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A simple phenomenological hybrid hadron-quark model with excluded volume effects of baryons and
chiral dynamics is investigated. The hybrid equation of state naturally connects the low-density baryonic
matter with the high-density quark matter. In the intermediate region, a phase, which cannot be regarded as
pure hadron matter or pure quark matter, appears. In this model, there is a possibility that the abrupt first-
order-like transition to pure quark matter induces the strong chiral symmetry restoration and the speed of
sound has a large peak at considerable large density.
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I. INTRODUCTION

Exploration of the QCD phase diagram is an important
subject not only in particle and nuclear physics but also in
astrophysics and cosmology; for a review, see, e.g., Ref. [1]
and references therein. However, at finite baryon (or quark)
chemical potential, the first principle calculation, i.e., the
lattice QCD simulation, is not feasible due to the infamous
sign problem. To avoid the problem, several methods are
proposed and investigated, but, at present, these methods
are not complete, and we do not have the established
equation of state (EOS) at finite baryon density.
At low temperature, there is nuclear (baryonic) matter

at saturation density. As the density increases, other
baryons may appear. At the extreme high density, the
chiral symmetric quark matter is expected to appear and
conformality is restored. However, at present, we do not
have a definite information of the EOS in the intermediate
region between the saturation density and the extremely
high density.
It is known that repulsive effects among baryons are

important in the intermediate region. If repulsion is absent,
then the baryonic matter is realized at sufficiently large
baryon density [2]. One of the traditional treatments of
such repulsion is to consider the excluded volume effects
(EVE) among baryons [3–5]. The excluded volume effects
successfully prevent baryonic matter from realizing at

sufficiently large baryon density; for a recent review,
see, e.g., Ref. [6] and references therein.
At large density, the chiral symmetry restoration is also

expected. The Nambu–Jona-Lasinio (NJL) model [7] is a
simple but very useful model to describe the restoration; as
a review, see, e.g., Ref. [8] and references therein. However,
the NJL model cannot describe the hadron-quark transition.
Furthermore, recently, it has been emphasized that the

trace anomaly and the speed of sound are very important to
understand the properties of the high density hadron and
quark matter; see, e.g., Refs. [9,10] and references therein.
In this paper, we construct a simple phenomenological

hybrid hadron-quark model with EVE of baryons and chiral
dynamics. The model naturally connects the baryonic
matter at low density and the quark matter at high density.
It can also describe the chiral restoration. It is found that, in
this hybrid model, there is a possibility that the abrupt first-
order like transition to pure quark matter induces the strong
restoration of chiral symmetry and the speed of sound has a
large peak.
This paper is organized as follows. In Sec. II, the hybrid

model is formulated. In Sec. III, numerical results are
shown for two typical cases. Section IV is devoted to a
summary and discussion.

II. FORMALISM

First, we give a sketch of our strategy of calculations.
Our main purpose is to know the μB dependence of the
thermodynamic quantities of hadron or quark matter, where
μB is the baryon chemical potential. First, we construct the
baryon number density nB with the EVE of baryons. Next
we require that nB approaches nq

3
in the high density limit,

where nq is the quark number density of pure quark phase.
In this procedure, nB depends on the chiral condensates σf
(f ¼ u; d; s) that are included in the quark model. Using the
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thermodynamic equation, the σf dependence of the thermo-
dynamic potential densityΩ (¼ −P) is obtained, where P is
the pressure of the system. The values of σf are determined
to minimize Ω (or maximize P). Using the obtained values
of σf, the other thermodynamic quantities are calculated.
As shown in Fig. 1, we consider N nonpointlike baryons

in the system with volume V where N is the number of
baryons. We consider this system to be equivalent to the
system of N pointlike baryons in the effective volume
V − vBN, where vB is the volume of a baryon, see Fig. 2.
Then, the following equation is satisfied:

ñB ¼ N
V − vBN

¼ nB
1 − vBnB

; ð1Þ

where nB ¼ N
V is the baryon density of nonpointlike baryon

and ñB is the one of N pointlike baryons. In this paper, we
add a tilde to the baryon number density of pointlike
baryons. Hence, the baryon number density of baryonic
matter with EVE is given by

nB ¼ ñB
1þ vBñB

<
1

vB
: ð2Þ

The pressure P of the baryonic matter with the excluded
volume effects is determined by the thermodynamic equation

∂PðT; μBÞ
∂μB

¼ nB: ð3Þ

The other thermodynamic quantity, such as the energy
density ε, is determined by the thermodynamic relation.
Hereafter, we concentrate on EOS at zero temperature and
omit the variable T for simplicity. Then, Eq. (3) is
represented as dP

dμB
.

