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We present an analysis of the heavy quark structure functions from the kt factorization scheme, using
unifying the color dipole picture and double asymptotic scaling approaches at small x. The gluon
distribution is obtained from the Golec-Biernat-Wüsthoff and Bartels, Golec-Biernat and Kowalski models.
The main elements are based on the color dipole picture and the generalized double asymptotic scaling
approach for usual parton distribution functions. The comparisons with the HERA data are made and
predictions for the proposed LHeC and FCC-he colliders are also provided in a wide range of the transverse
separation r. In particular, the ratio Rh ¼ Fh

L=F
h
2 ; h ¼ c; b; t is well described by the dipole models and is

sensitive to the collider energies from HERA until FCC-he. We derive correlated bounds on the ratio Fc
2=F2

and Fb
2=F2 and compared them with the BGK and impact-parameter dependent saturation models. The

uncertainties are due to the renormalization and factorization scales at large and low r values. The Sudakov
form factor into the heavy quark structure functions is incorporated and the results are considered, which
are dependent on the hard scale in a wide range of the transverse separation r.

DOI: 10.1103/PhysRevD.109.054012

I. INTRODUCTION

The vector-meson-dominance (VMD) model [1,2] is an
old idea that the scattering of a highly energetic photon on a
hadron may essentially be considered as a strong interaction
process whenever a photon couples to hadrons it first
converts to the vector mesons with universal coupling
constants [3]. TheVDMmodel was applied to deep inelastic
scattering (DIS) on the assumption that the photon fluctuates
into a series of vector mesons which subsequently scatter off
the proton [4]. A similar idea, which is motivated to a large
extent by perturbative quantum chromodynamics (pQCD),
is the color dipole model (CDM) [5], which provides a
successful description of deep inelastic scattering processes
in a wide range of the kinematic variables [6]. The QCD
color dipole formalism provides an intuitive description of
inclusive and exclusive processes in electronproton (ep) and
lepton-nucleus (lA) scattering at high energies [7]. Although
our knowledge of the proton structure at small-x is very
limited, novel opportunities will be opened at new-
generation facilities [Electron-Ion Collider (EIC), High-
Luminosity Large Hadron Collider (HL-LHC), Forward
Physics Facility (FPF)]. Combining the information coming

from dipole cross sections and pT-unintegrated densities
could play an important role. In particular, polarized
amplitudes and cross sections for the exclusive electro-
production of ρ and ϕ mesons at the Hadron-Electron Ring
Accelerator (HERA) and the EIC are very sensitive to the
unintegrated gluon distribution (UGD) model adopted,
whereas forward Drell-Yan dilepton distributions at the
Large Hadron Collider beauty (LHCb) are very sensitive
to next-to-leading logarithmic corrections.
In the color dipole picture (CDP) the absorption of a

virtual photon on the proton γ� þ p → X is motivated by
perturbation theory and describes photon-proton scattering
as a two-step process. Firstly, the virtual photon dissociates
into a quark-antiquark pair (a qq̄ dipole) and subsequently
the pair interacts with the proton, which is a purely
hadronic reaction [8]. The CDP, at small x, gives a clear
interpretation of the high-energy interactions, where it is
characterized by high gluon densities because the proton
structure is dominated by dense gluon systems and predicts
that the small x gluons in a hadron wave function should
form a color glass condensate [9,10].
In the high energy, s ≫ Q2 ≫ Λ2

QCD, regime these two
processes are factorized, and the total cross section can be
written as [5]

σγ
�p
L;Tðx;Q2Þ ¼

Z
dzd2rjΨL;Tðr; z; Q2Þj2σdipðx; rÞ; ð1Þ

where the DIS cross section is factorized into a light-cone
wave function and a dipole cross section. Indeed, the
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scattering between the virtual photon γ� and the proton is
seen as the color dipole where the transverse dipole size r
and the longitudinal momentum fraction z with respect to
the photon momentum are defined. The subscripts L and T
refer to the transverse and longitudinal polarization state of
the exchanged boson. Here ΨL;T are the appropriate spin
averaged light-cone wave functions of the photon and
σdipðx; rÞ is the dipole cross section which is related to the
imaginary part of the ðqq̄Þp forward scattering amplitude.
The variable z, with 0 ≤ z ≤ 1, characterizes the distribu-
tion of the momenta between quark and antiquark. The
square of the photon wave function describes the proba-
bility for the occurrence of a ðqq̄Þ fluctuation of transverse
size with respect to the photon polarization.
The key feature is the connection of the dipole cross

section to the integrated gluon distribution. The parton
saturation models shed light on the behavior of the gluon
density at very low x and this knowledge is crucial for
instance to describe the exclusive processes in ep and eA
collisions [7]. The dipole cross section is related to the
unintegrated gluon distribution [11]

σðx; rÞ ¼ 8π2

Nc

Z
dkt
k3t

½1 − J0ðktrÞ�αsfðx; k2t Þ; ð2Þ

where the integrated gluon distribution [xgðx; μ2rÞ] is
defined through the unintegrated gluon distribution
[fðx; k2t Þ] by

xgðx; μ2rÞ≡
Z

μ2r dk2t
k2t

fðx; k2t Þ: ð3Þ

Indeed, the dipole cross section is directly connected via a
Fourier transform to the small-x UGD, whose evolution in
x is regulated by the Balitsky-Fadin-Kuraev-Lipatov
(BFKL) equation [12]. Single and double BFKL pomeron
exchanges have been calculated by illustrating a dipole
picture of high energy hard scattering in the large Nc limit
in the leading logarithmic approximation in Ref. [13].
The BFKL equation governs the evolution of the UGD,

