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The N�ð1535Þ can be dynamically generated in the chiral unitary approach with the coupled channels,
K0Σþ; KþΣ0; KþΛ, and ηp. In this work, we evaluate the correlation functions for every channel and face
the inverse problem. Assuming the correlation functions to correspond to real measurements, we conduct a
fit to the data within a general framework in order to extract the information contained in these correlation
functions. The bootstrap method is used to determine the uncertainties of the different observables, and we
find that, assuming errors of the same order than in present measurements of correlation functions, one can
determine the scattering length and effective range of all channels with a very good accuracy. Most
remarkable is the fact that the method predicts the existence of a bound state of isospin 1

2
nature around the

mass of the N�ð1535Þ with an accuracy of 6 MeV. These results should encourage the actual measurement
of these correlation functions (only the KþΛ one is measured so far), which can shed valuable light on the
relationship of the N�ð1535Þ state to these coupled channels, a subject of continuous debate.
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I. INTRODUCTION

The N�ð1535Þ state plays an important role in many
processes in hadron physics and is the subject of intense
discussion concerning its nature. One of the pioneering
works on the chiral unitary approach was devoted to
discuss the nature of this state, which in Refs. [1,2], was
branded as a dynamically generated state from the inter-
action of coupled channels, KΣ; KΛ; ηN, and πN. A more
detailed work with the same conclusions followed in
Ref. [3], with the KΣ; KΛ channels playing a major role
in the wave function of the state.
From the three quark structure, this state has always

been problematic, since the N�ð1535Þ is above the first
positive parity excitation of the nucleon, supposed to be the
N�ð1440Þ, contrary to simple quark model expectations.

Support for themolecular picture in coupled channels is also
found in Refs. [4–8]. Other works suggest the mixture of a
three quark component with some pentaquark configuration
[9,10]. Analysis of ϕ production in proton-proton reactions
suggested a large coupling of the N�ð1535Þ to ss̄ compo-
nents [11,12] in line with the relevance of the KΣ; KΛ
channels. The N�ð1535Þ coupling strength to the KþΛ
channel is extracted from the KþΛ photoproduction data-
base in Ref. [13] and found to be consistent with the results
of the chiral unitary approach. The couplings toKΛ and ηN
are also obtained inRef. [5] from the study of the J=ψ topp̄η
and p̄KþΛ, indicating the relevance of these components in
the N�ð1535Þ state.
Even admitting the importance of the molecular com-

ponents in the wave function of the N�ð1535Þ state, many
works suggest that the three quark components are also
relevant in the structure of the state [14–16]. In more recent
papers, combining the study in the real space with lattice
simulation results [17,18], the conclusion is similar, but
stressing more the weight of the three quark component. In
Ref. [17], the ηN and πN channels are considered in
addition to the three quark core, while in Ref. [18], the KΛ
component is included in addition. The KΣ channel that
plays an essential role in the chiral unitary approach is not
included in these two latter works. Another issue related to
the N�ð1535Þ is the problem of eta-nucleus interaction and
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the study of possible eta bound states in nuclei, which has
also attracted much attention [19].
The purpose of the present work is to bring the attention

to a new source of information so far not exploited. This is
the information that can be obtained about the relevance of
the meson-baryon components of the N�ð1535Þ from the
study of the interaction of these channels themselves.
Obviously we cannot implement an experiment making
KΛ or KΣ scattering, but this information can nowadays be
obtained via the study of the correlation functions of these
channels. In this case, in pp, pA, and AA collisions, pairs
of the particles that we are interested in are measured at low
relative momenta, and from there, one can obtain the
observables that would be determined in collisions of these
pairs. Performing an analytical extrapolation of the results
below threshold, one can determine if a bound state appears
related to the interaction of the pairs studied. Nothing can
be more instructive about the role the KΣ and KΛ
components in the N�ð1535Þ build up than showing that
from the knowledge of the KΣ and KΛ interaction in a
moderate range of energies above their respective thresh-
olds, the existence of the N�ð1535Þ state and its properties
can be determined with a remarkable precision.
Correlation functions for the channels needed here are not

available yet, but very close information on K̄N interaction
and related channels is already known [20–31]. Theoretical
work on the issue is also already available [32–45].
While most of the theoretical work compares results