When a constant vB is used, the speed of sound,

cBs ¼
ffiffiffiffiffiffiffiffiffi
dPB

dεB

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dPB

dμB

�
dεB
dμB

s
; ð4Þ

may exceed the speed of light c (¼ 1) and the causality can
be easily violated. In fact, when vBñB ≫ 1, we have

dPB

dμB
¼ nB ¼ ñB

1þ vBñB
∼

1

vB
; ð5Þ

dεB
dμB

¼ d
dμB

ðμBnB − PBÞ ¼ μB
dnB
dμB

∼ 0: ð6Þ

This means that the EOS becomes very hard and the speed
of sound diverges. Therefore, the density dependence of vB
is very important.
It is natural to assume that the baryon number of the

system approaches the one of the pure quark system with
the same chemical potential, when the baryon chemical
potential is very large. This requirement can be achieved if
we assume

vB ¼ 3

nq
ðnq ≠ 0Þ; ð7Þ

where nq is the quark number density of the pure quark
matter. In other words, we assume that the EOS inside the
baryons is described by the pure-quark model. The baryon
number density is given by

nB ¼ ñB
1þ vBñB

; ð8Þ

¼ nqñB
nq þ 3ñB

<
nq
3
: ð9Þ

Hence, the EOS is expected to approach the pure quark
EOS at high density. When 3ñB ≫ nq, we obtain

nB ∼
nq
3
: ð10Þ

When nq ≠ 0 and ñB ≠ 0, Eq. (9) can be rewritten as

nB ¼
1
3
nq

1þ vqnq
; ð11Þ

FIG. 1. Schematic figure of N nonpointlike baryons in the
system with volume V.

FIG. 2. Schematic figure of N pointlike baryons in the system
with effective volume V − vBN. The volume of the dark
region is vBN.
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¼ 1

vB þ 3vq
; ð12Þ

¼ 1

3

�
1

nq
þ 1

3ñB

�
−1
; ð13Þ

where vq ¼ 1
3ñB

. From Eq. (11), we see that the system can
also be regarded as the matter of quarks with finite effective
volume vq, see Fig. 3. In this sense, this model has a quark-
hadron duality; for a general review of quark-hadron
duality, see, e.g., Ref. [11] and references therein. It is
also interesting that Eq. (13) resembles the law of combined
resistance of parallel resistances. The large vB causes the
strong suppression of baryonic matter. When 3vq < vB, it is
natural to regard that the system is composed of quarks with
small volume vq rather than baryons with large volume vB.
However, when nq ¼ 0, vB cannot be defined. On the

other side, it is known that, below the saturation density, the

nucleon has a finite volume vB0 ¼ 4πr3B0
3

with the nucleon
radius rB0 ¼ 0.8 fm. Hence, we interpolate between vB0
and 3

nq
with the following smooth function of nq:

vB ¼ 3

n0q
; ð14Þ

with

n0q ¼ nq þ
3

vB0
exp

�
−a

�
vB0nq
3

�
2
�
; ð15Þ

where a is a free parameter and controls how abruptly vB
approaches 3=nq. Note that, as is shown below, nq depends
on chiral condensates in our model. Hence, vB and nB also
depend on the chiral condensates.
For the pointlike hadron model, we use the hadron

resonance gas (HRG)model. The number density is given as

ñB ¼
X

i¼Baryon

nIFGðgBi; mBi; μBÞ; ð16Þ

where gBi andmBi are the spin degeneracy and themass of ith
baryon, respectively. The function nðg;m; μÞ is the number
density of ideal fermion gas with the degeneracy factor g, the
massm, and the chemical potentialμ at zero temperature, and
is given by

nIFGðg;m; μÞ ¼
(
0 ðμ < mÞ
g

6π2
ðμ2 −m2Þ3=2 ðμ ≥ mÞ : ð17Þ

In this paper, for simplicity, we use the same vB for all
baryons.
For pure quark matter, we use the three-flavor NJL

model with mean field approximation. The quark number
density of the NJL model is given by

nq ¼
X

f¼u;d;s

nIFGð6;Mf; μqÞ; ð18Þ

whereMf and μqð¼ μB=3Þ are the effective mass of f quark
and the quark chemical potential, respectively. The effec-
tive quark mass is given by

