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We determine color-octet nonrelativistic QCD matrix elements for quarkonium decays from moments of
the two-point correlation function of the QCD field-strength tensor computed in the refined Gribov-
Zwanziger theory. We find that a tree-level calculation in the refined Gribov-Zwanziger theory can give a
suitable description of the QCD field-strength correlation function at both short and long distances, which
leads to moments that are infrared finite and can be properly renormalized. By using the color-octet matrix
elements we obtain, we quantitatively improve the nonrelativistic effective field theory description of
quarkonium decay rates, especially for the χQJ and ηQ states, where Q ¼ c or b.
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I. INTRODUCTION

The two-point correlation function of the QCD field-
strength tensor has been considered an important quantity in
phenomenological studies of the strong interaction [1–15].
In particular, it has been known that they can be used to
compute nonperturbative matrix elements that arise in
decays of heavy quarkonium states [16–18]. The contribu-
tions to the decay rates of heavy quarkonia from proba-
bilities for a heavy quark Q and antiquark Q̄ pair to be in a
color-octet state are encoded in the nonrelativistic QCD
(NRQCD) color-octet matrix elements, which can be
expressed as products of quarkonium wavefunctions at
the origin and moments of field-strength correlators as have
been shown in the potential NRQCD (pNRQCD) effective
field theory formalism [17–21]. The color-octet contribu-
tions can have significant effects on decay rates of heavy
quarkonia. Most notably, in inclusive decays of P-wave
heavy quarkonia the color-octet contribution appears at
leading order in the nonrelativistic expansion in powers
of v, the typical velocity of the heavy quark inside the
quarkonium [22]. Color-octet contributions also appear in
two-photon decays of P-wave heavy quarkonia as correc-
tions of order v2 [23]. Even in the case of S-wave quar-
konium decays, inclusion of color-octet contributions are
necessary for improving the theory description of decay
rates and two-photon branching fractions of ηc [24,25]. It is
also known that color-octet contributions are enhancedby an

inverse power of αs in the case of J=ψ andϒ decays [26,27].
As the quarkonium wave functions at the origin can usually
be determined from potential models and electromagnetic
decay rates of heavy quarkonia, and even be computed
accurately from first principles [28,29], quarkonium decays
can provide useful probes of the moments of QCD field-
strength correlators.
The moments of field-strength correlators are sensitive

to both the short-distance and long-distance behaviors of
the correlators. The correlators as functions of the sepa-
ration of the field strengths have been studied in pertur-
bative QCD [30], in operator-product expansion [31,32],
and on the lattice [33–35]. The calculations in both pertur-
bative QCD and operator-product expansion approaches
only reproduce the short-distance behaviors of the corre-
lators, so they cannot be used to compute the moments;
these calculations give results for the correlators that are
given by inverse powers of the separation of the two field
strengths, whose moments are scaleless divergent and
vanish in dimensional regularization. On the other hand,
lattice QCD calculations have been shown to reproduce
both the nonperturbative long-distance behavior and the
power-law behavior at short distances. However, the short-
distance behaviors of the lattice results are not well
understood in terms of perturbative QCD calculations,
and this makes it difficult to renormalize the ultraviolet
(UV) divergences in the moments. Renormalization of the
moments is important because it is directly related to
renormalization of the UV divergences in the color-octet
matrix elements. Hence, currently available results for the
field-strength correlators do not immediately lead to
quantitative results for their moments. It would be desir-
able to have calculations for the correlators that are
compatible with perturbative QCD at short distances,
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and also describe the nonperturbative long-distance behav-
iors at least approximately.
It has been known that non-Abelian gauge theories

quantized in the standard Fadeev-Popov method contain
Gribov copies [36]; that is, a gauge-fixing condition such as
∂ · A ¼ 0, whereA is a gauge field, does not uniquely fix the
gauge and there are distinct gauge-field configurations that
satisfy the gauge-fixing condition that are related by large
gauge transformations. In order to remove this ambiguity,
the functional integral can be restricted to a region free of
Gribov copies called the fundamental modular region. A
semiclassical calculation of the gluon propagator in the
Landau gauge leads to a result that ismodified in the infrared
region by a dimensionful quantity called the Gribov param-
eter in a way that the poles of the propagator are shifted to
nonphysical locations, while the large-momentum behavior
of the propagator coincides with perturbative QCD. The
Gribov parameter appears in the modified propagator in the
form of a complex-valued gluon mass, so that infrared
divergences are regulated while single-gluon states do not
appear in the physical spectrum. Later it was shown that by
introducing auxiliary fields the restriction to the fundamen-
tal modular region can be incorporated into a local and
renormalizable action, hereafter referred to as the Gribov-
Zwanziger (GZ) theory [37], whose tree-level gluon propa-
gator reproduces the semiclassical result in Ref. [36]. We
refer readers to Refs. [36–40] and the review in Ref. [41] for
details of the Gribov ambiguity and the GZ theory. Because
the tree-level propagator follows from a semiclassical
calculation, one would hope that it would at least approx-
imately describe the nonperturbative behavior of the gluon
propagator. Unfortunately, lattice QCD calculations have
shown that this is not the case; while the tree-level gluon
propagator at zero momentum vanishes in the GZ theory,
lattice data shows that it is nonzero [42,43]. This discrepancy
suggests that more nonperturbative effects will need to be
included in order to describe the nonperturbative behavior of
non-Abelian gauge theories.
The refined Gribov-Zwanziger (RGZ) theory has been

obtained by adding effects of dimension-two condensates
associated with the gauge field and the auxiliary fields to
the GZ action [44–49]. The dimension-two condensate of
the gauge field has been considered an important quantity
in the study of non-Abelian gauge theories [50–52]; a
gauge-invariant definition of the dimension-two condensate
is given by its minimum, which occurs in the Landau
gauge. Analyses in the effective potential formalism
suggest that a nonvanishing value of the dimension-two
condensate is favored [49,52,53]; this is supported by
lattice QCD calculations of the gluon propagator [54],
the quark propagator [55], and also by a study based on
resummation of Feynman diagrams [56]. As such a con-
densate leads to a dynamically generated gluon mass, it
would modify the infrared behavior of the gluon propa-
gator. Remarkably, tree-level calculation in the RGZ theory

leads to a good description of the lattice measurement of the
Landau-gauge gluon propagator [48,57]. This suggests that
a perturbative calculation in the RGZ theory may be able to
account for a good part of the nonperturbative dynamics of
gluons in the SUð3Þ gauge theory. It would therefore be
interesting to compute other quantities involving gauge
fields in the RGZ theory in perturbation theory, such as the
QCD field-strength correlators and their moments.
In this work, we compute the two-point correlation

functions of theQCDfield-strength tensor and theirmoments
in the RGZ theory at tree level. At tree level, perturbative
calculations in the RGZ theory simply amounts to using the
modified gluon propagator in usual perturbative QCD
calculations. Due to the dimensionful parameters associated
with the Gribov parameter and the condensates, perturbative
calculations in the RGZ theory are infrared finite. When the
field-strength correlators are computed perturbatively in the
RGZ theory, their long-distance behaviors aremodified from
the power-law behaviors in the usual perturbative QCD
calculations so that their moments are infrared finite,
while at short distances they reproduce the leading UV
behavior in perturbativeQCD.We thus obtain finite values of
the moments by subtracting the UV divergences through
renormalization and obtain renormalized color-octet matrix
elements. From this we quantitatively determine the color-
octet contributions to quarkonium decay rates, which can be
compared directly with experiment.
This paper is organized as follows. In Sec. II, we

compute the two-point correlation function of the QCD
field-strength tensor in the RGZ theory, and compare the
results with lattice QCD. In Sec. III, we compute the
moments of the field-strength correlation functions that
appear in decay rates of heavy quarkonia. We use the
results for the moments to obtain the color-octet matrix
elements for quarkonium decays and compute the color-
octet contributions to decay rates of heavy quarkonia in
Sec. IV. We conclude in Sec. V.

II. QCD FIELD-STRENGTH CORRELATORS

We define the two-point correlation function of the QCD
field-strength tensor in Euclidean space as

DμνρσðxÞ ¼ TFhΩjgGa
μνðxÞΦabðx; 0ÞgGb

ρσð0ÞjΩi; ð1Þ

where jΩi is the QCD vacuum, Ga
μν ¼ ∂μAa

ν − ∂νAa
μ þ

gfabcAb
μAc

ν is the QCD field-strength tensor, Aμ is the
gauge field, g is the strong coupling, TF ¼ 1=2, and
Φabðx; 0Þ is a straight Wilson line defined by

Φðx; 0Þ ¼ P exp

�
ig
Z

1

0

dtx · AadjðxtÞ
�
; ð2Þ

where P is the path ordering and Aadj is the gauge field in
the adjoint representation. The definition in Eq. (1) is
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consistent with Refs. [33–35], while it contains an addi-
tional factor of g2TF compared to what was used in the
perturbative calculation in Ref. [30]. The general form of
the correlator can be written as

DμνρσðxÞ ¼ ðδμρδνσ − δμσδνρÞ½Dðx2Þ þD1ðx2Þ�
þ ðδμρxνxσ − δμσxνxρ

− δνρxμxσ þ δνσxμxρÞ
∂D1ðx2Þ
∂x2

; ð3Þ

where Dðx2Þ and D1ðx2Þ are invariant functions of x2. The
form (3) follows from the fact that Dðx2Þ vanishes in the
Abelian gauge theory. Because of this, Dðx2Þ vanishes at
tree level in the non-Abelian gauge theory.
At tree level we can compute D1ðx2Þ at order αs while

Dðx2Þ ¼ 0þOðα2sÞ, where αs ¼ g2=ð4πÞ. Useful repre-
sentations of the invariant functions can be obtained by
defining the two linear combinations

DEðx2Þ ¼
1

d − 1
D0i0iðxÞ;

¼ Dðx2Þ þD1ðx2Þ þ x2
∂D1ðx2Þ
∂x2

; ð4Þ

DBðx2Þ ¼
1

ðd − 1Þðd − 2ÞDijijðxÞ;

¼ Dðx2Þ þD1ðx2Þ; ð5Þ

where d ¼ 4 − 2ϵ is the number of spacetime dimensions,
and we work in a frame where xμ is aligned to the time
(μ ¼ 0) direction. Note that in this frame, DEðx2Þ involves
only the chromoelectric fields andDBðx2Þ involves only the
chromomagnetic fields. We work in arbitrary spacetime
dimensions to make possible the use of dimensional
regularization in the computation of the moments in the
following section. The invariant functions can be conven-
iently computed in perturbation theory by using the first
equalities. At tree level, the correlation function can be
computed by differentiating the tree-level gluon propagator.
The Landau-gauge gluon propagator in the RGZ theory is
given by [48]

hΩjAa
μðxÞAb

νðyÞjΩijRGZ
¼ δab

Z
ddk
ð2πÞd e

ik·ðx−yÞ

×
ðδμν − kμkν=k2Þðk2 þM2Þ
k4 þ ðM2 þm2Þk2 þ λ4

þOðαsÞ; ð6Þ

where m and M are dimension-one parameters associated
with the condensates of the gauge and auxiliary fields in the
RGZ action, respectively, and λ4 ¼ 2g2Ncγ

4 þm2M2 with
γ the Gribov parameter. Note that the tree-level propagator

in the GZ theory is obtained by setting m and M to zero,
while keeping γ nonzero [37]. The values of m, M, and λ
that give a satisfactory description of the gluon propagator
have been found in Ref. [48] based on lattice QCD
calculations of the gluon propagator with coupling β ¼
6=g2 set to 5.7, 6.0, and 6.2. They read M2¼ 2.15�
0.13GeV2, m2¼−1.81�0.14GeV2, and λ4¼ 0.26GeV4.
By using Eq. (6) we obtain