of models with existing correlation functions, it has only
been recently that the inverse problem has been given a
solution. This means that starting from experimental
correlation functions, a method is proposed that allows
one to determine the observables of the interaction, like
scattering lengths and effective ranges and the eventual
existence of a bound state of the components studied
[43,46,47]. We follow this line of work. In the absence
of the needed correlation functions, we construct them from
the successful chiral unitary approach and take synthetic
data from these correlation functions making fits to these
data to determine the parameters of the inverse method,
from where we evaluate the observables of the systems.
While, certainly, the method should return an output
consistent with the input used to determine the correlation
functions, the important information that we obtain, for
which we use the resampling or bootstrap method, is the
uncertainty by means of which we can determine these
observables using only the correlation functions as input. In
the present case, we shall evaluate correlation functions for
KΣ; KΛ and ηN, and we shall see that the scattering lengths
and effective ranges can be determined with high accuracy
from them. Furthermore, we will conclude the existence of
the N�ð1535Þ as a bound state of the KΣ; KΛ components
with a precision of a few MeV. This is quite remarkable,
being the N�ð1535Þ lying about 75 MeV below the KΛ
threshold and 150 MeV below the KΣ one. This indicates

the high potential existing in the correlation functions,
which should encourage experimental work in this direc-
tion to bring light into the permanent debate about the
nature of many hadronic states.

II. FORMALISM

A. The chiral unitary approach for the N�ð1535Þ
In Ref. [3], the coupled channels KΣ; KΛ; πN; ηN were

considered, and the zero charge states were taken, namely,

KþΣ−; K0Σ0; K0Λ; π−p; π0n; ηn: ð1Þ

This choice corresponds to the states with isospin jI; I3 ¼
− 1

2
i with I ¼ 1

2
; 3
2
. These states are not convenient for

correlation functions since one has the Coulomb interac-
tion, which makes the calculations more involved, and the
experimental correlation functions at low momenta are
dominated by the Coulomb interaction. Then, we take those
corresponding to jI; I3 ¼ 1

2
i,

K0Σþ; KþΣ0; KþΛ; πþn; π0p; ηp: ð2Þ

In addition, since we are only interested about energies that
are above the thresholds of K0Σþ, KþΣ0, KþΛ, and ηp, we
can safely neglect the πN channels which are about 400–
600 MeV below in energy. The πN channel is also about
450 MeV below the nominal mass of the N�ð1535Þ, and
with such differences in mass, these far away channels have
a negligible role in the mass of the dynamically generated
states, affecting only their width. In this sense, with the
purpose of calculating the position of the N�ð1535Þ
resonance from the knowledge of the correlation functions,
we can simplify the approach eliminating the πþn and π0p
channels, knowing that we will pay a small price in the
determination of the width of the N�ð1535Þ, and also the
imaginary parts of the scattering length and effective range
of the ηp channel. However, here, these are secondary
issues in our aim, which is to establish the link between the
N�ð1535Þ and the KΣ; KΛ components.
Following the steps of the chiral unitary approach of

Ref. [3], from the chiral Lagrangians, one obtains an
interaction between the channels of Eq. (2),

Vij ¼ − 1

4f2
Cijðk0 þ k00Þ; f ¼ 93 MeV; ð3Þ

with k0; k00 the energies of the initial and final mesons,

k0 ¼ sþm2
1 −M2

1

2
ffiffiffi
s

p ; k00 ¼ sþm2
2 −M2

2

2
ffiffiffi
s

p ; ð4Þ

where m1, M1 are the masses of the initial meson, baryon,
and m2, M2 the same for the final ones. The matrix Cij is
given in Table I.
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We should not overlook one important detail. The KþΛ
has no diagonal interaction and does not couple to K0Σþ or
KþΣ0. Its role in the problem is through its coupling to the
ηp channel. Note that only K0Σþ has a diagonal attractive
interaction. Hence, this is the essential channel that can
create a bound state, and one finds that omitting the KΣ
channels, no pole is obtained in the approach.
We include all channels in Table I, although we shall

omit the πN channels in the calculations. With the
information of Eq. (3), we use the Bethe-Salpeter (BS)
equation in coupled channels

T ¼ ½1 − VG�−1V; ð5Þ

with G the diagonal loop function diagðGiÞ and Gi
regularized with a cutoff in three momentum given by