where the kT factorization is used in the high energy limit in
which the QCD interaction is described in terms of the
quantity which depends on the transverse momentum of the
gluon. The gluon density in inclusive and exclusive
processes in a wide Q2 region at low x is desirable, in
the dominant double logarithmic contribution by the
following form [14]:

xgðx; μ2rÞ ∝ exp

�
16Nc

β0
ln
x0
x
ln

t
t0

�
; ð4Þ

where t
t0
≡ lnð μ2r

Λ2
QCD

Þ= lnð Q2
0

Λ2
QCD

Þ and β0 ¼ 11 − 2
3
nf. Here nf

is the number of active flavors. The hard scale μr is
assumed to have the form μ2r ¼ C=r2 þ μ20 where the

parameters C and μ0 are obtained from the fit to the
DIS data. A matching between the dipole model gluon
distribution and the collinear approach, in the improved
saturation model, is obtained [14,15] by using a leading
order gluon anomalous dimension γgg as

xgðx; μ2rÞ ∝ I0

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

β0
ln
x0
x
ln

t
t0

s �
exp

�
−δ ln

t
t0

�
; ð5Þ

where δ ¼ ð11þ 2nf
27
Þ=β0.

A novel formulation of the UGD for DIS in a way that
accounts for the leading powers in both the Regge and
Bjorken limits is presented in Ref. [16]. In this way, the
UGD is defined by an explicit dependence on the longi-
tudinal momentum fraction x which entirely spans both the
dipole operator and the gluonic parton (PDF). The object of
the BFKL evolution equation at very small x is the
differential gluon structure function of proton

fðx; k2t Þ ¼
∂½xgðx; μ2rÞ�

∂ ln μ2r

����
μ2r¼k2t

ð6Þ

which emerges in the color dipole picture of inclusive deep
inelastic scattering and diffractive DIS into dijets [17]. Here
x and k2t are the fractional momentum of proton carried by
gluon and the transverse momentum of gluon respectively.
Unintegrated distributions are required to describe mea-
surements where transverse momenta are exposed explic-
itly. Equation (6) cannot remain true as x increases or
decreases [18]; therefore, modify Eq. (6), with the Sudakov
form factor, to the form1 [20]

fðx; k2t Þ ¼
∂½xgðx; μ2rÞTðr; μ2rÞ�

∂ ln μ2r

����
μ2r¼k2t

; ð7Þ

with Tðr; μ2rÞ ¼ expð−Sðr; μ2rÞÞ where the perturbative
Sudakov factor in the leading order [21], for the case of

running coupling αsðμ2rÞ ¼ 1=ðb0 ln μ2r
Λ2
QCD

Þ, reads

Sð1Þpertðr;Q2Þ¼ CA

2πb0

"
− ln

�
Q2

μ2b

�
þ
 
1þαsðμ2bÞb0 ln

�
Q2

μ2b

	
αsðμ2bÞb0

!

×ln
�
1þαsðμ2bÞb0 ln

�
Q2

μ2b

��#
; ð8Þ

1The Sudakov form factor can be defined into the dipole
models with the help of the following formula [19]:

σdipðx; r; Q2Þ ¼
Z

r

0

dr0r0 log
�
r
r0

�
e−Sðr0;Q2Þ∇2

r0σdipðx; r0Þ:
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where b0 ¼ 11CA−2nf
12

and μb ¼ 2e−γE=r where γE ≈ 0.577 is
the Euler-Mascheroni constant.
The proton structure function F2 corresponds to the

dipole picture of DIS at small x, by Eq. (1), as

F2 ¼ FT þ FL ¼ Q2

4π2αem
ðσγ�pT þ σγ

�p
L Þ: ð9Þ

Since the photon wave function depends on mass of the
quarks in the color dipole model [22], the light and heavy
structure functions are defined by the following form:

FT;L ¼ Fl
T;L þ Fh

T;L; ð10Þ

where Fl
T;L is the sum of the contributions from the light

quark pairs, while Fh
T;L is the contribution from the heavy

quarks (cc̄, bb̄ and maybe tt̄2). So the Bjorken variable x
can be modified in the gluon distribution and dipole cross
section by the following form:

x → x̃f ¼ Q2 þ 4m2
f

Q2 þW2
; ð11Þ

where W2 is an invariant energy squared of the γ�p system
and mf is the mass of the quark of flavor f.
Heavy-quarks production, in neutral current deep

inelastic electron-proton scattering at HERA, is the most
important quantum chromodynamics (QCD) tests. The
production of heavy quarks at HERA depends on the mass
of these quarks and thus the calculations of cross sections
depend on a wide range of perturbative scales μ2. The
massive fixed-flavor-number scheme (FFNS) [24] and the
variable-flavor-number scheme (VFNS) [25] are different
approaches for considering heavy quarks. FFNS can be
used on the threshold of μ2 ≈m2

f and for μ
2 ≫ m2

f VFNS is
used where the treatment of resummation of collinear
logarithms lnðμ2=m2

fÞ is achieved. A general-mass varia-
ble-flavor-number scheme (GM-VFNS) for calculation of
the contributions of heavy quarks was introduced in
Ref. [26]. For realistic kinematics it has to be extended
to the case of a GM-VFNS which is defined similarly to the
zero-mass VFNS (ZM-VFNS) in the Q2=m2

f → ∞ limit
[27]. In GM-VFNS the transition, from nf active flavors to
nf þ 1, is considered in the construction of the charm-
quark parton distribution function. At some rather large
scales (i.e., Q2 > m2

f) the transition to two massive quarks
(i.e., nf → nf þ 2) has been discussed in Refs. [28,29]. In

the GM-VFNS at high Q2, the heavy-flavor structure
functions depend on the active flavor number since here
nf ¼ 4 for m2

c < μ2 < m2
b, nf ¼ 5 for m2

b < μ2 < m2
t and

nf ¼ 6 for μ2 ≥ m2
t is chosen.

