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Based on the method of solving the complete Salpeter equation, we study the semileptonic decays of a
0− heavy meson to 1P, 2P, or 3P heavy-tensor mesons, Bq → ðc̄qÞðnPÞlþνl ðq ¼ u; d; s; c; n ¼ 1; 2; 3Þ.
The obtained branching ratio of BðB → D⋆

2 ð2460ÞlþνlÞ agrees with the experimental data. We predict
BðB0

s → D⋆−
s2 ð1PÞlþνlÞ ¼ 3.76 × 10−3 and BðBþ

c → χc2ð1PÞlþνlÞ ¼ 1.82 × 10−3. The branching ratios
of decays to 2P and 3P final states are found to be very small. The ratios RðD̄⋆0

2 Þ ¼ 0.045, RðD⋆
s2Þ ¼

0.048 and Rðχc2Þ ¼ 0.059 are also obtained. This study focuses on the contribution of relativistic
corrections. The wave function of the pseudoscalar includes nonrelativistic S-wave and relativistic P-wave.
While for a tensor, it contains nonrelativistic P-wave and relativistic P-, D-, and F-waves in its wave
function. We find the individual contributions of relativistic partial waves are significant in the decay
B → D⋆

2 ð2460Þlþνl, but the overall contribution of the relativistic effect is 24.4%, which is small due to
cancellation. Similarly, for the decay B0

s → D⋆−
s2 ð1PÞlþνl, the contribution of the relativistic effect is

28.8%. While for Bþ
c → χc2ð1PÞlþνl, the individual contributions of relativistic partial waves and the

overall relativistic correction are both small, the later of which is 22.1%.

DOI: 10.1103/PhysRevD.109.053004

I. INTRODUCTION

In the past few years, the semileptonic decays of bottom
mesons induced by b → c have attracted a lot of research
interest both in theory [1–5] and in experiment [6–11], since
such decays are important for the studies of the Cabibbo-
Kobayashi-Maskawa (CKM) matrix element Vcb [12,13],
CP violation [14,15], probing new physics [16,17], etc. So
far, many processes have been extensively studied, such as
the semileptonic decays of B to D or D⋆. However our
knowledge on the final state being an orbitally excited state is
still insufficient. For example, there is the long-lived “1=2 vs
3=2” puzzle [18–22] in B semileptonic decays to orbitally
excited states.
Among the orbitally excited states, the 2þ tensor meson

is a very complex one. There are significant differences
between theoretical results on B → D⋆

2 ð2460Þlþνl, a few

results are in good agreement with experimental data,
see Table IV in this article for details. The relativistic
correction of an excited state is greater than that of the
ground state [23], so one possible reason for the incon-
sistency between theory and experiment is that the relativistic
correctionwas not well-considered. Therefore, in this article,
we will give a semirelativistic study of the semileptonic
decays, Bq → ðc̄qÞðnPÞlþνl ðq ¼ u; d; s; c; n ¼ 1; 2; 3Þ,
where Bq is a pseudoscalar meson, and the final meson
(c̄q) is a tensor meson. The processes with highly excited 2P
and 3P final states are also included, as we know almost
nothing about them.
In this paper, we will solve the instantaneous Bethe-

Salpeter (BS) equation [24], which is also called Salpeter
equation [25], to obtain the Salpeter wave functions for
pseudoscalar and tensor mesons. Compared with the non-
relativistic Schrödinger equation, the BS equation is a
relativistic dynamic equation for bound states. As it is very
complicated, we have to make approximation before
solving it. The Salpeter equation is its instantaneous
version, and the instantaneous approximation is suitable
for heavy mesons. Due to instantaneous approximation,
this method is no longer strictly relativistic, but a semi-
relativistic approach. We have solved the complete Salpeter
equation without further approximations [26,27]. Since the
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Salpeter equation itself does not provide the form of wave
functions, we give the general expression of the Salpeter
wave function for a meson according to its JP quantum
number, where the unknown radial wave functions are the
solution of Salpeter equation. The Salpeter equations
satisfied by mesons with different JP need to be solved
separately, see Ref. [28] for example.
It is known that some particles are not pure wave states,