Mf ¼ mf − 4Gsσf þ 2Gdσ
0
fσ

00
f; ð19Þ

with f ≠ f0, f ≠ f00, and f0 ≠ f00, where mf is the current
quark mass of f quark,Gs andGd are coupling constants of
four and six-quarks interaction, and σf is the chiral
condensate of f quark, respectively. In the pure quark
system, the pressure is given by

P ¼ Pv þ PD;NJL − Um; ð20Þ

where Pv, Um, and PD;NJL are the Dirac sea contributions,
the mesonic and the density parts of the NJL model,
respectively. For each flavor, the density part PD;NJL is
given by PFðMf; μqÞ, which is equivalent to the pressure of
the free quark gas with the quark mass Mf and the quark
chemical potential μq. The Dirac sea contributions are
given by

PvðMfÞ ¼ −
X

f¼u;d;s

M4
f

4π2

��
EvfΛ
M2

f

��
E2
f

M2
f

−
5

2

�

þ 3

2
log

�
Evf þ Λ

Mf

��
; ð21Þ

where Evf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þM2

f

q
with the three dimensional

momentum cutoff Λ. The Dirac sea contributions have
no explicit μq dependence. However, Pv depends on μq,
since Mf depends on μq. The mesonic part is given by

Um ¼ 2Gsðσ2u þ σ2d þ σ2sÞ − 4Gdσuσdσs: ð22Þ

FIG. 3. Schematic figure of 3N quarks in the system with
effective volume vBN. The volume of the dark region is 3vqN.
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According to Ref. [12], we set mu;d ¼ 5.5 MeV,
ms ¼ 140.7 MeV, GsΛ2 ¼ 1.835, Gdλ

5 ¼ 12.36, and
Λ ¼ 602.3 MeV.
Instead of Eq. (20), in the hybrid model, the total

pressure P of the system is given by

P ¼ Pv þ PD −Um: ð23Þ

Using nB given by Eq. (2) with Eq. (14), the density part PD
is given by

PDðμB; σfÞ ¼
Z

μB

0

dμnBðμ; σfÞ; ð24Þ

where the integration is performed with fixing all σf so as
to satisfy the relation

∂PðμB; σfÞ
∂μB

����
σffixed

¼ nBðμB; σfÞ: ð25Þ

The value of the chiral condensate σf is determined to
maximize P and satisfy

∂PðμB; σfÞ
∂σf

¼ 0: ð26Þ

Hence, the thermodynamic relation

dPðμB; σfðμBÞÞ
dμB

¼ ∂P
∂μB

����
σffixed

þ
X

f¼u;d;s

∂P
∂σf

dσf
μB

;

¼ ∂PD

∂μB

����
σffixed

;

¼ nBðμB; σfðμBÞÞ; ð27Þ

is satisfied. Therefore, using Eq. (24), once PD is obtained
as the function of σf and the solution σf which maximizes
the total pressure (23) is determined, the equation of motion
(26) and the thermodynamic relation (27) are automatically
satisfied. The energy density ε of the total system is
determined using the thermodynamic relation

ε ¼ μBnB − P: ð28Þ

Following the above procedure, the quark and hadron
matters are correlated with each other in the level of the
pressure via EVE. This is also true for the thermodynamic
potential density Ω because there is a direct relation to the
pressure, namely Ω ¼ −P. The functional form of ΩðσfÞ
deviates largely from the one ΩNJLðσfÞ in the original NJL
model in the intermediate region of μB. Therefore, our
result can provide the crossover behavior even if the
NJL model itself has the first-order chiral transition at
low T in the moderately high density region; since the

thermodynamic potential is deformed by the hadron con-
tributions, they act as the external term that explicitly
breaks chiral symmetry.
The hybrid model approaches in the NJL model in the

high density limit. As is seen in the next section, when nB
approaches nq

3
gradually, crossover chiral transition takes

place. When nB approaches nq
3

abruptly, first-order-like
transition happens.
The original NJL model has a cutoff. However, at zero

