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Resonance, bound-state, and virtual-state pole positions of the f0ð500Þ scalar meson are computed as a
continuous function of pion mass in the framework of a unitarized and analytic coupled-channel model for
scalar mesons, described as dynamical quark-antiquark states. The f0ð500Þ is modeled with both light and
strange qq̄ seeds, mixing with each other through the common S-wave ππ, KK̄, and ηη meson-meson
decay channels. The few model parameters are fitted to experimental S-wave ππ phase shifts up to 1 GeV.
In the case of the physical π� mass of 139.57 MeV, resonance poles at ð460 − i222Þ MeV and
ð978 − i37.2Þ MeV are found for the f0ð500Þ and f0ð980Þ, respectively. Resonance, bound-state, and
virtual-state pole trajectories are computed and plotted as a function of pion masses up to 500 MeV, both in
the complex-energy and complex-momentum planes. The results are discussed and compared to the most
advanced lattice QCD computations employing interpolators that correspond to the qq̄ and meson-meson
channels in the present model, that is, for a few discrete values of the unphysical pion mass in those lattice
calculations.
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I. INTRODUCTION

The light scalar mesons f0ð500Þ (alias σ), f0ð980Þ,
K⋆

0 ð700Þ (alias κ), and a0ð980Þ [1] have long eluded
experimentalists as well as theorists (see Ref. [2] for a
minireview). On the one hand, the very existence of
especially the extremely broad σ and κ as genuine mesons
has for many years been questioned, due to the difficulty to
identify unmistakable resonance signals in scattering and
production experiments. On the other hand, all four scalars
have been highly problematic to understand in the context
of conventional quark models, in view of their seemingly
much too low masses as P-wave quark-antiquark states. A
very original and relatively successful solution was pro-
posed by R. L. Jaffe [3] in 1977, suggesting that the above
four scalars are qqq̄ q̄ (tetraquark) states rather than regular
qq̄ mesons. Owing to a very large and attractive color-spin
interaction for the ground-state S-wave tetraquarks, their
masses come out several hundreds of MeV below the
typical mass range of 1.3–1.5 GeV for P-wave mesons,
thus allowing to predict much more reasonable masses,
albeit still somewhat on the high side [1,3]. Nevertheless,
Jaffe himself admitted [3,4] that mass calculations of

mesons whose very large widths are ignored must not be
taken too literally and an accuracy as usually obtained
for regular hadrons should not be expected. He also
observed [3,4] that such q2q̄2 systems can just fall apart
into two light mesons, not requiring the creation of a new
qq̄ pair like in the case of normal mesons, thus being
processes of order N0

c instead of N−1
c .