DBðx2ÞjRGZ ¼ 2g2NcCF

d − 1

Z
ddk
ð2πÞd e

ik0
ffiffiffiffi
x2

p

×
k2ðk2 þM2Þ

k4 þ ðM2 þm2Þk2 þ λ4
þOðα2sÞ; ð7Þ

where CF ¼ ðN2
c − 1Þ=ð2NcÞ. Note that this expression

is valid in arbitrary dimensions. We can integrate
over k0 by using contour integration. The poles in
k0 are located at �i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ðM2 þ m2 � Q2Þ=2

p
and �i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ðM2 þ m2 ∓ Q2Þ=2

p
, where Q2 ¼

i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4λ4 − ðM2 þm2Þ2

p
. Note that Q2 is purely imaginary

for the values of the parameters determined in Ref. [48].
Because

ffiffiffiffiffi
x2

p
> 0, we must close the contour on the upper

half plane. We obtain

DBðx2ÞjRGZ ¼ 2g2NcCF

d − 1

Z
dd−1k
ð2πÞd−1 k

2

×

2
4e−κþ

ffiffiffiffi
x2

p
ðm2 −M2 þQ2Þ
4Q2κþ

þ e−κ
−
ffiffiffiffi
x2

p
ðm2 −M2 −Q2Þ
−4Q2κ−

3
5þOðα2sÞ; ð8Þ

where κ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ðM2 þm2 �Q2Þ=2

p
. Note that the

quantity in the square brackets can be written as twice
the real part of the first term. To obtain DBðx2Þ at a given
value of x2, the remaining integral in d − 1 ¼ 3 dimen-
sions can be computed numerically. Note that the small-x2

behavior can be computed by setting the dimensionful
parameters m, M, and λ to zero, which leads to the
perturbative QCD result DBðx2ÞjpQCD ¼ g2NcCF=ðπ2x4Þþ
Oðα2sÞ, in agreement with Ref. [30].
We show the numerical result for DBðx2ÞjRGZ in Fig. 1

compared to the lattice measurement from Ref. [35]. For
the numerical calculation we set the strong coupling to be
β ¼ 6.0, which is close to the average value used in the
determination of the parameters of the RGZ theory in
Ref. [48], and is also same as the value used for the main
results of the lattice study in Ref. [35]. Note that our
definition of DBðx2Þ corresponds to D⊥ðx2Þ in Ref. [35].
We display the lattice measurement by using the func-
tional form given by Dlat⊥ ðx2Þ ¼ Ae−jxj=λa with A ¼
0.94þ0.32

−0.16 GeV4 and λa ¼ 0.120þ0.009
−0.012 fm determined in
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Ref. [35]. Because this result was obtained from lattice
data for

ffiffiffiffiffi
x2

p
> 0.3 fm, and lattice data are only shown forffiffiffiffiffi

x2
p

< 0.6 fm in Ref. [35], we only display the result
from Dlat⊥ ðx2Þ for

ffiffiffiffiffi
x2

p
between 0.3 and 0.6 fm. We can

see that the RGZ result agrees with the lattice QCD result
within uncertainties. Note that similarly to the lattice
study, DBðx2ÞjRGZ exhibits an exponentially decaying
behavior at large x2 with a finite correlation length, as
can be seen from Fig. 1 for

ffiffiffiffiffi
x2

p
larger than about

2 GeV−1. A fit of the same functional form Ce−jxj=λc
for jxj larger than 2 GeV−1 (≈0.4 fm) to the RGZ result
leads to C ¼ 0.58� 0.03 GeV4 and λc ¼ 0.77�
0.01 GeV−1. This correlation length reads in distance
units λc ≈ 0.15 fm. The lattice QCD study in Ref. [35]
also found that at small

ffiffiffiffiffi
x2

p
the function DBðx2Þ shows a

power-law behavior given by 0.4=x4, which agrees very
well with the tree-level perturbative QCD result if we set
the coupling using β ¼ 6.0 as was done in the lattice
study in Ref. [35]. For comparison, in Fig. 1 we also
show the result from the GZ theory that we obtain by
setting m ¼ M ¼ 0 while keeping the parameter γ the
same as the one obtained in the RGZ theory. We find that
the GZ theory results in the long-distance behavior of
DBðx2Þ that falls off too quickly compared to the RGZ
theory and is incompatible with lattice QCD data. In fact,
we find that the GZ theory result for DBðx2Þ always falls
off faster than the perturbative QCD result for any
nonzero value of the Gribov parameter, so that it would
not be possible to obtain a result that is compatible with
lattice QCD measurements.
Now we look into DEðx2Þ. Because Dðx2Þ vanishes at

tree level, we could obtain x2∂D1ðx2Þ=∂x2 at tree level by
differentiating and multiplying by x2 our result for DBðx2Þ.
However, for computing moments of the correlators in the
following sections it is necessary to obtain a dimensionally

regulated momentum-integral representation for DEðx2Þ.
By using the definition for DEðx2Þ and the tree-level gluon
propagator in the RGZ theory we obtain

DEðx2ÞjRGZ ¼ g2NcCF

d − 1

Z
ddk
ð2πÞd e

ik0
ffiffiffiffi
x2

p

×
½k2 þ ðd − 1Þk20�ðk2 þM2Þ
k4 þ ðM2 þm2Þk2 þ λ4

þOðα2sÞ: ð9Þ

We can again integrate over k0 by using contour integra-
tion, closing the contour on the upper half plane. We obtain

DEðx2ÞjRGZ ¼
g2NcCF

d− 1

Z
dd−1k
ð2πÞd−1

×

�
k2 − ðd− 1ÞðκþÞ2

4Q2

e−κ
þ ffiffiffiffi

x2
p

ðm2−M2þQ2Þ
κþ

þ k2− ðd− 1Þðκ−Þ2
−4Q2

e−κ
−
ffiffiffiffi
x2

p
ðm2 −M2−Q2Þ

κ−

�

þOðα2sÞ: ð10Þ

Similarly to the case of DBðx2Þ, we can obtain DEðx2Þ at a
given value of x2 by evaluating the remaining integral in
d − 1 ¼ 3 dimensions numerically.
In order to compare with lattice data, we consider the

combination DBðx2Þ −DEðx2Þ ¼ −x2∂D1ðx2Þ=∂x2 which
corresponds to −D�ðx2Þ in the lattice QCD study in
Ref. [35]. We show the result in Fig. 1 against the lattice
measurement from Ref. [35]. We display the lattice
measurement by using the functional form given by
−Dlat� ðx2Þ ¼ Be−jxj=λb with B ¼ 0.47þ0.20

−0.06 GeV4 and λb ¼
0.189þ0.013

−0.029 fm in Ref. [35]. Because the fit in Ref. [35] for

Dlat� ðx2Þ was restricted to
ffiffiffiffiffi
x2

p
> 0.35 fm, and lattice data

are only shown for
ffiffiffiffiffi
x2

p
< 0.6 fm, we only display the

FIG. 1. Results for the invariant functions DBðx2Þ (left panel) and DBðx2Þ −DEðx2Þ (right panel) from the RGZ theory (black bands)
shown against results in the GZ theory (black dashed lines) and lattice QCD results from Ref. [35] (orange bands).

HEE SOK CHUNG PHYS. REV. D 109, 054001 (2024)

054001-4



lattice result for
ffiffiffiffiffi
x2

p
between 0.35 and 0.6 fm. Similarly to

the case of DBðx2Þ, the result for DBðx2Þ −DEðx2Þ in
the RGZ theory agrees with the lattice result in Ref. [35]
within uncertainties. The authors of Ref. [35] did not present
a functional form of the short-distance behavior of
DBðx2Þ −DEðx2Þ. Nevertheless, the lattice QCD data avail-
able inRef. [35] at distances shorter than about 0.35 fm seem
to agree very well with what is expected from perturbative
QCD at tree level given byDBðx2Þ −DEðx2ÞjpQCD ≈ 0.8=x4

for β ¼ 6.0. As we have done for DBðx2Þ, we also show the
results from the GZ theory in Fig. 1, which we obtain by
settingm ¼ M ¼ 0 and keeping the Gribov parameter γ the
same as the one obtained in the RGZ theory.We see that also
in the case ofDBðx2Þ −DEðx2Þ the result from theGZ theory
has a long-distance behavior that falls off too quickly and is
incompatible with lattice QCD results.
Aswe have discussed earlier, in perturbation theoryDðx2Þ

appears from next-to-leading order accuracy, and so, at tree
level only theD1ðx2Þ and its derivative contribute toDBðx2Þ
and DEðx2Þ. Based on the fact that the tree-level results for
the invariant functions in theRGZ theory are compatiblewith
the latticeQCDstudy inRef. [35],wemayassume thatDðx2Þ
is indeed small and is negligible compared to the uncertain-
ties in the lattice results. The agreement in the short-distance
behaviors of the invariant functions between the lattice QCD
study and the RGZ results supports the suppression ofDðx2Þ
even at short distances. We may estimate the effects from a
nonzeroDðx2Þ byusing the latticeQCD results inRef. [35] in
our numerical analysis.
We note that there are other lattice QCD studies of the

two-point field-strength correlation function based on the
cooling method in Refs. [33,34]. These lattice studies result
in a much larger Dðx2Þ compared to D1ðx2Þ at both short
and long distances, which contradicts the naïve expectation
from perturbation theory that Dðx2Þ would be suppressed
compared to D1ðx2Þ, and is also in conflict with the
smallness of Dðx2Þ that can be inferred from the lattice
study in Ref. [35]. As was discussed in Ref. [30], the two-
point field-strength correlation function involves UV diver-
gences at loop level, and after renormalization the functions
Dðx2Þ andD1ðx2Þmix under change of the renormalization
scheme and scale; since the cooling method used in
Refs. [33,34] removes short-range fluctuations, it would
not be possible to make direct comparisons until the results
are converted to a common scheme. In our case, because we
work at tree level and the lattice results in Ref. [35] are
renormalized nonperturbatively, it is not possible to quan-
tify the effect of scheme dependence; nonetheless, the good
agreement between the tree-level RGZ results and the
lattice results in Ref. [35] at both long and short distances
may indicate that the effect of the scheme change is small
and may even be negligible between the two results.
So far the calculation in this section has been done in the

Landau gauge. Because we work with the gauge-invariant

definition of the field-strength correlator (1), we expect that
the results for DE and DB we obtain to be valid in any
gauge. We may check this by, for example, computing the
correlators from the gluon propagator in a covariant gauge.
We first need to replace the dimension-two condensate term
A2 in the action with a gauge-invariant expression [58,59]

Aa
μ

�
δμν −

∂μ∂ν

∂
2

�
Aa
ν þOðgÞ; ð11Þ

where the corrections from order g involve products of
three or more gauge fields and can be computed system-
atically as formal power series in A. At the current level of
accuracy, we only need to keep the lowest-order non-
vanishing contribution. We can then obtain the gluon
propagator in the RGZ theory in a generic covariant gauge;
the result in momentum space contains an extra term
αk2=½k4 þ 2αg2Ncγ

4k2=ðk2 þM2Þ� × kμkν=k2 compared
to the Landau-gauge expression in Eq. (6), with α the
gauge parameter. It is easy to check explicitly that this
additional term makes vanishing contributions in DE and
DB. This may be understood as a consequence of the Ward
identity, arising from the gauge invariance of the field-
strength correlator.
In this section we have established the two-point field-

strength correlation functions at tree level in the RGZ
theory as dimensionally regulated momentum integrals in
Eqs. (8) and (10). We will use these results in the following
sections to compute moments of the correlation functions in
dimensional regularization.

