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Choosing which properties of the data to use as input to multivariate decision algorithms—also known as
feature selection—is an important step in solving any problem with machine learning. While there is a
clear trend towards training sophisticated deep networks on large numbers of relatively unprocessed inputs
(so-called automated feature engineering), for many tasks in physics, sets of theoretically well-motivated and
well-understood features already exist. Working with such features can bring many benefits, including
greater interpretability, reduced training and run time, and enhanced stability and robustness. We develop a
new feature selection method based on distance correlation, and demonstrate its effectiveness on the tasks of
boosted top- and W-tagging. Using our method to select features from a set of over 7,000 energy flow
polynomials, we show that we can match the performance of much deeper architectures, by using only ten
features and two orders-of-magnitude fewer model parameters.
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I. INTRODUCTION

Recently there has been enormous progress in training
supervised deep learning classifiers to perform object and
event identification at the LHC. Deep learning classifiers
that make use of low-level information (such as the four
vectors of all the reconstructed particles in a jet or event)
have been shown to achieve impressive performance gains
over cut-based methods and shallow classifiers trained on
high level kinematic features, translating directly into better
physics performance [1–3].
One very fruitful benchmark task for developing new

architectures has been boosted top tagging, i.e., classifying
jets from hadronic-decays of boosted top quarks against the
background of light quark and gluon jets. Boosted top jets
have a rich, varied and subtle substructure that deep learning
classifiers can leverage and exploit to enhance their perfor-
mance. Boosted top tagging has been a fertile canvas for
working with a wide variety of deep learning methods, such
as deep neural networks (DNNs) [4–6], convolutional neural
networks (CNNs) [7–9], recurrent [10] and recursive neural
networks (NNs) [11,12], sets [13], graph NNs [14–16], and

transformers [17,18]. Performance gains have also been
reported using approaches that exploit the underlying
Lorentz invariance [19–23].
However, all of these high-performing deep learning

methods are black boxes, and there has been a parallel
effort in AI interpretability/explainability to understand
“what the machine learns” [24–28]. Recently, an important
step in this direction came from [29], which developed a
new forward feature selection technique to efficiently scan
through more than 7,000 energy flow polynomials (EFPs)
[30]—i.e., quantities that measure the energy distribution
inside a jet—in order to identify a small number (typically
of order ten) that together reproduce as closely as possible
the performance of a state-of-the-art black-box NN classi-
fier. Their method relied on a score called “average decision
ordering” (ADO) which measures how often a given feature
has the same decision ordering (DO) as the reference
classifier. This method has been applied to W-jets [29],
muons [31], electrons [32], and semivisible dark jets [33].
Aside from shedding light on “what the machine learns”,

constructive feature selection methods can have several
other interesting applications. Classifiers based on high-
level features (HLFs) could be more robust against domain
shifts and more easy to calibrate with collider data (as a
smaller number of distributions need to be validated). Also,
a classifier trained on only a few inputs could be made much
more lightweight (far fewer parameters), leading to less
intensive training and faster evaluation time. This could
have important applications to machine learning with
microsecond inference times, e.g., for the LHC trigger.
Finally, even if attempting to replicate a state-of-the-art deep
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learning classifier with a set of HLFs falls short, it might
have important physics implications, as it could teach us that
the set of HLFs being used is incomplete and does not fully
capture all the correlations in the data.
In this paper, inspired by [29], we present a new method

for forward feature selection. It is based on the measure
of statistical independence called distance correlation
(DisCo) [34–37], which was first used in the high energy
physics (HEP) literature to decorrelate top taggers against
jet mass [38], and was subsequently applied to ABCD
background estimation [39] and anomaly detection [40].
We use DisCo (instead of ADO) to measure how relevant
(statistically dependent) a given set of features is for the
classifier output. We show that our DisCo-based forward
feature selection method outperforms [29] on both hadronic
W tagging and hadronic-top tagging, in the sense that it
selects features more efficiently, ultimately achieving better
performance with fewer features. The upshot is that on top
tagging, our method selects as few as nine EFPs (from the
same sample of 7; 000þ as [29]), and training a very
compact DNN on these small number of EFPs, we achieve
nearly state-of-the-art performance, matching the rejection
power of ParticleNet-Lite [14] with only a fraction of
parameters.
Importantly, our method does not require a previously

obtained reference classifier, but can also be trained
equally well ab initio, using the truth labels (0 for back-
ground and 1 for signal). This is unlike the method of [29],
whose performance suffered when trained on truth labels.
Therefore, our DisCo-based forward feature selection
method is able to operate in two, conceptually different
modes: (1) either as an ab initio feature selector that aims
to produce the best-possible classifier given a set of
features; or (2) as a feature selector that aims to “explain”
a previously obtained black box classifier.
Note that the proposed forward or constructive feature