temperature, the chemical potential is the natural cutoff for
energy and momentum. Hence, in the numerical calcula-
tions,we use the cutoff only in theDirac sea contributions. In
this procedure, the physical quantities are expected to
approach those in the free quark gas model. In the HRG
part, we include all baryons listed in the list of Particle Data
Group [13], but they only contribute to the results when their
masses are smaller than the baryon chemical potential μB.
Several hybrid models have been already proposed. For

example, in Ref. [14], the hyperbolic functions are used as
an interpolation function of EOS. In our model, we do not
give such an interpolation function but give a more
microscopic quantity, namely, the density dependence of
baryon volume in EVE. In Ref. [15], the hybrid model
based on quarkyonic matter and the EVE is investigated. In
our model, we do not assume quarkyonic matter, but some
kind of more macroscopic quark-hadron duality (11) is
assumed. The macroscopic model may be simpler and more
convenient than the microscopic one, but it has a less
dynamical description. The study of the relation between
several hybrid models is an important problem in the future.

III. NUMERICAL RESULTS

Our hybrid model has one free parameter a in Eq. (15).
In this section, we show the numerical results in two typical
cases, a crossover transition (a ¼ 0.1) and a first-order-like
transition (a ¼ 0.8). Hereafter, we use the quark chemical
potential μq ¼ μB

3
instead of μB since we are interested in the

chiral dynamics of quarks as well as the hadron-quark
transition.
The numerical calculations are done according to the

following procedures:
(1) For given μB, ñB is calculated using the HRG model.
(2) For fixed value of σf, nq is calculated.
(3) Using ñB and nq as inputs, nB is calculated as an

output.
(4) Using Eq. (24) and nB, Ω (¼ −P) is calculated for

the fixed value of σf.
(5) Changing the value of σf and doing the same

calculation as the procedure ð2Þ ∼ ð4Þ, a functional
form ΩðσfÞ (¼ −PðσfÞ) is determined.

(6) Determine the solution σf which minimizes Ω
(maximizes P).

(7) Using the obtained solution σf, the other quantities
are calculated as well as P and nB.
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Note that the equation of motion (26) and the thermo-
dynamic relation (27) are automatically satisfied by min-
imizing (maximizing) Ω (P).

A. Crossover transition

First, we show the results with a ¼ 0.1; in the following,
we call it the crossover setup. Figure 4 shows the μq
dependence of the baryon number density nB. Note that
not only nB but also nq depends on the values of the chiral
condensates determined in the framework of the hybrid
model. We see that nB coincides with ñB at low density
and, at μq ∼ 0.33 GeV, begins to deviate from ñB. As μq
increases, nB approaches nq

3
smoothly. Although the hadron-

quark transition is a smooth crossover, we can regard the
system as in the quark phase when μq > 0.55 GeV. In the
intermediate region μq ¼ 0.33–0.55 GeV, it is difficult to
identify the system as pure hadron matter or pure quark
matter.

Figure 5 shows the μq dependence of the baryon volume
vB. We see that vB approaches 3=nq smoothly as μq
increases. When μq > 0.35 GeV, 3vq is smaller than vB.
Hence we may regard the system to be composed of quarks
rather than baryons when μq > 0.35 GeV.
Figure 6 shows the μq dependence of the effective quark

mass Mf. We see that Mf starts to decrease when μq
exceeds the value of the effective light-quark mass at
vacuum and gradually decreases as μq increases. Mf

somewhat decreases early when μq exceeds 0.5 GeV.
Comparing Figs. 5 and 6, we see that Mf decreases early
when 3vq is negligible.
With the crossover setup, the hybrid model approaches

the NJL model gradually as μq increases. Figure 7 shows
the σl (l ¼ u; d) dependence of the thermodynamic poten-
tial Ω. We see that the value of jσlj in the minimum of Ω
decreases only slowly.

FIG. 4. The μq dependence of the baryon number density nB
with the crossover setup. The solid, dashed, and dotted lines show
nB,

nq
3
and ñB (pointlike), respectively.

FIG. 5. The μq dependence of the baryon volume vB with the
crossover setup. The solid, dashed, and dotted lines show vB, 3

nq
,

and 3vq, respectively.

FIG. 6. The μq dependence of the effective quark massMf with
the crossover setup. The solid and dashed lines show Ml
(l ¼ u; d) and Ms, respectively.