The dynamics of flavor-singlet quark and gluon distri-
bution functions, qs and g, are defined by

qsðx; nf; μ2Þ ¼
Xnf
l¼1

½flðx; nf; μ2Þ þ f̄lðx; nf; μ2Þ�;

gðx; nf; μ2Þ ¼ fgðx; nf; μ2Þ: ð12Þ

The heavy-quark structure functions derived using the zero-
mass VFN scheme by the following form:

FZMVFN
k ¼

X∞
j¼0

ajsðnf þ 1Þ
X

i¼q;g;h

CðjÞ
k;i ðnf þ 1Þ ⊗ fiðnf þ 1Þ

ð13Þ

where C;s are the Wilson coefficients at the jth order and
k ¼ 2 and L and the ⊗ symbol denotes the convolution
integral which turns into a simple multiplication in Mellin
N-space. The notation is defined by aðxÞ ⊗ bðxÞ ¼R
1
x

dz
z aðzÞbðxzÞ. Here as ¼ αs

4π is the QCD running coupling.
Equation (13), at asymptotically large momentum transfer
Q2 ≫ m2

f, is valid. For Q
2 ≃m2

f VFNS is valid because it
includes a combination of the ZMVFN with FFNS. In this
case the heavy- quark structure functions are

FFFNS
k ¼

X∞
j¼0

ajsðnfÞ
X
i¼q;g

HðjÞ
k;i ðnfÞ ⊗ fiðnfÞ; ð14Þ

where H;s are the Wilson coefficients for the DIS heavy-
quark production [29].
In this paper we present the heavy quark structure

functions due to the dipole models in the collinear
approach. These calculations are based on the generalized
double asymptotic scaling (DAS) approach [30–33]. We
continue our investigations and analyze the heavy quark
structure functions and those ratios in a wide range of r in
Sec. II. In this section, the heavy quark structure functions
can be combined with the Sudakov form factor. Sections III
and IV contain our results and conclusions respectively.

II. METHOD

A. Structure functions

The heavy quark structure functions in DIS in ep
colliders are obtained from the measurements of the
inclusive heavy quark cross sections, which will be an
important test of the QCD in the LHeC and FCC-he
colliders [23]. The reduced cross section of the top quark

2The high ep center-of-mass energy at the LHeC will lead to
the copious production of single top quarks, about 2 × 106 single
top and 5 × 104 tt̄ events [23].
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is defined in terms of the top structure functions by the
following form:

σhh̄redðx;Q2Þ ¼ xQ4

2πα2EM½ð1þ ð1 − yÞ2�
d2σhh̄

dxdQ2

¼ Fh
2ðx;Q2Þ − fðyÞFh

Lðx;Q2Þ; ð15Þ

where fðyÞ ¼ y2

1þð1−yÞ2. In HERA kinematic range the

contribution Fhh̄
L is small. Therefore the heavy-quark

structure function Fh
2 is obtained from the measured

heavy-quark cross sections. The ratio Rhðx;Q2Þ ¼
Fh
Lðx;Q2Þ=Fh

2ðx;Q2Þ will extend in future circular col-
liders (i.e., LHeC and FCC-he). Indeed, these new colliders
are the ideal place to resolve this ratio.
In the small x range, where the gluon contribution is

dominant, the heavy quark structure functions in the
collinear generalized DAS approach are given by [33]

Fh
kðx; μ2rÞ ≃ e2h

X
n¼0

�
αs
4π

�
nþ1

BðnÞ
k;gðx; ξrÞ ⊗ xgðx; μ2rÞ; ð16Þ

where Bk;g are the collinear Wilson coefficient functions in
the high energy regime [33] and e2h is the squared charge of
the heavy flavor. Here, n denotes the order in running

coupling αs and ξr ¼ m2
f

μ2r
. The explicit expressions for the

coefficient functions at the leading order (LO) up to next-
to-next-to-leading order (NNLO) approximations are rel-
egated to the Appendix. The default renormalization and
factorization scales are set to be equal μ2R ¼ μ2r þ 4m2

f

and μ2F ¼ μ2r .

The integrated and unintegrated gluon distributions from
the GBW and BGK models can be obtained in Ref. [34],
and were formulated on the position-space version of the
kt-factorization formula. The gluon density is parametrized
at the scale μ2r using the running coupling αs by the
following form:

xgðx;μ2rÞ¼
σ0

16π3
Q2

0

�
x0
x

�
λ

ð11CA−2nfÞ ln
�

μ2r
Λ2
QCD

�
; ð17Þ

where CA ¼ Nc ¼ 3 is the Casimir operator in the funda-
mental and adjoint representation of the SUðNcÞ color
group and the QCD parameter Λ is extracted by αsðM2

ZÞ
using the c- and b-quark threshold.3

The parameters of the model (i.e., σ0, x0, and λ)
dependent on the active flavor number are found from a
fit to small-x data in Table I. After exploiting the low x
behavior of the gluon density [i.e., Eq. (17)], Eq. (16) can
be rewritten as

Fh
kðx; μ2rÞ ≃Mh

k;gðx; μ2r ; λÞxgðx; μ2rÞ ð18Þ

where

Mh
k;gðx; μ2r ; λÞ ¼ e2h

X
n¼0

�
αs
4π

�
nþ1
Z

x2

x
BðnÞ
k;gðy; ξrÞyλ−1dy:

