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We revisit the application of the Froissart-Gribov (FG) projections in the analysis of amplitudes for
deeply virtual Compton scattering (DVCS), providing essential information on generalized parton
distributions (GPDs). The pivotal role of these projections in a systematic description of a hadron’s
response to the stringlike QCD probes characterized by different values of angular momentum J is
emphasised. For the first time, we establish a relationship between the FG projections and GPDs for spin-½
targets, and we investigate these quantities in various GPD models. Finally, we provide the first numerical
estimates for the FG projections based on the DVCS amplitudes directly extracted from experimental data.
We argue the method of the FG projections deserves a broad application in the DVCS phenomenology.
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I. INTRODUCTION

Generalized parton distributions (GPDs) [1–4] are rec-
ognized as a convenient tool to address the dynamics of
hadron constituents and to provide a QCD-based descrip-
tion of internal structure of hadrons (see Refs. [5–8] for a
review). According to the QCD collinear factorization
theorem [3], GPDs encode the response of a hadronic
target to an excitation induced by the well-defined QCD
string quark and gluon operators on the light cone z2 ¼ 0:

hN0jψ̄ð0Þ½0; z�ψðzÞjNi;
hN0jGa

αβð0Þ½0; z�abGb
μνðzÞjNi; ð1Þ

where ½0; z� (½0; z�ab) stand for the Wilson lines in the
fundamental (adjoint) representations ensuring the gauge
invariance of the quark (gluon) operators.
The key advantage for investigating hadronic structures

in hard exclusive reactions admitting a description within
the GPD framework is brought by nonlocal nature of the
QCD string operators (1). This allows to enlarge the
inventory of “elementary” probes available for resolving

the hadron constituents. Namely, the truly elementary
probes are only limited to spin J ¼ 1 photons (γ) and
heavy vector bosons (W�; Z0), while the GPD framework
allows for the emulation of the J ¼ 2 graviton probe. This
unique feature gives access to hadronic gravitational form
factors (GFFs), that are defined from hadronic matrix
elements of QCD energy-momentum tensor. Study of
hadronic GFFs has provided new tools to address the spin
contents of hadrons relying on Ji’s sum rule [9] and to
investigate the mechanical properties of hadronic medium
encoded in the D-term form factor [10,11]. First exper-
imental extractions of the pressure distribution in a proton
presented in [12–15] demonstrated the robustness of the
approach and initiated proposals for dedicated studies with
perspective hadronic experimental facilities, such as the
upgraded JLab@20 GeV [16], J-PARC [17], and the EIC
[18–20], see, e.g., Ref. [21] for an overview.
Hard exclusive reactions admitting a description in terms

of GPDs, such as the deeply virtual Compton scattering
(DVCS) and deeply virtual meson production (DVMP), only
provide information on convolutions of GPDs with hard
scattering kernels, giving rise to the broadly debated decon-
volution problem, see discussion, e.g., in Refs. [22,23]. In
case of the DVCS, the maximum information on GPDs one
may expect to extract from experiments performed for a fixed
photon virtualityQ2 turns to be limited to GPDs on so-called
crossover trajectory x ¼ ξ and the D-term form factor, the
subtraction constant appearing in a once-subtracted fixed-t
dispersion relation for the Compton amplitude. Additional
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information can be obtained accounting for the QCD evolu-
tion effects provided a sufficiently large lever arm in Q2

[14,24,25]. Direct access to GPDs beyond the x ¼ ξ trajec-
tory can be provided by double DVCS [26–28]; however this
process turns to be highly challenging to measure.
The cross channel SO(3) partial waves (PWs) labeled by

the cross channel angular momentum J were introduced in
Ref. [29] in the framework of the conformal PW expansion
of GPDs as a convenient and physically motivated basis for
expanding the conformal moments of GPDs. The equiv-
alence between the double [conformal and cross channel
SO(3)] PW expansion and the dual parametrization of
GPDs [30] was finally elaborated in Ref. [31]. The
Froissart-Gribov (FG) projection [32,33] was first
addressed in the context of the DVCS in Ref. [22]. That
study recognized the FG projections of the Compton form
factors (CFFs) as a source of strong constraints for GPDs
through the GPD sum rules. In particular, the FG projec-
tions of CFFs make a direct contact with the extension of
the Regge phenomenology to the off-shell kinematics,
specific for DVCS, through the analysis of the t-dependent
singularities of PWs in the complex-J plane.
The same issue was also considered from a slightly

different perspective within the Abel transform tomography
analysis [34,35] of the DVCS in the framework of the dual
parametrization of GPDs. The Mellin moments of the so-
called GPD quintessence function N recovered from the
absorptive part of the CFF by the inverse Abel trans-
formation were found to quantify the target hadron’s
response on the cross channel excitation with a fixed
angular momentum J. This provides an appealing possibil-
ity to decompose the stringlike QCD probes (1) into a tower
of cross channel excitations of certain J, and may open new
possibilities for studies of hadronic structure focusing on
the hadron target response on a probe with a specific cross
channel angular momentum J, see Fig. 1. By extending the
formalism to the case of nondiagonal DVCS and DVMP
reactions (see, e.g., [36,37]) one may develop new tools for

hadron spectroscopy studying resonance production by
means of a probe with a selected value of J.
In this paper we revisit the application of the FG

projections in the context of the DVCS. The paper is
organized as follows. We start with specifying our conven-
tions and notations in Sec. II. By following the exposition of
Ref. [31], in Sec. III we review the derivation of the FG
projection of theCFF for the case of spinless target hadron. In
addition, we inspect the connection between the FG projec-
tions and the Abel tomography method in the dual para-
metrization framework. We establish a set of constructive
sum rules that connect the FG projections of the CFF to
coefficients at powers of ξ of the Mellin moments of GPDs.
The latter can be computed within the phenomenological
GPD models, and can be studied with the methods of lattice
QCD through the correspondence with the form factors
occurring in the decomposition of hadronic matrix elements
of local quark twist-2 operators.We also present a discussion
of mixing of the cross channel SO(3) PWs due to nonzero
target mass corrections. In Sec. IV we extend the FG
projection framework for the case of spin-½ target. While
the case of electric combination of nucleon CFFs,
HðEÞ ≡Hþ t

4m2 E, is fully analogous to the spinless target
case, we work out the FG projection for the magnetic
combination of CFFs HðMÞ ≡Hþ E. We present its inter-
pretation from the perspective of the Abel transform tomog-
raphy framework within the dual parametrization approach
and work out the sum rules for the nucleon CFF FG
projections. In Sec. V we address the phenomenological
application of the FG projections of the CFFs. We compute
several first FG projections of both electric and magnetic
combinations HðE;MÞ of CFFs using the Goloskokov-Kroll
(GK) [38,39], Kumerički-Müller (KM) [40], and Mezrag-
Moutarde-Sabatié (MMS) [41] phenomenological GPD
models presently employed for the analysis of the DVCS
data (for the GK see Ref. [42]). The FG projections turn to be
rather discriminating between the GPD models; and we
expect the method to see a broad application in the DVCS
phenomenology. We also compare the model results for the
FG projections with those obtained from the global model-
independent extraction of the DVCS CFFs of Ref. [43]. At
themoment the overall incertitude of themethod remains too
large to clearly distinguish between the phenomenological
models. However, for the FG projections of the better known
electric combination of CFFs, the magnitude of an error
shows a tendency to reduce in a certain range of t. Therefore,
with the new precise experimental data on DVCS one may
expect the method will ultimately gain a discriminative
power. Finally, Sec.VI presents our conclusions and possible
outlook.

II. CONVENTIONS AND NOTATIONS

Our system of conventions mainly follows Ref. [6]. GPDs
are functions of three variables: x ¼ kþ=Pþ describing the

FIG. 1. Interaction of a nonlocal quark probe induced by the
QCD string operator (1) with a target nucleon. The nonlocal
quark probe provides a tower of local operators of spin-J
with invariant momentum transfer Δ2 ¼ ðp0 − pÞ2 exciting the
nucleon.
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average longitudinal momentum of the active parton, the
skewness variable ξ¼ðpþ−p0þÞ=ðpþþp0þÞ¼−Δþ=ð2PþÞ
characterising the longitudinal momentum transfer, and the
invariant momentum transfer variable t ¼ Δ2. Here, P≡
p0þp
2

is the average momentum and Δ≡ p0 − p is the
momentum transfer between the final and initial state
hadrons, while k − Δ=2 and kþ Δ=2 are the four-momenta
of the emitted and reabsorbed partons, respectively. We
employ the following light cone vectors n� ¼
ð1; 0; 0;�1Þ= ffiffiffi

2
p

, such that for a given four-momentum
v� ¼ v · n∓ ¼ ðv0 � v3Þ= ffiffiffi

2
p

. Formally, GPDs also depend
on the factorization scale,μ2, typically related to thevirtuality
of the hard probe Q2. For brevity, the dependence on this
variable will be omitted in this work; i.e., we will consider a
fixed scale. Since in this work we focus on the description of
the DVCS amplitude at the leading order (LO), leading twist
accuracy we restrict our discussion to quark GPDs only. For
brevity, most of the formulas will be given for a single quark
of unspecified flavour, unless superscript “DVCS” is used. In
such a case, a givenquantity shouldbeunderstood as a sumof
contributions coming from the light quarks weighted by the
squares of charges of these quarks.