However, a few years later, my co-authors and I found
[5,6] a σ-meson resonance pole in the correct mass ballpark
and with a realistic width, in the framework of a unitarized
coupled-channel model [7] for confined qq̄ systems inter-
acting with two-meson states. This “unquenched” quark
model had just been developed to describe both light and
heavy vector as well as pseudoscalar mesons by including
the nonperturbative dynamical effects of strong decay. This
σ pole turned out to be of a dynamical origin, i.e., arising
from the ππ scattering continuum for increasing decay
strength and not directly linked to an intrinsic quark-model
state. An equally dynamical f0ð980Þ pole appeared as well,
just like the σð500Þ with a reasonable mass and width,
besides regular f0ð1370Þ and f0ð1500Þ [1] scalar resonance
poles predicted in mainstream quark models. Moreover, the
gross behavior of the S-wave ππ scattering phase shifts was
also automatically reproduced [5]. In Ref. [8], this model
calculation was extended to the other light scalars as well,
resulting in predicted resonance pole positions for the σ, κ,
f0ð980Þ, and a0ð980Þ that are still within current PDG
limits [1], using the very same parameter values as those
found in the fit carried out in Ref. [7].
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When the four light scalars had finally been confirmed
experimentally and lattice QCD (LQCD) had made suffi-
cient progress so as to be capable of carrying out some
reliable simulations of meson resonances, first results on
the light scalars started to appear in the literature (see the
review paper Ref. [9]). In particular, in Ref. [10] an LQCD
computation of isoscalar S-wave ππ phase shifts was
done for the two unphysical pion masses of 391 MeV
and 236 MeV, while searching for bound states and/or
resonance poles. The simulation employed single-meson
uūþ dd̄ and ss̄ interpolating fields as well as ππ and KK̄
two-meson interpolators. As a result, a ππ bound state was
found at 758(4) MeV for the heavier pion mass, whereas σ-
like resonance pole positions were extracted for the lighter
pion, using a variety of parametrizations, albeit widely
spread out in energy and with large to very large error bars.
A year later, a more extensive and detailed lattice analysis
[11] was published, namely of not only the light scalars, but
also the lowest isoscalar tensor mesons f2ð1270Þ and
f02ð1525Þ. In the case of the σ and f0ð980Þ, an ηη interpolat-
ing field was included as well. In this simulation, onlymπ ¼
391 MeV was considered, resulting in a σ-type bound state
slightly lighter than in Ref. [10], viz. at 745(5) MeV.
In the present paper, I will present a unitarized coupled-

channel model for the σ resonance, in the spirit of Ref. [8]
yet formulated in momentum space following the reso-
nance spectrum expansion (RSE) [12,13]. The goal is to
study in detail the behavior of the σ pole, not only for the
two unphysical pion masses of 391 MeV [10,11] and
236 MeV [10], but rather as a continuous function of mπ

over a wide range of values starting at the pion’s physical
mass. As the model is manifestly unitary and analytic, it
may shed some light on aspects of the parametrizations
employed in Refs. [10,11]. Since after I concluded the
present study my attention was drawn to two very recent
LQCD papers involving authors of Refs. [10,11] that
present results for two intermediate pion masses [14]
and extracted σ pole positions further restricted by dis-
persive methods [15], I shall briefly discuss these papers
below as well.
Another purpose of the present paper is to see how

precisely the σ resonance pole for varying mπ is connected
not only to a bound state but also to possible virtual states.
This will furthermore serve to explicitly check a claim
made in the dispersive analysis of Ref. [16] about a virtual σ
pole not far from the bound-state pole at 758(4) as found in

Ref. [10] for mπ ¼ 391 MeV. A comment on this claim
was already published in Ref. [17], in the context of a
model [18] very similar to the present one, but vaster in
scope so as to also investigate the f0ð980Þ and a0ð980Þ, as
well as the standard quark-model scalar mesons f0ð1370Þ
and a0ð1450Þ.
This paper is organized as follows. In Sec. II the here

employed RSE model will be described in detail, including
a closed-form expression for the multichannel S-matrix,
and a fit to S-wave ππ phase shifts will be carried out. In
Sec. III, I will present several figures of the resulting σ
resonance, bound-state, and virtual-state trajectories as a
continuous function of pion mass. Finally, Sec. IV will be
devoted to some discussion and conclusions in connection
with the mentioned LQCD results.

II. RSE MODEL FOR AN ISOSCALAR SCALAR

The RSE model for nonexotic meson spectroscopy is
based on an s-channel propagator of a bare meson and its
excitations, which couple in the intermediate state to an
incoming pair of mesons and then to an outgoing meson
pair that may be different from the incoming one. Note that
this model is not suited to describe meson-meson (MM)
scattering for quantum numbers not supported by qq̄ states,
as e.g. I ¼ 2. Also, crossing-symmetry constraints are not
explicitly imposed. However, it has been argued by differ-
ent authors that nonexotic meson resonances are dominated
by several s-channel exchanges, which according to duality
also account for some t- and u-channel phenomena (see
Ref. [17] for references). The RSE bubble sum for the
ππ → ππ T-matrix element is depicted in Fig. 1, where we
take towers of bare nn̄≡ ðuūþ dd̄Þ= ffiffiffi