selection is very different from backward elimination
methods which try to iteratively remove features starting
with the full set of features, or feature attribution methods
which use Shapley values [41–51] to assign contributions
of each feature to explain the outcome of a pretrained
classifier output. As we will see in the numerical examples,
the performance of a classifier trained on the full space of
≈7; 000 features is much lower than what a carefully
selected set of ≈10 features can achieve, further motivating
the forward-feature selection strategy.
In the following, we first introduce a strategy for forward

feature selection in Sec. II and show how DisCo can be used
as a scoring function for promising features. Section III next
discusses the concrete application to top tagging. We show
that our method reaches performance equal to much more
complex architectures, using only a fraction of features and
complexity, even matching LorentzNet [22] in ablation
studies. There, we also investigate the leading eight EFPs
chosen (as well as their stability under repeated application

of our method) and attempt to use them to understand what
the machine learns. We observe that the same leading six
EFPs are found under multiple iterations of our method,
indicating their relevance for this task. Finally, Sec. IV
provides a discussion of results and further outlook.

II. METHOD

For supervised classification tasks,1 forward feature
selection methods operate on a feature space

F ¼ ff1; f2; f3;…; fNg: ð1Þ
We should think of each feature fi as a predetermined
function (e.g., an EFP) that operates on the low-level data
x⃗∈Rd of each event, i.e., fi ¼ fiðx⃗Þ. Given an already
selected set of n features F n ¼ ffi1 ; fi2 ;…; fing, the goal
of forward feature selection is to identify the next feature
finþ1

which is expected to improve the performance on the
classification task the most.
It is assumed here that the full feature spaceF is so large,

and the training of the classifier sufficiently expensive, that
one cannot just brute force select the next feature by
training N − n classifiers on all possible additional features
fi ∉ F n. Therefore, what is needed here is a much cheaper-
to-compute relevance score, that stands in as a proxy for the
classifier itself.
The relevance score takes as input a given set of features,

together with a reference label, evaluated over the dataset.
The reference label could be either truth labels, in which
case we are performing ab initio forward feature selection
in order to produce the highest-performing classifier that
we can or the reference label could be a pretrained state-of-
the-art classifier, in which case we are performing forward
feature selection for the purposes of AI explainability
(explaining the pretrained black box classifier).
In any event, for a set of features, the point is that the

relevance score can be obtained much more quickly than
training a classifier on the features, and the forward feature
selection algorithm can select the feature with the highest
score as the next feature.
The four steps involved in our feature selection algorithm

are illustrated in Fig. 1 and explained in the following:
(1) Step 1: Train on known features

Train a classifier network on a set of features
F n ¼ ffi1 ; fi2 ;…fing using the full training sample
of all events Xall, and obtain the classifier output
ypred for all events in Xall.
For simplicity and best possible performance, we

use a dense neural network (details in Appendix B),
although any other classification algorithm (e.g.,
XGBoost, logistic regressor) could be used as well.

1In this work, we focus on binary classification as the most
widely studied task, but generalization of the proposed technique
to other supervised learning problems is straightforward.
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(2) Step 2: Select the confusion set X0 ⊂ Xall
Instead of calculating the relevance scores using

the full dataset, we choose to instead focus on a
subset of the full data X0 ⊂ Xall that we call the
confusion set. These are events where we believe the
features in F n are least effective in separating signal
from background, and where adding a new feature
may have the largest impact. To identify this subset,
we select all events in a window around ypred ¼ 0.5,
as shown in Fig. 2; these should be the events where
the classifier is most confused about whether it is a
signal or a background. We observe that using a
confusion set instead of the full dataset improves
performance. We use events in 0.3 < ypred < 0.7 as
our confusion set X0. The boundaries of this window
are important hyperparameters of our algorithm, and
we settled on this choice after scanning through
different window sizes and seeing where the per-
formance of the method was best.

(3) Step 3: Assign a relevance score to each feature
To each feature fi in the feature space F , we

assign a relevance score sfi , which gauges how much
the feature will improve classification performance.
The relevance score is calculated using the feature

vectors evaluated on the events in the confusion set
X0, together with a reference label yref ,

X ¼ fðfi1ðx⃗Þ;…; finðx⃗Þ; fiðx⃗ÞÞjx⃗∈X0g;
Y ¼ fyrefðx⃗Þjx⃗∈X0g: ð2Þ

The relevance score assigned to each feature fi is

sfi ¼ Affine-DisCoðX ;YÞ: ð3Þ

As described in the Introduction, DisCo is short
for distance correlation [34–37], a measure of stat-
istical dependence that is zero if and only if the
random vectors X and Y are statistically indepen-
dent, and positive (and ≤ 1) otherwise. Therefore, it
is well-suited to judging whether adding fi to the
feature vector ðfi1 ;…finÞ produces a stronger cor-
relation with the reference label yref or not. Here we
are using the affine-invariant version of DisCo [52],
which is invariant under arbitrary linear transforma-
tions of X and Y, in order to make it more robust
against basis reparametrizations in the EFP space.
The multivariate affine-DisCo calculation is de-
scribed in more detail in Appendix C.