The polynomiality property states that a given Mellin
moment of a GPD is a fixed-order polynomial in ξ. For
definiteness, we consider the case of quark unpolarized
nucleon GPDs:

Z
1

−1
dxxNHqðx; ξ; tÞ ¼

XN
k¼0
even

ð2ξÞkANþ1;kðtÞ

þmodðN; 2Þð2ξÞNþ1CNþ1ðtÞ; ð2Þ
Z

1

−1
dxxNEqðx; ξ; tÞ ¼

XN
k¼0
even

ð2ξÞkBNþ1;kðtÞ

−modðN; 2Þð2ξÞNþ1CNþ1ðtÞ; ð3Þ

whereAnþ1;kðtÞ, BNþ1;kðtÞ, and CNþ1ðtÞ are the t-dependent
coefficients occurring in the form factor decomposition of
nucleon matrix elements of the local twist-2 operators [4,6]:

Oμμ1…μN
q ð0Þ ¼ Sψ̄ð0ÞγμiD↔μ1

…iD
↔μN

ψð0Þ; ð4Þ

hp0jOμμ1…μN
q ð0Þjpi ¼ Sūðp0ÞγμuðpÞ

XN
k¼0
even

Aq
Nþ1;kðtÞΔμ1…ΔμkPμkþ1…PμN

þ Sūðp0Þ iσ
μαΔα

2m
uðpÞ

XN
k¼0
even

Bq
Nþ1;kðtÞΔμ1…ΔμkPμkþ1…PμN

þ S
Δμ

m
ūðp0ÞuðpÞmodðN; 2ÞCqNþ1ðtÞΔμ1…ΔμN ; ð5Þ

where S denotes symmetrization in all noncontracted
Lorentz indices and subtraction of trace terms.
We have chosen skewness ξ to be positive and employ

charge-even,Hþðx; ξ; tÞ, and charge-odd,H−ðx; ξ; tÞ, com-
binations of GPDs defined as

H�ðx; ξ; tÞ ¼ Hqðx; ξ; tÞ ∓ Hqð−x; ξ; tÞ: ð6Þ

The same definition holds for the GPD E, which is also
considered in this study. The combinations exhibit the
following symmetry:

H�ðx; ξ; tÞ ¼∓ H�ð−x; ξ; tÞ; ð7Þ

allowing us to focus on either charge-even or charge-odd
GPD component, and to restrict the relevant integration
range to x∈ ½0; 1�, despite the full support domain in this
variable is x∈ ½−1; 1�. In the limit of ξ ¼ 0, GPDs H�
reduce to t-dependent quark densities, that for x ≥ 0 gives

H�ðx; ξ ¼ 0; tÞ ¼ qðx; tÞ � q̄ðx; tÞ≡ q�ðx; tÞ: ð8Þ

One may immediately realize that Hþðx; ξ; tÞ only con-
tributes to odd Mellin moments, while H−ðx; ξ; tÞ to even
moments. Let us now focus on the interpretation of first few
moments:
(1) The zeroth Mellin moment of H−ðx; ξ; tÞ and

E−ðx; ξ; tÞ giveZ
1

0

dxH−ðx; ξ; tÞ ¼ Fq
1ðtÞ;Z

1

0

dxE−ðx; ξ; tÞ ¼ Fq
2ðtÞ; ð9Þ

where Fq
1;2ðtÞ are the partonic contributions to the

Dirac and Pauli form factors, respectively.
(2) The first Mellin moment of Hþðx; ξ; tÞ givesZ

1

0

dxxHþðx; ξ; tÞ ¼ Mq
2ðtÞ þ

4

5
d1ðtÞξ2; ð10Þ

where Mq
2ðtÞ is the t-dependent momentum fraction

carried by a given quark flavor,
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Mq
2ðtÞ ¼

Z
1

0

dxxqþðx; tÞ; ð11Þ

and where d1ðtÞ is the first Gegenbauer coefficient of
the D-term expansion [44].

The elementary leading twist-2 leading order elementary
amplitudes for charge-even and charge-odd GPDs are
defined as

H�ðξ; tÞ ¼
Z

1

0

dx

�
1

ξ − x − iϵ
∓ 1

ξþ x − iϵ

�
H�ðx; ξ; tÞ;

ð12Þ

with the imaginary part specified by the GPD values on the
crossover line x ¼ ξ:

ImH�ðξ; tÞ ¼ πH�ðξ; ξ; tÞ: ð13Þ

For brevity, we will refer the charge-even elementary LO
amplitude as the CFF.

III. SPINLESS TARGET: CASE OF
CHARGE-EVEN GPD H +

In this section, mainly following Ref. [45], we work out
the Froissart-Gribov projection of the LO elementary
amplitude (12) for the case of the charge-even GPD Hþ
of a spinless hadron. The case of charge-odd GPD H−, not
relevant for DVCS, is presented in Appendix A. We discuss
the interpretation of the FG projection in the framework of
the dual parametrization of GPDs and construct a set of sum
rules for the generalized form factors. We argue that these
sum rules can be challenged with the available experimen-
tal data for the Compton form factors, forward partonic
densities, and some input from studies of the Mellin
moments of GPDs, e.g., calculated within the lattice
QCD framework.
The essence of the FG projections [32,33] consists in the

reconstruction of the cross channel partial wave expansion
amplitudes from the dispersive representation of the ampli-
tude in the direct channel. The derivation of the FG
projections for the generalized Compton FF Hþ relies
on the once subtracted fixed-t dispersion relation [46,47]:

ReHþðξ; tÞ ¼ P
Z

1

0

dx
2xHþðx; x; tÞ

ξ2 − x2
þ 4DðtÞ; ð14Þ

where P denotes the principal value integration and the
subtraction constant DðtÞ is the so-called D-term form
factor. The latter is given by the sum of coefficients coming
from the Gegenbauer expansion of the D-term [44].
The expansion of the Compton FF in the cross channel

SO(3) partial waves naturally arises once considering the
t-channel counterpart of the DVCS reaction:

γ�ðqÞ þ γð−q0Þ → hðp0Þ þ h̄ð−pÞ; ð15Þ

with the Mandelstam variable t ¼ ðq − q0Þ2 playing the
role of the invariant center-of-mass system energy and the
t-channel scattering angle θt defined as the angle between q⃗
and p⃗0 in the γ�ðqÞγð−q0Þ-center-of-mass frame. For the
Compton FFHþ the PWexpansion involves only even spin
PWs and takes the following form:

Hþðcos θt; tÞ ¼
X∞
J¼0
even

FJðtÞPJðcos θtÞ; ð16Þ

where PJðcos θtÞ stand for the Legendre polynomials and
the PW expansion coefficients FJðtÞ are defined as1

FJðtÞ¼
2Jþ1

2

Z
1

−1
dðcosθtÞPJðcosθtÞHþðcosθt; tÞ: ð17Þ

After crossing the reaction (15) back to the direct
channel

γ�ðqÞ þ hðpÞ → γðq0Þ þ hðp0Þ; ð18Þ

within the usual DVCS kinematics [large-Q2 and
s ¼ ðpþ qÞ2, fixed xB ≡ Q2

2p·q, −t of hadronic mass scale

m2], the analytically continued expression for the cosine of
the t-channel scattering angle θt, up to power suppressed
corrections, becomes

cos θt → −
1

ξβ
þOð1=Q2Þ; ð19Þ

where

β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2

t

r
ð20Þ

is the usual relativistic velocity factor.
In the present analysis we neglect effects related to the

target mass and set β ¼ 1. The discussion describing the
complications associates with β ≠ 1 is provided at the end
of the section. To establish the FG projection formula for
the form factors (17) we rely on the dispersion relation (14)
analytically continued to the t-channel:

Hþðcos θt; tÞ ¼
Z

1

0

dx
2x cos2 θt

1 − x2 cos2 θt
Hþðx; x; tÞ þ 4DðtÞ:

ð21Þ

We would like to stress that no regulator is required for the
singularity in the denominator, as for the physical domain

1The relation between the PWs aJðtÞ defined in Refs. [31,45]
and the present is FJðtÞ≡ ð2J þ 1ÞaJðtÞ.
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of the t-channel, where j cos θtj ≤ 1, the pole in x remains
outside of the domain of integration. We also suppose
Hþðx; x; tÞ vanishes fast enough for x ¼ 1 to keep the
integral regular.
We make use of the Neumann integral representation for

the Legendre functions of the second kind,QJ, with integer
J ≥ 0 (see, e.g., Ref. [48]):

1

2

Z
1

−1
dz0PJðz0Þ

1

z − z0
¼ QJðzÞ: ð22Þ

Note that QJðzÞ are defined in the complex-z plane with
the cut along the segment ½−1; 1�. The somewhat more
familiar second kind Legendre functions of a real
argument x∈ ð−1; 1Þ, QJðxÞ, are defined as the following
discontinuity2:

QJðxÞ ¼
1

2
ðQJðxþ i0Þ þQJðx − i0ÞÞ: ð23Þ

After plugging the dispersion relation representation of
the Compton FFs (21) and the Neumann integral repre-
sentation (22) into the definition of the SO(3) PWs (17),
and interchanging the order of integration we get the
following:
(1) For J ¼ 0:

FJ¼0ðtÞ ¼ 2

Z
1

0

dx

�
Q0ð1=xÞ

x2
−
1

x

�
Hþðx; x; tÞ

þ 4DðtÞ: ð24Þ

(2) For even positive J:

FJ>0ðtÞ ¼ 2ð2J þ 1Þ
Z

1

0

dx
QJð1=xÞ

x2
Hþðx; x; tÞ:

ð25Þ

Since for small x

QJð1=xÞ
x2

¼ J!
ð2J þ 1Þ!! x

J−1 þOðxJþ1Þ; ð26Þ

the integrals in Eqs. (25) and (24) are well convergent under
the usual Regge phenomenology assumptions for small-x
asymptotic behavior of GPDs on the crossover line:

Hþðx; x; tÞ ∼ x−αðtÞ with αð0Þ < 2: ð27Þ

In Fig. 2 we show several first weight functions 2ð2Jþ1Þ
ðQJð1=xÞ

x2 −δJ0
1
xÞ entering definition of the FG projections

(24), (25). It is remarkable that for larger J the small-x

region is progressively damped, as follows from the asymp-
totic expansion (26). This makes the high-J FG projections
more sensitive to the large-xB behavior of the Compton FFs.
Therefore, the FG projections can be useful to study the
interplay of ξ and t dependencies of theCompton FFs and the
buildup of the skewness effect for large ξ.
In a rigorous sense, the interpretation of the form factors

FJðtÞ in terms of definite angular momentum of hadron-
antihadron pair hð−pÞh̄ðp0Þ in the reaction (15), in the
spirit of the analysis of Ref. [10], relies on the highly
nontrivial issue of analytic continuation in t from the
spacelike to timelike region. An attempt to perform this
type of analytic continuation in a constructive manner was
presented in the dispersive analysis of Ref. [50] for the case
of the D-term form factor.
An alternative way of interpreting of the form factors

FJðtÞ, which does not necessarily imply the analytic
continuation in t to the cross channel, arises in the
framework of the dual parametrization of GPDs [30,31].
In this approach GPDs are presented as double partial wave
expansions [both in the conformal and cross channel SO(3)
partial waves]. The use of the conformal basis ensures the
diagonalization of the LO evolution operator, while the
cross channel SO(3) PWexpansion results in a factorization
of x, ξ and t dependencies of a given GPD.
For the C ¼ þ1 quark3 GPDHþ this expansion takes the

form of

Hþðx; ξ; tÞ ¼ 2
X∞
n¼1
odd

Xnþ1

l¼0
even

Bn;lðtÞθ
�
1 −

x2

ξ2

�

×

�
1 −

x2

ξ2

�
C3=2
n

�
x
ξ

�
Pl

�
1

ξ

�
; ð28Þ

FIG. 2. First weight functions 2ð2J þ 1ÞðQJð1=xÞ
x2 − δJ0

1
xÞ enter-

ing definition of the FJðtÞ projections.