such as ψð3770Þ which is the S −D mixing state [29]. In
our method, a meson wave function contains different
partial waves, each of which has the same JP. It is found
that [30], in our semirelativistic method, or any complete-
relativistic method, similar conclusions applies to all
particles, that is, all particles are not composed of pure
waves, but contain other partial waves in addition to the
main one. The main wave provides the nonrelativistic
contribution, while others give relativistic corrections.
Taking Bc meson as an example, the S-wave is its main
wave which is nonrelativistic, while P-wave is the relativ-
istic correction term [30].
Although we can calculate the ratios of different partial

waves, which reflect the relativistic effect [30], they do not
represent the size of the relativistic effect in the transition it
participates in. In a transition process, it is necessary to
calculate the overlapping integral of the initial and final-state
wave functions. In this case, the relativistic correction
becomes complex and requires careful study. The main
contribution may not necessarily come from the nonrela-
tivistic partial wave, butmay come from the relativistic ones.
This phenomenon motivates us to study the role of various
partial waves in different decays. Previously, we have
studied the contribution of various partial waves in strong
[31] and electromagnetic transitions [32,33]. In this article,
we will study their performance in the weak transition.
In Sec. II, we introduce the Bethe-Salpeter equation and

its instantaneous version, that is, the Salpeter equation. In
Sec. III, the wave functions including different partial
waves of initial 0− and final 2þ mesons are given. We
also show the details to solve the Salpeter equation of 2þ

state. In Sec. IV, taking the semileptonic decay Bþ →
D̄⋆

2 ð2460Þ0lþνl as an example, we show with our method
how to calculate the transition matrix element. In Sec. V, we
present the ratios of different partial waves in the wave
functions of 0− and 2þ mesons, and the results of semi-
leptonic bottom meson decays. The contributions of differ-
ent partial wave and discussions are also given.

II. INTRODUCTION OF BETHE-SALPETER
EQUATION AND SALPETER EQUATION

The BS equation is Lorentz covariant within the frame-
work of quantum field theory, which describes the rela-
tivistic two-body bound state. The BS equation for a bound
state composed of quark 1 and antiquark 2 is generally
expressed as

ð=p1 −m1ÞχPðqÞð=p2 þm2Þ

¼ i
Z

d4k
ð2πÞ4 VðP; k; qÞχPðkÞ; ð1Þ

where p1 represents the quark’s momentum, p2 is the
antiquark’s momentum; m1 and m2 are the masses of the
quark and antiquark, respectively, χPðqÞ denotes the BS
wave function of the meson, VðP; k; qÞ represents the
integral kernel of the BS equation, P is the meson’s total
momentum, and q is the relative momentum between the
quark and antiquark. We have the following relation:

p1 ¼ α1Pþ q; α1 ¼
m1

m1 þm2

;

p2 ¼ α2P − q; α2 ¼
m2

m1 þm2

:

The BS equation is a four-dimensional integral equation,
which is very difficult to solve. So various approximations
have been developed to solve it. Among them, the
instantaneous approximation is the most frequently used
one, which was first proposed by Salpeter and is suitable
for heavy mesons. In the center-of-mass system, with the
condition of instantaneous approximation, the interaction
kernel is simplified as

VðP; k; qÞ ∼ Vðk⃗; q⃗Þ ¼ Vðq⃗ − k⃗Þ; ð2Þ

then the four-dimensional BS equation can be reduced to
the three-dimensional Salpeter equation. For simplicity,
two functions,