III. MOMENTS OF FIELD-STRENGTH
CORRELATORS

In this section we compute the moments of the two-
point field-strength correlator. Rather than considering all
possible moments of the correlator, we focus on the ones
that appear in heavy quarkonium decay rates. Roughly
speaking, the moments of the correlator represent the
squared amplitude for a heavy quark-antiquark pair in a
color-octet state to evolve into a color-singlet state through
insertions of chromoelectric or chromomagnetic fields on
the heavy quark or antiquark lines. We refer the readers to
Refs. [17,18,60] for details of the pNRQCD formalism
that were used to obtain expressions for color-octet
NRQCD matrix elements in terms of moments of field-
strength correlators.
The following dimensionless moment of DEðx2Þ

defined by

E3 ¼ −
d − 1

Nc

Z
∞

0

dττ3DEðτ2Þ ð12Þ

appears in inclusive decay rates of P-wave heavy quarkonia
at leading order in v. The factor 1=Nc appears from the
projection of theQQ̄ color, and the sign arises from the fact
that E3 was defined in Minkowski space in Ref. [18] while
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the right-hand side is computed in Euclidean space.
Because the DEðτÞ scales like 1=τ4 at small τ, the integral
over τ contains a logarithmic UV divergence. After
renormalization, E3 acquires a scale dependence given by

d
d logΛ

EðΛÞ
3 ¼ 12αsCF

π
þOðα2sÞ; ð13Þ

where Λ is the renormalization scale for E3. Throughout
this paper, we use the superscript (Λ) to denote that the
quantity is renormalized in the MS scheme and depends on
the MS scale Λ. It has been known that this scale
dependence directly reproduces the renormalization-scale
dependence of the color-octet matrix element that appears
in the P-wave quarkonium decay rates [16,17]. Note that E3

also appears in the order-v2 correction to the leading-order
color-singlet matrix elements for S-wave quarkonium
decays [18].
Similarly, the following dimension-two moments of

DEðx2Þ and DBðx2Þ defined by

E1 ¼
d − 1

Nc

Z
∞

0

dττDEðτ2Þ; ð14aÞ

B1 ¼
ðd − 1Þðd − 2Þ

2Nc

Z
∞

0

dττDBðτ2Þ; ð14bÞ

appear in inclusive decay rates of S-wave heavy quarkonia
at relative order v4 and v3, respectively [18]. Although the
contributions from these moments to the decay rates are
suppressed by powers of v, their effects can be enhanced by
large short-distance coefficients. In the case of spin-1
S-wave heavy quarkonium decays, the short-distance
coefficients associated with color-octet contributions are
enhanced by 1=αs compared to the one at leading order in
v, which can make the color-octet contributions numeri-
cally significant [26,27]. In the decays of spin-0 S-wave
states, such as the ηc and ηb, the lack of knowledge of the
color-octet matrix element arising from B1 is a significant
source of uncertainties [24,25]. The quantity E1 also
appears in the order-v2 correction to two-photon decay
rates of P-wave heavy quarkonia [18,60]. Hence, accurate
determinations of E1 and B1 are phenomenologically
important. Note that both E1 and B1 contain power UV
divergences at small τ, which must be subtracted in
dimensional regularization consistently with the calculation
of short-distance coefficients in perturbation theory.

We also compute the dimension-one moment iE2

defined by

iE2 ¼
d − 1

Nc

Z
∞

0

dττ2DEðτ2Þ; ð15Þ

where the phase is chosen to recover the Minkowski space
definition in Ref. [18]. Note that E2 is purely imaginary, so
that iE2 is real. Although this moment does not appear
directly in color-octet matrix elements, it appears in the
corrections to the quarkonium wave functions at the origin
associated with the velocity-dependent potential at zero
separation [28,29], and can be useful in heavy quarkonium
decay phenomenology.
We note that the overall phases of the right-hand sides of

the definitions of the moments can be checked against the
Minkowski space definitions in Ref. [18] by computing
them in perturbative QCD and comparing the integrands of
the momentum integral.
We now proceed to compute the moments in the RGZ

theory.

A. Dimensionless moment E3

We first compute the dimensionless moment E3. By
using Eq. (10) and the identity

R
∞
0 dττ3 expð−AτÞ ¼ 6=A4,

which is valid when ReA > 0, we obtain the following
expression

E3jRGZ¼−6g2CF

Z
dd−1k
ð2πÞd−1

×

�
k2−ðd−1ÞðκþÞ2

4Q2

m2−M2þQ2

ðκþÞ5

þk2−ðd−1Þðκ−Þ2
−4Q2

m2−M2−Q2

ðκ−Þ5
�
þOðα2sÞ; ð16Þ

which is valid in arbitrary dimensions. The (d − 1)-
dimensional integral over k is straightforwardly evaluated
by using

Z
dd−1k
ð2πÞd−1 ¼

2πðd−1Þ=2μ4−d

ð2πÞd−1Γðd−1
2
Þ
Z

∞

0

djkjjkjd−2; ð17Þ

where μ is a scale associated with dimensional regulariza-
tion. We obtain

E3jRGZ ¼−6g2CFμ
2ϵ ð−3þ2ϵÞΓðϵÞ
3×81−ϵπ2−ϵQ2

× ½ðm2þM2þQ2Þ−ϵðm2−M2þQ2Þþðm2þM2−Q2Þ−ϵðM2−m2þQ2Þ�þOðα2sÞ;

¼ 3g2CF

2π2

�
1

ϵ
þ logð2Λ2=M2Þ−2

3

�
þ 3g2CF

4π2Q2

�
ðm2−M2−Q2Þ log

�
m2þM2−Q2

M2

�

− ðm2−M2þQ2Þ log
�
m2þM2þQ2

M2

��
þOðα2s ;ϵÞ; ð18Þ
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where in the last equality we expanded in powers of ϵ ¼
ð4 − dÞ=2 and set μ2 ¼ Λ2eγE=ð4πÞ, so that Λ is a MS
scale. Here, γE is the Euler-Mascheroni constant. Note that
the result in the last equality is invariant under simultaneous
rescalings of the denominator factors M2 in the arguments
of the logarithms. The pole in ϵ is exactly what we expect
from the order-αs scale dependence in Eq. (13). After
renormalization we then have in the MS scheme

EðΛÞ
3 jRGZ ¼

3g2CF

2π2

�
logð2Λ2=M2Þ− 2

3

�

þ 3g2CF

4π2Q2

�
ðm2 −M2 −Q2Þ log

�
m2 þM2 −Q2

M2

�

− ðm2 −M2þQ2Þ log
�
m2þM2þQ2

M2

��

þOðα2sÞ; ð19Þ

with Λ the MS renormalization scale. This is our result for
E3 in the RGZ theory at tree level. Note that the explicit
dependence on logΛ satisfies the evolution equation in
Eq. (13).

B. Dimension-two moments E1 and B1

Now we consider the dimension-two moments E1 and
B1. We first compute E1. From Eq. (10) and the identityR
∞
0 dττ expð−AτÞ ¼ 1=A2 we obtain

E1jRGZ ¼ g2CF

Z
dd−1k
ð2πÞd−1

×

�
k2 − ðd − 1ÞðκþÞ2

4Q2

m2 −M2 þQ2

ðκþÞ3

þ k2 − ðd − 1Þðκ−Þ2
−4Q2

m2 −M2 −Q2

ðκ−Þ3
�

þOðα2sÞ; ð20Þ

which is valid for arbitrary d. The (d − 1)-dimensional
integral gives

E1jRGZ ¼ g2CFμ
2ϵ

ð8πÞ2−ϵQ2
ð3 − 2ϵÞΓðϵ − 1Þ

×
��ðm2 þM2 −Q2Þ1−ϵðM2 −m2 þQ2Þ

þ ðm2 þM2 þQ2Þ1−ϵðm2 −M2 þQ2Þ	
−
�ðm2 þM2 −Q2Þ1−ϵðM2 −m2 þQ2Þ

þ ðm2 þM2 þQ2Þ1−ϵðm2 −M2 þQ2Þ	

þOðα2sÞ; ð21Þ

where the terms in the first square brackets come from the
part of the integrand in Eq. (20) that is proportional to k2,
while the terms in the second square brackets come from

the part that is proportional to d − 1. Note the appearance of
the pole at d ¼ 2 from Γðϵ − 1Þ, indicating that the
individual integrals are quadratically power divergent.
However, the contributions from the two parts of the
integrand cancel each other, so that E1jRGZ vanishes
through order g2:

E1jRGZ ¼ 0þOðα2sÞ; ð22Þ

which is valid for arbitrary d.
We can understand this result for E1 in terms of the

functions Dðx2Þ and D1ðx2Þ by rewriting the definition as

E1 ¼
d − 1

2Nc

Z
∞

0

dτ2
�
Dðτ2Þ þD1ðτ2Þ þ τ2

∂D1ðτ2Þ
∂τ2

�
;

¼ d − 1

2Nc

��Z
∞

0

dτ2Dðτ2Þ
�
þ τ2D1ðτ2Þ

���
τ2→∞

− τ2D1ðτ2Þ
���
τ2¼0

�
; ð23Þ

where we changed the integration variable to τ2, and used
integration by parts to obtain the last equality. Note that this
expression is valid to all orders. While τ2D1ðτ2Þjτ2¼∞ ¼ 0,
the vanishing of the last term in the last equality at τ2 ¼ 0
follows from the fact that the UV divergences of E1 must be
regularized dimensionally. For example, in dimensional
regularization the short-distance behavior of D1ðτ2Þ is
proportional to 1=τd, which must be computed with d<2
in order to regulate power UV divergences; hencewe obtain
τ2D1ðτ2Þjτ2¼0 ¼ 0. Therefore, in dimensional regulariza-
tion E1 comes solely from Dðτ2Þ, and because this appears
only from order α2s, E1 vanishes at tree level. Note that this
result is valid not just in the RGZ theory but generally holds
in a non-Abelian gauge theory.
Now we compute B1. We use Eq. (8) and the identityR∞

0 dττ expð−AτÞ ¼ 1=A2 to obtain

B1jRGZ ¼ ðd − 2Þg2CF

Z
dd−1k
ð2πÞd−1 k

2

×

�
m2 −M2 þQ2

4Q2ðκþÞ3 þm2 −M2 −Q2

−4Q2ðκ−Þ3
�

þOðα2sÞ; ð24Þ

which is valid in arbitrary dimensions. A straightforward
evaluation of the (d − 1)-dimensional integral over k yields

B1jRGZ ¼ ðd − 2Þg2CFμ
2ϵ ð3 − 2ϵÞΓðϵ − 1Þ

ð8πÞ2−ϵQ2

×
�ðm2 þM2 −Q2Þ1−ϵðM2 −m2 þQ2Þ

þ ðm2 þM2 þQ2Þ1−ϵðm2 −M2 þQ2Þ	
þOðα2sÞ: ð25Þ
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Note the appearance of a power divergence at d ¼ 2. The
result also contains a logarithmic UV divergence; if we
expand in powers of ϵ, we obtain

B1jRGZ ¼ −g2CF
3m2

8π2

�
1

ϵ
þ logð2Λ2=M2Þ − 2

3

�
−

3g2CF

32π2Q2

×

�
½ðm2 −Q2Þ2 −M4� log

�
m2 þM2 −Q2

M2

�

− ½ðm2 þQ2Þ2 −M4� log
�
m2 þM2 þQ2

M2

�


þOðα2s ; ϵÞ: ð26Þ

Note that the UV pole is proportional tom2. Sincem2 is the
parameter associated with the dimension-two condensate of
the gauge field, this UV pole is of nonperturbative origin
and does not have a counterpart in the NRQCD factoriza-
tion formalism. Hence, it is not possible to properly
renormalize this UV divergence within the NRQCD for-
malism. However, this logarithmic UV divergence can be
related to the dimension-two condensate at tree level, which
contains the same divergence. In the Landau gauge the
dimension-two condensate hðgAÞ2i≡ hΩjg2Aa

μAa
μjΩi can

be computed at tree level as

hðgAÞ2ijRGZ
¼ g2

Z
ddk
ð2πÞd

ðN2
c − 1Þðd − 1Þðk2 þM2Þ

k4 þ ðM2 þm2Þk2 þ λ4
þOðα2sÞ;

¼ g2ðN2
c − 1Þðd − 1Þ

×
Z

dd−1k
ð2πÞd−1

�
m2 −M2 þQ2

4Q2κþ
þm2 −M2 −Q2

−4Q2κ−

�

þOðα2sÞ: ð27Þ

The first equality follows from the Landau-gauge gluon
propagator at zero separation, and the second equality is
obtained by integrating over k0 using contour integration.
Note that, in a general gauge, Aa