2In particular, the default realization in the Wolfram Mathe-
matica [49] deals with these latter second kind Legendre
functions.

3A generalization for the gluon GPD case was presented in
Ref. [51].
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where nþ 2 corresponds to the conformal spin and l refers
to the cross-channel angular momentum. The correspond-
ing double partial wave amplitudes (generalized form
factors), Bn;lðtÞ, for odd n are generated through the
Mellin transform of a set of the charge-even forwardlike
functions Q2νðy; tÞ of an auxiliary variable y:

Bn;nþ1−2νðtÞ ¼
Z

1

0

dyynQ2νðy; tÞ; or equivalently;

Bn;lðtÞ ¼
Z

1

0

dyynQnþ1−lðy; tÞ: ð29Þ

To the leading logarithmic accuracy, the flavor nonsinglet
coefficients (29) are renormalized multiplicatively with the
same anomalous dimensions as meson distribution ampli-
tudes, while the singlet case is complicated by mixing
under evolution with gluons, see discussion in Sec. 3.7.2
of Ref. [6].
The crucial role in the double PWexpansion approach is

played by the parameter ν ¼ 0; 1; 2;… defined by the

difference between the conformal spin nþ 2 and the cross
channel angular momentum l:

nþ 2 − l≡ 2νþ 1; ð30Þ

providing a classification of PW contributions into GPDs.
The functionQ0ðy; tÞ4 in (36) is fixed in terms of t-dependent
parton distribution functions (PDFs):

Q0ðy; tÞ ¼ qþðy; tÞ −
y
2

Z
1

y

dz
z2

qþðz; tÞ; ð31Þ

in accordancewith the forward limit constraint (8), while the
functions Q2νðy; tÞ with ν > 0 contain the truly nonforward
information encoded in GPDs.
For odd N ≥ 1 the Mellin moments of the GPD (28) readZ

1

0

dxxNHþðx; ξ; tÞ ¼
XNþ1

k¼0
even

hN;kðtÞξk; ð32Þ

where the coefficients at powers of ξ are expressed as

hN;kðtÞ ¼
XN
n¼1
odd

Xnþ1

l¼0
even

Bn;lðtÞð−1Þkþl−N−1
2

Γð1 − k−l−N
2

Þ
2kΓ

�
1
2
þ kþl−N

2

�
Γð2 − kþ NÞ

ðnþ 1Þðnþ 2ÞΓðN þ 1Þ
Γð1þ N−n

2
ÞΓ
�
5
2
þ Nþn

2

� : ð33Þ

Particularly, for the first Mellin moment (10) providing an
access to hadronic matrix elements of the quark QCD
energy-momentum tensor, we getZ

1

0

dxxHþðx; ξ; tÞ ¼
6B1;2ðtÞ

5
þ ξ2

�
4B1;0ðtÞ

5
−
2B1;2ðtÞ

5

�
:

ð34Þ
The double partial wave expansion (28) has to be

understood as an ill-defined sum of generalized functions:
although each individual term of this expansion has the
central region support jxj ≤ ξ, it does not imply that the
resulting GPD vanishes outside this region. This expansion
is provided a rigorous meaning with help of a resummation
based on the Shuvaev-Noritzch transform [52] resulting in
the following integral representations:

Hþðx; ξ; tÞ

¼
X∞
ν¼0

Z
1

0

dy½K2νðx; ξjyÞ − K2νð−x; ξjyÞ�y2νQ2νðy; tÞ;

ð35Þ
with the convolution kernels K2νðx; ξjyÞ nonvanishing for
−ξ ≤ x ≤ 1 and expressed in terms of the elliptic integrals
[30,53]. The dual parametrization of GPDs was found to be
completely equivalent to the GPD representation based on
the Mellin-Barnes integral approach [29,54]. The set of

formulas connecting these two representations has been
elaborated in Ref. [31]. In Appendix B we present a brief
summary of formulas expressing the double PW expansion
coefficients within the two representations.
For phenomenological applications of the dual para-

metrization of GPDs, as well as of the Mellin-Barnes
integral approach framework, it is essential to justify a
truncation of ν summation in (35) accounting for a finite
number of PWs
(1) In the dual parametrization the ν ¼ 0 contribution

(31) entirely defined in terms of qþðy; tÞ corre-
sponds to the so-called minimalist dual model.
However, as pointed out in [22,55], the minimalist
model cannot properly describe the H1 data for
small-xB [56], as it produces an inconsistent skew-
ness ratio Hþðx;x;t¼0Þ

Hþðx;0;t¼0Þ for x ∼ 0.

(2) In order to control the skewness effect for small-x and
the evolution effects in a broad rangeofQ2, it turns out
necessary to account for at least three contributions
corresponding to ν ¼ 0, 1, 2. Within the Mellin-
Barnes framework this yields a basis for the KM
phenomenological model [40] providing a satisfac-
tory description of the DVCS data at small xB.

4Not to be mixed up with the second kind Legendre function
defined in Eq. (23).
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In the dual parametrization framework, the FG projec-
tion form factors (24), (25) can be expressed through the
(J − 1)th Mellin moments of the so-called GPD quintes-
sence function Nðy; tÞ≡P∞

ν¼0 y
2νQ2νðy; tÞ [34,35]:

FJ¼0ðtÞ ¼ 4Reg
Z

1

0

dy
y
ðNðy; tÞ −Q0ðy; tÞÞ ð36Þ

and

FJ>0ðtÞ ¼ 4

Z
1

0

dyyJ−1Nðy; tÞ: ð37Þ

The GPD quintessence function Nðy; tÞ occurring in
Eqs. (36) and (37) can be recovered from the absorptive
part of LO elementary amplitude (13) by the inverse Abel
tomography procedure [35,57]:

Nðy; tÞ ¼ 1

2π

ffiffiffiffiffi
2y

p ð1þ yÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y2

p ImHþ

�
2y

1þ y2
; t

�

−
1

2π

yð1 − y2Þ
ð1þ y2Þ32

Z
1

2y

1þy2

dx
1

ðx − 2y
1þy2Þ

3
2

�
1ffiffiffi
x

p ImHþðx; tÞ −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y2

2y

s
ImHþ

�
2y

1þ y2
; t

��
: ð38Þ

The integral in (36) may require some form of regularization of a singularity at y ¼ 0 inherited from the Regge-like
behavior of the partonic densities. This leads to a possible manifestation of the J ¼ 0 fixed pole contribution into theD-term
form factor, see discussion in [45].
The equivalence of the definitions (36), (37), and, respectively, (24), (25) was established in [31] by computing the

(J − 1)th Mellin moment of (38) as

Z
1

0

dyyJ−1Nðy; tÞ ¼
Z

1

0

dx

�
1ffiffiffi
x

p d
dx

RJðxÞ
�
Hþðx; x; tÞ; ð39Þ

where the auxiliary functions RJðxÞ can be expressed through the Legendre functions of the second kind (22):

1ffiffiffi
x

p d
dx

RJðxÞ ¼
1ffiffiffi
x

p d
dx

Z
x

0

dwffiffiffi
2

p ffiffiffiffi
w

p
�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − w2

p

w

�Jþ1
2 1ffiffiffiffiffiffiffiffiffiffiffi

x − w
p ¼

1
2
þ J

2

2QJð1=xÞ
x2

: ð40Þ

The physical contents of the form factors (36), (37) can
now be revealed in a particularly simple manner. For even
J, the (J − 1)th Mellin moment of the GPD quintessence
function (38) corresponds to the sum of generalized form
factors with the cross channel angular momentum label
l ¼ J:

FJ¼0ðtÞ ¼ 4
X∞
n¼1
odd

Bn;0ðtÞ ¼ 4
X∞
ν¼1

B2ν−1;0ðtÞ; ð41Þ

and

FJ>0ðtÞ ¼ 4
X∞
n¼J−1
odd

Bn;JðtÞ ¼ 4
X∞
ν¼0

BJþ2ν−1;JðtÞ: ð42Þ

Truncating the summation in ν makes it possible to turn
Eqs. (41) and (42) into a set of constructive sum rules
quantifying the hadron target response on the spin-J
excitation induced by the QCD string operators (1).
Indeed, according to Eq. (33), the generalized form

factors Bn;lðtÞ are in a direct relation to the coefficients
hN;kðtÞ at powers of ξ of the Mellin moments of the GPD
(32). In turn, according to the standard exposition of the
GPD polynomiality property, the coefficients hN;kðtÞ cor-
respond to form factors occurring in the decomposition of
hadronic matrix elements of local quark twist-2 operators,
that can be studied with the methods of lattice QCD, see,
e.g., Refs. [58,59].
For example, truncating at ν ¼ 1 (“next-to-minimalist”

contribution) for the J ¼ 0 FG projection we get

FJ¼0ðtÞ ¼ 4ðB1;0ðtÞ þ…Þ ¼ 5

3
h1;0ðtÞ þ 5h1;2ðtÞ þ

	
contribution of conformal PWs

with ν ≥ 2



; ð43Þ

and for J ¼ 2
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FJ¼2ðtÞ ¼ 4ðB1;2ðtÞ þ B3;2ðtÞ þ…Þ ¼ −
7

6
h1;0ðtÞ þ 9h3;0ðtÞ þ

21

2
h3;2ðtÞ þ

	
contribution of conformal PWs

with ν ≥ 2



; ð44Þ

where the coefficients h1;0ðtÞ and h3;0ðtÞ are fixed from the
Mellin moments of t-dependent PDFs:

h1;0ðtÞ ¼
6

5
B1;2ðtÞ ¼

Z
1

0

dxxqþðx; tÞ≡M2ðtÞ;

h3;0ðtÞ ¼
10

9
B3;4ðtÞ ¼

Z
1

0

dxx3qþðx; tÞ; ð45Þ

and h1;2ðtÞ≡ 4
5
d1ðtÞ.