φPðq⃗Þ≡ i
Z

dq0
2π

χPðqÞ; ð3Þ

ηPðq⃗Þ≡
Z

dk⃗
ð2πÞ3 Vðk⃗; q⃗ÞφPðk⃗Þ; ð4Þ

are defined. Thus, the BS equation can be rewritten as

χPðqÞ ¼ S1ðp1ÞηPðq⃗ÞS2ð−p2Þ; ð5Þ

where S1ðp1Þ and S2ð−p2Þ are the propagators of the quark
1 and antiquark 2, respectively.
For convenience, we write the formulas in covariant

form. Therefore, we divide the relative momentum q into
two parts, qk and q⊥,

qk ≡ P · q
M2

P; q⊥ ≡ q − qk;

which are parallel and orthogonal to P, respectively, where
M is the mass of the relevant meson. Correspondingly, we
have two Lorentz-invariant variables,
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qP ≡ P · q
M

; qT ≡
ffiffiffiffiffiffiffiffiffi
−q2⊥

q
;

which are q0 and jq⃗j respectively in the center-of-mass
system. The propagator Si (i ¼ 1, 2) can be decomposed as

Si ¼
Λþ
iPðq⊥Þ

JðiÞqP þ αiM − ωi þ iϵ
þ Λ−

iPðq⊥Þ
JðiÞqP þ αiM þ ωi − iϵ

;

ð6Þ

where JðiÞ ¼ ð−1Þiþ1, ωi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

i þ q2T
p

, and

Λ�
iPðq⊥Þ ¼

1

2ωi

�
P
M

ωi � JðiÞðmi þ =q⊥Þ
�
:

The positive and negative energy projection operators Λþ
and Λ− satisfy the following relations:

Λþ
iPðq⊥Þ þ Λ−

iPðq⊥Þ ¼
P
M

;

Λ�
iPðq⊥Þ

P
M

Λ�
iPðq⊥Þ ¼ Λ�

iPðq⊥Þ;

Λ�
iPðq⊥Þ

P
M

Λ∓
iPðq⊥Þ ¼ 0:

Introducing the notation,

φ��
P ðq⊥Þ≡ Λ�

1Pðq⊥Þ
P
M

φPðq⊥Þ
P
M

Λ�
2Pðq⊥Þ; ð7Þ

and using the relation P
M

P
M ¼ 1, we have

φPðq⊥Þ ¼ φþþ
P ðq⊥Þ þ φþ−

P ðq⊥Þ þ φ−þ
P ðq⊥Þ

þ φ−−
P ðq⊥Þ: ð8Þ

Further integrating out q0 on both sides of Eq. (5), we
obtain the Salpeter equation,

φPðq⊥Þ ¼
Λþ
1Pðq⊥ÞηPðq⊥ÞΛþ

2Pðq⊥Þ
M − ω1 − ω2

−
Λ−
1Pðq⊥ÞηPðq⊥ÞΛ−

2Pðq⊥Þ
M þ ω1 þ ω2

: ð9Þ

By using the projection operators, this expression can be
equivalently written as

ðM − ω1 − ω2Þφþþ
P ðq⊥Þ ¼ Λþ

1Pðq⊥ÞηPðq⊥ÞΛþ
2Pðq⊥Þ;

ðM þ ω1 þ ω2Þφ−−
P ðq⊥Þ ¼ −Λ−

1Pðq⊥ÞηPðq⊥ÞΛ−
2Pðq⊥Þ;

φþ−
P ðq⊥Þ ¼ φ−þ

P ðq⊥Þ ¼ 0: ð10Þ

The normalization condition for the Salpeter wave function
is given by

Z
dq⃗

ð2πÞ3 tr
�
φ̄þþ
P ðq⊥Þ

P
M

φþþ
P ðq⊥Þ

P
M

− φ̄−−
P ðq⊥Þ

P
M

φ−−
P ðq⊥Þ

P
M

�
¼ 2M; ð11Þ

where, φ̄ ¼ γ0φ
†γ0, “†” is the Hermitian conjugate trans-

formation. The relativistic BS equation is four-dimensional,
but the Salpeter equation obtained through instantaneous
approximation is three-dimensional. Therefore, strictly speak-
ing, the Salpeter equation and the wave function obtained
from it are semirelativistic, not completely relativistic.
In our previous works, the complete Salpeter equations

for the pseudoscalar [26] and tensor [27] mesons have been
solved. The Cornell potential is chosen as the interaction
kernel,