μAa
μ must be replaced by a

gauge-invariant expression given in Eq. (11). In this case,
any additional term in the gluon propagator involving kμ or
kν makes a vanishing contribution to Eq. (27), so that the
result is gauge invariant. We compute the remaining
integral to obtain

hðgAÞ2ijRGZ ¼ g2ðN2
c − 1Þμ2ϵ ð3 − 2ϵÞΓðϵ − 1Þ

ð8πÞ2−ϵQ2

×
�ðm2 þM2 −Q2Þ1−ϵðM2 −m2 þQ2Þ

þ ðm2 þM2 þQ2Þ1−ϵðm2 −M2 þQ2Þ	
þOðα2sÞ: ð28Þ

By comparing this result with Eq. (25) we find that

B1jRGZ ¼ TF

Nc
ðd − 2ÞhðgAÞ2ijRGZ þOðα2sÞ: ð29Þ

Note that this relation holds for arbitrary d. The relation in
Eq. (29) arises in a similar fashion as the vanishing of E1 at
tree level; note that the integrand of B1 in Eq. (24) is
identical to the term proportional to k2 in the integrand of
E1 in Eq. (20), and the integrand of hðgAÞ2i in Eq. (27) is
just the term proportional to d − 1 in the integrand of E1 in
Eq. (20). As we have seen from the evaluation of E1, the
two contributions are equal, leading to the relation in
Eq. (29). Similarly to the case of E1, this relation may be
modified at higher orders in αs, notably from a non-
zero Dðτ2Þ.
In fact, the relation in Eq. (29) can be understood in

terms of gauge fields by rewriting the condensate in a
manifestly gauge-invariant form in terms of the field-
strength tensor, given by [58]

hAa
μAa

μijLandaugauge¼−
1

2
hGa

μνðD2Þ−1Ga
μνiþOðgÞ; ð30Þ

where D is the covariant derivative. The corrections from
order g involve products of three or more field-strength
tensors. Then, by using hGa

μνðD2Þ−1Ga
μνi ¼ ðd − 2Þ−1 ×

hGa
μνðD2

0Þ−1Ga
μνi, which follows from rotational invariance

and taking a d-dimensional angular average, and by
exponentiating ðD2

0Þ−1 in momentum space at order g0,
we obtain

hðgAÞ2i ¼ 1

4TFðd − 2Þ
Z

∞

0

dx2DμνμνðxÞ þOðα2sÞ;

¼ Nc

TFðd − 2Þ ðE1 þ B1Þ þOðα2sÞ: ð31Þ

This, together with the vanishing of E1 at order g2, leads to
the relation in Eq. (29).
As can be obtained from Eq. (28), or from the relation in

Eq. (29) and the result for B1 in Eq. (26), the UV pole
in hðgAÞ2i that we obtain reproduces the lowest-order result
in Eq. (22) of Ref. [52] for the counterterm of the
generating functional proportional to m2. While perturba-
tive calculations of B1 and hðgAÞ2i both yield logarithmic
UV divergences, a finite result for the hðgAÞ2i has been
obtained in the effective potential approach [52]:

hðgAÞ2i ¼ −
9

13

N2
c − 1

Nc
m2: ð32Þ

This result is obtained by minimizing the effective potential
in the presence of the dimension-two condensate. Since this
finite result has been obtained after subtracting the 1=ϵ
pole, the ϵ-dependent coefficient in Eq. (29) produces an
additional finite piece. That is,
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B1jRGZ ¼ 2TF

Nc
hðgAÞ2ijRGZ þ

3g2CFm2

8π2
þOðα2s ; ϵÞ: ð33Þ

From this and Eq. (32) we obtain

B1jRGZ ¼ −
18CF

13Nc
m2 þ 3g2CFm2

8π2
þOðα2sÞ: ð34Þ

Note that since m2 is negative, the first term is positive
while the second term is negative. This is our finite result
for B1 in the RGZ theory.

C. Dimension-one moment iE2

From Eq. (10) and the identity
R∞
0 dττ2 expð−AτÞ ¼

2=A3 we obtain

iE2jRGZ ¼ 2g2CF

Z
dd−1k
ð2πÞd−1

×

�
k2 − ðd − 1ÞðκþÞ2

4Q2

m2 −M2 þQ2

ðκþÞ4

þ k2 − ðd − 1Þðκ−Þ2
−4Q2

m2 −M2 −Q2

ðκ−Þ4
�

þOðα2sÞ: ð35Þ

The integral can be evaluated straightforwardly:

iE2jRGZ ¼ −
g2CFð3 − 2ϵÞΓðϵ − 1

2
Þ

2ð8πÞ3=2−ϵQ2
μ2ϵ

×
�

M2 −m2 þQ2

ðm2 þM2 −Q2Þϵ−1
2

þ m2 −M2 þQ2

ðm2 þM2 þQ2Þϵ−1
2

�

þOðα2sÞ;

¼ 3g2CF

16
ffiffiffi
2

p
πQ2

h
ðM2 −m2 þQ2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þM2 −Q2

p

þ ðm2 −M2 þQ2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þM2 þQ2

p i

þOðα2s ; ϵÞ: ð36Þ

We can see from the first equality that the integral contains
a linear power divergence from the pole at ϵ ¼ 1=2. In the
second equality, we expanded in powers of ϵ, which
subtracts this power divergence according to dimensional
regularization and we obtain a finite result.

D. Numerical results

Now we are ready to present numerical results for the
moments. We first compute E3 in the MS scheme. Because
we work at tree level, there is some ambiguity in the choice
of the strong coupling. Since the parameters of the RGZ
theory are obtained from the lattice data with the lattice
coupling around β ¼ 6.0, it seems appropriate to compute

the coupling from the relation β ¼ 6=g2 when computing
low-energy operator matrix elements. We take the numeri-
cal values of the parameters M, m, and λ from Ref. [48] as
we have done in the previous section. By using Eq. (19) we
obtain at scale Λ ¼ 1 GeV the value for E3 given by

EðΛ¼1 GeVÞ
3 jRGZ; tree level ¼ 1.03þ0.12

−0.10 ; ð37Þ

where the uncertainties come from the parameters in the
RGZ theory. Note that our result for E3 at tree level misses
the contribution from Dðτ2Þ, which only occurs from order
α2s . We can estimate the effect of the inclusion of Dðτ2Þ at
long distances by using the lattice measurement of DBðτ2Þ,
which includes Dðτ2Þ, and comparing it with the result
from the RGZ theory containing only D1ðτ2Þ. We neglect
the short-distance contribution from Dðτ2Þ because it is of
higher orders in the strong coupling, and the short-distance
behavior approximately cancels in the difference between
the lattice and the RGZ results for DBðτ2Þ. Hence, we use
the long-distance functional forms we obtained in Sec. II to
estimate the long-distance contribution from Dðτ2Þ. The
contribution to E3 from Dðτ2Þ is then

−
d − 1

Nc

Z
∞

0

dττ3Dðτ2Þ

≈ −
Z

∞

0

dττ3ðAe−τ=λa − Ce−τ=λcÞ;

¼ 0.43þ0.30
−0.38 ; ð38Þ

where Ae−τ=λa comes from the lattice QCD result for
DBðτ2Þ in Ref. [35] and Ce−τ=λc is the long-distance
behavior of the RGZ result for DBðτ2Þ determined in
Sec. II. Alternatively, we could compute the same quantity
by obtaining D1ðτ2Þ from lattice measurements of
D�ðτ2Þ ¼ τ2 ∂

∂τ2
D1ðτ2Þ, whose long-distance behavior is

given in Ref. [35] by −Be−τ=λb. From this we obtain an
expression for D1ðτ2Þ in terms of the exponential integral
Dlat

1 ðτ2Þ ¼ 2BE1ðτ=λbÞ, where E1ðzÞ ¼
R
∞
z dte−t=t. Note

that this functional form behaves at large τ like
Dlat

1 ðτ2Þ ≈ 2Bλbe−τ=λb=τ, which is different from the func-
tional form used for DBðτ2Þ. From these we obtain the
contribution to E3 from Dðτ2Þ given by

−
d − 1

Nc

Z
∞

0

dττ3Dðτ2Þ

≈ −
Z

∞

0

dττ3
�
Ae−τ=λa − 2BE1ðτ=λbÞ

�
;

¼ 0.42þ0.69
−0.71 : ð39Þ

Remarkably, this result has a central value that is very close
to the result in Eq. (38), but with much larger uncertainty.
We take the result in Eq. (38) as our estimate for the
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contribution from Dðτ2Þ to E3. We combine the results in
Eqs. (37) and (38) to obtain

EðΛ¼1 GeVÞ
3 ¼ 1.46þ0.32

−0.39 ; ð40Þ
where the uncertainties are added in quadrature. Note that
the uncertainties are dominated by the unknown Dðτ2Þ.
This is our final numerical result for E3 at the MS
scale Λ ¼ 1 GeV.
In the case of E1, we have established that the contri-

bution fromD1ðτ2Þ vanishes not just in the RGZ theory, but
in general, as long as power divergences are properly
subtracted in dimensional regularization. Hence, the only
contribution to E1 comes from Dðτ2Þ. We can again
estimate this contribution by comparing our result for
DBðτ2Þ in the RGZ theory with the lattice measurement.
We have

E1 ¼
d − 1

Nc

Z
∞

0

dττDðτ2Þ;

≈
Z

∞

0

dττðAe−τ=λa − Ce−τ=λcÞ;

¼ 0.01þ0.13
−0.09 GeV2: ð41Þ

If instead we use the lattice measurement for D�ðτ2Þ in
Ref. [35] to obtain D1ðτ2Þ, then we obtain

E1jlat ≈
Z

∞

0

dττ
�
Ae−τ=λa − 2BE1ðτ=λbÞ

	
;

¼ −0.08þ0.19
−0.21 GeV2; ð42Þ

which is compatible with Eq. (41), but with a larger
uncertainty. Note that neither results are precise enough
to determine the sign. We take Eq. (41) as our estimate for
E1 because the uncertainty is smaller.
Next, B1 in the RGZ theory at tree level can be computed

from Eq. (34). We obtain

B1jRGZ; tree level ¼ 1.02� 0.08 GeV2; ð43Þ
where the uncertainty comes from the uncertainty in m2.
Similarly to E3 and E1, this result is missing the contribu-
tion from Dðτ2Þ. By adding this contribution, which is
equal to our estimate for E1 in Eq. (42), we obtain

B1 ¼ 1.03þ0.15
−0.12 GeV2; ð44Þ

which is our final numerical result for B1.
Finally, we compute iE2 in the RGZ theory:

iE2jRGZ; tree level ¼ −0.18� 0.03 GeV; ð45Þ

where the uncertainties come from the parameters in the
RGZ theory. Similarly to E3, E1, and B1, this result is
missing the contribution from Dðτ2Þ. We estimate the

contribution from Dðτ2Þ to iE2 in the same way as we
have done for E3. We have

d − 1

Nc

Z
∞

0

dττ2Dðτ2Þ

≈ −
Z

∞

0

dττ2ðAe−τ=λa − Ce−τ=λcÞ;

¼ −0.10þ0.18
−0.14 ; ð46Þ

If we instead use only the lattice QCD results in Ref. [35] to
estimate this contribution, then we obtain −0.13� 0.30,
which is consistent with above but with larger uncertainties.
We combine Eqs. (45) and (46) to obtain our final
numerical result for iE2:

iE2 ¼ −0.28þ0.18
−0.14 GeV: ð47Þ

We may compare our numerical results based on the
RGZ theory with estimates based on the lattice QCD
analysis in Ref. [35]. In the case of E1, we would obtain
the same result as in Eq. (42), since the contribution from
D1ðτ2Þ cancels in E1 and we obtain the contribution from
Dðτ2Þ by using the lattice results in Ref. [35]. In the case of
B1, we may use the long-distance functional form of
DBðτ2Þ given in Ref. [35] by D⊥ðτ2Þ ¼ Ae−τ=λa to obtain

B1jlat ¼
Z

∞

0

dττAe−τ=λa ¼ 0.35þ0.13
−0.09 GeV2: ð48Þ

This result is much smaller than what we obtained in
Eq. (44) based on the RGZ theory. Note that because we
used the long-distance functional form used in the lattice
QCD analysis, the quadratic power divergence expected
from the perturbative QCD calculation is completely
missing in Eq. (48). In the case of the dimensionless
moment E3, the perturbative power-law contribution is both
UV and IR divergent, so that it is not possible to obtain
a dimensionally regulated result simply from the long-
distance functional forms used in the lattice QCD analysis.
That is, if we compute the moment E3 from the long-
distance functional forms obtained in the lattice QCD
analysis, the result will be missing the perturbative
order-αs scheme-dependent finite pieces as well as the
logarithmic dependence on the renormalization scale.
Simply computing the moment from the long-distance
functional form of DEðτ2Þ ¼ D⊥ðτ2Þ þD�ðτ2Þ from
Ref. [35] gives

E3jlat ¼ −
Z

∞

0

dττ3ðAe−τ=λa − Be−τ=λbÞ;

¼ 1.61þ1.26
−1.29 : ð49Þ

Although the central value is similar in size to the MS-
renormalized result in the RGZ theory at Λ ¼ 1 GeV in
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Eq. (40), it is completely ambiguous which to renormal-
ization scheme and scale this result corresponds. Also the
uncertainty in this lattice-based estimate is too large to be
phenomenologically useful. Similarly, a lattice estimate of
iE2 gives

iE2jlat ¼
Z

∞

0

dττ2ðAe−τ=λa − Be−τ=λbÞ;

¼ −0.41þ0.39
−0.42 GeV; ð50Þ

which is compatible with our result in Eq. (47), but with
much larger uncertainties.
Now that we have obtained our numerical estimates for

the dimensionless moment E3 in the MS scheme and the
dimension-two moments E1 and B1 in dimensional regu-
larization, we can proceed to discuss phenomenological
applications in the following section.