ð19Þ

Therefore, the explicit form of the heavy structure functions
at the LO approximation, in the particular case of off-shell
initial gluons (when k2 ¼ 0) is

Fh
2ðx; μ2rÞ ¼ e2h

3σ0
16π3

Q2
0

�
x0
x

�
λ
Z

x2

x
f−2yβ½1 − 4yð2 − ξrÞð1 − yÞ − ð1 − 2yð1 − 2ξrÞ þ 2y2ð1 − 6ξr − 4ξ2rÞÞLðβÞ�gyλ−1dy;

Fh
Lðx; μ2rÞ ¼ e2h

3σ0
16π3

Q2
0

�
x0
x

�
λ
Z

x2

x
8y2β½ð1 − yÞ − 2yξrLðβÞ�yλ−1dy; ð20Þ

3In Refs. [35] and [36], the massive quarks in NLO dipole factorization for DIS are considered. The NLO corrections for the dipole
factorization of DIS structure functions at low x is considered using light front perturbative theory as

jγ�T;LiNLO ¼ jγ�T;Liqq̄ þ jγ�T;Liqq̄g:

TABLE I. The fixed parameters according to Ref. [22] from the fit results to the HERA data using the dipole cross
section.

Reference ml½GeV� mc½GeV� mb½GeV� σ0½mb� λ x0=10−4 χ2=Ndof

[22] 0.14 1.4 � � � 27.32� 0.35 0.248� 0.002 0.42� 0.04 1.60
[22] 0.14 1.4 4.6 27.43� 0.35 0.248� 0.002 0.40� 0.04 1.61
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where β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4xξr

1−x

q
and LðβÞ ¼ 1

β ln
1þβ
1−β. The ratio Rhðx; μ2rÞ ¼ Fh

Lðx;μ2rÞ
Fh
2
ðx;μ2rÞ can be presented as

Rhðx; μ2rÞ ¼
ML;gðx; μ2r ; λÞ
M2;gðx; μ2r ; λÞ

¼
R
x2
x 8y2β½ð1 − yÞ − 2yξrLðβÞ�yλ−1dyR

x2
x f−2yβ½1 − 4yð2 − ξrÞð1 − yÞ − ð1 − 2yð1 − 2ξrÞ þ 2y2ð1 − 6ξr − 4ξ2rÞÞLðβÞ�gyλ−1dy

ð21Þ

where the ratio is independent of the gluon density, the
Sudakov form factor, and the running coupling at the LO
approximation. The Sudakov form factor can be included
by using Eq. (8) and generalizing it to the heavy quark
structure functions [i.e., Eq. (18)] by the following form:

Fh
kðx; μ2rÞ ¼ e−Sðr;μ2rÞMh

k;gðx; μ2r ; λÞxgðx; μ2rÞ: ð22Þ

The heavy quark structure functions now depend on the
nonlinear gluon evolution at small x due to the Sudakov
effects, which become relevant for processes with two
distinct scales.

B. Bounds

In the following, we discuss further bounds [7,37–40] for
Fc
2=F2 and Fb

2=F2 which follow from the standard dipole
picture. Indeed, we give correlated bounds for Fc;b

2 =F2

versus FL=F2 where the higher Fock components of the
photon wave function affect these bounds. In Refs. [37,38],
the authors have shown that the upper bound is independent

of Q2 and numerically leads to FLðW;Q2Þ
F2ðW;Q2Þ ≤ gmax ¼ 0.27139

for the case of massless quarks. A stronger bound can be
obtained by considering the effect of the charm and bottom
quarks on the ratio

Flightþcþb
L

Flightþcþb
2

¼ FL þ Fc
L þ Fb

L

F2 þ Fc
2 þ Fb

2

¼ FL=F2 þ Fc
L=F

c
2F

c
2=F2 þ Fb

L=F
b
2F

b
2=F2

1þ Fc
2=F2 þ Fb

2=F2

≤ gmax
1þ gcmaxFc

2=F2 þ gbmaxFb
2=F2

1þ Fc
2=F2 þ Fb

2=F2

≤ gmax: ð23Þ

In this case the bound on the ratio FL=F2 will depend on
the values of Fc

2=F2 and Fb
2=F2, where these bounds (i.e.,

Fh
2=F2) can further restrict the kinematical range of

applicability of the dipole picture in future colliders
[23,41]. In the CDP, the gluon distribution was recently
determined in Ref. [42] at low x by the following form:

αsðμ2rÞxgðx; μ2rÞ ¼
9π

Reþe−

1

2ρþ 1
F2ðηLx; μ2rÞ; ð24Þ

where Reþe− ¼ Nc
P

f e
2
f and ηL ≃ 0.40 is the rescaling

factor. The ρ parameter describes the ratio of the average

transverse momenta ρ ¼ hk⃗2⊥iL
hk⃗2⊥iT

, of which the transverse

momentum k⃗2⊥ is introduced into four momenta of the
quark and antiquark. The quantity of ρ, for Q2 ≫ Λ2

sat, was
used to be ρ ¼ 4=3 [43]. The ratio of the longitudinal to the
transversal photoabsorption cross sections is given by

R ¼ σγ
�p
L

σγ
�p
T

¼ 1

2ρ
; ð25Þ

where factor 2 originates from the difference in the photon
wave functions. In terms of the proton structure functions,
F2 and FL, the ratio becomes4

FL

F2

¼ 1

1þ 2ρ
: ð26Þ

With imposing consistency between the CDP and the
pQCD, the gluon distribution function is obtained by
expressing the proton structure function in terms of FL as