VðrÞ ¼ λrþ V0 − γ0 ⊗ γ0
4

3

αsðrÞ
r

;

where λ is the string constant (for heavy-light mesons,
λ ¼ 0.25 GeV2), αsðrÞ is the running coupling constant,
and V0 is a free constant. The interaction potential in
momentum space is given by

Vðq⃗Þ ¼ Vsðq⃗Þ þ γ0 ⊗ γ0Vυðq⃗Þ; ð12Þ

Vsðq⃗Þ ¼ −
�
λ

α
þ V0

�
δ3ðq⃗Þ þ λ

π2
1

ðq⃗2 þ α2Þ2 ; ð13Þ

Vυðq⃗Þ ¼ −
2

3π2
αsðq⃗Þ

ðq⃗2 þ α2Þ ; ð14Þ

where

αsðq⃗Þ ¼
12π

27

1

log

�
aþ q⃗2

Λ2
QCD

� ;

a ¼ 2.7183 and ΛQCD ¼ 0.27 GeV. In order to avoid
infrared divergence and incorporate the screening effect,
a small parameter α ¼ 0.06 GeV is added in the potential.

III. WAVE FUNCTIONS AND THEIR
PARTIAL WAVES

A. 0− meson

Usually, people do not solve the complete Salpeter
equation, namely the four equations of Eq. (10), but only
solves the first one, which is about the positive energy
wave function. Due to the fact that ðM þ ω1 þ ω2Þ ≫
ðM − ω1 − ω2Þ, we have φþþ

P ðq⊥Þ ≫ φ−−
P ðq⊥Þ, and

φ−−
P ðq⊥Þ is negligible. However, this approach also ignored

most of the relativistic corrections, because one equation
can only solve the case with only one unknown radial wave
function. For example, the wave function,
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φPðq⊥Þ ¼
�
P
M

þ 1

�
γ5fðq⊥Þ; ð15Þ

is for a pseudoscalar, where the radial wave function
fðq⊥Þ≡ fð−q2⊥Þ can be obtained numerically by solving
the first equation in Eq. (10). Due to the absence of
standalone q⊥ terms, this solving “the incomplete
Salpeter equation” method can only obtain nonrelativistic
wave function rather than a relativistic one. The correct and
safe way is to first solve the complete Salpeter equation and
obtain the positive and negative energy wave functions, and
then omit the contribution of the negative energy wave
function in specific applications.
The Salpeter wave function for a 0− state has the general

form [26],

φ0−ðq⊥Þ ¼
�
P
M

f1ðq⊥Þ þ f2ðq⊥Þ þ
=q⊥
M

f3ðq⊥Þ

þ P=q⊥
M2

f4ðq⊥Þ
�
γ5: ð16Þ

We have four unknown radial wave functions f0is, which
are function of −q2⊥. Compared with the nonrelativistic
wave function in Eq. (15), our Salpeter wave function has
two additional relativistic terms, namely f3 and f4 terms,
and f1 ≠ f2. So it contains rich relativistic information.
Using the last two equations of Salpeter Eq. (10), we get

f3ðq⊥Þ ¼
f2Mðω2 − ω1Þ
m2ω1 þm1ω2

;

f4ðq⊥Þ ¼ −
f1Mðω1 þ ω2Þ
m2ω1 þm1ω2

:

By using the first two equations of the Salpeter Eq. (10), the
two unknown independent radial wave functions f1 an f2
will be obtained. We do not give the detailed calculation for
the 0− state here. Instead, we will provide the detailed
calculation for the more complex 2þ state in the next
subsection. The normalization condition Eq. (11) for this
0− wave function is [26]

Z
dq⃗

ð2πÞ3
8Mω1ω2f1f2
ω1m2 þ ω2m1

¼ 1: ð17Þ

We have pointed out that the wave function of the 0−

state not only contains S-wave, namely the terms with f1
and f2, but also P-wave components, namely f3 and f4
terms [30]. If we only consider the contribution of S-wave,
the normalization formula Eq. (17) is

