(0,1,—i, 0)} , (E1)

where g, = g' & ig?, and we have used the definitions

0 — 0 -
my =\/m+ @, omy) = \Jm+33)2, (E2)
with g2 = (¢')?> + (¢*)*. One has in this case
E* = (¢°) + 41 +m. (E3)

In addition, as stated in the main text, one can introduce a
fourth “longitudinal” polarization vector

- 1
(G.L) = (E.q". 4" q"). (E4)
These four polarization vectors satisfy
Gerg @)= {g ot
e*(q.c)*e,(q,c’) = ,
i W 0 forc#c

where . = —1forc = 1,2,3and{,. = 1 forc = L. Note that
for ¢ = 0 they reduce to those given by Egs. (47) and (48).

2. Charged mesons

In the case of charged mesons, for # > 1 one finds three
linearly independent polarization vectors. A convenient
choice is

e"(/,q3,1):—[H+(E,0,O,q3)+m2l(0,1,is,0)],
ﬁnumu
1
¢(¢.q°,2) =—(¢*.0,0,E),
mj
1 I 11
e(t,q%,3 :7[H_ E.0,0,¢%)+——=(0,1,is,0
(0.43) = [IL(E00.4) + =5 =(0.1,is.0)
+m3, (0, 1,—is,0)} , (E6)
where we have used the definitions
m; = \/m2+(2f—|— 1)B,,
mzj_ = \/mz—l—fBe,
H+ = —H](f,qH) + s Hz(f, q”) = —i 2(f—|— I)Be,
I = -T1'(7. q)) — isII*(¢. q) = i\/2¢B,., (E7)
with By = |QB|. One has
E? = (¢°)* + (2¢ 4+ 1)By + m?, (ES)

while the four-vector IT* is given in Eq. (H10).
For Z = 0, two independent nontrivial transverse polari-
zation vectors can be constructed. A suitable choice is

e(0,4%,1) 11, (E.0,0.¢°) +m? (0.1,is.0)],

1
B \@mlmu

1
e(0,¢%,2) = m—l(cf,o,o,E), (E9)

where m, , m,,, I1, and E are understood to be evaluated
at £ = 0.

For ¢ = —1, there is only one nontrivial polarization
vector, which can be conveniently written as

1

V2

e(~1,¢3, 1) = —(0, 1,is,0). (E10)

Finally, for # > 0 one can also define a “longitudinal”
polarization vector that we denote as e”(f, q3,L); it is
given by

1
e(f.q’ L) = TI(Z.q)| p—p- (E11)

For £ = —1 no longitudinal vector is introduced (notice
that TT# has been defined only for Z > 0).

In a similar way as in the neutral case, the above
polarization vectors satisfy
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. forc=¢

, E12
0 forc#c (E12)

e(?, ¢, c)*eﬂ(f, g, ) = {

where the indices ¢ and ¢’ run only over the allowed
polarizations for the corresponding value of #, while £, is
defined below Eq. (ES).

As stated in Sec. V C, for some range of values of the
magnetic field one can get m? < 0. In that case, in
Eq. (E12) one should replace ¢, — ., where £, depends
on the value of Z. For £ = 0, &, = —=1(+1) forc = L, 2(1).

APPENDIX F: REFLECTION SYMMETRY AND
BOX STRUCTURE OF G MATRICES

1. Reflection at the plane perpendicular
to the magnetic field

As is well-known, the electromagnetic interaction is
invariant under a parity transformation,

X B X,

(F1)
However, it is not easy to deal with this transformation in
the presence of an external uniform magnetic field. This is
due to the fact that the description of spatial reflections at a
plane parallel to the magnetic field requires to choose a
gauge. Instead, we can focus on the spatial reflection at the
plane perpendicular to the magnetic field, say Pj. Since, as
customary (and without losing generality), we choose the
axis 3 to be in the direction of the magnetic field, in what
follows we denote this transformation by Pj.

The transformation Pj distinguishes between the parallel
and perpendicular components of x*. Namely,

Péﬂ’;u (X)Pg_l = PbH”(ng),
Pga’;}H(x)PBTI = =), (P3x),

We emphasize that Eqs. (F6)—(F9) are valid for both neutral
and charged mesons.