αsðμ2rÞxgðx; μ2rÞ ¼
3πP
fe

2
f

FLðηLx; μ2rÞ: ð27Þ

4The colored sector of the virtual photon wave functions
contains both qq̄ and qq̄g components at the NLO approximation.
Expansion of the structure functions, F2 and FL, in Fock state in
the CDM are given by

F2;L ¼ Fqq̄
2;L þ Fqq̄g

2;L þ � � �

where at higher Fock states one can derive [36] the modified
CDM bound for the ratio FL

F2
as

�
FL

F2

�
NLO

¼
�
FL

F2

�
LO

1þ δε

1þ ε

where ε ¼ Fqq̄g
2

Fqq̄
2

and 0 ≤ δ ≤ 3.7.
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Therefore the ratios Fh
2=F2 and Fh

L=FL are defined by

Fh
2

F2

¼ 3

4

e2h
ηλL
P

fe
2
f

R
x2
x Bð0Þ

2;gðy; ξrÞyλ−1dy
2ρþ 1

ð28Þ

and

Fh
L

FL
¼ 3

4

e2h
ηλL
P

fe
2
f

Z
x2

x
Bð0Þ
L;gðy; ξrÞyλ−1dy: ð29Þ

These ratios are very interesting in the range of available
HERA energy and its extension to future energies in LHeC
and FCC-he colliders.

III. NUMERICAL RESULTS

In the present paper we consider the heavy quark
structure functions to the deep inelastic proton structure
function, which are directly related with the gluon distri-
bution of the proton in the CDP approach at low x.
Everywhere below, we set the charm and bottom masses
to be equal tomc ¼ 1.4 GeV andmb ¼ 4.6 GeV according
to Ref. [22]. In accordance with the values recommended
by the Higgs Cross Section Working Group [44], the top-
quark pole mass is set as in the NNPDF default analysis to
mt ¼ 172.5 GeV [45]. To estimate the scale uncertainties
of our calculations, the standard variations in default
renormalization and factorization scales, which were set

to be equal to μ2R ¼ μ2r þ 4m2 and μ2F ¼ μ2r , respectively,
were introduced. In recent years [46,47], the phenomeno-
logical various successful methods have examined charm
and bottom structure functions. This importance, along
with the t-quark density [48,49], can be explored at future
circular collider energies.
Our numerical results for charm and bottom structure

functions, Fc
2 and Fb

2, are shown in Figs. 1 and 2,
respectively, in comparison with the H1 data [50]. To
estimate the uncertainties of our calculations, the standard
variations in default scales (i.e., renormalization and
factorization) and the behavior of the Sudakov form factor
are introduced. We observe that the predictions obtained
using unifying the color dipole picture and double asymp-
totic scaling approaches in a proton are in perfect agree-
ment with the H1 data in a wide range of r for x ¼ 0.0013
and 0.0050 within the total experimental uncertainties.
These results for Fc

2 and Fb
2 , in Figs. 1 and 2, increase as r

decreases. As a result, we predict that at very low r, the
charm and bottom structure functions will increase at the
FCC-he compared to the LHeC and HERA at high
inelasticity according to Table II. The uncertainties (with-
out and with Sudakov effects) increase as r increase. In
Figs. 1(c) and 1(d), we observe that the uncertainties for the
charm structure functions increase for r≳ 2 × 10−1 GeV−1

and for the bottom structure functions increase for r≳ 3 ×
10−2 GeV−1 in Figs. 2(c) and 2(d). The effect of the
Sudakov form factors in the charm and bottom structure

(a) (b)

(c) (d)

FIG. 1. Comparisonof theH1data from [50] for the charmFc
2 structure functionwith the results fromunifying the color dipole picture and

double asymptotic scaling approacheswith the parameters in Table I in awide range of the transverse separation r½GeV−1�. The uncertainties
are due to μ2 ¼ μ2r þ 4m2, μ2 ¼ μ2r and the Sudakov form factor with x ¼ 0.0013 and 0.0050. (a) For μ2 ¼ μ2r, (b) For μ2 ¼ μ2r þ 4m2,
(c) For μ2 ¼ μ2r and μ2 ¼ μ2r þ 4m2 without Sudakov form factor, (d) For μ2 ¼ μ2r and μ2 ¼ μ2r þ 4m2 with Sudakov form factor.
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functions are shown in Figs. 1(a) and 1(b) and 2(a) and 2(b)
for the renormalization and factorization scales, respec-
tively. Differences between the results (with and without
Sudakov form factor) for the charm and bottom structure
functions are very small and visible at small r. One can see
that the Sudakov factor mostly disappears in the large-r
region for μ2 ¼ μ2r and survives for μ2 ¼ μ2r þ 4m2 at
r > 2 GeV−1. The changes are less obvious compared to
the charm and bottom structure functions without Sudakov
form factor, which is because the large-r region, where the
dipole cross section was affected the most, is largely
suppressed by the photon wave function. In conclusion,
the structure functions with Sudakov form factor seem to
show slightly more change in a wide range of r. We can add
these results as associated with the LHeC simulated
uncertainties [23]. These simulated uncertainties for Fc

2

and Fb
2 measurements were recently published by the

LHeC study group and reported by Ref. [23].5 In Figs. 3
and 4, the importance of the longitudinal structure function
for charm and bottom pair production, Fc

L and Fb
L, are

examined according to Table II for colliders (HERA,
LHeC, and FCC-he) in a wide range of r. The behavior
of these structure functions considers with and without
Sudakov form factor in a wide range of r for x ¼ 0.0013
and 0.0050 in Figs. 3 and 4. In Figs. 3(c) and 3(d),
we observe that the uncertainties for the Fc