2
p

and ss̄ states
coupling to the asymptotic two-meson channels ππ, KK̄,
and ηη. The Born term in the figure stands for two incoming
pions, which at the initial vertex couple to intermediate nn̄
and ss̄ states with all their excitations—represented by the
wiggly line—via one qq̄ annihilation. After propagation of
these states, a new qq̄ pair is created at the second vertex,
giving rise to two pions again in the final state. Note that we
assume qq̄ (nn̄ or ss̄) creation and annihilation to take place
according to the empirically successful 3P0 model [19], that
is, with vacuum quantum numbers JPC ¼ 0þþ. At first
sight it may seem odd to couple ss̄ states to pions, but the
next-order diagram in the figure shows that the KK̄ and ηη
loops in the intermediate state will inevitably lead to a

FIG. 1. Graphical representation of the ππ → ππ element of the 3 × 3 T-matrix, with ππ, KK̄, and ηη loops between the nn̄ and ss̄
propagators in the intermediate state. The dots stand for all higher-order terms in the s-channel bubble sum.
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mixing of the bare nn̄ and ss̄ states, thus allowing both
mixed states to couple to ππ. Clearly, the whole bubble sum
can be easily summed up algebraically. In other words,
since the effective interaction represented by the Born term
in the figure is separable, just like similar diagrams with
KK̄ and/or ηη pairs in initial and/or final state, the complete
three-channel T-matrix can be straightforwardly solved in
closed form.
The full expression for the effective interaction, sym-

bolized by the Born term for the ππ → ππ process in Fig. 1,
reads explicitly (also see Ref. [18])

Vijðpi; p0
j;EÞ ¼ λ2ji0ðpiaÞRijðEÞjj0ðp0

jaÞ; ð1Þ

RijðEÞ ¼
X2
α¼1

X∞
n¼0

giðα;nÞg
j
ðα;nÞ

E − EðαÞ
n

; ð2Þ

where the RSE propagator R contains an infinite tower of
bare nn̄ and ss̄ states with quantum numbers JPC ¼ 0þþ
corresponding to the discrete scalar spectrum of an in

principle arbitrary confining potential. Also, EðαÞ
n is the

energy level of the nth recurrence in the αth qq̄ channel,
with α ¼ 1 referring to nn̄ and α ¼ 2 to ss̄, while giðα;nÞ is
the corresponding coupling to the i-th MM channel.
Furthermore, in Eq. (1), λ is the overall coupling constant
for 3P0 decay, and ji0ðpiÞ and pi are the zeroth order
(L ¼ 0) spherical Bessel function and the (relativistically
defined) off-energy-shell relative momentum in MM
channel i, respectively. The spherical Bessel function
originates in our sharp string-breaking picture of OZI-
allowed decay at a certain radius a, being the Fourier
transform of a spherical delta-shell at r ¼ a. Such a
picture is supported by LQCD simulations [20]. The
channel couplings giðα;nÞ in Eq. (2) are computed following

the formalism developed in Ref. [21], namely from
overlaps of harmonic-oscillator (HO) wave functions
for the original qq̄ pair, the created 3P0 pair, and the
two qq̄ states corresponding to the outgoing two mesons.
In most cases, this method produces the same couplings
for ground-state mesons as the usual point-particle recou-
pling schemes of spin, isospin, and orbital angular
momentum, but it also provides a clear prescription for
excited mesons, with the additional advantage of always
resulting in a finite number of nonvanishing couplings.
Because of their fast decrease for increasing radial
quantum number n, practical convergence of the infinite
sum in Eq. (2) is achieved by truncating it after at most 20
terms. Moreover, the method guarantees rigorous flavor
symmetry for all nonexotic mesons, including the σ (see
discussion and examples in Refs. [22–24]).
With the separable effective and energy-dependent MM

potential in Eqs. (1) and (2), the 3 × 3 fully off-energy-shell
T-matrix can be solved directly, yielding