(4) Step 4: Add the feature with best relevance score to
the list of known features
We select the feature with the best score and add it

to F n. Then we proceed back to the first step to train

FIG. 1. Overview of the proposed forward-feature selection algorithm.

FIG. 2. Events in a window around the classifier output value
ypred ¼ 0.5 are selected as the confusion set X0 for DisCo-FFS.
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a network on the updated set of features F nþ1. The
procedure is stopped when the performance metric
saturates and the final set of features is returned.

While the above method explicitly describes our DisCo-
based forward feature selection (DisCo-FFS) algorithm, the
protocol is general enough to accommodate also other
iterative feature selection techniques. In Appendix A, we
use the same framework to outline how the forward feature
selection from [29] operates. This is based on DO for the
confusion set, and ADO for the relevance score, and we
will refer to it as DO-ADO-FFS throughout this work.

III. APPLICATION TO TOP-TAGGING

A. Dataset

We study the performance of the DisCo-feature selec-
tion algorithms on the top quark tagging landscape data-
set [1,53]. This dataset contains boosted, hadronically
decaying top jets as signal, and QCD (i.e., light quark
and gluon) jets as background, which are generated using
PYTHIA8 [54], with a center-of-mass energy of 14 TeV.
Multiple interactions and pileup are not included in this
dataset. The detector simulation is done using DELPHES [55],
with the ATLAS detector card. FastJet [56] is used to create
jets using the anti-kT algorithm [57] with R ¼ 0.8. Only
jets in the pT range [500, 650] GeV, and jηjj < 2, are
considered. The dataset contains only kinematic informa-
tion, in the form of energy-momentum four-vectors of all
the reconstructed particles in each jet, which are extracted
using the DELPHES energy-flow algorithm. No additional
tracking information or particle information is included.
The full dataset contains 2 million events, with 1 million

signal events and 1 million background events. This data is
split into 1.2 million events in the training set, 400,000 in
the validation set, and 400,000 in the test set, each set
containing equal number of signal and background events.

B. Feature space

For top-tagging we start with

F initial ¼ F 3 ¼ fmJ; pT;mW−candidateg; ð4Þ

where mJ is the mass of the jet, pT is the transverse
momentum of the jet and mW−candidate is the mass of the
W-candidate in the jet, calculated with a very simple
method; we recluster each fat jet using the exclusive kT
algorithm with R ¼ 0.3 into exactly three subjets. Then we
pick the pair of subjets whose invariant mass comes closest
to mW . This pair of subjets gives us the W-candidate and
their mass is mW−candidate. The distributions of the initial
features are illustrated in Fig. 3.
We then apply feature selection algorithms to a large set

of EFPs [30]. EFPs are functions of energy fractions and
angular separation of jet constituents,

zðκÞa ¼
 

pTaP
i∈ JpTi

!
κ

; θðβÞab ¼ ðΔη2ab þ Δϕ2
abÞβ=2; ð5Þ

where pTa is the transverse momentum of the ath jet
constituent, and the denominator in za is summed over all jet
constituents in a jet J. EFPs have a one-to-one correspon-
dence with a graph G,

X
a∈ J

zðκÞa → ðeach nodeÞ; θðβÞab → ðeach edgeÞ: ð6Þ

Thus, given a graphG, with N nodes and edges ðm;lÞ∈G,
the EFP is

EFPðκ;βÞG ¼
X
i1 ∈ J

� � �
X
iN ∈ J

zðκÞi1
� � � zðκÞiN

Y
ðm;lÞ∈G

θðβÞimil
: ð7Þ

The original EFPs [30] were introduced as IRC-safe
observables, with κ ¼ 1. However, in our feature space
we are motivated by [29] to consider other values of κ as
well. Following [29],2 we use energy flow polynomials

FIG. 3. Initial features chosen for top tagging; jet mass mJ (left), jet pT (center), and mass of the W-candidate (right).

2With one exception, we do not include additional features
from d ¼ 8 with c ¼ 4, as [29] do in their analysis. These
features were initially omitted due to difficulties in their calcu-
lation. It was later verified that their inclusion does not signifi-
cantly alter the performance of DisCo-FFS.
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with all combinations of d ≤ 7, β ¼ ½0.5; 1; 2� and κ ¼
½−1; 0; 0.5; 1; 2�, which form a space of 7,320 unique
features.

C. Results

1. Ab initio feature selection using truth labels

First, we consider the ab initio feature selection task,
using the truth labels to guide the algorithms so as to yield
the best possible classifier.
We apply the truth-guided DisCo-FFS and DO-ADO-

FFS3 to the training and validation set, and use the test set
only for evaluating the performance. (Network architectures
and hyperparameters used in this section are described in
Appendix B.) The performance metric chosen for top-
tagging is R30 (the QCD rejection factor at 30% top-tagging
efficiency). It allows a better separation of different methods
as area under curve (AUC) saturates and is more indicative
of the performance at a potential working point.
As shown in Fig. 4, the R30 value increases as more

features are added using the two feature selection methods.
This shows that both DisCo-FFS and DO-ADO-FFS are
selecting useful features. After nine features the perfor-
mance of the features added using the DisCo method
saturates with R30 ≈ 1250. We also see that our proposed

method outperforms DO-ADO-FFS and achieves a higher
R30 at each step.
Any worthwhile feature selection algorithm should do

better than randomly selecting features. To test this, we
randomly select each number of features 10 times, and use
the average and standard deviation of the R30 as our
“random baseline” shown in Fig. 4. Interestingly, we see
that the randomly selecting EFPs can also give better
performance, as we add more and more features, but not as
good as the FFS methods.