Z
dq⃗

ð2πÞ3
2Mf1f2ðω1m2 þ ω2m1Þ

ω1ω2

: ð18Þ

Based on Eqs. (17) and (18), which are ðSþ PÞ2 and S2, the
ratio of S-partial wave and P-wave can be calculated [30].
For the 0− meson, its positive energy-wave function,

Eq. (7), can be expressed as

φþþ
0− ðq⊥Þ ¼

�
A1ðq⊥Þ þ

P
M

A2ðq⊥Þ

þ =q⊥
M

A3ðq⊥Þ þ
P=q⊥
M2

A4ðq⊥Þ
�
γ5; ð19Þ

where A1 and A2 terms are S-waves, and A3 and A4 terms
are P-waves. Their detailed expressions are as follows:

A1 ¼
M
2

�
f1ðω1þω2Þ
m1þm2

þ f2

�
; A3 ¼ −

A1Mðω1 −ω2Þ
m2ω1þm1ω2

;

A2 ¼
M
2

�
f2ðm1þm2Þ
ω1þω2

þ f1

�
; A4 ¼ −

A1Mðm1þm2Þ
m2ω1þm1ω2

:

B. 2+ meson

The bound state with quantum number JP ¼ 2þ can be
described by the following Salpeter wave function [27]:

φ2þðq⊥Þ ¼ ϵμνq
μ
⊥qν⊥

�
ζ1ðq⊥Þ þ

P
M

ζ2ðq⊥Þ

þ =q⊥
M

ζ3ðq⊥Þ þ
P=q⊥
M2

ζ4ðq⊥Þ
�

þMϵμνγ
μqν⊥

�
ζ5ðq⊥Þ þ

P
M

ζ6ðq⊥Þ þ
=q⊥
M

ζ7ðq⊥Þ

þ P=q⊥
M2

ζ8ðq⊥Þ
�
; ð20Þ

where εμν is the symmetric polarization tensor of the
meson; the unknown radial wave function ζiðq⊥Þ
(i ¼ 1; 2…8) is function of −q2⊥, which will be obtained
by solving the Salpeter equation. Using the last two
equations of Eq. (10), it is found that only four radial
wave functions are independent. We choose ζ3ðq⊥Þ,
ζ4ðq⊥Þ, ζ5ðq⊥Þ, and ζ6ðq⊥Þ as the independent ones,
and others can be expressed as

ζ1ðq⊥Þ ¼
q2⊥ζ3ðω1 þ ω2Þ þ 2ζ5M2ω2

Mðm2ω1 þm1ω2Þ
;

ζ7ðq⊥Þ ¼
Mðω1 − ω2Þ
m2ω1 þm1ω2

ζ5;

ζ2ðq⊥Þ ¼
q2⊥ζ4ðω1 − ω2Þ þ 2ζ6M2ω2

Mðm2ω1 þm1ω2Þ
;

ζ8ðq⊥Þ ¼
Mðω1 þ ω2Þ
m2ω1 þm1ω2

ζ6:

From Eq. (7), we obtain the expressions of positive and
negative energy wave functions. For example, the positive
energy-wave function of 2þ meson is
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φþþ
2þ ðq⊥Þ ¼ ϵμνq

μ
⊥qν⊥

�
B1ðq⊥Þ þ

P
M

B2ðq⊥Þ þ
=q⊥
M

B3ðq⊥Þ þ
P=q⊥
M2

B4ðq⊥Þ
�

þMϵμνγ
μqν⊥

�
B5ðq⊥Þ þ

P
M

B6ðq⊥Þ þ
=q⊥
M

B7ðq⊥Þ þ
P=q⊥
M2

B8ðq⊥Þ
�
; ð21Þ

where Bis are functions of four independent radial wave functions ζ3, ζ4, ζ5, and ζ6. Their specific expression are denoted as

B1 ¼
1

2Mðm1ω2 þm2ω1Þ
½ðω1 þ ω2Þq2⊥ζ3 þ ðm1 þm2Þq2⊥ζ4 þ 2M2ω2ζ5 − 2M2m2ζ6�;