A generalization of the sum rules (43), (44) with
truncation at arbitrary ν (as well as for arbitrary J), is
straightforward. At any order it requires knowledge of a
finite number of the Mellin moments of GPDs, though the
resulting expressions may be somewhat bulky. The further
strategy can be twofold.
(1) The FG projection form factors FJðtÞ represent

observable quantities that can be directly (without
a need for deconvoluting GPDs) extracted from
DVCS data in analyses like [29,43,60–62]. On the
other hand, the right-hand side of the sum rules can
be computed within existing phenomenological
GPD model. This provides a discrimination between
models and allows to study the impact of higher-ν
conformal PWs.

(2) Provided the development of lattice methods for
computing the Mellin moments of GPDs, see, e.g.,
[58,59,63], the sum rules like (43), (44) can bedirectly
used to test lattice predictions against experimental
data and phenomenological GPD models.

In our consideration we, so far, neglected the target mass,
so that hadron helicities were truly conserved quantum
numbers, that excluded mixing among the SO(3) PWs. Let
us now discuss the complications associated with nonzero
target mass. A detailed treatment of this issue represents a
formidable task and may require the use of the refined
theoretical methods developed, e.g., in Refs. [64–66].
Firstly, it is fair to recognize that the derivation of the FG

projections along the lines of Eqs. (21)–(25) looks some-
what problematic for β ≠ 1. Indeed, after restoring the β
factor, the dispersion relation (14) analytically continued to
the t-channel reads

Hþðcosθt; tÞ¼
Z

1

0

dx
2xβ2 cos2 θt

1−x2β2 cos2 θt
Hþðx;x;tÞþ4DðtÞ:

ð46Þ

Note that, as far as we stay in the physical region of the t
channel with t > 4m2 (0 < β < 1), j cos θtj ≤ 1, no regula-
tor is required in the denominator of the integrand of (46).
However, the calculation of the FG projections from the
representation (46) employing the Neumann integral (22)
results in appearing of the 1=β factor in the argument of the
corresponding associated Legendre functions. This makes
the generalization of Eq. (25) to look like

FJ>0ðtÞ ¼ 2ð2J þ 1Þ
Z

1

0

dx
QJð 1xβÞ
βx2

Hþðx; x; tÞ: ð47Þ

We see that the analytic continuation of Eq. (47) to the values
of t corresponding to the DVCS channel is troublesome, as
for β > 1 and x > 1

β the second kind Legendre function,

QJð 1xβÞ, possesses a cut inside the integration domain. Away
out could be restricting the upper limit of the integration to
xmax ¼ 1

β. This might look appealing also from the perspec-
tive of excluding the contribution of the nonphysical domain
xB > xB;max ≡ 2

1þβ out of the scope of dispersive analysis.
Unfortunately, to the best of our knowledge, the reduction of
the integration domain in the dispersion relation (14) cannot
be justified. Derivation of the dispersion relation (14)
departing from the once-subtracted fixed-t dispersion rela-
tion in the energy variable s−u

4m for the Compton amplitude
implies, at the final step, the strict use of the generalized
Bjorken limit, see, e.g., Ref. [45]. This does not allow to
properly implement the threshold corrections and ultimately
sets the upper x-integration limit to 1 in the dispersion
relation (46).
In order to circumvent the aforementioned difficulties

related to a direct inclusion of β ≠ 1 in the dispersion
relation, we turn to the framework of the dual parametriza-
tion. We consider a modified version of the double PW
expansion for the C ¼ þ1 GPD, cf. Eq. (28). The modi-
fication is the explicit inclusion of threshold corrections in
the summation of the t-channel spin-l exchanges:

Hþðx; ξ; tÞ ¼ 2
X∞
n¼1
odd

Xnþ1

l¼0
even

βlB̄n;lðtÞθ
�
1 −

x2

ξ2

�

×

�
1 −

x2

ξ2

�
C3=2
n

�
x
ξ

�
Pl

�
1

ξβ

�
: ð48Þ
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The expansion is performed in Plð 1ξβÞ ¼ Plðcos θtÞ, rather
than Plð1ξÞ ¼ Plðβ cos θtÞ.5 In addition, the lth SO(3) PW

now includes the factor βl, making the resulting GPD look
singular for t → 0. We note, that in the cross channel the βl

factor corresponds to the usual suppression of the lth PW.
Similarly to Eqs. (29) and (33), we introduce a set of the
forwardlike functions, Q̄2νðy; tÞ, generating the form fac-
tors B̄n;lðtÞ:

B̄n;nþ1−2νðtÞ ¼
Z

1

0

dyynQ̄2νðy; tÞ; or equivalently;

B̄n;lðtÞ ¼
Z

1

0

dyynQ̄nþ1−lðy; tÞ; ð49Þ

and we provide the expression for the coefficients at powers
of ξ of the Nth Mellin moment (32):

hN;kðtÞ ¼
XN
n¼1
odd

Xnþ1

l¼0
even

βlþk−N−1B̄n;lðtÞð−1Þkþl−N−1
2

Γð1 − k−l−N
2

Þ
2kΓ

�
1
2
þ kþl−N

2

�
Γð2 − kþ NÞ

ðnþ 1Þðnþ 2ÞΓðN þ 1Þ
Γð1þ N−n

2
ÞΓ
�
5
2
þ Nþn

2

� : ð50Þ

We now would like to establish a link between the FG
projections (41), (42) constructed by means of the Abel
tomography procedure (38) in terms of the generalized
FFs Bn;l of the double PW expansion (28), and the set of
the generalized FFs B̄n;l occurring in the improved double
PW expansion (48), accounting for the threshold correc-
tions. This requires working out a relation between the
generalized FFs Bn;l and B̄n;l, which correspond to a
definite value of the cross channel angular momentum
J ¼ l.
In order to find a relation between these two quantities,

one has to reexpand (48) over the basis formed by the
Legendre polynomials Plð1ξÞ≡ Plðβ cos θtÞ. A similar type
of series transformation was addressed in Refs. [10,67] for
the case of two-hadron generalized distribution amplitudes
(GDAs). In our case, it can be done by an iterative
procedure reexpressing the set of the generalized FFs
Bn;l through B̄n;l by matching the two double PW expan-
sions. Such iterative procedure goes as follows:
(1) We require the expansions (48) and (28) to give the

same coefficients hN;kðtÞ at power ξk of Nth Mellin
moments.

(2) The coefficients hN;kðtÞ must be regular in the t → 0
limit. In the case of expansion (48), this requires to
assume specific singularities for the generalized FFs
B̄n;lðtÞ at t ¼ 0.

(3) For any odd N ≥ 1 the expansion (48) results in the
regular coefficient hN;0ðtÞ. Therefore, we conclude
that B̄n;nþ1ðtÞ ¼ Bn;nþ1ðtÞ. This also means that the
ν ¼ 0 forwardlike function does not require any
modification, i.e., Q̄0ðy; tÞ ¼ Q0ðy; tÞ, and it re-
mains to be exclusively fixed by the t-dependent
PDF, as in Eq. (31).

(4) Now we turn to the coefficient hN;2ðtÞ. It obtains
contributions from the forwardlike functions with

ν ¼ 0 and ν ¼ 1. To keep it regular for t ¼ 0 one has
to assume

Bn;n−1ðtÞ ¼ B̄n;n−1ðtÞ − ð1 − β2Þ
�
1

2
− n

�
B̄n;nþ1ðtÞ:

ð51Þ

Thus, the generalized FF Bn;l¼n−1ðtÞ obtains through
mixing a contribution from (lþ 2)th PW. The
mixing (51) is equivalent to the following relation
between the ν ¼ 1 forwardlike functions:

Q2ðy; tÞ ¼ Q̄2ðy; tÞ − ð1 − β2Þ

×

�
3

2
Q̄0ðy; tÞ þ yQ̄0

0ðy; tÞ
�
: ð52Þ

(5) Similarly, by considering the coefficient hN;2ðtÞ,
which obtains contributions from the forwardlike
functions with ν ¼ 0, 1, 2, we conclude that the
generalized FF Blþ3;lðtÞ obtains through mixing a
contribution from (lþ 2)th and (lþ 4)th PWs and
the Q4ðy; tÞ can be expressed in terms of Q̄4ðy; tÞ,
Q̄2ðy; tÞ, and Q̄0ðy; tÞ.

(6) The process can be further iterated. The mixing for
Blþ2ν−1;lðtÞ involves higher spin contributions up
to lþ 2ν.