2. Feature selection using pretrained classifier

Next we turn to feature selection using a pretrained
classifier (so-called black-box guiding in [29]). For the pre-
trained classifier, we use the state-of-the-art LorentzNet
tagger [22].
We see in Fig. 4 that DO-ADO-FFS with LorentzNet

actually performs slightly better than DO-ADO-FFS with
truth labels. This somewhat counterintuitive result was also
observed by [29] in the context of boosted W-tagging, and
we confirm it here. As explained there, the confusion set of
the DO-ADO method consists of signal-background pairs
which are incorrectly ordered by the classifier trained at
every step (called ypred in Sec. II), with respect to the
reference labels. When using truth labels for the latter, the
confusion set can be significantly contaminated by signal-
background pairs which may never be ordered properly,
even by the ideal Neyman-Pearson classifier. This can in
turn distort the ADO score which is calculated on the

FIG. 4. Performance comparison between DisCo-FFS and DO-ADO-FFS methods, truth-guided and LorentzNet-guided. Shown
in gray is also the random selection baseline. The shaded bands around each curve come from training the NN classifier ten times on the
same set of features (similar to [1]). Overall, DisCo-FFS seems to select more relevant features than DO-ADO-FFS, resulting in a higher-
performing classifier at every step. Interestingly, while DO-ADO-FFS with truth labels actually performs worse than with
LorentzNet (a phenomenon also observed in [29]), no degradation in performance is observed for DisCo-FFS with truth labels.

3We note that in [29], the DO with truth labels was referred to
as TO (for “truth-ordering”) and it was pointed out that ADO with
truth-labels reduces to the usual AUC metric.
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confusion set. This explains why the LorentzNet-guided
DO-ADO-FFS performs better than the truth-guided DO-
ADO-FFS.
Meanwhile, we see from Fig. 4 that there is no significant

difference in performance between truth-guided and
LorentzNet-guided DisCo-FFS. This is perhaps the
more expected and intuitive result. We believe the reason
DisCo-FFS does not suffer from the degradation in perfor-
mance when using truth labels can be understood by the fact
that our confusion set is determined solely using the
classifier trained at every step, and does not involve the
reference labels at all. Also, our confusion set is determined
on background and signal jets separately. Therefore, the
issue of the forever-incorrectly-ordered signal-background
pairs never even arises here. It would be interesting to test
this explanation further, for example by combining these
different ways of choosing the confusion set (DO or ypred)
with different relevance scores (ADO or DisCo). We reserve
this for future work.
In any case, we conclude that, unlike DO-ADO-FFS,

DisCo-FFS does not seem suffer in performance when
using truth labels instead of a state-of-the-art pretrained
tagger. This means that DisCo-FFS should be a suitable
method for both ab initio feature selection and for explain-
ing black box taggers.

D. Comparison with other taggers

The top-tagging comparison study [1] includes two
methods which use high-level features as inputs for top-
tagging; one used a NN with multibody N-subjettiness as
input features [6,58], and the other uses a linear classi-
fication (with Fischer’s linear discriminant) on EFPs. All
other taggers are based on low-level jet information. The
proposed DisCo-FFS selection strategy based on nine EFPs
and three initial features outperforms all methods in the
published study [1]. However, it falls short in performance
to even more state-of-the-art taggers that were published
after [1]: ParticleNet [14], LorentzNet [22], the
ParT (particle transformer net, trained from scratch)
tagger, ParT f.t.(particle transformer net, trained on
the JetClass dataset [18], fine tuned on the landscape
dataset) [18], and PELICAN [23]. Nevertheless, our tagger
is able to achieve a very competitive performance with only
1440 parameters as shown in Table I and Fig. 5.
We also compare our performance to that of a network

(architecture described in Appendix B) that was trained on
all 7000 EFPs, along with mJ; pT and mW−candidate. As
shown in Table I, this network is only able to obtain a
performance of R30 ¼ 844. This is significantly worse than
the performance using the small subset of EFPs selected by
DisCo-FFS. Clearly, the use of uninformative features in
the training deteriorates the performance of the network. In
principle, it should be possible to optimize the hyper-
parameters to recover the lost performance, but this is not

so straightforward in practice, given the amount of time and
resources it takes to train a network on all 7000 EFPs.4 This
emphasizes the need of doing feature selection.
As a further aside, this result also indicates why another