IV. QUARKONIUM DECAYS

Based on the results for the moments of two-point field-
strength correlators in the previous section, we now
compute the color-octet matrix elements that appear in
heavy quarkonium decay rates and discuss phenomeno-
logical applications.
We begin with the inclusive decays of χQJ states (Q ¼ c

or b), which involve the dimensionless moment E3. The
relation between E3 and the color-octet matrix element is
given by [17,18]

m2
QhχQJjO8ð3S1ÞjχQJi
hχQJjO1ð3PJÞjχQJi

¼ 2TF

3ðd − 1ÞNc
E3; ð51Þ

where mQ is the heavy quark pole mass, and we take the
definitions of the NRQCD operators O8ð3S1Þ and O1ð3PJÞ
in Refs. [16,18]. The subscripts 1 and 8 stand for the color
state of the QQ̄ that is created and annihilated by the
NRQCD operator, and the spectroscopic notation 2Sþ1LJ is
used to indicate the spin, orbital, and total angular
momentum state of the QQ̄. The factor m2

Q is included
on the left-hand side in order to make the ratio dimension-
less. This relation has been obtained in Refs. [17,18] in
three spatial dimensions.1 Since both hχQJjO8ð3S1ÞjχQJi
and E3 contain logarithmic UV divergences, the relation
must be obtained in d ¼ 4 − 2ϵ spacetime dimensions in
order to facilitate correct renormalization of both quantities
in the MS scheme; the above result valid for any d can be
obtained by rederiving the relation in arbitrary spacetime
dimensions. It is easy to see that the denominator factor
d − 1 comes from the tensor δij=ðd − 1Þ which arises from

taking an average over spatial directions of a rank-2
Cartesian tensor in Eq. (73) of Ref. [18]. Due to the UV
poles in the unrenormalized color-octet matrix element and
the unrenormalized moment E3, the following relation
holds between the MS-renormalized color-octet matrix
element and the moment:

ρðΛÞ8 ≡m2
QhχQJjO8ð3S1ÞjχQJiðΛÞ
hχQJjO1ð3PJÞjχQJi

;

¼ 2TF

9Nc

�
EðΛÞ
3 þ g2CF

π2
þOðα2sÞ

�
; ð52Þ

where the extra finite piece comes from the product of the
order-ϵ term in the d-dependent coefficient 3=ðd − 1Þ ¼
1þ 2

3
ϵþOðϵ2Þ and the 1=ϵ pole in the unrenormalized E3.

Following Refs. [61,62] we refer to this ratio as ρðΛÞ8 . In
phenomenological determinations of the quantity E3, such
extra finite terms were not taken into account, and so, when

comparing with the MS-renormalized moment EðΛÞ
3 , the

phenomenologically determined E3 must be compared with
the quantity in the parenthesis of Eq. (52) that contains the

extra finite term. By using our result for EðΛ¼1 GeVÞ
3 in

Eq. (40), we obtain

EðΛ¼1 GeVÞ
3 þ g2CF

π2
¼ 1.60þ0.32

−0.39 : ð53Þ

This agrees within uncertainties with a recent phenomeno-
logical determination 2.05þ0.94

−0.65 in Ref. [60], but with much
smaller uncertainties. It is straightforward to compute χQJ

decay rates from this result. The NRQCD factorization
formula for χQJ decay rates to light hadrons at leading order
in v is given by [16]

ΓðχQJ → LHÞ ¼ 2ImfðΛÞ1 ð3PJÞ
m4

Q
hχQJjO1ð3PJÞjχQJi

þ 2Imf8ð3S1Þ
m2

Q
hχQJjO8ð3S1ÞjχQJiðΛÞ; ð54Þ

where 2ImfðΛÞ1 ð3PJÞ and 2Imf8ð3S1Þ are short-distance
coefficients which begin at order α2s and are known to

order-α3s accuracy [26]; exceptionally 2ImfðΛÞ1 ð3P1Þ van-
ishes at order α2s because a spin-1 state cannot decay into
two gluons at tree level. The short-distance coefficients for
the color-singlet channels contain logarithmic dependences
on Λ that cancel the scale dependence of the color-octet
matrix element. While the color-octet matrix element

hχQJjO8ð3S1ÞjχQJiðΛÞ can be reexpressed in terms of EðΛÞ
3

and the color-singlet matrix element hχQJjO1ð3PJÞjχQJi by
using Eq. (52), the color-singlet matrix element can be
computed in terms of quarkonium wave functions:

1The quantity E defined in Ref. [17] corresponds to NcE3. The
expression in Eq. (156) of Ref. [18] applies only to the spin-
singlet state, and the expressions for spin-triplet states can be
obtained from heavy-quark spin symmetry.
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hχQJjO1ð3PJÞjχQJi ¼
3Nc

2π
jR0

χQJ
ð0Þj2; ð55Þ

where RχQJ
ðrÞ is the radial wave function of the χQJ state,

which can be obtained by solving a Schrödinger equation.
Rather than using potential models to compute jR0

χQJ
ð0Þj2,

which can vary greatly depending on the choice of the
model (see, for example, Ref. [60]), we take the first-
principles calculations of the P-wave wave functions in
Ref. [29]. Because we include corrections of relative order
αs in the short-distance coefficients, we include the one-
loop correction to the wave function that comes from the
radiative correction to the static potential, as has been done
in Ref. [29]. We neglect higher-order corrections that were
included in Ref. [29] that are associated with two-loop
corrections to the wave function, because that would
require including corrections of relative order α2s to the
short-distance coefficients that are currently unknown. We
also include a part of the relativistic correction that comes
from the phase space by replacing an overall factor of
1=ð2mQÞ by 1=MχQJ

as have been done in Ref. [29].
Consistently with Ref. [29], we set mc ¼ 1.316 GeV and
mb ¼ 4.743 GeV, and compute αs in the MS scheme by
using RunDec at four-loop accuracy at scales μ ¼ 2.5 GeV
for Q ¼ c and μ ¼ 5 GeV for Q ¼ b. We use the quarko-
nium masses MχcJ ¼ 3.47 GeV, MχbJð1PÞ ¼ 9.94 GeV,
MχbJð2PÞ ¼ 10.26 GeV, and MχbJð3PÞ ¼ 10.53 GeV, which
were computed in Ref. [29] and agree within 0.1 GeV with
the particle data group (PDG) values in Ref. [63]. In the
short-distance coefficients, we set the number of light quark
flavors nf to be nf ¼ 3 for Q ¼ c and nf ¼ 4 for Q ¼ b,
and fix Λ ¼ 1 GeV. We obtain the following decay rates
for χcJ:

Γðχc0 → LHÞ ¼ 13.5þ0.1þ6.6
−0.1−3.0 � 4.1 MeV;

¼ 13.5þ7.8
−5.1 MeV; ð56aÞ

Γðχc1 → LHÞ ¼ 0.41þ0.10þ0.10
−0.12−0.07 � 0.12 MeV;

¼ 0.41þ0.19
−0.19 MeV; ð56bÞ

Γðχc2 → LHÞ ¼ 2.15þ0.10þ0.00
−0.12−0.19 � 0.65 MeV;

¼ 2.15þ0.65
−0.68 MeV; ð56cÞ

where the first uncertainties come from the uncertainty in
E3, the second uncertainties come from varying μ between
1.5 and 4 GeV, and the third uncertainties come from
uncalculated corrections of order v2, which we estimate
by 0.3 times the central values, reflecting that typically
v2 ≈ 0.3 for charmonia. In the last equalities we add the
uncertainties in quadrature. These results may be compared
directly with experiment; however, the total widths of χcJ
include sizable contribution from radiative decays into
J=ψ þ γ, especially for J ¼ 1 and 2, which will not be
captured by the calculation of ΓðχcJ → LHÞ. After

subtracting these radiative decay rates by using the mea-
sured branching fractions, we obtain from Ref. [63] the
experimental results Γðχc0→LHÞjPDG¼ 10.6�0.6MeV,
Γðχc1 → LHÞjPDG ¼ 0.55 � 0.04 MeV, and Γðχc2 →
LHÞjPDG ¼ 1.60� 0.09 MeV. These are in agreements
with our theoretical results in Eqs. (56), although the
experimental values have much smaller uncertainties.
When compared with the calculation in Ref. [60] based
on the phenomenological determination of E3, the precision
has improved for the decay rate of χc1, while the uncer-
tainty in the decay rate of χc0 is increased. While the
improvement in precision has mostly to do with the
improved determination of E3 and the calculation of
the wave functions from first principles, the increased
uncertainty mainly comes from the fact that we included
an uncertainty from variation of the QCD renormalization
scale, while in Ref. [60] the uncertainties from uncalculated
corrections of higher orders in αs were estimated to be α2s
times the central value. The size of the uncertainty in the
decay rate of χc2 is comparable to the result in Ref. [60].
Similarly, we obtain the following decay rates for

χbJð1PÞ:

Γðχb0ð1PÞ → LHÞ ¼ 0.762þ0.007þ0.320
−0.009−0.066 � 0.076 MeV;

¼ 0.762þ0.329
−0.102 MeV; ð57aÞ

Γðχb1ð1PÞ → LHÞ ¼ 0.052þ0.007þ0.035
−0.009−0.006 � 0.005 MeV;

¼ 0.052þ0.036
−0.012 MeV; ð57bÞ

Γðχb2ð1PÞ → LHÞ ¼ 0.139þ0.007þ0.004
−0.009−0.084 � 0.014 MeV;

¼ 0.139þ0.016
−0.086 MeV; ð57cÞ

where the first uncertainties come from the uncertainty in
E3, the second uncertainties come from varying μ between
2 and 8 GeV, and the third uncertainties come from
uncalculated corrections of order v2, which we estimate
by 0.1 times the central values, reflecting that typically
v2 ≈ 0.1 for bottomonia. In the last equalities we add the
uncertainties in quadrature. Unfortunately, experimental
results for the total widths of χbJ states have not been
made available yet. There are, however, determinations
based on the theoretical calculations of the radiative decay
rates into ϒþ γ and the measured branching fractions of
the same process. In Ref. [64], the radiative decay rates
were computed in potential NRQCD at weak coupling,
from which the total decay rates were computed by using
the measured branching fractions. After subtracting the
radiative decay rates we obtain from Ref. [64] the values
Γðχb0ð1PÞ → LHÞjRef: ½64� ¼ 1.4� 0.2 MeV, Γðχb1ð1PÞ →
LHÞjRef: ½64� ¼ 0.069� 0.009 MeV, and Γðχb2ð1PÞ →
LHÞjRef: ½64� ¼ 0.195� 0.021 MeV. While the decay width
for the χb1 state is in agreement with our results, the results
for χb0 and χb2 are much larger than what we obtain in
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Eqs. (57). In Ref. [65], the authors took the results for
the radiative decay rates computed in a nonrelativistic
model based on the Cornell potential available in
Table 4.16 in Ref. [66] and used the measured results
for the branching fractions in Ref. [63] to compute the total
decay widths. We again subtract the radiative decay rates
from the results listed in Ref. [65] to obtain Γðχb0ð1PÞ→
LHÞjRef: ½65� ¼ 1.121þ0.185