B2 ¼
1

2Mðm1ω2 þm2ω1Þ
½ðm1 −m2Þq2⊥ζ3 þ ðω1 − ω2Þq2⊥ζ4 þ 2M2ω2ζ6 − 2M2m2ζ5�;

B3 ¼
1

2

�
ζ3 þ

m1 þm2

ω1 þ ω2

ζ4 −
2M2

m1ω2 þm2ω1

ζ6

�
; B5 ¼

1

2

�
ζ5 −

ω1 þ ω2

m1 þm2

ζ6

�
;

B4 ¼
1

2

�
ω1 þ ω2

m1 þm2

ζ3 þ ζ4 −
2M2

m1ω2 þm2ω1

ζ5

�
; B6 ¼

1

2

�
−
m1 þm2

ω1 þ ω2

ζ5 þ ζ6

�
;

B7 ¼
M
2

ω1 − ω2

m1ω2 þm2ω1

�
ζ5 −

ω1 þ ω2

m1 þm2

ζ6

�
; B8 ¼

M
2

m1 þm2

m1ω2 þm2ω1

�
−ζ5 þ

ω1 þ ω2

m1 þm2

ζ6

�
:

Substituting the positive and negative wave functions into the first two equations of Eq. (10), and multiplying both sides
by the same variable (for example, P, q⊥, q⊥P, etc.), we calculate the trace on both sides, and find there are four (not two)
independent eigenvalue equations. For convenience, we have replaced ζ3ðq⊥Þ, ζ4ðq⊥Þ, ζ5ðq⊥Þ, and ζ6ðq⊥Þ, with F1ðq⊥Þ,
F2ðq⊥Þ, F3ðq⊥Þ, and F4ðq⊥Þ. Their relations are

F1ðq⊥Þ ¼
4q4⊥½ðω1 þ ω2Þðζ5M2 þ ζ3q2⊥Þ − ðm1 þm2Þðζ6M2 − ζ4q2⊥Þ�

3Mðm2ω1 þm1ω2Þ
; ð22Þ

F2ðq⊥Þ ¼
4q4⊥½ðm1 þm2Þðζ6M2 − ζ4q2⊥Þ þ ðω1 þ ω2Þðζ5M2 þ ζ3q2⊥Þ�

3Mðm2ω1 þm1ω2Þ
; ð23Þ

F3ðq⊥Þ ¼
2q4⊥½−ζ5ð5m1 þm2ÞM2 − 2ðζ3ðm1 −m2Þq2⊥ þ ζ4q2⊥ðω1 − ω2ÞÞ þ ζ6M2ð5ω1 þ ω2Þ�

3Mðm2ω1 þm1ω2Þ
; ð24Þ

F4ðq⊥Þ ¼
2q4⊥½ζ5ð5m1 þm2ÞM2 − 2ðζ4q2⊥ðω1 − ω2Þ − ζ3ðm1 −m2Þq2⊥Þ þ ζ6M2ð5ω1 þ ω2Þ�

3Mðm2ω1 þm1ω2Þ
: ð25Þ

The obtained four coupled eigenvalue equations are presented in the Appendix.
The normalization condition Eq. (11) for the 2þ wave function is [27]

Z
dq⃗

ð2πÞ3
8Mω1ω2q⃗2

15ðω1m2 þ ω2m1Þ
�
−ζ5ζ6 þ

2q⃗2

M2

�
−ζ4ζ5 þ ζ3ζ6 þ ζ3ζ4

q⃗2

M2

��
¼ 1: ð26Þ

In our expression, the 2þ state D̄⋆
2 ð2460Þ0, is not a pure

P-wave, but contains both D- and F-partial waves [30]. In
Eq. (20), the terms including ζ5 and ζ6 are P-waves which
are nonrelativistic, ζ3 and ζ4 terms are F − P mixing
waves, and others are D-waves. Thus, we can conclude
that the wave function of the tensor D̄⋆