popular feature selection method, which is based on
assigning feature attributions using Shapley values, is
not suitable here. Shapley values assume the existence
of a high-performing classifier trained on a set of features,
and then ranks those features in terms of their estimated
contributions to the classifier outputs. In fact, the original
Shapley values [42,43,46] are very much ill-suited to the
problem at hand; their computational complexity grows
exponentially with the number of features, so in practice
can never be computed for more than ∼10 features. Also
the features are assumed to be uncorrelated, for the
computation of Shapley values. With 7000 highly corre-
lated features, this is clearly not the right approach. Later
approaches such as SHAP [47] attempt to overcome the
computational complexity issue by approximating the
Shapley values in various ways. SHAP also used (approxi-
mate) Shapley values to unify different feature attribution
methods [41,44,45,59] but generally all these works still
assume independence of the features. This is an area of
active research and it is possible a Shapley-inspired
approach will work well on this problem in the future.
Suffice to say that in our experiments (based on Deep
SHAP [45,47] and the subpar DNN trained on 7000 EFPs),
we obtained results that were only marginally better than
random selection.

TABLE I. AUC and R30 comparison of different taggers on the
dataset from [1]. The R30 values of DisCo-FFS and ADO-FFS are
the average R30’s of ten classifier trainings, and the R30 of DNN
on 7,000 EFPs is calculated over a single run. The performance
for DisCo-FFS is after nine EFPs, whereas the performance
reported for DO-ADO is after 17 EFPs.

Taggers AUC R30 Param

Linear 1k EFPs [30] 0.980 384 1,000
N-sub 6 [6] 0.979 792� 18 57,000
N-sub 8 [6] 0.981 867� 15 58,000

ParticleNet [14] 0.986 1615� 93 366,000
ParticleNet-Lite [14] 0.984 1262� 49 26,000
LorentzNet [22] 0.987 2195� 173 224,000
ParT [18] 0.986 1602� 81 2,140,000
PELICAN [23] 0.987 2289� 204 45,000

DNN 7 k EFPs 0.980 844 237,000
DO-ADO (LorentzNet) 0.982 1212� 30 1,700
DisCo-FFS (truth) 0.982 1249� 43 1,400

4This is also why the R30 quoted here does not come with an
error bar from multiple retrainings; a single training was already
prohibitively time consuming for us.
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E. Effectiveness of small training samples

To showcase another important benefit of feature selec-
tion, we compare the performance of the features we
obtained using DisCo-FFS to ParticleNet and
LorentzNet, on smaller training datasets. We take the
set of features obtained in Sec. III C and train the same
neural network with same hyperparameters on 5%, 1%, and
0.5% of the same training data. While both LorentzNet
and ParticleNet had a superior performance for the
full training dataset, our set of features outperforms
ParticleNet at lower training fractions, and more-or-
less matches LorentzNet at 0.5% and 1% of the training
dataset, as shown in Fig. 6.

F. Robustness of the feature selection

It is interesting to ask whether the DisCo-FFS algorithm
selects the same features every time. This is not a priori
guaranteed, because there is some stochasticity to the
algorithm, coming from the training of the NN classifier
at every step (which in turn determines the confusion set on
which the relevance score is calculated).
Shown in Fig. 7 is the R30 vs number of features

selected, after running the DisCo-FFS algorithm five
independent times. We see that DisCo-FFS repeatedly
chooses the same first six EFPs. After that, the features
selected start to diverge from fully deterministic, at first
only slowly (there appear to be two possibilities for the

pairs of EFPs selected in the 7th and 8th iterations), and
then quickly from the 9th EFP onwards (on the 9th EFP,
the five trials selected five different EFPs).
This is broadly consistent with Fig. 4. There we see the

R30 shooting up rapidly during the first six EFPs, indicating
that they provide a lot of classification power, and should
produce a strong signal for the relevance score in the
DisCo-FFS selection procedure. Then the R30 plateaus but
does rise a little bit, from six EFPs to nine EFPs. This is
consistent with a much weaker signal coming from the

FIG. 6. Performance of training on 0.5%, 1%, and 5% of the
training data. The EFPs selected using DisCo outperform
ParticleNet, and match up to the performance of
LorentzNet [22] at 0.5% of the total training data.

FIG. 5. R30 vs number of parameters of the model, for many different approaches to top-tagging. LorentzNet [22], PaticleNet
[14], ParT, ParT f.t. [18], and PELICAN [23] are the some of the recent taggers with very good performances. “DisCo-FFS on
EFPs” corresponds to the simple DNN trained on the first nine EFPs selected by DisCo-FFS, while “DNN EFPs” is our DNN trained on
all the 7000 EFPs. The remaining taggers are taken from [1]. We see that the nine EFPs selected using DisCo-FFS have a very
competitive performance, especially given the number of parameters.
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relevance score and more possibility for randomness.
Finally, after nine EFPs, the R30 no longer rises and instead
fluctuates around 1250. This is consistent with the remain-
ing EFPs being selected randomly and not providing any
real signal to the relevance score.