L increase
for r≳10−1GeV−1 and for the Fb

L increase for

r≳ 5 × 10−2 GeV−1 in Figs. 4(c) and 4(d). The effect of
the Sudakov form factors in the Fc

L and Fb
L are shown in

Figs. 3(a) and 3(b) and 4(a) and 4(b) for the renormalization
and factorization scales, respectively. Differences between
the results (with and without Sudakov form factor) are very
small and visible at small r. One can see that the Sudakov
factor mostly disappears in the large-r region for μ2 ¼ μ2r
and survives for μ2 ¼ μ2r þ 4m2 at r > 2 GeV−1.
According to Figs. 3 and 4, we observe that the longitudinal
structure function for charm and bottom increase as r
decreases due to the HERA range of r (see Table II). We
observe that the Fc

L and Fb
L in the LHeC and FCC-he range

energy makes the transition from the large r to the low r
forms. The longitudinal structure functions for charm
(r≳ 3 × 10−1 GeV−1) and bottom (r≳ 10−1 GeV−1) are
slowly varying and reach zero for large r. These val-
ues have a constant rate at lower r. The ratio of the

longitudinal structure functions, Fc
L

Fb
L
, is of the Oðmb

mc
Þ order

for r < 10−2 GeV−1. This ratio shows that the importance
of measuring the longitudinal structure function for bottom

(a) (b)

(c) (d)

FIG. 2. The same as Fig. 1 for the bottom structure function. (a) For μ2 ¼ μ2r, (b) For μ2 ¼ μ2r þ 4m2, (c) For μ2 ¼ μ2r and μ2 ¼
μ2r þ 4m2 without Sudakov form factor, (d) For μ2 ¼ μ2r and μ2 ¼ μ2r þ 4m2 with Sudakov form factor.

TABLE II. The transverse separation range of r in the HERA
and future colliders (i.e., LHeC and FCC-he) with the inelasticity
y ≤ 1 for x ¼ 0.0013 and 0.0050.

Collider
ffiffiffi
s

p ½GeV� x ¼ 0.0013 x ¼ 0.0050

FCC-he 3500 r > 0.005 r > 0.002
LHeC 1300 r > 0.01 r > 0.006
HERA 320 r > 0.05 r > 0.02

5For further discussion, such predictions can be found in
Figs. 3.4, 3.6, and 3.7 of Ref. [23].
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quark is not less than the charm quark in the process
analysis of new colliders.
Considering the top structure function in unifying the

color dipole picture and double asymptotic scaling
approaches is interesting because the production of top

quarks in electron-proton collisions at LHeC and FCC-he
can provide a stringent test of new physics at ultra-high
energy. In Fig. 5, the top structure function is predicted
in a wide range of the transverse separation range of r
with μ2 ¼ μ2r þ 4m2 for x ¼ 0.0013. The Sudakov form

FIG. 4. The same as Fig. 3 for the bottom structure function.

FIG. 3. The behavior of the charm Fc
L structure function due to unifying the color dipole picture and double asymptotic scaling

approaches with the parameters in Table I in a wide range of the transverse separation r½GeV−1�. The uncertainties are due to
μ2 ¼ μ2r þ 4m2, μ2 ¼ μ2r and the Sudakov form factor with x ¼ 0.0013 and 0.0050.
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factor effect is compared with these results in Fig. 5.
The difference between the results (with and without
Sudakov form factor) for the top structure function is very
small and visible at small r. One can see that the Sudakov
factor mostly disappears in the large-r region. It is observed
that in the HERA energy range (r≳ 0.05 GeV−1), the top
structure function is zero. This probability increases as
the energy range increases to future colliders (especially
FCC-he). It is clear that the top structure function will
increase more at the FCC-he than at the LHeC at high
inelasticity,6 according to Table II. It reaches Ft

2 ≃ 0.05
at r ≃ 0.005 GeV−1 in the FCC-he energy range and

FIG. 5. Results of the top Ft
2 structure function with the bottom

parameters in Table I in a wide range of the transverse separation
r½GeV−1� at μ2 ¼ μ2r þ 4m2 with and without Sudakov form
factor for x ¼ 0.0013.

FIG. 6. Rc evaluated as a function of r with μ2 ¼ μ2r and μ2 ¼
μ2r þ 4m2 for x ¼ 0.0013 and 0.0050.

FIG. 7. The same as Fig. 5 for the ratio of the bottom structure
functions Rb.

FIG. 8. Rc, Rb, and Rt evaluated as a function of r with μ2 ¼
μ2r þ 4m2 for x ¼ 0.0013.

FIG. 9. Ratios Fc
2=F2 and Fb

2=F2 as functions of r with μ2 ¼ μ2r
and μ2 ¼ μ2r þ 4m2 for x ¼ 0.0013. Experimental data are from
the H1-Collaboration [50,53].

6Notice that the large inelasticity is only for scattered electron
energies much smaller than the electron beam energy (i.e., E0

e ≪
Ee and y ¼ 1 − E0

e=Ee). In this region where E0
e is small, the

electromagnetic and hadronic backgrounds are important [23].
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Ft
2 ≃ 0.03 at r ≃ 0.01 GeV−1 in the LHeC energy range for

x ¼ 0.0013 with μ2 ¼ μ2r þ 4m2.