In the case of fermionic fields there is an ambiguity, since
one can take a rotation of angle 7 or —z. One has

Py (x)Py" = £ing Py (Psx), (F10)

where & = %9, with 3 = iy'y?. Anyway, since in our
calculations quark fields always appear in bilinear oper-
ators, we can choose all fermionic phases in such a way that
+iny = 1. It is important to notice that the fermion
propagator S (x,x’) satisfies

P3 P3
)C"r‘ —> X””, x’j_—> x’i (FZ)

For a plane wave associated to a neutral particle we have

et14(P3x) — Fi(P3q)x (F3)
with
Ps P
(]ﬂ — ||u> 9\ — q,. (F4)

The wave functions of charged particles can be written in
terms of the functions F(x, g) discussed in Appendix G.
In this case we have

Fo(Psx,q) = Fo(x, P3q), (FS)

with  P3q = (¢°.7.2.~-4°),
chosen gauge.

It is easy to see that the transformation Pj is equivalent
to a parity transformation (denoted by P) followed by a
rotation of angle 7 around the axis 3, i.e., Py = Rs(x)P.
Therefore, the action of the transformation P; on meson
fields can be obtain as a combination of these two
operations. For sigma and pion mesons we have

independently of the

Pgab(x)Pg'] =0,(Psx), b=0,1,2,3, (Fo)

Pimy(x)P;' = —1,(P3x), 5=0,1,2,3, (F7)

while for vector and axial vector fields we get

Psp (P53 = ph (P3x). b=0.1,2.3, (F8)

Psdy, (x)P;' = —dy, (P3x), b=0,1,2,3. (F9)

S;(Psx, Pyx') = S p(x.x') . (F11)

2. Particle states under reflection at the plane
perpendicular to the magnetic field

In terms of creation and annihilation operators, the
fields describing neutral scalar and vector mesons can be
written as

3
() = [ o e @+ al @e]. (F)
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R o T
40 = [ g 2ol @ )G )

+ay, (g. c)ee (g o)) (F13)
where ¢° = E = \/g*> +m?, s = ¢, m, and v = p, a, while
b =0 (b = 3) for isoscalar (isovector) states. The polari-
zation vectors ¢*(g, ¢) are given in Eq. (E1); as stated, we
can also define a “longitudinal” polarization e#(g, L) given
by Eq. (E4), which can be obtained from a derivative of the
scalar field.

In the case of the scalar and pseudoscalar fields, the
action of Pj yields

d’q
sp(Pyx) = / (227 2E, [ay,

3
N /(275)%[ 5, (P3q)e _’qx—l-a\ (P3q)e qu]

(F14)

@ + al, @)e ™

u _ d’q
vy (P3x) = / (on2E

Ve=13,L

d*q [
(27)32E,
d*q

v,y (Pyx) = / m

Ve=13,L

+

—ay, (,Pga, 2)e—iqx€H”<§’ 2)

> ay,(Psg.c)e e (G. c) + ai, (P54. )™ (G.c)"].

where we have used Eq. (F3) followed by a change
g®> = —¢® in the integral. Then, from Eqgs. (F6) and (F7)
we conclude

Psal, (§)P;' = ai,(P5q),

3 ,P§aj;b (‘?))IPQ l= _aj;b (7)3‘7) :

(F15)

In the case of vector and axial vector fields, we
have to consider the behavior of the polarization vectors
under the P; transformation. From Egs. (E1) and (E4) we
have

forc =1,3,L,

for ¢ = 2.