GiðsÞ ¼
Z
jq⃗j<qmax

d3q
ð2πÞ3

ωiðqÞ þ EiðqÞ
2ωiðqÞEiðqÞ

×
2Mi

s − ½ωiðqÞ þ EiðqÞ�2 þ iε
; ð6Þ

with ωiðqÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q⃗2 þm2

i

p
, EiðqÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q⃗2 þM2

i

p
, and mi, Mi

the mass of the meson, baryon in the loop.
We use a value of qmax¼ 630 MeV, the same one

used in Ref. [48], to study the K̄N interaction with its
coupled channels, which gives rise to the two Λð1405Þ
states. The T matrix of Eq. (5) shows a pole at 1515 MeV,
close to the pole position of the N�ð1535Þ in the PDG [49]
(1510 MeV).
For later use in the paper, we write here the isospin

wave functions with the phase convention for the isospin

multiplets given as ðKþ; K0Þ, ð−πþ; π0; π−Þ, ð−Σþ;Σ0;Σ−Þ
and ðp; nÞ,

����KΣ; I ¼ 1

2
; I3 ¼

1

2

�
¼

ffiffiffi
2

3

r
K0Σþ þ

ffiffiffi
1

3

r
KþΣ0;

����KΣ; I ¼ 3

2
; I3 ¼

1

2

�
¼ −

ffiffiffi
1

3

r
K0Σþ þ

ffiffiffi
2

3

r
KþΣ0: ð7Þ

B. Correlation functions

We follow here the formalism developed in Ref. [50],
which leads to a slightly modified version of the Koonin-
Pratt formula [51–53], takes into account explicitly the
range of the interaction in momentum space, and is
technically easier to implement. Taking unity for the
weights of the different channels, as demanded for an
elastic channel, the formulas that we obtain are

CK0ΣþðpK0Þ ¼ 1þ 4πθðqmax − pK0Þ
Z

drr2S12ðrÞ · fjj0ðpK0rÞ þ TK0Σþ;K0ΣþðEÞG̃ðK0ΣþÞðr;EÞj2

þ jTKþΣ0;K0ΣþðEÞG̃ðKþΣ0Þðr;EÞj2 þ jTKþΛ;K0ΣþðEÞG̃ðKþΛÞðr;EÞj2
þ jTηp;K0ΣþðEÞG̃ðηpÞðr;EÞj2 − j20ðpK0rÞg; ð8Þ

CKþΣ0ðpKþÞ ¼ 1þ 4πθðqmax − pKþÞ
Z

drr2S12ðrÞ · fjj0ðpKþrÞ þ TKþΣ0;KþΣ0ðEÞG̃ðKþΣ0Þðr;EÞj2

þ jTK0Σþ;KþΣ0ðEÞG̃ðK0ΣþÞðr;EÞj2 þ jTKþΛ;KþΣ0ðEÞG̃ðKþΛÞðr;EÞj2
þ jTηp;KþΣ0ðEÞG̃ðηpÞðr;EÞj2 − j20ðpKþrÞg; ð9Þ

CKþΛðpKþÞ ¼ 1þ 4πθðqmax − pKþÞ
Z

drr2S12ðrÞ · fjj0ðpKþrÞ þ TKþΛ;KþΛðEÞG̃ðKþΛÞðr;EÞj2

þ jTK0Σþ;KþΛðEÞG̃ðK0ΣþÞðr;EÞj2 þ jTKþΣ0;KþΛðEÞG̃ðKþΣ0Þðr;EÞj2
þ jTηp;KþΛðEÞG̃ðηpÞðr;EÞj2 − j20ðpKþrÞg; ð10Þ

CηpðpηÞ ¼ 1þ 4πθðqmax − pηÞ
Z

drr2S12ðrÞ · fjj0ðpηrÞ þ Tηp;ηpðEÞG̃ðηpÞðr;EÞj2

þ jTK0Σþ;ηpðEÞG̃ðK0ΣþÞðr;EÞj2 þ jTKþΣ0;ηpðEÞG̃ðKþΣ0Þðr;EÞj2þjTKþΛ;ηpðEÞG̃ðKþΛÞðr;EÞj2 − j20ðpηrÞg; ð11Þ

TABLE I. Cij coefficients of Eq. (3).