Results of our calculations for Rc ¼ Fc
L

Fc
2

and Rb ¼ Fb
L

Fb
2

are

presented in Figs. 6 and 7 respectively, where we plot these
ratios as a function of x in a wide r range with μ2 ¼ μ2r and
μ2 ¼ μ2r þ 4m2. We observe from Figs. 6 and 7 that these
results for r≳ 10−1 GeV−1 lead to a flat behavior of Rc

and Rb with μ2 ¼ μ2r þ 4m2 and decrease sharply with
μ2 ¼ μ2r . The results obtained with the renormalization and
factorization scales for Rc and Rb are compatible at
r < 10−1 GeV−1 and 3 × 10−2 GeV−1 respectively and
have the largest uncertainties at r > 10−1 GeV−1 and
3 × 10−2 GeV−1. Our calculations show an x-independent
behavior of Rc and Rb in a wide range of r with the
renormalization and factorization scales. For larger values
of r, some dependence on x appears, especially in Rc with
μ2 ¼ μ2r and in Rb with μ2 ¼ μ2r þ 4m2. The maximum
value of Rðx; rÞ is equal to ≃0.2 for charm and bottom
ratios at r ≃ 10−1 GeV−1 and 3 × 10−2 GeV−1 respectively.
We observe that the maximum value shifts to smaller
values of r for the bottom quark compared to the charm.
These results are comparable with others in literature
[23,30,31,33,51].
In order to assess the significance of the ratio of structure

functions in a wide range of the collider energies (from
HERA until FCC-he), we show in Fig. 8 the r dependences
of Rc, Rb, and Rt evaluated with μ2 ¼ μ2r þ 4m2 for
x ¼ 0.0013. We observe from Fig. 8 that the charm and
bottom predictions have similar behaviors in a wide range
of r and collider energies (according to Table II). The
charm and bottom ratios increase until r ≃ 10−1 GeV−1 and
3 × 10−2 GeV−1 respectively, then decrease and have a
flat (r-independent) behavior for large values of r
(r ≥ 0.3 GeV−1). In Fig. 8, we observe the ratio of the
top structure functions according to the FCC-he center-of-
mass energy in the inelasticity range 0 < y < 1 due to the
coefficients in Table I. It continues to rise with r, then fall

after reaching a maximum.7 Such results seem to be
extremely important for future experiments, in particular,
for experiments at the LHeC and FCC-he.
In Fig. 9, we plot ratiosFc

2=F2 andFb
2=F2 as functions of r

with the renormalization and factorization scales for
x ¼ 0.0013. In this figure, the ratio of the structure functions
are compared with the H1 Collaboration data in Refs. [50]
and [53]. The error bars of the ratioFh

2=F2 are determined by
ΔðFh

2=F2Þ¼Fh
2=F2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔFh

2=F
h
2Þ2þðΔF2=F2Þ2

p
,whereΔFh

2

and ΔF2 are collected from the H1 experimental data in
Refs. [50] and [53] respectively. The results obtained from
the ratios are comparable to the H1 data [50,53]. Realistic
values of Fc

2=F2 can only range from zero to at most about
0.4 in the HERA energy range [37,54].8 The results for the
ratiosFc

2=F2 andFb
2=F2, in Fig. 9 are predicted at low values

of r according to the LHeC and FCC-he energy range and
will be able to be considered in these collisions. In particular,
the unphysical upper bound [37]Fc

2=F2 ¼ 1will be obtained
at the low value of r due to the FCC-he center-of-mass
energy.
Recently, the structure functions F2; FL and heavy

quark structure functions Fc
2; F

b
2 from the models

BGK and IP-sat were predicted9 in the range ðx;Q2Þ∶
ð10−6–10−2; 5.0–50 GeV2Þ in Ref. [7]. We compared the
ratios with the results of the BGK and IP-sat models in
Table III. One shows in this table that our calculations
are comparable with the predictions from the BGK and
IP-sat models. We can see that the predictions from the
BGK and IP-sat models lie between (μ2r ≲ BGK; IP − sat≲
μ2r þ 4m2) the bounds as the maximum is of the order

TABLE III. The ratios Fc
2=F2 and Fb

2=F2 with the renormalization and factorization scales are compared with the
predictions of Ref. [7] from the BGK and impact-parameter saturation (IP-sat) models.

x Q2½GeV2�
Fc
2

F2

���
IP−sat::BGK

Fb
2

F2

���
IP−sat::BGK

Fc
2

F2

���
μ2r ::μ2rþ4m2

Fb
2

F2

���
μ2r ::μ2rþ4m2

10−2 5 0.096–0.100 0.00042–0.00044 0.072–0.156 <0.014
10 0.144–0.149 0.00165–0.00168 0.133–0.196 0.00008–0.02150
50 0.233–0.234 0.0115–0.0112 0.323–0.342 0.0151–0.0346

10−4 5 0.150–0.154 0.0034–0.0033 0.080–0.165 0.0013–0.0274
10 0.197–0.200 0.0060–0.0057 0.139–0.202 0.0031–0.0286
50 0.280–0.280 0.0195–0.0186 0.328–0.346 0.0168–0.0367

10−6 5 0.184–0.194 0.0057–0.0053 0.080–0.165 0.0014–0.0275
10 0.230–0.238 0.0089–0.0086 0.139–0.202 0.0032–0.0287
50 0.305–0.308 0.0244–0.0235 0.328–0.346 0.0168–0.0367

7For further discussion please see Refs. [33,52].
8The average value of the ratio Fc

2=F2 is determined to be
hFc

2=F2i ¼ 0.237� 0.021þ0.043
−0.039 in Ref. [55].

9Within the color dipole approach, the impact parameter satu-
ration model and the BGK model include DGLAP evolution as the
gluon density is parametrized, in bothmodels, at the initial scaleQ2

0

then scales μ2 by using the LO or NLO evolution equations.
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ðμ2rÞ − ðμ2r þ 4m2Þ. The differences between the results are
due to the free-fit parameters of the models in Refs. [4]
and [22].