PPN £ TR LACHD)
e (Psg.c) = {—em ;
(F16)

Using these relations together with Eq. (F3) one has

Z [avb (szi, C)e_iqeru (Zj, C) + ai‘b (,Pﬁé? C)eiqer” (&? C)*]

— a}, (P34, 2)e' "€, (4.2)"],

This leads a to a different behavior of creation operators depending on the polarization state; namely,

PﬁaZb (4, C)Pg_l = aZb (,Pﬁziv c),

Pﬁa;;b (6’ C)Pg_l = _a;b (qu, C)’

This analysis can be extended to charged scalar and
vector mesons. A detailed description of charged meson
fields can be found in Ref. [80]. Briefly, for s = o, 7 and
v = p, a one has (as in the main text, we consider positively
charged mesons)

) = Y5 [t @7 (s

) +a3(q) F_o(x.9)"]

{ar}
(F19)
3
vH(x i Z c)W(x,q,c)
a7
+ a7 (g, €)' Whe(x, g, ¢)] (F20)

Psal, (G.c)P5 =

(F17)
—aZb(Pgé', c¢) forc=1,3L;
Piab, (4, )Py = as, (Ps3g.c) for ¢ = 2. (F18)
|
where §=(7.y,q>) and W% (x,g,c) =R*(x,g)e,(¢.q4°,c),

with R*(x, g) and ¢*(¢, ¢°, c) given by Egs. (69) and (E6),
respectively. We have also used the notation

Z: = Z:zms(qo —-E),

{2} q

(F21)

where E = +/m?>+ B,(2¢ + 1)+ (¢°)>. As stated, for
¢ >0 one can also define a “longitudinal” polarization
vector, given by Eq. (E11). Taking into account Eq. (F5)
and the explicit forms of the polarization vectors, one can
show the relations,
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WH(Pyx. 3. c) = {

WHM(X’ ’P§L_], C) + W’i(x, ’ch_], C)
W, (x,P3q,¢)

forc=1,3,L,

F22
for ¢ = 2. ( )

Taking into account these equations together with Eq. (F5) for the case of scalar and pseudoscalar particles, we obtain

Pga?“’”Pg‘ = a2 (7)3‘1) Ps

a? (§)P;' = —a? (P3q);

PgagT(F], c)Pg‘ = a,, (73361, c), Pga?(“ c)PT = —a?*(qu, c) forec=1,3,L;
Psas’ (g, )Pyt = —ad" (P34, c), Pyad’ )Py = = aS"(Ps3g,¢) forc=2. (F23)
These transformation laws indicate how meson states transform under P;, namely
Ps3M(q)) = Pgajw((?)m) = 117"3’3|M(73§q)> for neutral mesons, (F24)
7)) = Pyal(3)|0) = np,|M(P3q))  for charged mesons, (F25)

with

1
f’/%={_1

Here the index b runs from 0O to 3, covering both charged
and neutral mesons.

The fact that our system is invariant under the reflection
in the plane perpendicular to the magnetic field implies that
particles with different parity phase 11"7;’3 cannot mix.

for M = OpsPb,15Pb3>Pb,.L> b 2>

(F26)
for M = 7y, ap1,ap3,p1sPoo-

3. Box structure of meson mass matrices
We outline here how the previous assertion is realized
in our model. The masses of charged and neutral mesons
are obtained by equations of the form det G = 0, where
GMM/ = <2gM)_15MM/ - ‘]MM" From EqS (27), (72) and
(H1)—(H4), it is seen that the matrices J can be written in
terms of the functions,

Z],:,If 1;,1, —IiN, /

x M8/ (P” va_)F }’

lS (P” PL)

(F27)

[notice that for charged particles 7y (q) = 224 . (q),
see Eq. (62)]. Now, if the system is invariant under a
reflection at the plane perpendicular to the axis 3, the
solutions of det G = 0 should be invariant under the change
q — P3q and g — P3g for neutral and charged mesons,
respectively. Performing such a transformation on the

functions ZJAZ;W(qH,q 1) one has

=i (P3q) = —iN, /

x TM'i§ (Pépu aPJ_)FM]’

trD lS (P%PH Pl)

(F28)

where a change p®> — —p? has been performed in the
integral. Taking into account the result in Eq. (F11) we get

ZgM, (P3q) = —iN, / L trp [i87( pH .pT)

x TS/ (pH . p1)IM], (F29)
where we have defined
M — pITM P, (F30)

For the cases of our interest we have

PP =1, PP =y, + 7L
Py P = —ip’, Py P =~y +7)7°

For neutral and charged mesons, the above changes are
complemented by the transformations of the polarization
vectors and the functions W’é(x,c'],c), respectively [see
Egs. (F16) and (F22)]. In this way it is easy to see that for

", 7/:’771‘;13, one has Z%W'(PW) = —ZAIM/(q), and conse-
quently 2{‘,54/(61) =0 and JMM’ =0.