From this discussion we conclude, that Jth FG projec-
tions expressed through Eqs. (41) and (42) obtain an
admixture of higher spin contribution involving a number
of cross channel SO(3) PWs increasing with the index ν
(30). The quantitative effect of this mixing is not that easy
to estimate, as it strongly depends on the number of PWs in
ν one has to take into account in a satisfactory GPD model.
For example, the “minimalist dual model” accounting only
for ν ¼ 0 contribution does not produce any mixing; and
the corresponding Jth FG projections exactly quantify
target’s response on the spin-J cross channel excitation.
For a GPD model including a limited number PWs in ν

5We employ (19) to the leading order accuracy, and, since l is
even, drop the (−1) factor in the argument of the Legendre
polynomials.
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(like the sea quark part of the KM model [40] accounting
for the ν ¼ 0, 1, 2 PWs) the mixing can be easily resolved
with help of equations like (52). However, the numerical
relevance of this mixing, and its dependence on the value of
J of the FG projection deserves a separate study and will be
addressed elsewhere. We conclude, that a necessity to
include a large number of PWs in ν may lead to a large
admixture of contributions of higher spins exchanges into a
given FG projection and this may barely destroy the
interpretation in terms of target’s response to the spin-J
cross channel excitation.

IV. FROISSART-GRIBOV PROJECTION
FOR THE SPIN-1=2 TARGET

Now we turn to the case of spin-1=2 target, which, for
brevity, we will refer to as a nucleon. According to Sec. 4.2
of Ref. [6], for such targets the appropriate combinations of
GPD to perform the expansion in the cross-channel SO(3)
partial waves are

HðEÞ
� ðx; cos θt; tÞ ¼ H�ðx; cos θt; tÞ þ τE�ðx; cos θt; tÞ;

ð53Þ

HðMÞ
� ðx; cos θt; tÞ ¼ H�ðx; cos θt; tÞ þ E�ðx; cos θt; tÞ;

ð54Þ

where τ≡ t=ð4m2Þ. These are the electric and magnetic
combinations, respectively, here, separately defined for
charge parity C ¼ �1 components of GPDs. From the

cross-channel perspective (15), HðEÞ
� ðx; cos θt; tÞ corre-

sponds to the helicities of nucleon and antinucleon couple

to jλ − λ0j ¼ 0, while HðMÞ
� ðx; cos θt; tÞ to jλ − λ0j ¼ 1.

Furthermore,
(1) the electric nucleon GPD has to be expanded in the

rotation functions (see, e.g., Appendix A.2 of [68])

dJ00ðcos θtÞ≡ PJðcos θtÞ, analogously to the case of
spinless target GPD;

(2) the magnetic nucleon GPD has to be expanded in
the rotation functions dJ01ðcos θtÞ≡ ðJðJ þ 1ÞÞ−1=2
sin θtP0

Jðcos θtÞ, where P0
JðzÞ stands for the deriva-

tive of the Jth Legendre polynomial.
The electric combinations HðEÞ

� ðx; ξ; tÞ are normalized
according to

Z
1

0

dxxHðEÞ
þ ðx; ξ; tÞ ¼ Mq

2ðtÞð1 − τÞ þ τ2JqðtÞ

þ 4

5
ð1 − τÞd1ðtÞξ2; ð55Þ

Z
1

0

dxHðEÞ
− ðx; ξ; tÞ ¼ GðEÞqðtÞ: ð56Þ

The normalization of the magnetic combinations

HðMÞ
� ðx; ξ; tÞ is

Z
1

0

dxxHðMÞ
þ ðx; ξ; tÞ ¼ 2JqðtÞ;Z

1

0

dxHðMÞ
− ðx; ξ; tÞ ¼ GðMÞqðtÞ; ð57Þ

where JqðtÞ is the (t-dependent) fraction of the nucleon
angular momentum carried by a specific quark flavor, and
GðE;MÞqðtÞ are the usual electric and magnetic combinations
of nucleon’s form factors,

GðEÞqðtÞ¼Fq
1ðtÞþ τFq

2ðtÞ; GðMÞqðtÞ¼Fq
1ðtÞþFq

2ðtÞ:
ð58Þ

We introduce the electric and magnetic elementary LO
amplitudes:

HðEÞ
� ðξ; tÞ ¼

Z
1

−1
dxðHqðx; ξ; tÞ þ τEqðx; ξ; tÞÞ

�
1

ξ − x − i0
∓ 1

ξþ x − i0

�
;

¼
Z

1

0

dxHðEÞ
� ðx; ξ; tÞ

�
1

ξ − x − i0
∓ 1

ξþ x − i0

�
; ð59Þ

and

HðMÞ
� ðξ; tÞ ¼

Z
1

−1
dxðHqðx; ξ; tÞ þ Eqðx; ξ; tÞÞ

�
1

ξ − x − i0
∓ 1

ξþ x − i0

�
;

¼
Z

1

0

dxHðMÞ
� ðx; ξ; tÞ

�
1

ξ − x − i0
∓ 1

ξþ x − i0

�
; ð60Þ

with
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ImHðE;MÞ
� ðξ; tÞ ¼ πHðE;MÞ

� ðξ; ξ; tÞ: ð61Þ

In the following, we focus on the case of the singlet
combinations of electric and magnetic GPDsHðE;MÞ

þ , which
is of practical importance for the description of DVCS.
The electric singlet elementary amplitude (Compton FF)
satisfies the once subtracted fixed-t dispersion relation
analogous to (14):

ReHðEÞ
þ ðξ; tÞ ¼ P

Z
1

0

dx
2xHðEÞ

þ ðx; x; tÞ
ξ2 − x2

þ 4ð1 − τÞDðtÞ;

ð62Þ

and for the magnetic singlet Compton FF the once
subtracted fixed-t dispersion relation takes the form of

ReHðMÞ
þ ðξ; tÞ ¼ P

Z
1

0

dx
2xHðMÞ

þ ðx; x; tÞ
ξ2 − x2

: ð63Þ

The subtraction constant in the magnetic case is zero due to
the exact cancellation between the D-term contributions
into GPDs H and E.
In the present analysis we neglect the effects associated

with the target mass and set the relativistic velocity factor β
(20) to 1. Working out the Froissart-Gribov projection for
the electric combination fully repeats that for the case of
spinless target. The cross-channel SO(3) PWs are defined
as in Eq. (17). Therefore, for even J ≥ 0

FðEÞ
J¼0ðtÞ ¼ 2

Z
1

0

dx

�
Q0ð1=xÞ

x2
−
1

x

�
HðEÞ

þ ðx; x; tÞ

þ 4ð1 − τÞDðtÞ; ð64Þ

and

FðEÞ
J>0ðtÞ ¼ 2ð2J þ 1Þ

Z
1

0

dx
Q0ð1=xÞ

x2
HðEÞ

þ ðx; x; tÞ: ð65Þ

The magnetic case is a bit more intricate. The corre-
sponding cross channel SO(3) PWs are defined for even
J ≥ 2 as

FðMÞ
J ðtÞ ¼ 2J þ 1

2JðJ þ 1Þ
Z

1

−1
dðcos θtÞHðMÞðcos θt; tÞ

×
1

cos θt
ð1 − ðcos θtÞ2ÞC3=2

J−1ðcos θtÞ:

This definition is consistent with the expansion of the
conformal moments of the magnetic combination of

nucleon GPDs in 1
ξP

0
Jð1ξÞ ¼ 1

ξC
3
2

J−1ð1ξÞ within the dual para-
metrization framework, cf. Eq. (72).
To work out the FG projection we employ the dispersive

representation (63) analytically continued to the t-channel

HðMÞðcosθt; tÞ¼
Z

1

0

dx
2xðcosθtÞ2

1−x2ðcosθtÞ2
HðMÞ

þ ðx;x;tÞ ð66Þ

and plug it into the definition (66)

FðMÞ
J ðtÞ ¼ 2J þ 1

2JðJ þ 1Þ
Z

1

−1
dðcos θtÞHðMÞðcos θtÞ

1

cos θt
ð−1Þð1 − ðcos θtÞ2Þ12P1

Jðcos θtÞ;

¼
Z

1

0

dxHðMÞ
þ ðx; x; tÞ 2J þ 1

2JðJ þ 1Þ
ð−1Þ
x

Z
1

−1
dðcos θtÞð1 − ðcos θtÞ2Þ12P1

Jðcos θtÞ
�

1
1
x − cos θt

þ 1

− 1
x − cos θt

�
; ð67Þ

where we make use of the familiar relation between the
Gegenbauer polynomials and the associated Legendre
polynomials

C
3
2

J−1ðxÞ ¼ ð−1Þð1 − x2Þ−1
2P1

JðxÞ: ð68Þ

The cos θt integral in (67) can be performed using6

Z
1

−1
dyðz − yÞ−1ð1 − y2Þ12mPm

n ðyÞ ¼ 2ðz2 − 1Þ12mQm
n ðzÞ;

ð69Þ

whereQm
n ðzÞ stands for the associated Legendre function of

the second kind, which is defined as

Qm
n ðzÞ ¼ ðz2 − 1Þm2 d

mQnðzÞ
dzm

in the complex plane with a cut along ð−1; 1Þ and m ≤ n.
This finally yields for even J ≥ 2

6See the integral 7.124 of Gradshteyn and Ryzhik [69] for
k ¼ 0.
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FðMÞ
J ðtÞ ¼ 2

Z
1

0

dxHðMÞ
þ ðx; x; tÞ 2J þ 1

JðJ þ 1Þ
ð−1Þ
x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

x2
− 1

r
Q1

Jð1=xÞ; ð70Þ

and the J ¼ 0 projection, naturally, makes no sense for the magnetic combination. Figure 3 shows several first weight

functions 2 2Jþ1
JðJþ1Þ

ð−1Þ
x

ffiffiffiffiffiffiffiffiffiffiffi
1
x2 − 1

q
Q1

Jð1=xÞ entering definition of the FðMÞ
J ðtÞ projections (70). Similarly to the FG of the electric

GPD, the contribution of small-xB region is progressively damped with the growth of J.
Since the dual parametrization framework is instrumental for the physical interpretation of the FG projections of the