Tijðpi; p0
j;EÞ ¼ −2aλ2

ffiffiffiffiffiffiffiffiffi
μipi

p
ji0ðpiaÞ

×
XN
m¼1

Rimf½1 −ΩR�−1gmjj
j
0ðp0

jaÞ
ffiffiffiffiffiffiffiffiffi
μjp0

j

q
;

ð3Þ

with the loop function

ΩijðkjÞ ¼ −2iaλ2μjkjj
j
0ðkjaÞhð1Þj0 ðkjaÞδij; ð4Þ

where hð1Þj0 ðkjaÞ is the spherical Hankel function of the
first kind, kj and μj are the on-shell relativistic relative
momentum and reduced mass in MM channel j, respec-
tively, and the matrixRðEÞ is given by Eq. (2). Note that no
regularization is needed in this model to all orders, since the
Bessel functions at the vertices make the meson loops
finite. The manifestly analytic and unitary S-matrix is
simply given by

S ¼ 1þ 2iT̂; ð5Þ

where T̂ is the fully on-energy-shell submatrix of T,
restricted to the kinematically allowed MM channels just
like S. From Eqs. (1)–(5), the cotangent of the S-wave ππ
phase shift can then be expressed as

cotðδð0Þππ Þ ¼ iþ ηð0Þππ

T̂ππ→ππ − i 1−η
ð0Þ
ππ

2

; ð6Þ

where ηð0Þππ is the inelasticity in the ππ → ππ channel, with

ηð0Þππ ¼ 1 for E < 2mK and jSππ→ππj otherwise.
Before we now carry out a fit to the S-wave ππ phase

shift, let us introduce one more phenomenological degree
of freedom, namely the intrinsic mixing between the bare
nn̄ and ss̄ states. It is true that the common KK̄ and ηη
channels, via ss̄ and/or nn̄ creation, inexorably lead to such
a mixing beyond the Born approximation, but an additional
mixing already at the quark level is perfectly possible,
namely via two gluons. Since low-energy QCD does not
allow to rigorously compute this mixing, we here introduce
the corresponding angle ΘS as a free fit parameter, just like
in Ref. [18]. The other parameters to be varied in the fit are
the overall coupling λ and the decay radius a. The original
model parameters we keep exactly equal to their values as
fixed in Ref. [7] and then used in Ref. [8] as well as in all
posterior model calculations, both in coordinate-space
and momentum-space approaches. These fixed parameters
are: the constituent quark masses mn ¼ 406 MeV and
ms ¼ 508 MeV, besides the constant level splittings 2ω ¼
380 MeV and ω ¼ 190 MeV between radial and orbital
excitations, respectively. The latter equidistant HO spec-
trum is clearly not a canonical one in meson spectroscopy,
but its choice is immaterial for the present study, because
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the resulting lowest standard nn̄ and ss̄ states come out
at about 1.3 GeV and 1.5 GeV, respectively, very close to
the values found in mainstream quark models. For theo-
retical and empirical justifications of a mass-dependent HO
potential, see Refs. [6,25]. The latter reference concerns a
review paper that revisits many successful meson-spectros-
copy applications of such a potential in the framework of
unitarized quark models.
Now we are in a position to fit λ, a, and ΘS to S-wave ππ

phase shifts from threshold up to 1 GeV collected and
compiled by D. V. Bugg [26] from various sources (also see
Ref. [27]). The fitted parameter values are1