APPENDIX G: FUNCTIONS F(x.q)
IN STANDARD GAUGES

In this appendix we quote the expressions for the
functions F,(x,g) in the standard gauges SG, LG1 and
LG2. As in the main text, we choose the axis 3 in the
direction of the magnetic field, and use the notation
Bo = |0B|. s = sign(QB).

It is worth pointing out that the functions F(x, g) can
be determined up to a global phase, which in general can
depend on 7. In the following expressions for SG, LG1 and
LG2 the corresponding phases have been fixed by requiring
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Fo(x,q) to satisfy Eqs. (H5) and (H6), with fg (1))
given by Eq. (H7).

1. Symmetric gauge

In the SG we take y = n, where n is a non-negative
integer. Thus, the set of quantum numbers used to character-
ize a given particle state is § = (¢°, Z, n, ¢*). In addition, we
introduce polar coordinates r, ¢ to denote the vector X, =
(x!', x?) that lies in the plane perpendicular to the magnetic
field. The functions F,(x, g) in this gauge are given by
Folx,q)®9

— Vel =) gmist=0R, (r),  (GI)

where

_ Nf.n,u(f—n)/Ze—vﬂLi—n (’U),

Rf,n (r) (GZ)

with v = BQrz/ 2. Here we have used the definition
Ny = (Bon!/¢!)V2,  while L™(x) are generalized
Laguerre polynomials.

2. Landau gauges L.LG1 and LG2

For the gauges LG1 and LG2 we take y = ¢/ with j = 1
and j = 2, respectively. Thus, we have § = (¢°, 7, ¢/, ¢°).
The corresponding functions F,(x,g) are given by

)(LGl) — (_is)foe—i(qoxo—qlxl—q3x3)Df(pgl)) ,

(G3)

FQ(X,C_]

Folng) ) = (G4

where pi!) = /2By (x* 4+ 5q' /By), P = V2B (x! -
5q*/By) and N, = (4zB)'/*//¢!. The cylindrical para-
bolic functions D,(x) in the above equations are defined as

Nfe_i(qoxo_qzxz_qsxz)Df (ﬂEZ)) ’

Dy(x) =271e=/*H ,(x/V2), (GS)
where H,(x) are Hermite polynomials, with the standard
convention H_;(x) = 0.

APPENDIX H: CHARGED MESON
POLARIZATION FUNCTIONS

We quote here our results for the polarization functions
of charged mesons. Starting from Eq. (71) and using
Eq. (69) we get

4
T(@.7) = / (;’T;Jm«ohe(q,w, (HI)
4 (3.7) = / 427 Vl'he(@d,1),  (H2)

T(2.7) = / %Z(Tmmns@)hemcm, (H3)
A

jbul’b (Z] Z]/)

d4
[,

A

() (Tr)sh (H4)

(@Gl 1),

where s,s" = o, 7 and v, v = p, a. Here we have defined
ho(g.q'.1)
:/d4xd4x/.7:Q(x,Z])*]:Q(x/,q/)ei(bQ(x’x/)e_it(x_x,). (HS)

As shown in Ref. [80], explicit calculations in any of the
standard gauges lead to

ho(@.3.1) = 8,0 (216 (q) - q)) (2n)?

8@ (qy —1))fo.ee (1), (H6)

where 6, stands for ,,, 6(¢' — ¢'') and §(¢* — ¢'*) for
SG, LGl and LG2, respectively, while

4n(=i)" o1 (28
(T =
fore(ty) By i
o (20 2 8, isie—t
x L0~ =% e i/Boeis="er - (HT)
By

We recall that here B, = |QB| and s = sign(QB). Since
we are considering positively charged mesons, we
have O = e, e being the proton charge. This implies that
By = e|B| and s = sign(B) for all considered mesons.