G. Physical interpretation of the selected features

The selected energy flow polynomials can be used to
gain physical insight for the case of top tagging. Shown in

Tables II and III are the graphs, chromatic numbers c, ðκ; βÞ
values, and cumulative R30 values of the first eight EFPs
selected by DisCo-FFS. We see that five of the first six
EFPs selected are EFPs with c ¼ 3. A chromatic number of
a graph is the number of colors one can put to the nodes, so
that no edges are connected by the same color. As noted
in [30], the chromatic number of an EFP is also a proxy for
the number of prongs in the jet. In other words, c ¼ 3 EFPs
are probes of 3-prong substructure—exactly what one
would expect to be relevant for top tagging.

FIG. 7. Performance vs iteration for five trials of DisCo-FFS (performance is the mean R30 of ten trainings). We see that the feature
selection is deterministic for the first six EFPs selected (superimposed), and there is a corresponding sharp rise in R30. Then this is
followed by two paths (marked path 1 and path 2) in the 7th and 8th iterations. After that, DisCo-FFS finds different sets of features to
achieve similar performance.

TABLE II. The EFPs selected by DisCo-FFS in the first six
iterations.

Iter Feature c κ β R30

1 3 2 1 287� 3

2 3 2 1 529� 10

3 2 0 1 894� 23

4 3 1 0.5 956� 35

5 3 1 1 1081� 22

6 3 2 0.5 1201� 23

TABLE III. Two paths selected by the EFPs in the 7th and 8th
iteration.

Iter Feature c κ β

Path 1: 7 2 0 0.5

8 2 2 2

Iter Feature c κ β

Path 2: 7 4 0.5 0.5

8 3 1 1
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Interestingly, there is one c ¼ 2 EFP selected in the first
six EFPs. This probe of 2-prong substructure could be
related to the two prongs consisting of the b-quark and the
boosted W-jet inside the top quark.
We also see from Table II that both IRC-safe and unsafe

probes of 3-prong substructure are useful for tagging. The
first two EFPs have κ ¼ 2, and hence are an IRC-unsafe
probe of hard radiation, with the first one being a 3-point
correlator, and second one being a 4-point correlator.5

IRC-safe EFPs (κ ¼ 1) are not selected until the fourth
and fifth iteration.
In the seventh and eighth iterations, there appear to be

two possible paths for the FS algorithm to take, i.e., two
unique possibilities for the pairs of EFPs selected. These
are shown in Table III. In one of the paths, two IRC-unsafe
EFPs probing the 2-prong substructure are selected with
one of them probing small-angle radiation (β ¼ 0.5), and
the other one probing hard/wide-angle radiation (β ¼ 2),
which actually marks the first selected feature that probes
wide-angle radiation. In the other path, we see the appear-
ance of the first EFP which probes 4-prong substructure
with small-angle radiation (β ¼ 0.5), and this is followed
up by an IRC-safe EFP probing 3-prong substructure.
Interestingly in our single run of LorentzNet-guided

DisCo-FFS, the first six features are the same as Table II,
whereas after that the 7th-EFP is the same one selected in
Path 1 in III. This confirms that the similar performance
between DisCo-FFS with truth and with LorentzNet is
no coincidence, and is likely because LorentzNet (being
so high performing) is quite close to the truth labels.

IV. CONCLUSIONS

In this work, we have introduced a new forward feature
selection method, based on the distance correlation mea-
sure of statistical dependence—dubbed DisCo-FFS. Our
method can operate equally well on either truth-labels (for
ab initio feature selection) or on the outputs of a pretrained
classifier (for explaining a black box AI).
We demonstrated the performance of our method using

the task of boosted top tagging, as boosted top jets have a
rich substructure and many subtle correlations that have
proven to be a fruitful laboratory for developing increas-
ingly powerful state-of-the-art taggers in the HEP literature.
Following [29], we have trained our DisCo-FFS method

on a large set (7,000+) of energy flow polynomials, which
aim to provide a complete description of the jet substruc-
ture. We have seen that DisCo-FFS is very effective at
selecting EFPs from this large feature set; DisCo-FFS can
achieve nearly-state-of-the-art top tagging performance
(matching that of ParticleNet-lite [14]) with a selection
of just a small number of EFPs (less than 10). We also show

how it outperforms the DO-ADO-FFS method of [29]
(which we have attempted to replicate as closely as
possible), consistently achieving higher tagging perfor-
mance after each EFP that is selected.
The fact that our method falls short of the most state of

the art deep learning methods (ParT [18], PELICAN [23],
and LorentzNet [22]) is interesting. Either our method is
not fully optimal at selecting the features, or the 7;000þ
EFPs we used as the basis of our study do not capture all the
physics underlying top tagging. A possible follow-up study
to further probe this question would be to supplement the
7;000þ EFPs with additional jet substructure variables, for
instance the subjettiness variables of [58,60], jet spectra
and morphological features of [61–63], or boost invariant
polynomials [64]. This observation also raises the possibil-
ity that there might be more meaningful jet substructure
variables out there, beyond those that are presently known,
waiting to be discovered. This is obviously an interesting
avenue for future research.
Beyond simple object tagging, DisCo-FFS might also