−0.140 MeV, Γðχb1ð1PÞ→LHÞjRef: ½65� ¼
0.051þ0.005

−0.004 MeV, and Γðχb2ð1PÞ → LHÞjRef: ½65� ¼
0.144þ0.010

−0.009 MeV. These are in good agreement with our
results in Eq. (57). Note that, however, the uncertainties in
the results in Ref. [65] may be underestimated because they
reflect the ones in the measured branching fractions only, as
no uncertainty is given in the model calculation of the
radiative decay rates in Ref. [66].
We also compute decay rates for χbJð2PÞ and χbJð3PÞ

states:

Γðχb0ð2PÞ → LHÞ ¼ 1.03þ0.01þ0.43
−0.01−0.09 � 0.10 MeV;

¼ 1.03þ0.44
−0.14 MeV; ð58aÞ

Γðχb1ð2PÞ → LHÞ ¼ 0.070þ0.009þ0.047
−0.011−0.008 � 0.007 MeV;

¼ 0.070þ0.049
−0.016 MeV; ð58bÞ

Γðχb2ð2PÞ → LHÞ ¼ 0.19þ0.01þ0.01
−0.01−0.11 � 0.019 MeV;

¼ 0.19þ0.02
−0.12 MeV; ð58cÞ

Γðχb0ð3PÞ → LHÞ ¼ 1.19þ0.01þ0.50
−0.01−0.10 � 0.12 MeV;

¼ 1.19þ0.51
−0.16 MeV; ð59aÞ

Γðχb1ð3PÞ → LHÞ ¼ 0.081þ0.011þ0.055
−0.013−0.009 � 0.008 MeV;

¼ 0.081þ0.057
−0.018 MeV; ð59bÞ

Γðχb2ð3PÞ → LHÞ ¼ 0.22þ0.01þ0.01
−0.01−0.13 � 0.02 MeV;

¼ 0.22þ0.03
−0.13 MeV: ð59cÞ

Compared to the results in Ref. [60] based on the
phenomenological determination of E3, the decay rates
for J ¼ 0 and 2 are in agreement within uncertainties.
Although the results for J ¼ 1 also agree within uncer-
tainties with Ref. [60], we obtain smaller central values for
the decay rates. The uncertainties in the χbJ decay rates are
comparable in size with the results in Ref. [60]; however,
the uncertainties would have been much smaller if we
estimated the uncertainties from uncalculated corrections of
higher orders in αs in the same way as Ref. [60], instead of
varying the QCD renormalization scale.
In Refs. [61,62], the dimensionless ratio ρðΛÞ8 defined

in Eq. (52) for the bottomonium state at the scale

Λ ¼ 4.6 GeV was investigated by computing the decays
χbJ → cþ X and comparing them with measurements of
branching fractions BrðχbJ → D0 þ XÞ. If we take into
account the evolution of the color-octet matrix element,

then our results lead to ρðΛ¼4.6 GeVÞ
8 ¼ 0.17� 0.01. This is

compatible with the result 0.160þ0.071
−0.047 obtained in Ref. [62]

from the measured branching fractions for the 1P states. In
contrast, Ref. [62] obtained a smaller result 0.074þ0.010

−0.008
from measurements involving 2P states, while we expect
Eq. (52) to be approximately independent of the radial
excitation; however, we note that the quality of the fit for
the 2P states in Ref. [62] is much worse compared to the 1P
states, resulting in a value of χ2 that is more than an order of
magnitude larger than that of the 1P case.
In Fig. 2 we compare our result for the χQJ matrix

element ratio ρðΛÞ8 defined in Eq. (52) at Λ ¼ 1 GeV with
the phenomenological determinations in Ref. [17]
(BEPSV01) and Ref. [60] (BCMV20) based on χcJ decay
rates, and the determination in Ref. [62] (CLEO) from
measurements of BrðχbJð1PÞ → D0 þ XÞ. Note that
because the result in Ref. [62] has been obtained at the
scale of the bottom quark mass, we solved the evolution
equation for E3 in Eq. (13) to obtain the result at
Λ ¼ 1 GeV. We can see that from Fig. 2, our result based
on the RGZ theory has much smaller uncertainties com-
pared to the phenomenological determinations based on
measured decay rates, although the results are consistent
within uncertainties.
We now list our numerical results for the color-octet

matrix elements for χcJ and χbJ states obtained from
the RGZ result for the moment E3 and the calculation of
the P-wave quarkonium wave functions in Ref. [29] at
one-loop level:

FIG. 2. Results for the χQJ matrix element ratio ρðΛÞ8 defined in
Eq. (52) at Λ ¼ 1 GeV in this work (RGZ), compared to
determinations based on χcJ decay rates in Ref. [17] (BEPSV01)
and Ref. [60] (BCMV20), and the determination based on
measurements of BrðχbJð1PÞ → D0 þ XÞ in Ref. [62] (CLEO).

COLOR-OCTET NONRELATIVISTIC QCD MATRIX ELEMENTS … PHYS. REV. D 109, 054001 (2024)

054001-13



hO8ð3S1ÞiðΛ¼1 GeVÞ
χcJ ¼ ð2.66þ0.53

−0.65Þ × 10−3 GeV3; ð60aÞ

hO8ð3S1ÞiðΛ¼1 GeVÞ
χbJð1PÞ ¼ ð3.45þ0.69

−0.84Þ × 10−3 GeV3; ð60bÞ

hO8ð3S1ÞiðΛ¼1 GeVÞ
χbJð2PÞ ¼ ð4.79þ0.96

−1.17Þ × 10−3 GeV3; ð60cÞ

hO8ð3S1ÞiðΛ¼1 GeVÞ
χbJð3PÞ ¼ ð5.69þ1.14

−1.39Þ × 10−3 GeV3: ð60dÞ

Here we use the shorthand hO8ð3S1ÞiðΛÞχQJ ≡
hχQJjO8ð3S1ÞjχQJiðΛÞ. These results are much more precise
compared to previous phenomenological determinations in
Ref. [60], with uncertainties reduced by a factor of about
1=3. Note that all of the color-octet matrix elements in
Eq. (60) are computed in the MS scheme at scale
Λ ¼ 1 GeV, and any direct comparison with other results
must be done at the same scheme and scale.
Next we look into the decays of S-wave states into light

hadrons. In the case of ηQ, whereQ ¼ c or b, the following
relations hold for the color-octet matrix elements and the
dimension-two moments [18]:

hηQjO8ð3S1ÞjηQi
hηQjO1ð1S0ÞjηQi

¼ −
c2FB1

2m2
QNc

; ð61aÞ

hηQjO8ð1P1ÞjηQi=m2
Q

hηQjO1ð1S0ÞjηQi
¼ −

E1

2m2
QNc

; ð61bÞ

where cF ¼ 1þOðαsÞ is the short-distance coefficient in
the NRQCD Lagrangian associated with the spin-flip
interaction [67–69]; even though cF is known to three
loops, we only need the result at tree level consistently with
our tree-level evaluation of B1. We take the definitions
of the operators O8ð3S1Þ, O1ð1S0Þ, and O8ð1P1Þ in
Refs. [16,18,27]. We have included a factor of 1=m2

Q on
the left-hand side of Eq. (61) in order to make the ratio
dimensionless. Similarly to the χQJ case, these ratios do not
depend on the radial excitation of the ηQ state, and the only
dependence on the heavy quark flavor comes from the
heavy quark mass mQ. Note that Eq. (61) is taken from
Eq. (155) in Ref. [18], where one needs to set J ¼ 1 for the
relation to hold for the spin-singlet case. There is an
additional color-octet matrix element hηQjO8ð1S0ÞjηQi that
enters the decay rate of spin-singlet S-wave quarkonium
into light hadrons; we do not consider this matrix element
because it is proportional to a moment of the four-point
field-strength correlation function [see Eqs. (80) and (153)
of Ref. [18] ], which is outside the scope of this work.
Before we consider the decay rate of ηQ let us compare
Eqs. (61) with the estimates of the sizes of the color-octet
matrix elements given in Ref. [27]. In Ref. [27], the ratio in
Eq. (61a) has been estimated to be the order of v3=ð2NcÞ,
which corresponds to about 0.03 for charmonium, and

0.005 for bottomonium. By using our result for B1 in
Eq. (44), we obtain −0.1 and −0.008 for the right-hand side
of Eq. (61a) for charmonium and bottomonium, respec-
tively. These results are larger in size than the estimates
given in Ref. [27], and the signs are negative due to the
positivity of B1. In the case of Eq. (61b), this ratio was
estimated in Ref. [27] to be about v4=ð2NcÞ, which gives
0.015 and 0.0017 for charmonium and bottomonium,
respectively. If we use our result for E1 in Eq. (41), then
the ratio ranges between −0.014 and 0.008 for charmo-
nium, and between −0.0010 and 0.0006 for bottomonium,
which are smaller than the estimates in Ref. [27].
The sizes of the contributions from the color-octet matrix

elements in Eqs. (61) to the decay rates ΓðηQ → LHÞ can be
computed by multiplying the corresponding short-distance
coefficients. Numerical sizes of the tree-level short-distance
coefficients compared to the one at leading order in v are
listed in Ref. [27]. Compared to the decay rate at leading
order v, which only involves the color-singlet matrix
element hηQjO1ð1S0ÞjηQi, the relative contribution from
the color-octet matrix element hηQjO8ð3S1ÞjηQi is given by
Eq. (61a) times 0.75nf. If we put nf ¼ 3 for charmonium
and nf ¼ 4 for bottomonium, then the correction to the
decay rate from B1 is about −22� 3% for ηc, and about
−2.3� 0.3% for ηb. In the case of the matrix element
hηQjO8ð1P1ÞjηQi, the contribution from E1 relative to the
leading-order decay rate is given by 1.13 times Eq. (61b).
Because of the small size of E1, the contribution from E1 to
the decay rate is at most of the order of 1% for ηc, and is at
most of the order of 0.1% for ηb. The order-v4 correction
from the matrix element hηQjO8ð1S0ÞjηQi involving the
four-point correlation function would be of the order of 3%
for charmonium and 0.3% for bottomonium according to
the estimate given in Ref. [27]. Hence, the only significant
color-octet contribution to the ηQ decay rate comes
from B1.
In order to properly quantify the color-octet contribution

to the ηQ decay rate, we need to include radiative corrections
to the short-distance coefficients, which are known to
converge slowly [24]. In Ref. [25], the authors computed
the ratio RηQ ¼ ΓðηQ → LHÞ=ΓðηQ → γγÞ by resumming a
class of radiative corrections in the large-nf limit, based on
an earlier resummation calculation in Ref. [24] and a fixed-
order calculation at two-loop accuracy in Ref. [70]. It was
found in this work that the lack of knowledge of the color-
octet matrix element hηQjO8ð3S1ÞjηQi is a significant
source of uncertainty. Since we can determine this matrix
element from our result for B1, we can remove this
uncertainty. Since the calculation in Ref. [25] was done
by cutting off the quadratic power divergence in the color-
octet matrix element with a hard cutoff, first we need to
convert our result for B1 from dimensional regularization to
cutoff regularization. The power divergence in B1 is simply
given by a scaleless power-divergent integral which can be
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read off from Eq. (24) by setting all dimensionful param-
eters to zero:

Bcutoff
1 − BDR

1 ¼ g2CF

2π2

Z
Λ

0

dkk; ð62Þ

where Λ is the hard cutoff on the spatial loop momentum,
consistently with what was done in Ref. [25]. At
Λ ¼ 1 GeV, which was used in Ref. [25] for charmonium,
Eq. (62) amounts to 0.15 GeV2 if we set αsðmcÞ ¼ 0.35. At
Λ ¼ 2 GeV, which was used in Ref. [25] for bottomonium,
the cutoff-regulated B1 is larger than the dimensionally
regulated one by 0.37 GeV2 if we use αsðmbÞ ¼ 0.22. We
can now improve the result in Ref. [25] by including the
color-octet contribution we compute with our result for B1.
We first compute Rηc for the charmonium states. We obtain,
from Eq. (66) of Ref. [25],

RηcðNNAÞ ¼ ð5.83þ1.29þ0.20
−0.53−0.16 Þ × 103;