λ¼ 3.673; a¼ 3.314GeV−1; ΘS ¼ 7.515°: ð7Þ

These values of λ and a are close to those found in
Ref. [18]. But note that the fitted ΘS is much smaller here
than in Ref. [18], which is plausible, as in the latter paper a
much larger energy interval had to be accommodated. For
the same reason, we now do not impose an explicit extra
damping of closed channels like in Ref. [18]. Owing to this
small value ofΘS, our bare nn̄ and ss̄ states are almost pure,
with most of the mixing between the σ and f0ð980Þ
resulting from the common KK̄ and ηη channels. The
result of the fit to the ππ phases is shown in Fig. 2. The
quality of the fit is satisfactory, considering the mere
three adjustable parameters. The kink in the model curve
at about 990 MeV is due to the opening of the KK̄ channel,

which introduces an S-wave inelasticity in the ππ channel.
Also note that the almost perfect fit at low energies is
reflected in the obtained isoscalar S-wave ππ scattering
length a00 ¼ 0.211m−1

π . Finally, we find the two isoscalar
scalar resonance poles on the second Riemann sheet (in
MeV) σð460 − i222Þ and f0ð978 − i37.2Þ.

III. σð500Þ POLES AS A FUNCTION OF mπ

As already mentioned in the Introduction, Ref. [11]
has studied the isoscalar scalar system in lattice simu-
lations for two unphysical pion masses, viz. mπ ¼
391 MeV [10,11] and mπ ¼ 236 MeV [10]. For the
smaller pion mass, a resonance pole could be extracted
resembling the σð500Þ, albeit with a too large real part.
However, this extraction is difficult and leads to widely
scattered values for the real and imaginary part of the
pole, depending on the employed parametrization [10].
Moreover, in order to extrapolate these results toward the
physical pion mass, different methods may be used as
well. In that spirit, we compute here σ pole positions
as a continuous function of mπ , leading to bound-state,
virtual-state, and resonance trajectories, which we shall
display next both in the complex energy and momentum
planes.
The numerical technique I use to search for real or

complex poles in the S-matrix is by finding the zeroes in
the modulus squared of the determinant of the matrix 1 −
ΩR in Eq. (3), just like already done for the σð500Þ and
f0ð980Þ resonances above. This is easy by employing the
Fortran-coded minimization package MINUIT of the CERN
Program Library [28].
In Fig. 3 the resonance pole trajectory of the σð500Þ in

the complex E plane is shown for a pion mass ranging
from its physical value to mπ ¼ 261.57 MeV, where
the pole reaches the real axis and splits into a pair of
virtual-state poles, i.e., staying on the second Riemann
sheet. Note that for mπ > 231.21 MeV we are dealing
with a typical subthreshold S-wave resonance, just like in
the case of making the resonance pole move to the real
axis by increasing the overall coupling λ (see Fig. 2 in
Ref. [17]). What is quite remarkable is the enormous
stability of the real part of the resonance pole, increasing
by only about 3 MeV while the imaginary part runs from
−222 MeV to zero. Figure 3 also indicates the resonance
pole for the pion mass of 236 MeVemployed in Ref. [10].
The equivalent pole trajectory in the complex k plane is
displayed in Fig. 4, where the mirror-image trajectory
with ReðkÞ < 0, required for unitarity [25], is not shown.
The latter two poles meet on the negative imaginary
k axis for mπ ¼ 261.57 MeV, indeed confirming that we
are dealing now with virtual poles. This typical S-wave
behavior of S-matrix poles is further clarified by allowing
mπ to become even larger. So in Fig. 5 the real trajectories
of bound-state and virtual-state poles are displayed
by plotting the corresponding energies directly as a

FIG. 2. Model fit to S-wave ππ phase shifts from Ref. [26].