Compton FFs, it is worth to present a brief summary of the formalism for the spin-1=2 target case. The double PW

expansion for HðE;MÞ
þ reads

HðEÞ
þ ðx; ξ; tÞ ¼ 2

X∞
n¼1

odd even

Xnþ1

l¼0
even

BðEÞ
nl ðtÞθ

�
1 −

x2

ξ2

��
1 −

x2

ξ2

�
C

3
2
n

�
x
ξ

�
Pl

�
1

ξ

�
ð71Þ

and

HðMÞ
þ ðx; ξ; tÞ ¼ 2

X∞
n¼1
odd

Xnþ1

l¼0
even

BðMÞ
nl ðtÞθ

�
1 −

x2

ξ2

��
1 −

x2

ξ2

�
C

3
2
n

�
x
ξ

�
1

ξ
P0
l

�
1

ξ

�
; ð72Þ

where, in complete analogy with Eq. (29), the electric and and magnetic generalized form factors are generated as theMellin
moments of corresponding forwardlike functions

BðE;MÞ
n;nþ1−2νðtÞ ¼

Z
1

0

dyynQðE;MÞ
2ν ðy; tÞ or BðE;MÞ

n;l ðtÞ ¼
Z

1

0

dyynQðE;MÞ
nþ1−lðy; tÞ: ð73Þ

The forwardlike functionsQðE;MÞ
0 ðy; tÞ are fixed in terms of t-dependent quark densities qþðy; tÞ and eþðy; tÞ≡ Eþðy; 0; tÞ:

QðEÞ
0 ðy; tÞ ¼

�
ðqþðy; tÞ þ τeqþðy; tÞÞ −

x
2

Z
1

y

dz
z2

ðqþðz; tÞ þ τeqþðz; tÞÞ
�
;

QðMÞ
0 ðy; tÞ ¼ 1

2

Z
1

y

dz
z
ðqþðz; tÞ þ eqþðz; tÞÞ

�
1þ y

z

�
: ð74Þ

The normalization is provided by the momentum and angular momentum sum rules:

BðEÞ
1;2 ðtÞ≡

Z
1

0

dxxQðEÞ
0 ðx; tÞ ¼ 5

6
½Mq

2ðtÞð1 − τÞ þ τ2JqðtÞ�;

BðMÞ
1;2 ðtÞ≡

Z
1

0

dxxQðMÞ
0 ðx; tÞ ¼ 5

12
2JqðtÞ: ð75Þ

The Mellin moments of the GPDs (71), (72) for odd N ≥ 1 read

Z
1

0

dxxNHðEÞ
þ ðx; ξ; tÞ ¼

XNþ1

k¼0
even

hðEÞN;kðtÞξk;

Z
1

0

dxxNHðMÞ
þ ðx; ξ; tÞ ¼

XN−1

k¼0
even

hðMÞ
N;k ðtÞξk; ð76Þ

where the coefficients for the electric combination,7

7Compare Eq. (5) for the definition of the coefficients ANþ1;kðtÞ, BNþ1;kðtÞ, and CNþ1ðtÞ through the form factor decomposition of
nucleon matrix elements of twist-2 local quark operators (4).
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hðEÞN;kðtÞ≡ 2kðANþ1;kðtÞ þ τBNþ1;kðtÞÞ þ δNþ1;k2
Nþ1CNþ1ðtÞ with even k ≤ N þ 1; ð77Þ

are expressed through the generalized FFs BðEÞ
n;l ðtÞ by Eq. (33). The coefficients for the magnetic combination,

hðMÞ
N;k ðtÞ≡ 2kðANþ1;kðtÞ þ BNþ1;kðtÞÞ with even k ≤ N − 1; ð78Þ

are expressed through BðMÞ
n;l ðtÞ as

hðMÞ
N;k ðtÞ ¼

XN
n¼1
odd

Xnþ1

l¼2
even

BðMÞ
nl ðtÞð−1Þkþl−N−1

2

Γð1 − k−l−N
2

Þ
2kΓ

�
1
2
þ kþl−N

2

�
Γð2 − kþ NÞ

ð1 − kþ NÞðnþ 1Þðnþ 2ÞΓðN þ 1Þ
Γð1þ N−n

2
ÞΓ
�
5
2
þ Nþn

2

� : ð79Þ

The Abel transform tomography method of Ref. [35] admits a straightforward generalization for the electric and magnetic
Compton FFs. This requires introducing the electric and magnetic GPD quintessence functions

NðE;MÞðy; tÞ≡X∞
ν¼0

y2νQðE;MÞ
2ν ðy; tÞ: ð80Þ

The inversion formula for the electric case repeats the spinless case result (38), while for even non-negative J we obtain the
following relation between the Mellin moments of the electric GPD quintessence function and the FG projection

FðEÞ
J¼0ðtÞ ¼ 4Reg

Z
1

0

dy
y
ðNðEÞðy; tÞ −QðEÞ

0 ðy; tÞÞ ¼ 4
X∞
ν¼1

BðEÞ
2ν−1;JðtÞ;

FðEÞ
J>0ðtÞ ¼ 4

Z
1

0

dyyJ−1NðEÞðy; tÞ ¼ 4
X∞
ν¼0

BðEÞ
Jþ2ν−1;JðtÞ; ð81Þ

where, analogously to Eq. (36), the J ¼ 0 integral may require a regularization of the Regge-like singularity for y ¼ 0.
For the magnetic combination the function NðMÞðy; tÞ is expressed through the inverse Abel transformation:

NðMÞðy; tÞ ¼ 1

2π

1 − y2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y2

p Z
1

2y

1þy2

dxffiffiffi
x

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x − 2y

1þy2

q ImHðMÞ
þ ðx; tÞ: ð82Þ

To check that the analogue of (81) also holds for the magnetic combination and for even J > 0,

FðMÞ
J>0ðtÞ ¼ 4

Z
1

0

dyyJ−1NðMÞðy; tÞ ¼ 4
X∞
ν¼0

BðMÞ
Jþ2ν−1;JðtÞ; ð83Þ

we compute the ðJ − 1)th Mellin moment of (82)

Z
1

0

dyyJ−1NðMÞðy; tÞ ¼ 1

π

Z
1

0

dxImHðMÞ
þ ðx; tÞ 1ffiffiffiffiffi

2x
p

Z
x

0

dw

w
3
2

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − w2

p

w

�Jþ1
2 1ffiffiffiffiffiffiffiffiffiffiffi

x − w
p ; ð84Þ

where we interchanged the order of integration and performed the integration variable substitution 1
w ¼ 1

2
ðyþ 1

yÞ
corresponding to the Joukowski conformal map. One may verify that indeed the w integral in (84) provides the desired
result

1ffiffiffiffiffi
2x

p
Z

x

0

dw

w
3
2

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − w2

p

w

�Jþ1
2 1ffiffiffiffiffiffiffiffiffiffiffi

x − w
p ¼ −

J þ 1
2

JðJ þ 1Þ
1

x

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

x2
− 1

r
Q1

Jð1=xÞ
�
; ð85Þ

that corresponds to the weight function in the FG projection (70).
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Analogously to the spinless target case, by truncating the
ν summation in Eqs. (81) and (83) one may establish a set
of sum rules relating the electric and magnetic spin-J FG
projections to the combinations of the coefficients at
powers of ξ of the Mellin moments of GPDs (77), (78),
which can be expressed in terms of the form factors of the
nucleon matrix elements (5) of local twist-2 operators (4).
The resulting sum rules for the electric FG projections

coincide with those established in Sec. III for the spinless
case [see Eqs. (43) and (44) for J ¼ 0, 2 sum rules], with

the obvious replacement hN;kðtÞ → hðEÞN;kðtÞ. Here, as an
example, we would like to consider the J ¼ 2magnetic FG
projection with truncation at νmax ¼ 1. It results in the
following sum rule

FðMÞ
J¼2ðtÞ ¼ 4ðBðMÞ

1;2 ðtÞ þ BðMÞ
3;2 ðtÞ þ…Þ;

¼ −
7

12
hðMÞ
1;0 ðtÞ þ

9

4
hðMÞ
3;0 ðtÞ þ

21

4
hðMÞ
3;2 ðtÞ

þ
	
contribution of conformal PWs

with ν ≥ 2



; ð86Þ

where the normalization of hðMÞ
1;0 ðtÞ, hðMÞ

3;0 ðtÞ is fixed from
the ξ → 0 limit of the magnetic nucleon GPD:

hðMÞ
1;0 ðtÞ≡

Z
1

0

dxxðqþðx; tÞ þ eþðx; tÞÞ ¼ 2JqðtÞ;

hðMÞ
3;0 ðtÞ≡

Z
1

0

dxx3ðqþðx; tÞ þ eþðx; tÞÞ: ð87Þ

V. FROISSART-GRIBOV OF THE COMPTON FFs:
GPD MODELS VS EXPERIENTIAL DATA

In this section we consider phenomenological applica-
tion of the FG projections of CFFs. The numerical
calculations of a first few FG projections are presented

in Fig. 4 for FðEÞ;DVCS
J and in Fig. 5 for FðMÞ;DVCS

J . These

results have been obtained with the GK [38,39] and the
MMS [41] models implemented in the PARTONS [70], the
KM15 model [40] implemented in the GeParD software
package [71]. We also present estimates of the FG
projections accounting only the contribution of the best
constrained nucleon GPD H.
We highlight substantial differences between GPD mod-

els used in our numerical analysis, helping us to illustrate
sensitivity of the FG projections on the choice of the
modeling strategy:
(1) The GK model is based on the so-called two-

component representation [double distribution
(DD) part þD-term] [44]; and has been primarily
constrained by deeply vector meson production data
collected at low-xB.

(2) The MMSmodel is a modified version of GK, where
the valence parts of GPDs H and E have been
replaced by new Ansätze based on the one-compo-
nent DD representation [72], with free parameters
constrained by the DVCS measurements collected
by the JLab Hall A and CLAS experiments.

(3) The KM15 is a hybrid model with the sea contri-
bution described with help of the double partial
wave expansion, and valence one with dispersion
integral representation. The model is constrained in a
global analysis of the DVCS data.