Cij K0Σþ KþΣ0 KþΛ πþn π0p ηp

K0Σþ 1
ffiffiffi
2

p
0 0 1ffiffi

2
p −

ffiffi
3
2

q
KþΣ0 0 0 1ffiffi

2
p − 1

2 −
ffiffi
3

p
2

KþΛ 0 −
ffiffi
3
2

q
−

ffiffi
3

p
2

− 3
2

πþn 1
ffiffiffi
2

p
0

π0p 0 0
ηp 0
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where pi is the momentum of the particles in the rest frame
of the pair,

pi ¼
λ1=2ðs;m2

i ;M
2
i Þ

2
ffiffiffi
s

p ; ð12Þ

withmi,Mi the masses of the meson, baryon of the channel
considered.
In the former formulas, the G̃ðiÞðr;EÞ function is

defined as

G̃ðiÞðr;EÞ ¼
Z

d3q
ð2πÞ3 2Mi

ωiðqÞ þ EiðqÞ
2ωiðqÞEiðqÞ

×
j0ðqrÞ

s − ½ωiðqÞ þ EiðqÞ�2 þ iε
; ð13Þ

where ωiðqÞ; EiðqÞ are as defined below Eq. (6) and
E ¼ ffiffiffi

s
p

. Note that G̃ðiÞðr;EÞ corresponds to the loop
function GiðsÞ of Eq. (6) with an extra factor j0ðqrÞ in
the numerator. The function S12ðrÞ is the source function,
accounting for the probability that the pair investigated is
produced at a relative distance r. It is commonly para-
metrized as a Gaussian normalized to 1,

S12ðrÞ ¼
1

ð ffiffiffiffiffiffi
4π

p
RÞ3 e

−ðr2=4R2Þ; ð14Þ

and R provides the range of the extension of this source.
Typical values of R are 1 fm for pp collisions, 2–3 fm for
pA collisions and 5 fm for AA collisions. We shall do the
calculations with R ¼ 1 fm.
There is a convenient trick to save computing time, most

welcome in the fits of the bootstrap that we do, which is to
write G̃ðr;EÞ as

G̃ðr;EÞ¼
Z

d3q
ð2πÞ3 2M

ωðqÞþEðqÞ
2ωðqÞEðqÞ

j0ðqrÞ− j0ðqonrÞ
s− ½ωðqÞþEðqÞ�2þ iε

þ j0ðqonrÞ
Z

d3q
ð2πÞ3 2M

ωðqÞþEðqÞ
2ωðqÞEðqÞ

×
1

s− ½ωðqÞþEðqÞ�2þ iε
; ð15Þ

where qon is the on-shell value of the momentum of the
pair, Eq. (12). The reason for this is that the first term is no
longer singular since both the numerator and denominator
go to zero as q → qon, and the limit is finite. Then the
second term, which requires precision because of the zero
in the denominator when ε → 0, can be calculated ana-
lytically using the formula of Ref. [54] (second erratum).
With the T matrices obtained with Eqs. (3) and (5), we

can construct the correlation functions for the
K0Σþ; KþΣ0; KþΛ and ηp. We show the results in
Figs. 1 and 2 calculated with R ¼ 1 fm. As we can see,
the correlation functions for K0Σþ and KþΣ0 are very
similar, yet not identical. The reason is dynamical because
the weight in the relevant I ¼ 1

2
component of each pair is

different [see Eq. (7)]. The KþΛ correlation function is also
different and shows a cusp when the KΣ channel opens.
Finally, the ηp correlation function is very different to the
other ones. It is interesting to see which information is
contained in these correlation functions, and we address
this issue in the next subsection.

C. Inverse problem

We assume now that the correlation functions of Figs. 1
and 2 are the experimental ones, and we produce some
synthetic data by taking 26 points over the curves with an
error of �0.02, typical of the measurements in present
correlation functions. At present, there are only data on the
KþΛ correlation function [55], and the errors are even
smaller than those assumed here; however, there are errors
in the values of p. We assume these bigger errors for the
unmeasured correlation functions to be on the safe side in
the predictions. Then, we carry a fit to the data to determine
the parameters of the formalism that we discuss below, and
with these parameters, we determine the different observ-
ables. To get the synthetic points close to a real experiment,
we apply the parametric bootstrap method [56] generating
random centroids with a Gaussian distribution generator,
performing new fits to these data and evaluating observ-
ables with the new parameters. We repeat the procedure