IV. CONCLUSIONS

In this work we computed the heavy quark structure
functions Fh

2;L; h ¼ c, b, t within the kt factorization
framework, using unifying the color dipole picture and
double asymptotic scaling approaches for the integrated
gluon density using the GBW and BGK models at small
Bjorken x values. We first considered the structure func-
tions Fh

2;L in a wide range of the transverse separation r
from the HERA to FCC-he center-of-mass energy. Then we
obtained bounds on Fh

L=F
h
2 as well as a correlated bound on

the ratios Fc
2=F2 and Fb

2=F2 as they are consistent with the
experimental data from HERA collider at moderate and
large r. It will be interesting to compare these bounds with
future results from measurements of these structure func-
tions as r decreases.
We achieved a good agreement between the HERA

experimental data for the charm and bottom structure
functions and our theoretical predictions with the renorm-
alization and factorization scales. We demonstrated the
importance of the contributions of Fc

L and Fb
L at small r in

further colliders. For the top quark pair production, which
will be one kind of important production channel at LHeC
and FCC-eh, the ratio of structure functions (i.e., Rt) is
determined and compared with the charm and bottom ratios
(i.e., Rc and Rb) at small r which are dominated by the

center-of-mass energies in new colliders at the renormal-
ization scale μ2 ¼ μ2r þ 4m2. To estimate the uncertainties
of our calculations, the standard variations in default scales
(i.e., renormalization and factorization) are introduced. The
uncertainty range of scales increases as r increases.
Additionally, effects of the Sudakov form factor were

investigated for the heavy quark structure functions in a
wide range of r. The Sudakov form factor modifies the
heavy quark structure functions in the small region of r
owing to the saturation effect. The effect is visible for a
small value of r and disappears when r increases.
Moreover, we compared our predictions of the ratio
Fc
2=F2 and Fb

2=F2 with the BGK and IP-sat models at
low values of x and found all good agreement with datasets
in the intervals of the factorization and renormalization
scales. We hope that this paper at low x and low r will be
useful in future phenomenological studies of the heavy
quark structure functions at future colliders such as EIC,
LHeC, and the FCC-he.
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APPENDIX

In the high energy regime, defined by x ≪ 1, the
coefficient functions have the compact forms [33]

Bð0Þ
2;gð1; ξrÞ ¼

2

3
½1þ 2ð1 − ξrÞJðξrÞ�;

Bð0Þ
L;gð1; ξrÞ ¼

4

3
x2f1þ 6ξr − 4ξr½1þ 3ξr�JðξrÞg;

Bð1Þ
k;gðx; ξrÞ ¼ β½Rð1Þ

k;gð1; ξrÞ þ 4C2
AB

ð0Þ
k;gð1; ξrÞLμ�;

Bð2Þ
k;gðx; ξrÞ ¼ β lnð1=xÞ½Rð2Þ

k;gð1; ξrÞ þ 4CAR
ð1Þ
k;gð1; ξrÞLμ þ 8C2

AB
ð0Þ
k;gð1; ξrÞL2

μ�; ðA1Þ

with

Rð2Þ
2;gð1; ξrÞ ¼

32

27
C2
A½46þ ð71 − 92aÞJðξrÞ þ 3ð13 − 10ξrÞIðξrÞ − 9ð1 − ξrÞKðξrÞ�;

Rð2Þ
L;gð1; ξrÞ ¼

64

27
C2
Ax2f34þ 240ξr − ½3þ 136ξr þ 480ξ2r �JðξrÞ þ 3½3þ 4ξrð1 − 6ξrÞ�IðξrÞ þ 18ξrð1þ 3ξrÞKðξrÞg;

Rð1Þ
2;gð1; ξrÞ ¼

8

9
CA½5þ ð13 − 10ξrÞJðξrÞ þ 6ð1 − ξrÞIðξrÞ�;

Rð1Þ
L;gð1; ξrÞ ¼ −

16

9
CAx2f1 − 12ξr − ½3þ 4ξrð1 − 6ξrÞ�JðξrÞ þ 12ξr½1þ 3ξr�IðξrÞg; ðA2Þ

where
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KðξrÞ ¼ −
ffiffiffiffiffi
x2

p ½4ðζ3 þ Li3ð−tÞ − Li2ð−tÞ ln t − 2S1;2ð−tÞÞ þ 2 lnðξrx2Þðζ2 þ 2Li2ð−tÞÞ

−
1

3
ln3t − ln2ðξrx2Þ ln tþ lnðξrx2Þln2t�;

IðξrÞ ¼ −
ffiffiffiffiffi
x2

p �
ζ2 þ

1

2
ln2t − lnðξrx2Þ ln tþ 2Li2ð−tÞ

�
;

JðξrÞ ¼ −
ffiffiffiffiffi
x2

p
ln t;

t ¼ 1 − ffiffiffiffiffi
x2

p
1þ ffiffiffiffiffi

x2
p ;

x2 ¼
1

1þ 4ξr
;

Lμ ¼ ln
4m2

f

μ2r
; ðA3Þ

where

Li2ðxÞ ¼ −
Z

1

0

dy
y
lnð1 − xyÞ;

Li3ðxÞ ¼ −
Z

1

0

dy
y
lnðyÞ lnð1 − xyÞ;

S1;2ðxÞ ¼
1

2

Z
1

0

dy
y
ln2ð1 − xyÞ; ðA4Þ

are the dilogarithmic function Li2ðxÞ, the trilogarithmic function Li3ðxÞ and Nilsen Polylogarithm S1;2ðxÞ.
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