FIG. 7. The σl dependence of the thermodynamic potential Ω
with the crossover setup. The solid, dashed, dotted, and dot-
dashed lines show the results at μq ¼ 0.4, 0.45, 0.5, and
0.55 GeV, respectively. For each case, the value of σs is fixed
to the value in the minimum of ΩðσfÞ.
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Figure 8 shows the ε-P relation. Since ε and P have the
Dirac sea contributions which are not zero even at μq ¼ 0,
we subtract εðμq ¼ 0Þ and Pðμq ¼ 0Þ from ε and P,
respectively. We see that P increases monotonically as ε
increases. The intermediate phase mentioned above exists
in the region ε ¼ 0.2–2.5 GeV=fm3.
According to Ref. [9], we introduce the following

quantities:

η ¼ log

�
ε

ε0

�
; ð29Þ

where ε0 ¼ 0.15 GeV=fm3, and

Δ ¼ 1

3
−
P
ε
: ð30Þ

When Δ vanishes, the trace anomaly ε − 3P becomes zero
and the conformality is expected to be hold. Figure 9 shows
the μq dependence of η. η increases monotonically as μq
increases. The intermediate region μq ¼ 0.33–0.55 GeV

corresponds to the region η ¼ 0.1 ∼ 2.8. The solid line in
Fig. 10 shows the η dependence of Δ obtained by our
hybrid model. The dashed line shows the result obtained by
parametrization in Ref. [9],

Δ ¼ 1

3
−
1

3
·

1

e−κðη−ηcÞ þ 1

�
1 −

A
Bþ η2

�
; ð31Þ

where κ ¼ 3.45, ηc ¼ 1.2, A ¼ 2, and B ¼ 20. In this
paper, we call this parametrizationΔFFMP. Our resultΔ is in
good agreement with ΔFFMP when η < 1, but somewhat
deviates from ΔFFMP at large η.
Using Δ and η, the square of the speed of sound c2s is

rewritten as [9]

c2s ¼
dP
dε

¼ c2s;;d þ c2s;nd; ð32Þ

where the derivative and nonderivative parts are given by

c2s;d ¼ −
dΔ
dη

; c2s;nd ¼
1

3
− Δ ¼ P

ε
: ð33Þ

Figure 11 shows the η dependence of c2s . c2s has a double
peak structure and, in the region η ¼ 0.7 ∼ 3, somewhat
deviates from the parametrization result. The left peak is
higher than the right one. It seems that the left peak is
induced by the repulsion forces (i.e., excluded volume
effects) among baryons, and the right one is related to the
hadron-quark transition and the enhancement of the chiral
symmetry restoration. It seems that this structure of c2s
corresponds to the right sketch in Fig. 2 in Ref. [10].
Figure 12 shows the η dependence of c2s;d and c

2
s;nd. It seems

that the double peaks are originated in the derivative part.
At large η, c2s;d, and c2s;nd somewhat deviate from the
parametrization results, but the deviations cancel each

FIG. 8. The relation between the energy density ε and the
pressure P in our hybrid model with the crossover setup.

FIG. 9. The μq dependence of η obtained by using our hybrid
model with the crossover setup.

FIG. 10. The η dependence of Δ with the crossover setup. The
solid and dashed lines show the result of our hybrid model and the
result obtained by parametrization (7) in Ref. [9], respectively.
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other, and the total c2s is in good agreement with the
parametrization.

B. First-order-like transition

Next, we show the results with a ¼ 0.8; in the following,
we call it the first-order-like setup. Figure 13 shows the μq
dependence of the baryon number density nB. We can see
that nB coincides with ñB at low density. As μq increases,
nB approaches nq

3
. Finally, nB coincides with nq

3
at

μq ¼ 0.52 GeV, and increases rapidly. In this case, it seems
that the first-order-like transition occurs at μq ¼ 0.52 GeV.
It is clear that the system is in a pure quark phase when
μq > 0.52 GeV. However, it seems that the system is in the
intermediate phase rather than in the hadron phase in the
region μq ¼ 0.33–0.52 GeV.
Figure 14 shows the μq dependence of the baryon

volume vB. We see that vB coincides with 3=nq at

μq¼0.52GeV and decreases rapidly. When μq>0.35GeV,
3vq is smaller than vB. Hence, it is natural to regard that the
system is composed of quarks rather than baryons even
when μq ¼ 0.35–0.52 GeV, although it is not in the pure
quark phase.
Figure 15 shows the μq dependence of the effective quark

mass Mf. We see that Mf starts to decrease when μq
exceeds the value of the effective light quark mass at
vacuum, gradually decreases as μq increases, and then has
an abrupt decrease at μq ¼ 0.52 GeV. The abrupt restora-
tion of the chiral symmetry occurs at μq ¼ 0.52 GeV. It
seems that this abrupt restoration of chiral symmetry is
related to the abrupt increase of nB. It is known that in an
abrupt transition, different physical quantities are correlated
to each other near the transition point [16–18]. Hence, in
this hybrid model, the abrupt changes in nB and Mf are
correlated with each other.