As mentioned in the main text, using Eqs. (H6) and (H7),
and after a somewhat long but straightforward calculation,
one can show that

= (22)*5(q° -
x 5,,8(¢

q"°)8s
— ¢ (¢, ‘IH)’

TIum(3.7')
(H8)

where the function J (¢, qH) can be written in general as

nmm/

Z dmm’,i (f’ q2) I]:D}(lf}M/ (H) .

i (H9)
i=1

Im (€5 ‘1||) =

Here, m(m') = =z, p, a correspond to M(M') = =, p*, a*.
The Lorentz structure is carried out by the set of functions

Pl(lf,)M,(H), where the four-vector II* is given by
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m = (qo,i\/?(\/f—k — V),
- s@(\/f—i— 1+V7), q3>. (H10)

In turn, the coefficients d,,,,, ;(Z, qﬁ) can be expressed as

combination. In addition, for # = 0 and Z = —1 some of
the coefficients d,,,, ;(Z, qﬁ) are zero; therefore, for each
function S, ;(Z, qﬁ, v, z) we explicitly indicate the range
of values of 7 to be taken into account. For brevity, the
arguments of d,,,,; and B, ; are omitted.

For the zz polarization function one has only a scalar
contribution, i.e., n,, = 1. Thus,

—74)“ v, ‘IH ‘]ﬂﬂ(f’ q”) = dzm,l; (H14)
dmm 0 f QH / dZ/ dl) ( > ﬂmm’,i
Ot Ay the corresponding function f,,,/ is given by
x (¢,q7.v.2), (H11)
= (1 MM, + i
where ¢/ (v,¢?) is given by Eq. (C8), and we have Pary = (1 = tuta) | M,, ‘”LEJ’( )
introduced the definitions a_ +fa —a )
+ (1 =n)(1-13)— ., [£20].
= tanh [(1 — v)zB,/2], ty = tanh [(1 4 v)zB,/2], &+ Q-
(HI2) (H15)
together with For the ptp* polarization function we find 7 terms,
namely
— t_” 4 _“t_d v v v
%= B, + B, - B. °B,B;’ (H13) JZ“/)L(Z’&"]W :dﬂﬂ,lﬂl\l\ +dﬂﬂ,zl7li +d/,p,3H"“H”*+dpp.4H’iH’f
Hyr+ H TU* fouv
The terms of the sum in Eq. (H9) for each MM, as well +d/’f"5<n Iy +1n HH )= dppsist’
as the explicit form of the corresponding functions +d,,7 is(F' 1% I +H"TH“* Y, (H16)
[/ — qﬁ, v,z) are listed in what follows. Notice that
the number of terms, n,,,, depends on the mm’  the corresponding functions f3,,; are
|
/Bpp,l = W;L’ :Bpp,Z = l//;r + W; + (25 + 1)1//4’ ﬂpp3 Vs, ﬂpp,4 = 21//4/361
/B/Jp,S = l//g + l//;r’ /Bpp,f) = WEL - l//’:‘r + Wy, :Bpp,7 = _l//ﬁ + W;L’ (H17)
where
q Cla_ —
===t [£M M (1= ) } oA N N
4 a+a_
. la 1 9
"5 :___(1+t)(1+td) :I:MuMd+ +(1_U) [fZ—l],
2a, 4
2
la, 1 9]
vE= =5 [EMM L+ (=] ezl
Gy — o 2 2
= 1—1)(1 -1, 2> 1],
Wy 2a,a_ ( u)( 2) [ ]
1—2?
Vs = 2 (1 - tutd)7 [l’ﬂ > 0]’
1 M+ot,(14+2)1=2)  1—vty(1+1)(1 -1
Wﬁi:— +Uu( + u)( d)j: Ud( +d)( u) ’ [520}’
2, | 2 B, 2 B,
1 [1+vt,(1-1,)1=7) 1—vt;(1—1,)(1—-12)
+ u u d u
= + . >1]. H1
YT = 2 { 2 B, 2 B, 72 1] (H18)
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For the a”a” polarization function we have