be able to shine for tasks—such as building supervised
classifiers for new physics discovery—where calibration
of the algorithm is difficult and a small number of well-
understood features is preferable. While particle physics is
in an especially good position due to the presence of well-
motivated bases of features (such as the used EFPs) such
decompositions also exists for other domains, e.g., in the
forms of wavelets applied to images (e.g., building
on [65]).
In general, EFPs selected could make for a very light-

weight and performant top tagger. This could have impor-
tant applications to triggering [66]. For that, a fast way to
calculate EFPs on FPGAs would be required. Such will be
interesting to explore further.
It would also be potentially illuminating to study the

robustness of the selected EFPs under domain shift. For
example, recently ATLAS released an official top-tagging
dataset [67]. One could compare the EFPs selected by
DisCo-FFS on the different top tagging datasets, and see
how one set of EFPs performs on the other dataset. One
could also imagine training this method on a restricted set
of HLFs (EFPs or otherwise) that are deemed to be well-
modeled by simulations. This could help with the calibra-
tion and robustness of taggers developed using simulation
and deployed on data.
Overall, we observe the start of a positive feedback loop

between deep learning method development and physics-
motivated feature discovery. Each one drives the other.
Early top taggers [68] started with jet substructure variables
like N-subjettiness. Then it looked like deep learning was
able to go way beyond HLFs and we would have to rely on
fully automated feature engineering. Now there is some
signs that we are coming full circle. Ultimately we may
hope to match the performance of the SOTA deep learning
taggers with just a handful of (yet-to-be-invented?) HLFs.

5We emphasize that all the HLFs we use in this work are
actually IRC-safe in the end, since they are constructed from
detector-reconstructed particles.
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This would be a very satisfying outcome, proving that deep
learning does not have to be a black box but can drive
fundamental physics discoveries.

The code for this paper can be found at [69].
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APPENDIX A: VALIDATION OF OUR
IMPLEMENTATION OF DO-ADO-FFS

1. The DO-ADO feature selection method

In this appendix, we validate our implementation of the
DO-ADO feature selection method of [29]. This method is
based on the DO and ADO metrics, which we will now
explain.
For a signal event xs and a background event xb, the DO

metric is given by

DOðxs; xb; ypred; yrefÞ ¼ ΘððypredðxsÞ − ypredðxbÞÞ
× ðyrefðxsÞ − yrefðxbÞÞÞ; ðA1Þ

where Θ is the Heaviside step function. In other words,
DO ¼ 1 (DO ¼ 0) if the pair of events has the same
(different) ordering under ypred as under the reference
classifier yref.
Meanwhile, average decision ordering is defined over a

dataset D consisting of pairs of signal and background
events,

ADOðD; ypred; yrefÞ ¼ hDOðxs; xb;ypred; yrefÞiðxs;xbÞ∼D:
ðA2Þ

In other words, ADO is the average of the DO metric over
the dataset.

The DO-ADO feature selection algorithm [29] also
follows the same steps 1 and 4, as described in Sec. II.
For steps 2 and 3, we have
Step 2: The confusion set X0 is formed out of pairs of

(signal, background) events with DOðxs; xb;
ypred; yrefÞ ¼ 0. It is too computationally intensive
to find and analyze all possible pairs of events
with DO ¼ 0, so only a randomly selected subset
of (signal, background) pairs is considered for X0.

Step 3: The relevance score for each feature f is defined as

sf ¼ ADOðX0; f; yrefÞ: ðA3Þ

So a feature with a larger ADO value would be one
for which more events in the confusion set are
correctly ordered by the feature. The idea of DO-
ADO-FFS is to identify the feature at every step
that most correctly orders signal vs background
events that are incorrectly ordered by the previous
step, with respect to the reference classifier yref.

2. Validation with W-tagging

To validate our implementation of DO-ADO-FFS, we
train it on the same W-tagging dataset considered in [29]
with respect to truth labels,6 and demonstrate that we
achieve the same performance as shown there.
As in [29], we start with an initial feature set of

F initial ¼ F 2 ¼ fmJ; pTg: ðA4Þ

Here we apply both truth-guided DO-ADO-FFS and
DisCo-FFS to the same set of EFPs considered in [29]
and this paper. The results (as AUC and R50 vs number of
features selected) are shown in Fig. 8, together with the
performance metrics for a reference CNN tagger from [29],
as well as the reference AUC value of 0.951, at which the
truth-guided ADO in [29] was mentioned to saturate after
seven features.
For the ADO method, we see that the AUC reaches

around 0.951 after seven features. This matches the
description in [29] and demonstrates that we have suc-
cessfully validated the implementation of DO-ADO-
FFS. Interestingly, however, we notice that the AUC of
our version saturates at a slightly higher AUC of
around 0.952.
Meanwhile, DisCo-FFS again outperforms DO-ADO-

FFS; it reaches the CNN AUC after eight features, and
actually proceeds to exceed the performance of the CNN—
all without using any knowledge of the CNN classifier

6We could not perform DO-ADO-FFS with respect to the
pretrained CNN because this was not made publicly available at
the time of this publication.