FIG. 1. Correlation functions for K0Σþ and KþΣ0 channels.
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about 50 times and then calculate the averages and
dispersion of the different observables. The reason to do
the bootstrap is becausewhen there are correlations between
the parameters, the Minuit errors of these parameters are
large, reflecting the presense of these correlations. Using
these uncertainties to evaluate uncertainties in the observ-
ables is, then, not proper. The bootstrapmethod provides the
actual uncertainties in the observables. The errors obtained
with this method are most relevant since they tell us with
which precision we can expect to know the different
observables once the actual correlations are used. The
method also has the advantage that one deals well with
the existing correlations between the parameters. The values
of the parameters in each fit can be different because of these
correlations, but what matters is the precision of the
observables obtained.
For the inverse problem, we assume that there is a

general interaction between the channels, and we imple-
ment in it the energy dependence of the chiral unitary
approach of Eq. (3). This step is not necessary but will
allow us to compare the results of the inverse method with
the input used. Hence, we assume an interaction like

Vij ¼ −
1

4f2
C̃ijðk0 þ k00Þ; ð16Þ

with C̃ij symmetrical and free parameters. Then, we would
have 10 parameters plus qmax and R to fit the four
correlation functions. Yet, we will impose isospin sym-
metry for Vij (it is slightly broken in the T matrix due to
different masses of the physical particle of the same isospin
multiplet). This means that

�
KΣ; I ¼ 3

2
; I3 ¼

1

2

����V
����KΣ; I ¼ 1

2
; I3 ¼

1

2

�
¼ 0;

�
KΣ; I ¼ 3

2
; I3 ¼

1

2

����VjKþΛi ¼ 0;

�
KΣ; I ¼ 3

2
; I3 ¼

1

2

����Vjηpi ¼ 0: ð17Þ

Using these constraints, our Vij matrix takes the form

Vij ¼

0
BBBBB@

V11

ffiffiffi
2

p ðV11 − V22Þ V13 V14

V22
1ffiffi
2

p V13
1ffiffi
2

p V14

V33 V34

V44

1
CCCCCA
; ð18Þ

with the channels K0Σþ; KþΣ0; KþΛ; ηp labeling as
1,2,3,4. Our free parameters are now, C11; C22; C13; C14;
C33; C34; C44 plus qmax and R. In total, we have nine
parameters, which can be determined from the four
correlation functions. With the potential of Eq. (18), we
construct the T matrices via Eq. (5) and with these matrices,
the correlation functions. A fit to the pseudodata returns the
values of the free parameters, and with them, we evaluate
the observables as described in the new subsection.

D. Determination of a;r0, binding of state and couplings

The T matrix of Eq. (5) has a different normalization
than the standard one used in quantum mechanics. We have

T ¼ −
8π

ffiffiffi
s

p
2M

fQM ≃ −
8π

ffiffiffi
s

p
2M

1

− 1
a þ 1

2
r0k2 − ik

; ð19Þ

where in the last step, we have used the effective
range expansion. Since ImT−1 ¼ ImðV−1 −GÞ ¼ −ImG ¼
2M
8π

ffiffi
s

p k (we use one channel for simplicity in this derivation),

we see that the term −ik in Eq. (19) is reproduced by this
conversion factor.
Then we obtain for each channel j

−
1

aj
þ 1

2
r0;jk2j ≡ −

8π
ffiffiffi
s

p
2Mj

ðTjjÞ−1 þ ikj; ð20Þ

from where we obtain

FIG. 2. Correlation functions for KþΛ and ηp channels.
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−
1

aj
¼ −

8π
ffiffiffi
s

p
2Mj

ðTjjÞ−1
���� ffiffiffiffiffiffisth;j
p

; ð21Þ

r0;j ¼ 2
∂

∂k2

�
−
8π

ffiffiffi
s

p
2Mj

ðTjjÞ−1 þ ikj

�
ffiffiffiffiffiffi
sth;j

p
;

¼ 1

μj

∂

∂
ffiffiffi
s

p
�
−
8π

ffiffiffi
s

p
2Mj

ðTjjÞ−1 þ ikj

�
ffiffiffiffiffiffi
sth;j

p
; ð22Þ

with ffiffiffiffiffiffiffiffisth;j
p the threshold energy for the channel j and μj the

reduced mass of the two particles of channel j.
The pole for a possible bound state is looked for in the

second Riemann sheet, which is obtained by using
GðIIÞð ffiffiffi

s
p Þ as

GðIIÞð ffiffiffi
s

p Þ ¼ Gð ffiffiffi
s

p Þ þ i
2M
4π

ffiffiffi
s

p qon;

qon ¼
λ1=2ðs;m2;M2Þ

2
ffiffiffi
s

p ; ð23Þ

for channels where Re
ffiffiffi
s

p
>

ffiffiffiffiffi
sth

p
.