a"a (f QH) ua lﬂﬂy —+ daa 211;111 + daa 3HMHH* + daa.4H,iHlj_* -+ dua 5(Hﬁl_[”* -+ Hlinﬁ*) - dau'6l.si7lw
+d,. 7zs(F I HH + HﬁH“*F ); (H19)
the functions f,,; are in this case given by
ﬂaa,l = l//1_7 ﬂaa,Z = II/E + l//f; + (Zf + 1)1/147 ﬂua,.’s =VYs, ﬂaa,4 = 2w4/Be’
ﬂaa,S = l//;r + l//;rv ﬂaa.ﬁ =Y, = l//’i_ + Yy, ﬁau.7 = _1/16+ + W; (HZO)
|
For the zp* and p#z polarization functions we obtain
Jilm"@ﬁ qH) a"n(f LIH)
(& q)) = T, (€.q))" = dy 1 SF Al (H21) = MJHH t do o TV = dy 3isFT1%; (H23)
the function f3,, | reads the functions f,,,; are given by
i i
Prpa :_E(tu —t)[(M,+My)—v(M,—M,)], [£>0]. Pra :—5(1 —t,tg)[(M,+Mg)—v(M,—M,)], [£>0],
(H22)  Prap=ws+Wo, Pra3z=—Ys+wo, (H24)
For the za" and a*z polarization functions we have where
|
i t(1+1,)(1=173) ta(1+1,)(1=122)
- M - M 2 ¢ > 0],
Vs 2a, { u B, + Mg B, [£ > 0]
i t,(1=1,)(1=13) ta(1—1,)(1=12)
=——|M," “ 4 . £>1 H25
o = =5 [, = 2 £z (H25)
Finally, for the a”p” and p*a” polarization functions we get
UV H * * H * *
Joan(oq)) = Tiuw(Coq))" = dapasF + dap_zs(F AT — T T P )+ dapss(F (1T — TV I 2 )
Al” 7 P o VY,
+dyy4i (" MV Fy = LI Fy ) (H26)

the corresponding coefficients f,,; are

ﬁap,l = _MuMd(tu - td)a [l/ﬂ > 0]7
1—?
ﬁa/),Z = 4 (tu - td), [l/ﬂ > 0],
ﬂapﬁ = V/E -y, ﬁap,4 = _Wg Lz (H27)

APPENDIX I: MATRIX ELEMENTS
OF J™22(¢, m?) FOR =0
In this appendix we list the elements of the matrix
Jmag(g, mz) for Z = 0, i.e., the case considered in Eq. (88).
The expressions are given in terms of the coefficients
udunieg 02y oiven in Appendix C and the coefficients

mm'’ i

dpw (¢, q7) quoted in Appendix H. In the expressions

below, it is understood that they are evaluated at g*> = m?

and (¢, qf) = (0,m* + B, ), respectively.
We obtain (for m? > 0)

gl;lg = dmr 1= 2b;l;i llmreg’ (Il)
J;rn/?zg = J/I)nSZg* = _Sdeﬂp.l’ (12)

B |
J?;Lg - JIIT;% - a (m%_d;m,l - 2B€dﬂ(1.2 - 2m2bzg:llmreg) ’ (13)

ma, magx
erlg:Jalﬂg =

(dﬂa.l

/B
iYL (g = 2d0), (14)
m
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Ipsps = —dpp 1 + ZbZZJ?mg» (I5)

% SmJ_
JIC?La/f’;z = Zéﬁi = _7(_dap,l +midap,2 _2Bedap,3)’ (16)

s\/B
mag _ ymagy _ . 4 2 2
Jal/’z =Jdpa, = 1 m (_dap,l + mJ_dap.2 - 2mJ_dap.3)’

(I7)

1
JI‘;1L2151;L = W (midau,l - 2Bedaa,2 + midaaj - 4miBedua,5

_ 2m2bud,unreg) . (18)

aa,2

/B,m
JZnLa‘%l = ng]%gL* = _l# (daa,l - 2daa.2 + midaa,fi
- Z(mzl + Be)daa,s) ’ (19)

B 2m?
mag _ DPe L 2
ayay — W daa,l - Be daa,2 + mj_daa.S

2 2
— Ay s+ b“d*‘“’eg) . (110)

Be aa,l
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