RANIT DAS, GREGOR KASIECZKA, and DAVID SHIH PHYS. REV. D 109, 054009 (2024)

054009-10



output! This shows the potential promise of a well-designed
forward feature selection method operating on a well-
chosen feature set; it could conceivably show that a deep
learning classifier is not actually as state-of-the-art as
previously thought.

APPENDIX B: HYPERPARAMETERS AND
ARCHITECTURES

For our feature set, we use logðEFPþ 10−40Þ, instead of
the bare EFPs as our features, during training, as well as
during feature selection, and we see that this leads to a
better performance.
Due to computational constraints, we actually calculate

DisCo using minibatches. We divide the confusion set X0

into minibatch sizes of 2048, and then average over all the
minibatches to estimate DisCo over the confusion set.

TensorFlow was used for training classifiers for DisCo-FFS
and DO-ADO-FFS, and the following hyperparameters
were used:

(i) Two hidden layers of 16 nodes with ReLU activa-
tion, final output layer with softmax activation;

(ii) A RobustScaler is fitted on the training and
validation data combined and is used to rescale the
dataset;

(iii) We use the Adam optimizer with default hyper-
parameters for 500 epochs, with minibatch size ¼
512;

(iv) Model checkpoint is used to save the model with the
minimum validation loss.

We observed that the final R30’s were higher after the use
of a slightly bigger network with 32 × 32 hidden layers, so
we retrained all the features (after the FFS) with this

network, and obtained our final R30’s, including Fig. 4,
with this network.
The DNN trained on all 7000 EFPs uses the same

hyperparameters as discussed above, but we use a slightly
bigger network with three hidden layers of 32 nodes.
For both the truth-guided DisCo-FFS and DO-ADO

methods, we apply feature selection to the combined training
and validation sets. However, for the LorentzNet-
guided versions, we apply the feature selection only to
the validation set. This is because we noticed a significant
overfitting of LorentzNet to the training set, as compared
to the validation and the test set.

APPENDIX C: AFFINE-INVARIANT DISTANCE
CORRELATION

Distance correlation is a correlation metric which can
quantify nonlinear correlations in the joint distribution of
two random vectors ðX⃗; Y⃗Þ of arbitrary dimension [34–37].
In particular, DisCo is zero if and only if X⃗ and Y⃗ are
statistically independent [pðX⃗; Y⃗Þ ¼ pðX⃗ÞpðY⃗Þ], and pos-
itive otherwise.
With X⃗ and Y⃗ as 1D vectors, DisCo has used been

previously used in physics for decorrelation of neural
networks against mass [38]. However, DisCo is even more
powerful than that—it can also measure statistical depend-
ence of multivariate distributions, a powerful property that
enables the forward feature selection algorithm described in
this work.
For our case, X⃗ ¼ ytruth is a 1D vector, and Y⃗ ¼

ðfi1 ; fi2 ;…; finÞ is an n-dimensional feature vector. The

population value of squared distance covariance of X⃗ and Y⃗
is given by

FIG. 8. Left: AUC vs number of features selected, for DO-ADO (blue) and DisCo (orange), both truth-guided. The green line indicates
the AUC of the reference CNN tagger from [29], while the black dashed line indicates the performance that truth-guided DO-ADO
achieved in [29]. Here we see our version of the truth-guided DO-ADOmethod saturates at a slightly higher AUC of 0.952 (but still short
of the CNN AUC), whereas the DisCo-FFS method reaches the CNN AUC after eight features, and is able to exceed the CNN AUC.
Right: Same comparison but in terms of the R50 (rejection power at 50% true positive rate ) metric.
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dCov2ðX⃗; Y⃗Þ ≔ E½kX⃗ − X⃗0kkY⃗ − Y⃗ 0k�
þ E½kX⃗ − X⃗0k�E½kY⃗ − Y⃗ 0k�
− 2E½kX⃗ − X⃗0kkY⃗ − Y⃗ 00k�; ðC1Þ

where ðX⃗; Y⃗Þ; ðX⃗0; Y⃗ 0Þ, and ðX⃗00; Y⃗ 00Þ are independent and
identically distributed from the distribution ðX⃗; Y⃗Þ and k:k
is the Euclidean vector norm.
Distance correlation is given by

dCor2ðX⃗; Y⃗Þ ¼ dCov2ðX⃗; Y⃗Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dCov2ðX⃗; X⃗ÞdCov2ðY⃗; Y⃗Þ

q ; ðC2Þ

which is normalized between 0 and 1.
Finally, using the covariance matrices ΣX, ΣY , affine-

invariant distance correlation is simply

dCor2ðX⃗; Y⃗Þ ¼ dCor2ðΣ−1=2
X X⃗;Σ−1=2

Y Y⃗Þ: ðC3Þ

In this work, we use the DCOR package [71] for the
computation of distance correlation and affine-invariant
distance correlation.
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