We compare the results for the FG projections from these
phenomenological GPD models to those computed from
the global extraction of the DVCS CFFs obtained with help
of the machine learning technique relying on the artificial
neural networks. In Ref. [43] a set of simple artificial neural
networks was used to represent the real and imaginary parts
of the CFFsH, E, H̃, and Ẽ. The networks process the CFF
kinematics, i.e., values of xB, t, and Q2, and the real and
imaginary parts of the CFFs are extracted independently
without imposing the dispersion relation. This allows us to
obtain a truly “agnostic” result enabling the examination of
data quality and cross-checking the numerical procedure
through verifying that the resulting CFFs satisfy the
appropriate dispersion relations. The outcome of con-
straining the networks in a global analysis of the DVCS
data is given as a set of replicas (for details of the
replication process see Ref. [43]), allowing to propagate
experimental uncertainties to other quantities, in the present
case being the FG projections.
We start the discussion of results with FðEÞ;DVCS

J projec-
tions plotted in Fig. 4. For J ¼ 0, the KM15 gives a
substantially different result, as it is the only model from
the presented set that includes a functional form of the
D-term.8 Addition of a realistic D-term (see for instance

FIG. 3. First weight functions 2 2Jþ1
JðJþ1Þ

ð−1Þ
x

ffiffiffiffiffiffiffiffiffiffiffi
1
x2 − 1

q
Q1

Jð1=xÞ
entering the definition of the FðMÞ

J ðtÞ projections (70).

8Formally, D-term is included in the MMS, however, in
Ref. [41] the functional form of t-dependent normalization factor
of this quantity is not given, preventing us from using it in our
numerical estimate.
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Ref. [14]) in the GK and MMS models would lead to a
similar picture as for the KM15, i.e., the dominance of the
4ð1 − τÞDðtÞ term in Eq. (64) over that involving

HðEÞ
þ ðx; x; tÞ. In Fig. 4 we also see that, despite the GK

and MMS models having the same sea quark components,

they result in significantly different estimates for FðEÞ;DVCS
J .

This confirms that even the smallest-J FG projections are
mostly sensitive to the valence contribution. The estimates

FIG. 4. FðEÞ;DVCS
J for J ¼ 0, 2, 4 at Q2 ¼ 2 GeV2 as a function of t. First row: results obtained with the GK (solid black), MMS

(dashed red), and KM (dotted blue) models. Thin lines denote estimates obtained with only GPD H. Second row: as before, with
addition of results obtained with the CFFs coming from global analysis of the DVCS data [43] (light turquoise bands, corresponding to
68% confidence level). Dark inner bands are for results obtained with only the CFF H.

FIG. 5. FðMÞ;DVCS
J for J ¼ 2, 4, 6 at Q2 ¼ 2 GeV2 as a function of t. For further description see the caption of Fig. 4.
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coming from the MMS are in general smaller in magnitude
than those from other models, which is a consequence of
building this model with the one-component DD modeling
scheme. Finally, results obtained with the CFFs directly
extracted from experimental data show a window in t
reasonably well constrained by current experiments, where
the FG projections are measured with a satisfactory
precision. As in this window jτj ≪ 1, therefore GPD E,
which is known with a poor precision, contributes only a
little. We stress that future measurements, preferably at
JLab due to the sensitivity of the FG projections to the
valence contribution, should allow to distinguish between
various GPD models.
The magnetic FG projections FðMÞ;DVCS

J plotted in Fig. 5
are not sensitive to the D-term contribution, allowing for a
straightforward comparison between all three GPD models
for any value of J. It is remarkable, that the GK and MMS
models give approximately the same estimates for

FðMÞ;DVCS
J , despite they present different contributions of

GPD H and already discussed results for FðEÞ;DVCS
J . The

explanation comes by looking at Eqs. (103), (105), (106) of

Ref. [41], which suggest, that HðMÞ
þ ðx; ξ; tÞ combination is

not sensitive to the differences between the one- and two-
component DD modelling schemes. Since both the GK and
MMS give essentially the same forward limits for GPDs H
and E, and employ the same profile functions, they give, in
this case, very similar results. The measurement of the FG
projections with CFFs directly extracted from experimental
data displays much larger relative uncertainties than in the

case of FðEÞ;DVCS
J . This is caused by a limited knowledge of

the contribution of GPD E, which here is not suppressed by
the kinematic coefficient τ.
Figure 6 illustrates the sensitivity of the FG projections

to the GPD modeling assumptions. The figure shows

FðEÞ;DVCS
J ðt ¼ 0Þ for J ¼ 0, 2, 4 as a function of the profile

function parameter, b, appearing in the commonly
employed factorized Radyushkin’s double distribution
Ansatz (RDDA) [73]:

Hðx; ξ; t ¼ 0Þ ¼
Z

1

−1
dβ

Z
1−jβj

−1þjβj
dαδðβ þ ξα − xÞqðβÞ Γð2bþ 2Þ

22bþ1Γ2ðbþ 1Þ
ðð1 − jβjÞ2 − α2Þb
ð1 − jβjÞ2bþ1

; ð88Þ

where the normalization of the profile function ensures the
correct reduction to the forward limit,Hðx; 0; 0Þ ¼ qðxÞ, and
the parameter b controls the buildup of the skewness effect
under integration of a double distribution over the line
α ¼ ðx − βÞ=ξ. In particular, b → ∞ corresponds to vanish-
ing skewness effect: Hðx; ξ; 0Þ ¼ qðxÞ. In our exercise, we
employ the same PDFs as in the GK model and make use of
the same value of b both for valence and sea contributions.
The obtained results demonstrate a strong sensitivity of the
projections on the choice of this parameter. Such leverage

may help in the future to constrain the parameter from
experimental data.
In addition, in Fig. 6 we present a comparison between

the exact evaluation of the FG projections FðEÞ;DVCS
J and

values obtained relying on the sum rules based on the
“next-to-minimalist” dual model (νmax ¼ 1) presented in
Sec. III. The exactly evaluated result for the FG projections
for the double distribution model and the sum rules
approximately agree only for small values of b. This
behavior is well expected, since, as demonstrated in

FIG. 6. FðEÞ;DVCS
J for J ¼ 0, 2, 4 at t ¼ 0 and Q2 ¼ 2 GeV2 as a function of the double distribution profile parameter, b,

simultaneously set for both valence and sea contributions. The GPD model used in this exercise is based on Eq. (88) and utilises the
same PDFs as the GK model. Filled circles present the exact values for the FG projections, while open ones show the values obtained
with the sum rules based on the “next-to-minimalist” dual model (νmax ¼ 1) presented in Sec. III. Note that the sum rule (43) for

FðEÞ;DVCS
J¼0 does not show any b dependence since the coefficient h1;0 is fixed by the first Mellin of the parton density qðxÞ; and h1;2 ¼ 0

since the D-term is not included in (88). The dashed lines denote the asymptotic result for the FG projections in the b → ∞ limit.
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Ref. [53], the reparametrization of a model based on a
b-dependent RDDA (88) into the dual parametrization
framework requires to account conformal PWs up to
νmax ¼ b − 1 in order to reproduce the skewness effect
for small ξ, which determines the FG projections with small
J. Therefore, a GPD model based on the RDDAwith large-
b presents an example of a model for which the sum rules
for the FG projections require to account a large number of
subleading conformal partial waves. However, for small
values of b, usually employed in phenomenology (e.g., the
GKmodel sets b ¼ 1 for valance and b ¼ 2 for sea quarks),
the sum rules work reasonably well. We conclude that a

possible discrepancy between measured FðMÞ;DVCS
J quantity

and the sum rules, the latter being obtained for instance
with the help of lattice QCD, may quantify the missing
contribution of higher ν ≥ 2 subleading conformal partial
waves, cf. Eqs. (41) and (42). Such observation would be
also interesting for studying target mass effects, see the
discussion in Sec. III, as contributions associated to higher
ν are more prone to the mixing of PWs.

VI. CONCLUSIONS AND OUTLOOK

The Froissart-Gribov projections of generalized
Compton form factors arise within the dispersive analysis
of the DVCS amplitudes expanded in the partial waves of
the t-channel. The FG projections are computed from the
known absorptive parts of the CFFs through convolutions
with the second kind Legendre functions. Since the fixed-t
dispersion relation for the charge-even CFF only requires
one subtraction, the corresponding J ¼ 0 FG projection
includes the explicit contribution from the D-term form
factor.
In this paper, we presented an overview of application of

the FG projections in the context of DVCS and constructed
a proper generalization of the formalism for the case of
spin-1=2 target hadrons specifying the projections for the
electric, HðEÞ ¼ Hþ τE, and magnetic, HðMÞ ¼ Hþ E,
combinations of nucleon CFFs suitable for expansion in the
cross channel SO(3) PWs. We worked out the explicit
expression for the FG projection of the magnetic combi-
nation of nucleon CFFs involving the associated Legendre
functions of the second kind Q1

Jð1=xÞ.
It is worth emphasizing that the FG projections represent

observable quantities. Their calculation only requires a
knowledge of the absorptive parts of CFFs and the D-term
form factor in the physical domain of the DVCS reaction.
Moreover, it does not necessarily imply the analytic
continuation in t to the physical domain of the cross
channel.
We presented the calculation of the J ¼ 0, 2, 4 FG

projections of both electric and magnetic combinations
HðE;MÞ of the CFFs using the Goloskokov-Kroll,
Kumerički-Müller, and Mezrag-Moutarde-Sabatié phe-
nomenological GPD models presently employed for the

analysis of the DVCS data. We also compare the model
results for the FG projections with those obtained from the
global model-independent extraction [43] of the DVCS
CFFs with use of the artificial neural network framework.
The FG projections turn to be rather discriminative with
respect to the phenomenological GPD models. In particu-
lar, we demonstrated the sensitivity of the FG projections to
the parameter b of the profile function of the commonly
used Radyushkin’s DD Ansatz. Moreover, the projections
with high J mostly receive contributions from the large-xB
domain and can be used to study the buildup of skewness
effect at ξ → 1.
A particularly clear interpretation of the FG projections

is obtained within the dual parametrization of GPDs based
on the double [conformal and cross-channel SO(3)] PW
expansion of GPDs. The framework of the dual para-
metrization allows an independent derivation of the FG
projections in terms of the Mellin moments of the GPD
quintessence functions NðE;MÞðy; tÞ recovered from the
imaginary parts of CFFs by means of the inverse Abel
transformation. This brings a connection between the FG
projections and the generalized FFs Bn;lðtÞ of the dual
parametrization, which, in turn, are in one-to-one corre-
spondence with the FFs of hadronic matrix elements of
local twist-2 operators occurring in the calculation of the
Mellin moments of GPDs.
Truncating the double PW expansion at a certain value