FIG. 11. The η dependence of c2s with the crossover setup. The
solid and dashed lines show the result of our hybrid model and the
result obtained by parametrization (7) in Ref. [9], respectively.

FIG. 12. The η dependence c2s;d and c2s;nd with the crossover
setup. The solid and dash-dotted lines show c2s;d and c2s;nd in our
hybrid model, respectively. The dashed and dotted lines show c2s;d
and c2s;nd obtained by parametrization (7) in Ref. [9], respectively.

FIG. 13. The μq dependence of the baryon number density nB
with the first-order-like setup. The solid, dashed, and dotted lines
show nB,

nq
3
, and ñB (pointlike), respectively.

FIG. 14. The μq dependence of the baryon volume vB with the
first-order-like setup. The solid, dashed, and dotted lines show vB,
3
nq
, and 3vq, respectively.
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With the first-order-like setup, the hybrid model
approaches the NJL model abruptly as μq increases.
Figure 16 shows the σl dependence of the thermodynamic
potential Ω. We see that the value of jσlj in the minimum of
Ω decreases rapidly. It should be noted that the bottom ofΩ
is almost flat at μq ¼ 0.52 GeV.
Figure 17 shows the ε − P relation.We see thatP increases

monotonically as ε increases when ε > 1 GeV=fm3 or
ε < 1.5 GeV=fm3. There is a plateau of P in the region
ε ¼ 1–1.5 GeV=fm3. This plateau is induced by the first-
order-like transition. The intermediate phase exists in the
region ε ¼ 0.2–1.8 GeV=fm3.
Figure 18 shows the μq dependence of η. There is the

tendency that η increases monotonically as μq increases
and has an abrupt increase at μq ¼ 0.52 GeV. The inter-
mediate region μq ¼ 0.33–0.52 GeV corresponds to the
region η ¼ 0.1 ∼ 2.

The solid line in Fig. 19 shows the η dependence of Δ in
our hybrid model. Our result of Δ is in good agreement
with ΔFFMP, where ΔFFMP means the result obtained
by parametrization (7) in Ref. [9], when η < 1.5, but
somewhat deviate from ΔFFMP at large η.
Figure 20 shows the η dependence of c2s . We can see that

c2s has a double peak structure and, in the region
η ¼ 0.7 ∼ 3, somewhat deviates from the parametrization
result. In contrast to Fig. 11, the right peak is higher than
the left one. It seems that the left peak is induced by the
repulsion forces among baryons and that the right peak is
related to the hadron-quark transition and the chiral
symmetry restoration. Figure 21 shows the η dependence
of c2s;d and c2s;nd. It seems that the double peaks are
originated in the derivative part. As in the case of
Fig. 12, c2s;d and c2s;nd somewhat deviate from parametriza-
tion results at large η, but the deviations cancel each other
and the total c2s is in good agreement with the para-
metrization. It seems that this structure of c2s corresponds
to the left sketch in Fig. 2 in Ref. [10].

FIG. 15. The μq dependence of the effective quark mass Mf
with the first-order-like setup. The solid and dashed lines show
Mlðl ¼ u; dÞ and Ms, respectively.

FIG. 16. The σl dependence of the thermodynamic potential Ω
with the first-order-like setup. The solid, dashed, dotted, and dot-
dashed lines show the results at μq ¼ 0.5, 0.51, 0.52, and
0.53 GeV, respectively. For each case, the value of σs is fixed
to the value in the minimum of ΩðσfÞ.

FIG. 17. The relation between the energy density ε and the
pressure P in our hybrid model with the first-order-like setup.