¼ ð5.83þ1.31
−0.55Þ × 103; ð63Þ

where we shifted the central value by the correction from
the color-octet matrix element. The first uncertainty comes
from the variation of the QCD renormalization scale
between 1 and 2 GeV, and the second uncertainty comes
from B1. Because we have now included the effect of the
color-octet matrix element in the correct scheme, we have
removed the uncertainties arising from varying the cutoff Λ
and from the unknown color-octet matrix element. Here,
NNA refers to the naïve non-Abelianization scheme used
for the resummation of radiative corrections in the large-nf
limit [71]. The size of the correction from the color-octet
matrix element can be easily obtained by replacing the
estimate hηQjO8ð3S1ÞjηQi=hηQjO1ð1S0ÞjηQi¼v3CF=ðπNcÞ
with v2 ¼ 0.3 used in Ref. [25] with the pNRQCD result
Eq. (61a) and by using our result for B1. Here, we take
mc ¼ 1.5 GeV consistently with Ref. [25]. The uncertain-
ties are slightly reduced compared to the result in Ref. [25],
because the uncertainty in the NNA result is dominated by
the variation of the QCD renormalization scale. Similarly,
from Eq. (67) of Ref. [25] we obtain

RηcðBFGÞ ¼ ð5.18þ0.06þ0.23
−0.18−0.18 Þ × 103;

¼ ð5.18þ0.23
−0.26Þ × 103; ð64Þ

which again we obtain by shifting the central value by the
correction from the color-octet matrix element. Here, BFG
refers to the background-field gauge method that was used
for the resummation of radiative corrections in the large-nf
limit [72]. The sources of uncertainties are same as in
Eq. (63). The uncertainty in the BFG result is greatly
reduced compared to the result in Ref. [25], because the
uncertainty was dominated by the unknown color-octet
matrix element. Note that, compared to the results in

Ref. [25], the differences between the results in the NNA
and BFG methods have reduced by inclusion of the
correction from the color-octet matrix element, and the
two results are still in agreement despite the significant
reduction of uncertainties.We note that because the order-v4

corrections from color-singletmatrix elements also cancel in
the ratioRηQ [27], the uncertainties from uncalculated order-
v4 corrections come from the color-octet matrix elements
hηQjO8ð1P1ÞjηQi and hηQjO8ð1S0ÞjηQi. These corrections
are estimated to be about a few percent, which are well
within the uncertainties in our results.
In order to compare with experiment, we obtain the

branching fraction Brðηc → γγÞ by taking the inverse of
Rηc . We have

Brðηc → γγÞjNNA ¼ ð1.71þ0.18
−0.31Þ × 10−4; ð65aÞ

Brðηc → γγÞjBFG ¼ ð1.93þ0.10
−0.08Þ × 10−4: ð65bÞ

The NNA result for the branching fraction agrees within
uncertainties with the PDG value Brðηc → γγÞjPDG ¼
ð1.68� 0.12Þ × 10−4 [63], but the BFG result is slightly
larger. Interestingly, a recent lattice QCD determination
of the two-photon rate in Ref. [73], when divided by
the measured total width of ηc, leads to the value
Brðηc → γγÞ ¼ ð2.121� 0.050Þ × 10−4, which is in ten-
sion with the PDG value and is slightly larger than the
improved BFG result. We note that the results in Eq. (65)
are independent of the radial excitation and apply to
the ηcð2SÞ state as well. Indeed, the results are in agre-
ement with the PDG value Brðηcð2SÞ → γγÞjPDG ¼
ð1.6� 1.0Þ × 10−4, although the experimental uncertain-
ties are much larger than the 1S case.
We can repeat the same analysis for the ratio Rηb ¼

Γðηb → LHÞ=Γðηb → γγÞ for the bottomonium states.
Although the relative size of the correction from the
color-octet matrix element is expected to be much smaller
than the charmonium case, inclusion of the color-octet
matrix elements will still be able to reduce the uncertainties
in the results. Similarly to the charmonium case, we include
the correction from B1 by replacing the estimate
hηQjO8ð3S1ÞjηQi=hηQjO1ð1S0ÞjηQi ¼ v3CF=ðπNcÞ with
v2 ¼ 0.1 used in Ref. [25] with the pNRQCD result
Eq. (61a) and by using our result for B1. We obtain from
Eqs. (68) and (69) of Ref. [25] the following results:

RηbðNNAÞ ¼ ð2.47þ0.02þ0.02
−0.05−0.01 Þ × 104;

¼ ð2.47þ0.03
−0.05Þ × 104; ð66aÞ

RηbðBFGÞ ¼ ð2.58þ0.00þ0.02
−0.05−0.01 Þ × 104;

¼ ð2.58þ0.02
−0.05Þ × 104; ð66bÞ

where the uncertainties are as in Eq. (63). The uncertainties
are now reduced by half compared to the results in
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Ref. [25]. The difference between the NNA and BFG
results are now slightly larger after inclusion of the color-
octet matrix element, and the two results are now in slight
tension. By taking the inverse of Rηb , we obtain the
branching fraction

Brðηb → γγÞjNNA ¼ ð4.05þ0.09
−0.04Þ × 10−5; ð67aÞ

Brðηb → γγÞjBFG ¼ ð3.88þ0.08
−0.03Þ × 10−5: ð67bÞ

Since the two-photon rates of ηb states have not been
measured, it is not possible to compare these results directly
with experiment. Instead, we compute the total decay
widths of the ηb states by using the two-photon rates
computed in Ref. [28]. We obtain

Γηbð1SÞ ¼ 10.9þ4.2
−1.7 MeV; ð68aÞ

Γηbð2SÞ ¼ 4.9� 0.6 MeV; ð68bÞ

Γηbð3SÞ ¼ 3.6� 0.4 MeV; ð68cÞ

where the central values are obtained from the average of
NNA and BFG results, and the uncertainties come from
the improved results for Rηb and the two-photon rates in
Ref. [28]. In all cases, the uncertainties are dominated by
the uncertainties in the predictions for the two-photon rates.
The result for Γηbð1SÞ is in agreement with the PDG value
Γηbð1SÞ ¼ 10þ5

−4 MeV [63].
In Fig. 3 we compare our results for Brðηc → γγÞ and

Brðηb → γγÞ with the previous resummation calculation in

Ref. [25] (BCK18) and the fixed-order calculation at two-
loop accuracy in Ref. [70] (FJS17). In the case of ηc, we
also show the result from a lattice QCD study in Ref. [73]
(HPQCD23), the resummation calculation in Ref. [24]
(BC01), and the PDG value from Ref. [63]. Note that
the FJS17 results do not include any uncertainties from
uncalculated corrections of higher orders in v, leading to a
severe tension with the PDG result in the ηc case. Generally,
the improved results in this work lead to smaller values of
the branching fractions, which makes the results for ηc
agree better with the PDG value.
Similarly to the χQJ case, we also list the results

for the color-octet matrix elements hηQjO8ð3S1ÞjηQi
and hηQjO8ð1P1ÞjηQi computed from the expressions in
Eqs. (61) and our results for B1 and E1. We compute
the color-singlet matrix element from the expression
hηQjO1ð1S0ÞjηQi ¼ 2NcjΨηQð0Þj2, where ΨηQðrÞ is the
wave function of the ηQ state, and the first-principles
calculation of the S-wave quarkonium wave functions in
Ref. [28]. We obtain

hO8ð3S1Þiηcð1SÞ ¼ ð−2.74þ0.32
−0.40Þ × 10−2 GeV3; ð69aÞ

hO8ð3S1Þiηcð2SÞ ¼ ð−2.17þ0.25
−0.32Þ × 10−2 GeV3; ð69bÞ

hO8ð3S1Þiηbð1SÞ ¼ ð−1.73þ0.20
−0.25Þ × 10−2 GeV3; ð69cÞ

hO8ð3S1Þiηbð2SÞ ¼ ð−1.01þ0.12
−0.15Þ × 10−2 GeV3; ð69dÞ

hO8ð3S1Þiηbð3SÞ ¼ ð−0.84þ0.10
−0.12Þ × 10−2 GeV3; ð69eÞ

FIG. 3. Results for two-photon branching fractions of ηc (left) and ηb (right) in this work (RGZ) compared to a lattice QCD study in
Ref. [73] (HPQCD23), large-nf resummation calculations in Ref. [25] (BCK18) and Ref. [24] (BC01), a fixed-order calculation at two-
loop accuracy in Ref. [70] (FJS17). Results for the ηb case are not available in HPQCD23 [73] and BC01 [24]. The PDG value for the ηc
case from Ref. [63] is shown as a blue band.
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jhO8ð1P1Þiηcð1SÞj≲ 6.5 × 10−3 GeV5; ð70aÞ

jhO8ð1P1Þiηcð2SÞj≲ 5.1 × 10−3 GeV5; ð70bÞ

jhO8ð1P1Þiηbð1SÞj≲ 5.3 × 10−2 GeV5; ð70cÞ

jhO8ð1P1Þiηbð2SÞj≲ 3.1 × 10−2 GeV5; ð70dÞ

jhO8ð1P1Þiηbð3SÞj≲ 2.6 × 10−2 GeV5: ð70eÞ

Here we again use the shorthand hO8ð3S1ÞiηQ ≡
hηcjO8ð3S1ÞjηQi and hO8ð1P1ÞiηQ ≡ hηcjO8ð1P1ÞjηQi. In
obtaining these results, we included the order-αs correc-
tions to the wave function arising from loop corrections to
the static potential, but neglected corrections of order α2s
because short-distance coefficients for the color-octet
channel are generally known up to next-to-leading order
in αs. In the case of hηQjO8ð1P1ÞjηQi, we only show the
upper estimates of the absolute values because our result for
E1 is not precise enough to determine its sign; nevertheless
the upper estimates in Eq. (70) are smaller than the power-
counting estimates in Ref. [27].
Next, we consider the decays of spin-triplet S-wave

quarkonium V, which includes J=ψ and ϒ. The following
relations hold for the color-octet matrix elements for the V
state and the dimension-two moments [18]:

hVjO8ð1S0ÞjVi
hVjO1ð3S1ÞjVi

¼ −
c2FB1

6m2
QNc

; ð71aÞ

hVjO8ð3PJÞjVi=m2
Q

hVjO1ð3S1ÞjVi
¼ −ð2J þ 1Þ E1

18m2
QNc

; ð71bÞ

where J ¼ 0, 1, and 2. We again take the definitions of
the NRQCD operators O8ð1S0Þ, O1ð3S1Þ, and O8ð3PJÞ in
Refs. [16,18,27]. Note that these relations can also be
obtained from Eqs. (61) by using heavy-quark spin sym-
metry (see Ref. [27]). Similarly to the ηQ case, we do not
consider the matrix element hVjO8ð3S1ÞjVi, because it is
proportional to a moment of the four-point field-strength
correlator, which is outside of the scope of this work. The
values of these color-octet matrix elements can be computed
in the same way as the ηQ matrix elements, by using
hVjO1ð3S1ÞjVi ¼ 2NcjΨVð0Þj2 and the first-principles cal-
culations of the quarkonium wave functions ΨVðrÞ in
Ref. [28]. We obtain

hO8ð1S0ÞiJ=ψ ¼ ð−9.1þ1.1
−1.3Þ × 10−3 GeV3; ð72aÞ

hO8ð1S0Þiψð2SÞ ¼ ð−7.2þ0.8
−1.1Þ × 10−3 GeV3; ð72bÞ

hO8ð1S0Þiϒð1SÞ ¼ ð−5.8þ0.7
−0.8Þ × 10−3 GeV3; ð72cÞ

hO8ð1S0Þiϒð2SÞ ¼ ð−3.4þ0.4
−0.5Þ × 10−3 GeV3; ð72dÞ

hO8ð1S0Þiϒð3SÞ ¼ ð−2.8þ0.3
−0.4Þ × 10−3 GeV3; ð72eÞ

jhO8ð3PJÞiJ=ψ j
2J þ 1

≲ 7.2 × 10−4 GeV5; ð73aÞ

jhO8ð3PJÞiψð2SÞj
2J þ 1

≲ 5.7 × 10−4 GeV5; ð73bÞ

jhO8ð3PJÞiϒð1SÞj
2J þ 1

≲ 5.9 × 10−3 GeV5; ð73cÞ

jhO8ð3PJÞiϒð2SÞj
2J þ 1

≲ 3.4 × 10−3 GeV5; ð73dÞ

jhO8ð3PJÞiϒð3SÞj
2J þ 1

≲ 2.8 × 10−3 GeV5: ð73eÞ

Again we use the shorthand hO8ð1S0ÞiV ≡ hVjO8ð1S0ÞjVi
and hO8ð3PJÞiV ≡ hVjO8ð3PJÞjVi. These results are same
as what could be obtained from the ηQ matrix elements in
Eqs. (69) and (70) and heavy-quark spin symmetry.
Similarly to the ηQ case, we only show the upper estimates
of the absolute values of hVjO8ð3PJÞjVi.
The results for the matrix elements we obtain can be used