Once the pole is determined, the width is approximately
two times the imaginary part of the pole (its absolute value),
and the couplings are obtained as

g2j ¼ limffiffi
s

p
→

ffiffiffiffi
sp

p ð ffiffiffi
s

p
− ffiffiffiffiffi

sp
p ÞTjj; ð24Þ

gigj ¼ limffiffi
s

p
→

ffiffiffiffi
sp

p ð ffiffiffi
s

p
− ffiffiffiffiffi

sp
p ÞTij; ð25Þ

with ffiffiffiffiffispp the value of the pole position. The latter
equation allows us to determine relative signs of the
couplings for different channels, and one of them is chosen
arbitrarily.
With the value of the couplings, one evaluates the

probabilities and wave function at the origin [57,58],

Pi ¼ g2i
∂Gi

∂E
; ψðr ¼ 0Þ ¼ giGi: ð26Þ

This is strict for a bound state, but there are caveats in the
case of open channels to which we will come back below.

III. RESULTS

As we mentioned above, there are correlations between
the parameters, in particular qmax and the strength of the
potential. Since in each fit of the bootstrap method, we
obtain the value of the parameters, we show in Table II the
average values and errors obtained for Cij, qmax and R.
The first comment is that one can evaluate R with high

precision, of the order of 2%. The second is that qmax is
obtained with values around the original one of 630 MeV
with uncertainty of about 10%. The matrix elements which
are zero in Table I are small here and basically compatible
with zero within errors. C11 is of the order of 1 as in Table I,
V14 and V34 are both negative and compatible with Table I

within errors, and V34=V14 is also compatible with
ffiffi
3
2

q
as in

the table. The errors in the dominant terms are of the order
of 20%. This does not mean that we will have errors of this
order of magnitude in the observables. It reflects the
correlations between the parameters. For instance, in one
channel, we would have T−1 ¼ V−1 −G, and we can make
changes in V−1 and G (through qmax) simultaneously, such
that V−1 −G does not change at the pole, for instance, and
obtain similar results.
The relevant results are those for the observables. In

Table III, we show the results of the scattering lengths for
the different channels. We can see that the errors are smaller
than 10% in most cases.

TABLE II. Values obtained for parameters Cij, qmax and R. The channels are K0Σþð1Þ, KþΣ0ð2Þ, KþΛð3Þ, ηpð4Þ.
C11 C22 C33 C44 C13

1.10� 0.20 −0.02� 0.20 0.14� 0.30 0.16� 0.07 0.13� 0.20

C14 C34 qmax ðMeVÞ R ðfmÞ
−1.10� 0.20 −1.37� 0.16 637� 72 1.02� 0.02

TABLE III. Scattering lengths for channel i (in units of fm).

a1 a2
ð0.46�0.04Þ−ð0.64�0.03Þi ð0.32�0.01Þ−ð0.35�0.02Þi
a3 a4
ð0.30�0.02Þ−ð0.22�0.04Þi ð−0.780�0.013Þþð0�0Þi

TABLE IV. Effective range parameters for channel i (in units of fm).

r1 r2 r3 r4
ð−1.1� 0.2Þ − ð2.7� 0.2Þi ð−6.2� 1.4Þ þ ð8.8� 0.5Þi ð−2.8� 0.3Þ − ð0.3� 0.6Þi −1.48� 0.13
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In Table IV, we see the values of the effective ranges,
which are determined with a little bigger uncertainty but are
still significative.
Finally, in Table V, we show the value of the energy for

the bound state that we obtain and the couplings of that
state to each channel. It is remarkable to see that the
correlation functions contain enough information to deduce
that there is a bound state in the KΣ; KΛ channels with an
energy around 1515 MeV, the original one. While our
starting model contained this state as a consequence of the
interaction of the coupled channels, it is unclear a priori,
that the partial information of this interaction contained in
the correlation functions is sufficient to determine the
existence and position of that state. Most remarkable is
the fact that one can determine its mass with a precision of
6 MeV. This contrasts with the results of similar problems
like the one of determining the position of the D�

s0ð2317Þ
state from the D0Kþ; DþK0, and Dþ

s η correlation func-
tions, where a binding energy of about 50 MeV is
determined with a precision of 20 MeV [43].
There is more valuable information in Table V. Indeed,

the couplings are determined also with good precision, and
we see that g1=g2 ¼ 1.42. This is remarkably close to

ffiffiffi
2

p
,

which according to Eq. (7), is what we could expect for a
state being of I ¼ 1=2. The fit to the correlation functions
is, thus, telling us that the state obtained has I ¼ 1=2. The
uncertainties of the order of 10% in the couplings cannot
revert this fact since a state of I ¼ 3=2would have this ratio
negative and equal to −1=

ffiffiffi
2

p
.