νmax of the parameter ν (30), which specifies the difference
between the conformal spin and the cross channel angular
momentum, results in a set of sum rules for the FG
projections. These sum rules can be tested with phenom-
enological models of GPDs and also bring a new con-
nection between the experimental data and the lattice QCD
calculation of the GPD Mellin moments.
The approach based on the dual parametrization of GPDs

provides an interpretation of the FG projections as quan-
tities characterizing hadron’s response on the cross channel
excitations with angular momentum J. Thus the FG
projection may be seen as a tool to expand the nonlocal
stringlike QCD probe created by the hard subprocess of
hard exclusive reaction into a tower of local probes of
spin-J. Moreover, relying on the FG projections it might be
possible to introduce a new type of observables, “spin-J
radii” of hadrons, defined from the t ¼ 0 slopes of the
spin-J FG projections. These quantities may complement
the broadly discussed charge and mass (gravitational) radii
of hadrons [see, e.g., Refs. [11,74]] and provide informa-
tion on hadron’s “effective charge distribution” accessible
with a cross channel probe of particular spin J.
The method also possesses a potential for generalization

for the nondiagonal DVCS and DVMP reactions sensitive to
transition GPDs, which recently got a revival of both
theoretical [36,37,75] and experimental [76] attention.
Study of exciting the nucleon resonanceswithQCDnonlocal
probes may provide new tools for baryon spectroscopy
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through focusing on the resonances excited by the cross
channel probe with particular angular momentum J and
allow us to study resonances that are only very weakly
coupled to conventional elementary probes.
Finally, we stressed that the interpretation of the FG

projections in terms of hadron’s response on cross channel
spin-J excitation becomes challenging once taking into
account the effect of the target mass corrections. This
results in admixture of higher spin contributions which is
soaring up with increasing of the number of accounted PWs
νmax. Taming the mixing may be possible keeping νmax not
too large. The consistency of this hypothesis can be tested
with help of set of sum rules for the FG projections. On the
other hand, the better understanding of the mixing requires
further studies addressing the analytic structure of the FG
projections in t and careful workout of the analytic
continuation of the relevant FFs between the physical
domain of the DVCS and that of the cross channel
counterpart reaction γ�γ → hh̄, e.g., generalizing the dis-
persive technique of Ref. [50].
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APPENDIX A: CASE OF CHARGE-ODD GPD H −
In this appendix we briefly discuss the case of charge-

odd GPD H−, which can be experimentally accessed, e.g.,
through the diphoton photoproduction [77]. We deal with
the SO(3) partial waves in cos θt with odd spin, rather than
even spin, and define the cross channel PWs of the
elementary amplitude H− (12) as

FJðtÞ¼
ð−1ÞJð2Jþ1Þ

2

Z
1

−1
dðcosθtÞPJðcosθtÞH−ðcosθt; tÞ:

ðA1Þ

By plugging the unsubtracted dispersion relation

H−ðcos θt; tÞ ¼
Z

1

0

dx
2 cos θt

−1þ x2 cos2 θt
H−ðx; x; tÞ ðA2Þ

into (A1) we obtain the Froissart-Gribov projection for all
odd J ≥ 1:

FJðtÞ ¼ 2ð2J þ 1Þ
Z

1

0

dx
QJð1=xÞ

x2
H−ðx; x; tÞ

¼ 4
X∞
ν¼0

BJþ2ν−1;JðtÞ: ðA3Þ

Here the charge-odd generalized FFs BnlðtÞ of the dual
parametrization framework defined in the double PW
expansion

H−ðx; ξ; tÞ ¼ 2
X∞
n¼0
even

Xnþ1

l¼1
odd

BnlðtÞθ
�
1 −

x2

ξ2

�

×

�
1 −

x2

ξ2

�
C

3
2
n

�
x
ξ

�
Pl

�
1

ξ

�
ðA4Þ

are generated by the Mellin moments of the charge-odd
forwardlike functions Q2νðy; tÞ. The charge-odd function
Q0ðy; tÞ is fixed in terms of t-dependent charge-odd
combination of PDFs (8):

Q0ðy; tÞ ¼ q−ðy; tÞ −
y
2

Z
1

y

dz
z2

q−ðz; tÞ; ðA5Þ

and normalized to the electromagnetic form factor

B1;0ðtÞ ¼
Z

1

0

dyQ0ðy; tÞ ¼
3

4
FqðtÞ: ðA6Þ

For even N ≥ 0 the Mellin moments of the GPD (A4)
reads

Z
1

0

dxxNH−ðx; ξ; tÞ ¼
XN
k¼0
even

hN;kðtÞξk: ðA7Þ

By truncating the series in (A3) at νmax ¼ 1, we establish
the following sum rule for J ¼ 1:

FJ¼1ðtÞ ¼ 4ðB0;1ðtÞ þ B2;1ðtÞ þ…Þ

¼ 5

4
h0;0ðtÞ þ

21

4
h2;0ðtÞ þ

35

4
h2;2ðtÞ

þ
	
contribution of conformal PWs

with ν ≥ 2



; ðA8Þ

where

h0;0ðtÞ ¼
Z

1

0

dyq−ðy; tÞ ¼ FqðtÞ;

h2;0ðtÞ ¼
Z

1

0

dyy2q−ðy; tÞ: ðA9Þ
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APPENDIX B: A LINK TO THE DOUBLE PW
EXPANSION IN THE MELLIN-BARNES

INTEGRAL FRAMEWORK

In this Appendix we briefly summarize the relation
established in Ref. [31] between the double partial wave
expansion coefficients Bn;lðtÞ (29) of the dual parametriza-
tion approach and the conformal moments of GPDs defined
according to the conventions employed within the frame-
work of Refs. [40,54] based on the Mellin-Barnes integral
technique.
The conformal moments of the GPD H

Hnðξ; tÞ ¼
Z

1

−1
dxcnðx; ξÞHqðx; ξ; tÞ ðB1Þ

are defined with respect to the conformal basis

cnðx; ξÞ ¼ ξn
Γð3

2
ÞΓð1þ nÞ

2nΓð3
2
þ nÞ C

3
2
n

�
x
ξ

�
: ðB2Þ

The basis (B2) is normalized in way that in the forward limit
ξ → 0 it gives rise to the usual Mellin moments:
limξ→0 cnðx; ξÞ ¼ xn.
The conformal moments (B1) of the charge-even GPD

are further expended over the basis of the cross channel
SO(3) PWs

Hnðξ; tÞ¼
Xðnþ1Þ=2

ν¼0

η2νHn;nþ1−2νðtÞd̂nþ1−2ν
00 ðξÞ; for odd n;

ðB3Þ

where d̂J00ðξÞ stand for the reduced Wigner d functions:

d̂J00ðξÞ ¼
Γð1

2
ÞΓð1þ JÞ

2JΓ
�
1
2
þ J

� ξJPJ

�
1

ξ

�
: ðB4Þ

Therefore, accounting for the normalization issues, the two
sets of double PW expansion coefficients are related as

Hn;nþ1−2νðtÞ ¼
Γð3þ nÞΓ

�
3
2
þ n − 2ν

�
22νΓ

�
5
2
þ n

�
Γð2þ n − 2νÞ

Bn;nþ1−2νðtÞ:

ðB5Þ

The set of the forwardlike functions of the dual para-
metrization Q2νðy; tÞ can be reconstructed from the set of
coefficients Hn;nþ1−2νðtÞ by the usual Mellin inversion
formula, see, e.g., [78]:

y2νQ2νðy; tÞ ¼
1

2πi

Z
cþi∞

c−i∞
djy−j−1

22νΓð5
2
þ jþ 2νÞΓð2þ jÞ

Γð3þ jþ 2νÞΓð3
2
þ jÞ Hjþ2ν;jþ1ðtÞ: ðB6Þ
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Hořejši, Wave functions, evolution equations and evolution
kernels from light ray operators of QCD, Fortschr. Phys. 42,
101 (1994).

[2] A. V. Radyushkin, Nonforward parton distributions, Phys.
Rev. D 56, 5524 (1997).

[3] X.-D. Ji, Deeply virtual Compton scattering, Phys. Rev. D
55, 7114 (1997).

[4] X.-D. Ji, Off forward parton distributions, J. Phys. G 24,
1181 (1998).

[5] K. Goeke, M. V. Polyakov, and M. Vanderhaeghen, Hard
exclusive reactions and the structure of hadrons, Prog. Part.
Nucl. Phys. 47, 401 (2001).

[6] M. Diehl, Generalized parton distributions, Phys. Rep. 388,
41 (2003).

[7] A. Belitsky and A. Radyushkin, Unraveling hadron struc-
ture with generalized parton distributions, Phys. Rep. 418, 1
(2005).

[8] S. Boffi and B. Pasquini, Generalized parton distributions
and the structure of the nucleon, Riv. Nuovo Cimento 30,
387 (2007).

[9] X.-D. Ji, Gauge-invariant decomposition of nucleon spin,
Phys. Rev. Lett. 78, 610 (1997).

[10] M. V. Polyakov, Hard exclusive electroproduction of two
pions and their resonances, Nucl. Phys. B555, 231
(1999).

[11] M. V. Polyakov and P. Schweitzer, Forces inside hadrons:
pressure, surface tension, mechanical radius, and all that,
Int. J. Mod. Phys. A 33, 1830025 (2018).

[12] V. D. Burkert, L. Elouadrhiri, and F. X. Girod, The pressure
distribution inside the proton, Nature (London) 557, 396
(2018).

[13] K. Kumerički, Measurability of pressure inside the proton,
Nature (London) 570, E1 (2019).
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