1Note that in Ref. [18] a wrong dimension of GeV−1=2

was specified for λ. With λ defined as in Eqs. (1)–(4), it is
dimensionless.
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double-valued function of mπ , up to mπ ¼ 500 MeV.
First of all, a σð500Þ bound state is found at E ¼
710.3 MeV for the pion mass of 391 MeV used in
Refs. [10,11]. We also see that, for all values of mπ >
261.57 MeV, there are two real poles, i.e., one bound
state plus one virtual state or two virtual states, the
latter meeting at 261.57 MeV to transform into one
resonance for smaller values of mπ . Also this behavior
is qualitatively the same as that observed in the case of

pole trajectories as a function of λ [17,18]. Moreover,
Fig. 5 shows that in the bound-state situation, there is
only a very far-away virtual pole, contrary to the claim in
Ref. [16], as argued in Ref. [17] as well. Finally, Fig. 6
displays the corresponding (imaginary) momentum tra-
jectory of bound and virtual states.

FIG. 3. Resonance pole trajectory of σð500Þ in the complex E
plane as a function of mπ .

FIG. 4. Resonance pole trajectory of σð500Þ in the complex k
plane as a function of mπ , for ReðkÞ > 0.

FIG. 5. Bound-state and virtual-state pole trajectories of real
σð500Þ energy as a function of mπ; green (upper section): bound
state, blue (middle section): first virtual state, red (lower section):
second virtual state.

FIG. 6. Bound-state and virtual-state pole trajectories
of imaginary σð500Þ momentum as a function of mπ; green
(upper section): bound state, blue (middle section): first virtual
state, red (lower section): second virtual state. Point (1):
mπ ¼ 292.35 MeV.
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IV. DISCUSSION AND CONCLUSIONS

Before comparing the above model results to recent
LQCD predictions, let me mention two related works from
about a decade ago. In Ref. [29], it was shown that the
trajectories of poles as a function of some strength
parameter and coupling to continuum P-waves or higher
are qualitatively the same, irrespective of the employed
dynamics. On the other hand, in the case of S-wave pole
trajectories it was suggested that important information on
the internal structure of a resonance can be revealed. As for
Ref. [30], the authors made use of unitary chiral perturba-
tion theory to study the pion-mass dependence of the size of
the σð500Þ, then on the verge of being renamed from
f0ð600Þ to f0ð500Þ [2]. They concluded that for a large
pion mass, of the order of 400 MeV, the picture of a
molecular-type, spread-out ππ state appears to be suitable.
This would indeed resemble somewhat the relatively small
ππ binding formπ ¼ 391 MeV, as later found on the lattice
in Refs. [10,11,14,15]. However, for the physical pion mass
they obtained a small σð500Þ size suggesting a compact
object, for which the authors considered a four-quark
picture more appropriate. I disagree with the latter assess-
ment, based on the above model results, as well as the
referred lattice computations, in which no four-quark
interpolators were employed.
We will now compare our continuous σð500Þ trajecto-

ries with the discrete σ lattice pole positions for mπ ¼
391 MeV [10,11] and mπ ¼ 236 MeV [10]. Starting with
the bound-state case, we recall the model prediction
710.3 MeV, whereas the lattice yielded 758(4) MeV
[10] and 745(5) MeV [11], for mπ ¼ 391 MeV. This
discrepancy is probably due to a difference in the
handling of the KK̄ and ηη channels. First of all, in
Ref. [11] Kaon and η masses were employed of 549 MeV
and 587 MeV, respectively, instead of the physical ones,
as a result of the chosen light and strange quark masses.
Although such an increased K mass was not mentioned in
Ref. [10], probably the same or a similar value was taken.
The small difference in binding energy of 13 MeV
between the two simulations in Refs. [10,11] appears
to be indeed due to the inclusion of the ηη channel in
Ref. [11], by providing some extra attraction owing to the
latter kinematically closed channel. If we also increase
the Kaon and η masses in the model as in Ref. [11], the σ
mass comes out at 718 MeV. Now we should recall that,
in the more general model of Ref. [18], a phenomeno-
logical damping of closed channels was introduced in
order to reduce their influence far underneath the thresh-
olds, which becomes necessary when simultaneously
fitting data over a very wide energy range. A similar
suppression of closed channels was successfully used in
Ref. [27], dealing with the complete scalar nonet. As
mentioned in Ref. [17], a σ bound state of 760 MeV is
found in the full model of Ref. [18], for a pion mass of
391 MeV. If we here use the same subthreshold