And now, we face the problem of the probabilities of the
state in each channel. Before entering the discussion, let us
note that the pole position is complex, and it would
correspond to a state that decays with a width of the order
of ð178� 18Þ MeV, in line with the results of the PDG.
The width comes solely from the decay to the ηp channel,
which is open for the energy of the state. The couplings are
complex, but with imaginary parts smaller than the real
parts. The probabilities Pi calculated via Eq. (26) are
complex and thus do not stand as probabilities. The
problem is more serious because the state, decaying to
ηp, will have an asymptotic wave function of the type
eikr=r, which is not normalizable. The meaning of this
number is explained in Ref. [59] and corresponds to the
integral

R
d3rψ2ðrÞ (not jψðrÞj2) with a certain prescription

for the phase of ψðrÞ. This is why the integral is finite since
the integral of e2ikr=r2 cancels because of the oscillations.
Hence, one can interpretPi as a strength of a channel, given

by the integral of the square of the wave function in the
confinement region before the asymptotic one. With this
caveat, one finds

P1 ≃ 0.12 − 0.23i; P2 ≃ 0.06 − 0.12i;

P3 ≃ 0.22 − 0.28i; P4 ≃ −0.34 − 0.24i; ð27Þ

and if one takes the modulus of these quantities, we find

jP1j ¼ 0.26; jP2j ¼ 0.13;

jP3j ¼ 0.35; jP4j ¼ 0.42: ð28Þ

We find that the sum of these numbers, 1.16, exceeds
unity, which indicates again that these are not probabilities
but gives us an idea or the strength of each channel. We
see that the two KΣ channels together have a large strength,
in spite of being further away than the KΛ from the mass of
the state. This further stresses the relevant role of the KΣ
channel as the backbone of the obtained state. One can
also see the nontrivial effect of coupled channels since
the apparently innocuous KΛ channel finally gets some
component in the wave function through its coupling
KΛ → ηp → KΣ.
It is also interesting to show the values of the wave

function at the origin in coordinate space giGi, given by

ψ1ðr¼ 0Þ≃−26þ14i; ψ2ðr¼ 0Þ≃−19þ9.8i;

ψ3ðr¼ 0Þ≃−30þ11i; ψ4ðr¼ 0Þ≃−18−30i: ð29Þ

The sum of the K0Σþ; KþΣ0 components exceeds the KþΛ
one, stressing once more the importance of this channel.
In order to see the stability of the results, we have

repeated the resampling method with 100 runs. We show
the results for the scattering observables in Tables VI and
VII, and for the couplings in Table VIII.
As we can see, the results are practically the same as

those with 50 runs, all compatible within the obtained

TABLE V. Pole position and couplings (in units of MeV).

ffiffiffiffiffispp g1 g2
ð1515� 6Þ − ð89� 9Þi ð3.7� 0.3Þ − ð1.04� 0.13Þi ð2.6� 0.2Þ − ð0.74� 0.10Þi

g3 g4
ð3.6� 0.2Þ − ð0.28� 0.05Þi ð−2.68� 0.13Þ þ ð1.4� 0.2Þi

TABLE VI. Results with 100 resampling runs for scattering
lengths of channel i (in units of fm).

a1 a2
ð0.44� 0.05Þ − ð0.62� 0.04Þi ð0.31� 0.02Þ − ð0.34� 0.02Þi
a3 a4
ð0.30� 0.02Þ − ð0.20� 0.04Þi −0.769� 0.017
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uncertainties. The results for the probabilities are also
practically identical to those found in Eq. (28).