to estimate sizes of the color-octet contributions to the
decay rates ΓðV → LHÞ. As have been known from
Refs. [26,27], many of the short-distance coefficients
associated with the color-octet matrix elements are
enhanced by a factor of π=αs, because a heavy-quark
antiquark pair in color-octet states can decay into two
gluons or a light-quark pair at tree level, while a color-
singlet S-wave spin-triplet state can only decay into three or
more gluons at tree level. For example, the size of the color-
octet contribution from the matrix element hVjO8ð1S0ÞjVi
to the decay rate ΓðV → LHÞ relative to the one at leading
order in v is given by 11.64 × ðπ=αsÞ times Eq. (71a) [27].
Similarly, the contributions from the matrix elements
hVjO8ð3P0ÞjVi and hVjO8ð3P2ÞjVi relative to the lead-
ing-order decay rate are given by Eq. (71) times 34.93 ×
ðπ=αsÞ and 9.3 × ðπ=αsÞ, respectively.2 Due to the large
coefficients, the color-octet contributions are significant for
ΓðV → LHÞ and can even exceed the color-singlet con-
tribution at leading order in v in the charmonium case. For
example, for J=ψ the correction from B1 is about −3.1
times the leading-order decay rate, and the correction from

2Exceptionally, the short-distance coefficient associated with
the matrix element hVjO8ð3P1ÞjVi is not enhanced by inverse
powers of αs, because a vector state cannot decay into two gluons
at tree level.
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E1 ranges from −1.0 to þ0.6 times the leading-order decay
rate. The size of the contribution from the matrix element
hJ=ψ jO8ð3S1ÞjJ=ψi that involves the four-point correlation
function would also be order one if we use the estimate for
the matrix element given in Ref. [27]. Even in the case of
ϒ, the color-octet contributions from hϒjO8ð1S0Þjϒi and
hϒjO8ð3S1Þjϒi can be as large as 50% of the leading-order
decay rate, although the correction from hϒjO8ð3PJÞjϒi is
expected to be at most�0.15 times the leading-order decay
rate. Since the contributions from B1 to the decay rate is
negative, it is possible that large cancellations may occur
between color-octet contributions. Nonetheless, even in
the case of ϒ decays, knowledge of the matrix element
hVjO8ð3S1ÞjVi would be necessary to compute the decay
rate to some precision.
Aside from the exceptional case of the decays of spin-

triplet S-wave quarkonium into light hadrons, the moment
E1 may be neglected in most cases due to its tiny size. For
example, E1 appears in order-v2 corrections to the electro-
magnetic production and decays of χQJ (see Refs. [18,60]).
The correction from E1 to the two-photon decay amplitude
of χQJ is given by

4
9
E1=m2

Q for J¼ 0 and 2
3
E1=m2

Q for J ¼ 2

relative to the leading-order result [60]. These are at most of
the order of 5% compared to the tree-level leading-order
result for the charmonium case, and less than 1% relative to
the leading-order result for the bottomonium case, so they
may be neglected in the phenomenology of P-wave
quarkonium decays at the current level of accuracy.
Finally, we discuss phenomenological applications of

iE2. This quantity appears in the correction to the relation
between the color-singlet matrix element and the wave
function at the origin for P-wave states [Eq. (55)], which
was computed in Ref. [60]. This correction was later found
to be canceled by the correction to theP-wavewave function
at the origin coming from thevelocity-dependent potential at
zero separation (see Ref. [29]). Hence, iE2 does not have a
phenomenological significance in P-wave quarkonium
decays or production. However, iE2 does appear in the
correction to the wave function at the origin for S-wave
quarkonia that arises from the velocity-dependent poten-
tial at zero separation [28,29], which unlike the P-wave
case is not canceled by corrections to the relations
hVjO1ð3S1ÞjVi ¼ 2NcjΨVð0Þj2 and hηQjO1ð1S0ÞjηQi ¼
2NcjΨηQð0Þj2. The correction to the S-wave wave function
at the originΨð0Þ relative to the leading-order result is given
by−iE2=ð3mQÞ, which can be obtained from the calculation
in Ref. [28] and the identification of the velocity-dependent
potential at zero separation in terms of iE2 in Ref. [29]. In
Ref. [28] this correction was considered only in the
uncertainties, which were estimated by assuming that
j2iE2=3j≲ 0.5 GeV. This estimate is more than twice as
large compared to the central value of our result for iE2 in
Eq. (50), and hence, our result for iE2 can be used to
significantly reduce this uncertainty. By including the

correction from the velocity-dependent potential at zero
separation, the S-wave charmonium wave functions at the
origin are enhanced by 7� 4%, and the S-wave bottomo-
nium wave functions at the origin are enhanced by 2� 1%.
In Ref. [28], the uncertainty from the unknown iE2 was
estimated to be about 19% and 5% for S-wave charmonium
and bottomonium wave functions at the origin, respec-
tively; by using our result for iE2, these uncertainties would
be greatly reduced to only about 4% and 1%, respectively.
For example, using our result for iE2 would improve the
first-principles calculation of the J=ψ leptonic decay rate in
Ref. [28] from 4.5þ2.5

−1.9 to 5.1þ1.6
−1.4 keV, which not only

reduces uncertainties but also brings the central value
closer to the PDG value 5.53� 0.10 keV [63]. In the case
of the two-photon decay rate of ηbð1SÞ, we obtain only a
small improvement in uncertainty, from 0.433þ0.165

−0.065 to
0.450þ0.149

−0.047 keV. When combined with our results for Rηb
in Eq. (66), we obtain the total decay rate of ηbð1SÞ given by
11.3þ3.8

−1.2 MeV, which is slightly improved compared
to Eq. (68a).

V. SUMMARY AND DISCUSSION

In this work we computed color-octet nonrelativistic
QCD matrix elements that appear in heavy quarkonium
decay rates based on the refined Gribov-Zwanziger theory
[44–49]. The color-octet matrix elements correspond to the
probabilities for a heavy quark and antiquark pair in a
color-octet state to evolve into a color-singlet state, and can
be related to the moments of correlation functions of QCD
field-strength tensors by using the potential nonrelativistic
QCD formalism [17–21]. We found that tree-level calcu-
lations in the refined Gribov-Zwanziger theory, which can
reproduce the nonperturbative gluon propagator very well,
can also give a satisfactory description of the two-point
correlation functions of the QCD field-strength tensor that
agrees with a lattice QCD study in Ref. [35]. This allowed
us to compute moments of the correlation functions that are
infrared finite, while also reproducing the correct leading
ultraviolet divergences that are expected from the non-
relativistic QCD factorization formalism [16] and can be
properly renormalized. In particular, the dimensionless
moment E3 defined in Eq. (12) contains a logarithmic
ultraviolet divergence, which we renormalize in the MS
scheme consistently with calculations in the nonrelativistic
QCD factorization formalism. Similarly, in the case of the
dimension-two moments E1 and B1 defined in Eq. (14),
which involve quadratic power divergences, correct results
in dimensional regularization are obtained by computing
them in arbitrary spacetime dimensions and later setting the
number of dimensions to 4. Such a calculation in dimen-
sional regularization would be difficult to carry out in a
numerical study, such as a calculation based on lattice QCD
data, especially for the dimensionless moment E3 where the
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conversion to dimensional regularization would involve not
only ultraviolet divergences but also infrared divergences.
The numerical result for E3 that we obtain in the refined

Gribov-Zwanziger theory is given in Eq. (40). This result is
much more precise than the results from phenomenological
analyses in Refs. [17,60]. We have used this result to
compute the color-octet matrix element for P-wave quar-
konium decays and to compute decay rates of χcJ and χbJ
into light hadrons. The uncertainties that arise from color-
octet matrix element have significantly improved compared
to previous phenomenological studies, although the results
are generally compatible with previous results and exper-
imental data.
In the case of the dimension-two moment B1, we found

that a straightforward calculation in the refined Gribov-
Zwanziger theory leads to not only a power ultraviolet
divergence, as expected in perturbative QCD, but also a
logarithmic ultraviolet divergence that is proportional to a
nonperturbative parameter associated with the dimension-
two condensate of the gauge field. While appearance of
subdivergences is not completely unexpected given that the
refined Gribov-Zwanziger theory contains dimensionful
parameters, due to the nonperturbative origin of the
subdivergences, they could not be subtracted within the
nonrelativistic QCD factorization formalism. Fortunately,
we found that at tree level, this result is exactly proportional
to the dimension-two condensate of the gauge field which
also contains a logarithmic ultraviolet divergence as was
found in Refs. [49,52]. By using the finite result for the
condensate obtained in the effective action formalism in
Ref. [52], we obtain a finite result for B1 in dimensional
regularization, which is given in Eq. (44). This result lead to
the calculation of the color-octet matrix elements that
appear in S-wave quarkonium decays associated with the
spin-flip interaction. We have used this result to improve a
previous calculation of the two-photon branching fraction
of ηc and ηb in Ref. [25], where the color-octet matrix
elements have been left unknown. By including the color-
octet matrix elements computed from the calculation of B1

in the refined Gribov-Zwanziger theory, the central values
of the branching fractions have increased, and the uncer-
tainties associated with the color-octet matrix elements
have reduced.
Finally, we found that the dimension-two moment E1

vanishes at tree level in the refined Gribov-Zwanziger
theory. We also found that in general, the contribution from
the invariant function Dðx2Þ vanishes in E1, and only
D1ðx2Þ contributes to E1, which in perturbation theory
appears from next-to-leading order in the strong coupling.
We have estimated the size of the contribution fromD1ðx2Þ
to E1 by using lattice QCD measurements of the invariant
functions in Ref. [35] to obtain the result in Eq. (41).

The result suggests that E1 is at most about an order of
magnitude smaller than B1, and so, in most phenomeno-
logical applications, contributions from E1 may be
neglected, unless it is multiplied by an unusually large
short-distance coefficient.
The results for the two-point field-strength correlation

function in this work are based on tree-level calculations of
the gluon propagator in the refined Gribov-Zwanziger
theory. Similarly to the case of the gluon propagator,
tree-level results in this theory seem to be able to reproduce
bulk of the long-distance nonperturbative behavior of the
correlation function, as we find agreements with the lattice
QCD analysis in Ref. [35]. We also found that the Gribov-
Zwanziger theory alone [37], without the refinements from
the dimension-two condensates, cannot reproduce the long-
distance behavior found in lattice studies. This suggests
that inclusion of the dimension-two condensates is neces-
sary in describing the nonperturbative nature of the field-
strength correlation functions, similarly to the case of the
gluon propagator. Although the results in this work are
based on calculations at tree level, in obtaining the
numerical results we included effects of contributions at
higher orders in the strong coupling estimated by compar-
ing with lattice QCD results. It would still be interesting to
compute the correlation functions at next-to-leading order
accuracy, which may also help reduce the uncertainties in
the numerical results. We also note that in this work we
have not computed the color-octet matrix element that
arises from the four-point field-strength correlation func-
tion. In principle, we could compute moments of the four-
point correlation function at tree level similarly to our
calculation of the two-point correlation function. However,
we found that such a calculation leads to logarithmic
ultraviolet divergences, which, unlike the case of B1,
involve not only m2 but also M2 and λ, which makes it
impossible to reexpress the divergence in terms of the
dimension-two condensate of the gluon field. Extending the
analysis to the case of the four-point correlation function
and also to next-to-leading order accuracy would be
important in the phenomenology of J=ψ and ϒ decays,
as the short-distance coefficients associated with color-
octet matrix elements are very large for these processes.
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