suppression of the KK̄ and ηη channels as in Ref. [18],
the bound state comes out at 752 MeV.
In the very recent LQCD paper of Ref. [14], further

information on the quark-mass dependence was obtained
by carrying out computations of the σ pole at two
intermediate pion masses, viz. mπ ¼ 283 MeV and mπ ¼
330 MeV. The authors concluded that the σ undergoes a
transition from being a bound state to a virtual bound state
somewhere between these two values of the pion mass.
This is in agreement with the model results displayed in
Figs. 5 and 6, with the transition from bound state to
virtual state occurring at mπ ¼ 292.35 MeV. Also the
typical S-wave behavior of the σ pole near threshold
as observed in Ref. [14] is in conformity with our findings
above. Still regarding a real σ pole, the conclusion
in the other very recent LQCD paper [15] that the σ
appears to pass through a narrow virtual-state region upon
transitioning from a bound state to a (subthreshold)
resonance is qualitatively what one also observes in
Figs. 5 and 6.
Finally we compare the model’s σ-pole resonance

trajectories in Figs. 3 and 4 with the LQCD results in
Refs. [10,15]. As mentioned before, the former lattice
computation for mπ ¼ 236 MeV resulted in complex pole
positions strongly varying with the employed parametriza-
tions of the computed real amplitudes, such as K-matrix,
relativistic Breit-Wigner, and other ansatzes, with or with-
out an Adler zero. From Fig. 5 in Ref. [10], I extract an
energy range of about 590–760 MeV for the poles’ real
parts and approximately 280–460 MeV for the widths, i.e.,
twice the modulus of the imaginary parts. On top of that are
the quite large error bars, up to roughly �80 MeV in one
case. So even accounting for the uncertainties in the various
resonance pole positions, they all lie well above the ππ
threshold at 472 MeV. In this respect, it is interesting to
note that two of the lowest mass predictions, albeit still
above 500 MeV, concern parametrizations with an Adler
zero. Namely, in Ref. [31] a relativistic Breit-Wigner form
with an explicit Adler zero in the s-dependent width was
used to fit S-wave ππ phase shifts, which in combination
with other data yielded a σð500Þ pole position with real part
ð533� 25Þ MeV. Also, in Ref. [18] a very simple yet
unitary Breit-Wigner form was shown to overestimate the
resonance mass. In comparison, the present unitary and
analytic model predicts a very small interval 460–463 MeV
for the real part of the σð500Þ pole while covering a
wide range of pion masses, including mπ ¼ 236 MeV.
Nevertheless, a significant LQCD improvement was
accomplished in Ref. [15] by imposing constraints through
dispersive approaches, with the corresponding resonance
pole positions displayed in Fig. 3 of that paper. Note that
the pion mass in this case was taken at 239 MeV, which
owing to an improved extraction [14] corresponds to
mπ ¼ 236 MeV used in Ref. [10]. From the figure I now
extract the ranges 498–586 MeV for the real parts and
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394–506 MeV for the widths, with the largest error in the
real part being �82 MeV. These values allow for a
possible subthreshold σ resonance at mπ ¼ 239 MeV
for two of the employed dispersive methods, as found
in the present model (see Figs. 3 and 4). The largest
discrepancy between lattice and model we observe for the
width of the σ, which is at least 350 MeV in Ref. [15] and

only about 220 MeV in the model for mπ ¼ 236 MeV.
So I conclude that it would be worthwhile to compute the
σ resonance on the lattice for some pion masses between
239 MeV and 283 MeV, in order to see how the width can
get down from about 400–500 MeV to zero very fast over
a relatively small range of pion masses, namely of the
order of 40–50 MeV.
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