A. Comparison with experiment

In Ref. [55], the KþΛ correlation function is analyzed in
terms of the Lednický-Lyuboshits analytical formula as a
single channel [60]. A scattering length is obtained [in our
convention fðkÞ ≃ ð− 1

a þ 1
2
r0k2 − ikÞ−1]

a ¼ ð0.61� 0.03� 0.03Þ − ið0.23� 0.06� 0.04Þ fm:

ð30Þ

This should be compared with a3 from Table III

aðoursÞ ¼ ð0.30� 0.02Þ − ið0.22� 0.04Þ fm: ð31Þ

The imaginary parts are consistent, but the real part of a is
about twice our value of aðoursÞ. This apparent contradiction
requires an explanation. The real part of the scattering
length is tightly linked to the value of the correlation
function at p ¼ 0 in the Lednický-Lyuboshits formula with
a single channel

CLLð0Þ ¼ 1þ 2Ref0ð0Þffiffiffi
π

p
R

þ jf0ð0Þj2
2R2

: ð32Þ

Using the source function of Ref. [55], one can see a fair
agreement of Eq. (32) with the results of the correlation
function of Ref. [55] (Fig. 2 of that reference), 0.7 versus
0.8 [note also that they use Eq. (2) to compare with
the experimental data, slightly different than our theoretical
formula]. Thus, the result for the scattering length obtained
in Ref. [55] with a single channel analysis is not surprising.
However, the correlation function for KþΛ that we
show in Fig. 2 (left) is remarkably similar to the exper-
imental one of Ref. [55]. Yet, we found that consistent with
ReaðoursÞ ≃ 0.3 fm. This apparent contradiction should be
attributed to the effect of the coupled channels in Eq. (10),
which are ignored in the single channel analysis of
Ref. [55]. We conclude then that the analysis of data

within coupled channels is necessary and urge the exper-
imental teams to measure the other correlation functions
discussed in the present work.

IV. CONCLUSIONS

We address the problem of constructing the correlation
functions of the K0Σþ; KþΣ0; KþΛ, and ηp channels.
These channels, in particular, the KΣ channels, are respon-
sible for the appearance of the N�ð1535Þ state, which
becomes dynamically generated by these channels within
the chiral unitary approach. The interaction of these
channels produces that state, but the K0Σþ; KþΣ0; KþΛ
channels are very far away in energy from the N�ð1535Þ,
and it is unclear how much the correlation functions of
these channels, filtering information of the interaction
above their respective thresholds, can determine the exist-
ence of a bound state around 150 MeV below the thresh-
olds. We have then addressed the inverse problem,
assuming that the correlation functions for the
K0Σþ; KþΣ0; KþΛ, and ηp channels is known experimen-
tally, for which we take synthetic data extracted from the
evaluated correlation functions and perform a fit to these
data, very general and with minimal assumptions. Then we
obtain the values of the parameters of the framework used,
and with them, we determine the different observables tied
to the correlation functions. We determine the scattering
length and effective range for each of the four channels, and
we find a pole in the T matrix that corresponds to the
N�ð1535Þ. The remarkable thing is not that we obtain this
state, which was expected with the input used to obtain the
correlation functions used in the fits, but that it is obtained
with high precision. The uncertainty in the binding,
obtained using the bootstrap method, is only 6 MeV.
Very interesting also is that one can evaluate the couplings
of the state to the different channels with also high
precision, such that unmistakably one can assert that the
state obtained has isospin 1

2
. The results obtained here

should encourage the measurement of these correlation
functions to see how much the N�ð1535Þ is tied to the
K0Σþ; KþΣ0; KþΛ, and ηp channels, a subject of much

TABLE VIII. Results with 100 resampling runs for pole position and couplings (in units of MeV).

ffiffiffiffiffispp g1 g2
ð1515� 7Þ − ð96� 13Þi ð3.7� 0.5Þ − ð1.11� 0.16Þi ð2.6� 0.4Þ − ð0.79� 0.11Þi

g3 g4
ð3.5� 0.3Þ − ð0.27� 0.06Þi ð−2.75� 0.17Þ þ ð1.4� 0.2Þi

TABLE VII. Results with 100 resampling runs for effective range parameters of channel i (in units of fm).

r1 r2 r3 r4
ð−1.2� 0.3Þ − ð2.7� 0.2Þi ð−5.5� 1.6Þ þ ð8.9� 0.5Þi ð−2.8� 0.3Þ − ð0.1� 0.7Þi −1.41� 0.16
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discussion concerning the nature of the state. For the
moment, the KþΛ correlation function is available, which
looks very similar to the one obtained here. However, when
analyzed in the experiment by means of a single channel,
the real part of the scattering length obtained has the same
sign but is twice as big as the one obtained here, and we
trace the discrepancy to the use of the single channel
analysis in the experimental work [55]. We show the
importance of using coupled channels in the analysis
and make a call for the measurement of the complementary
channels discussed in this work.
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