FIG. 18. The μq dependence of η in our hybrid model with the
first-order-like setup.
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It should be noted that the baryon number density has
one to one correspondence to the other thermodynamic
quantities since we only use the thermodynamic relations to
calculate these quantities. Hence, the μq dependence of the
baryon number density is strongly correlated with the μq
dependence of the other thermodynamic quantities.
Figure 22 shows the μq dependence of the baryon number
density when the baryon volume

vB ¼ 3

n0q
; ð34Þ

with

n0q ¼ nq þ
3

vB0
exp

�
−3

�
vB0ðnq þ n3qÞ

6

�
2
�
; ð35Þ

is used instead of Eq. (14). Figure 22 resembles Fig. 13.
Figure 23 shows the η dependence of the speed of sound.

FIG. 19. The η dependence of Δ with the first-order-like setup.
The solid and dashed lines show the result of our hybrid model
and the result obtained by parametrization (7) in Ref. [9],
respectively.

FIG. 20. The η dependence of c2s with the first-order-like setup.
The solid and dashed lines show the result of our hybrid model
and the result obtained by parametrization (7) in Ref. [9],
respectively.

FIG. 21. The η dependence c2s;d and c2s;nd with the first-order-
like setup. The solid and dash-dotted lines show c2s;d and c2s;nd in
our hybrid model, respectively. The dashed and dotted lines show
c2s;d and c2s;nd obtained by parametrization (7) in Ref. [9],
respectively.

FIG. 22. The μq dependence of the baryon number density nB
with the baryon volume (34). The solid, dashed, and dotted lines
show nB,

nq
3
and ñB (pointlike), respectively.

FIG. 23. The η dependence of c2s with the baryon volume (34).
The solid and dashed lines show the result of our hybrid model
and the result obtained by parametrization (7) in Ref. [9],
respectively.
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We see that Fig. 23 also resembles Fig. 20. In this meaning,
the qualitative properties of the thermodynamic quantities
do not depend on the detailed description of vB.

IV. SUMMARY

In summary, in this paper, the simple phenomenological
hybrid model with the EVE of baryons and the chiral
dynamics is investigated. In the model, we combine the
Nambu–Jona-Lasinio model and the hadron resonance gas
model. The model interpolates between nuclear matter at
saturation density and quark matter at high density. The
EOS approaches that of pure quark matter as the density
increases. There is the intermediate phase, which is difficult
to be identified as a pure hadron phase or a pure quark
phase. The speed of sound has a double-peak structure. One
peak is related to the EVE of baryons, and the other is
related to the hadron-quark transition and the chiral
symmetry restoration. If the baryon volume vB approaches
3
nq
gradually, the hadron-quark transition is a typical cross-

over transition, where nq is the quark number density of the
pure quark phase. If the baryon volume vB approaches 3

nq

abruptly, the first-order-like transition can occur in co-
operation with the rapid chiral symmetry restoration, and
the speed of sound can be very large.
It seems that the density dependence of the baryon

volume is very important for EOS at zero temperature. It is
desirable to determine the dependence in the framework of
the lattice QCD simulation. Simulations using the imagi-
nary baryon chemical potential [19–22] may be useful for
this purpose; see Refs. [23,24] as an example.

It is interesting to investigate neutron star properties
using our hybrid model. However, to extend the model to
asymmetric matter, we should know not only the density
dependence but also the isospin dependence of the baryon
volume. The lattice QCD simulation with imaginary baryon
and isospin chemical potentials [25] may be useful to
determine the dependence.
Recently, repulsion in nuclear matter is discussed

[15,26,27] in the context of quarkyonic matter [28]. In
quarkyonic matter, the onset of the quark Fermi sea
suppresses baryonic matter [29]. The quarkyonic effective
field theory [30,31] is developed and the relation between
the quarkyonic phase and EVE is discussed. Although the
existence of quarkyonic matter is not explicitly assumed in
our simple phenomenological hybrid model, there is some
kind of quark-hadron duality and an intermediate phase that
cannot be identified as pure hadron matter or pure quark
matter appears. The study of the relation between quar-
kyonic matter and baryon volume may be important.
On the thermal QCD transition, the possibility of the

existence of the partial deconfinement phase has been
discussed recently; for a recent review, see, e.g., Ref. [32].
The partial deconfinement can be regarded as the coexist-
ence of two phases in the internal color space rather than
in the coordinate space. The intermediate phase which
appears in our model may also be understood as such a
phase.
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