2 ð2460Þ0 contains P-,
D-, and F-partial waves.
If only the pure P-wave is considered, the wave function

of the 2þ meson becomes

φP
2þðq⊥Þ ¼ ϵμνq

μ
⊥γνðMζ5 þ Pζ6Þ

þ 2

5
ϵμνq

μ
⊥γνq2⊥

�
ζ3
M

−
P
M2

ζ4

�
; ð27Þ

and the contribution of this P-partial wave to the overall
normalization condition Eq. (26) is
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Z
dq⃗

ð2πÞ3
2q⃗2ð2ζ3q⃗2 − 5ζ5M2Þð2ζ4q⃗2 þ 5ζ6M2Þðω1m2 þ ω2m1Þ

75M3ω1ω2

: ð28Þ

While for a pure F-wave, the wave function is

φF
2þðq⊥Þ ¼ ϵμνq

μ
⊥qν⊥

�
q⊥
M

ζ3 þ
Pq⊥
M2

ζ4

�
−
2

5
ϵμνq

μ
⊥γνq2⊥

�
ζ3
M

−
P
M2

ζ4

�
; ð29Þ

and its contribution to the normalization condition
Eq. (26) is

Z
dq⃗

ð2πÞ3
4ζ3ζ4q⃗6ðω1m2 þ ω2m1Þ

25M3ω1ω2

: ð30Þ

Using Eqs. (26), (28), and (30), we can calculate the ratios
between different partial waves.

IV. SEMILEPTONIC DECAY WIDTH FORMULA

For the Bþ → D̄⋆
2 ð2460Þ0lþνl process as shown in

Fig. 1, the transition amplitude is written as

T ¼ GFffiffiffi
2

p Vcbμ̄νlγ
μð1 − γ5ÞυlhD⋆

2 ð2460Þ0ðPfÞjJμjBþðPÞi;

ð31Þ

where GF is the Fermi constant, Jμ ≡ Vμ − Aμ is the
charged current responsible for the decays, Vcb ¼ 40.5 ×
10−3 (PDG [34]) is CKM matrix element, μνl is the spinor
of the neutrino νl, υl is the spinor of the antilepton lþ, P,
and Pf are the momenta of the initial Bþ and the final
D̄⋆

2 ð2460Þ0, respectively.
After summing the polarizations of the initial and

final mesons, the square of the above matrix elements is
written as

X
jT2j ¼ G2

F

2
jVcbj2lμνhμν; ð32Þ

where lμν ≡P
μ̄νlγ

μð1 − γ5Þυlῡlð1þ γ5Þγνμνl is the lep-
tonic tensor, and hμν ≡P hBþðPÞjJþν jD⋆

2 ð2460Þ0ðPfÞi×
hD⋆

2 ð2460Þ0ðPfÞjJμjBþðPÞi is the hadron tensor.
By using Mandelstam’s formulism, the hadronic tran-

sition matrix element can be written as the overlapping
integral over the BS wave functions of the initial and final
mesons. Since we do not solve the BS equation, but the
Salpeter equation, the transition matrix element is further
simplified by instantaneous approximation. Then, for the
process Bþ→D̄⋆

2 ð2460Þ0lþνl, the hadronic matrix element
can be written as [35]

hD⋆
2 ð2460Þ0ðPfÞjJμjBþðPÞi

¼
Z

dq⃗
ð2πÞ3 Tr

�
P
M

φþþ
P ðq⃗Þγμð1 − γ5Þφ̄þþ

Pf
ðq⃗fÞ

�

¼ t1ϵμP þ t2ϵPPPμ þ t3ϵPPPfμ þ it4ϵρPερPPfμ; ð33Þ

where q⃗f ¼ q⃗ − α1fP⃗f is used, which is obtained by
assuming the momentum of spectator quark remains
unchanged; ϵμν is the polarization tensor of the final tensor
meson, t1, t2, t3 and t4 are the form factors, φþþ

P and
φ̄þþ
Pf

¼ γ0ðφþþ
Pf

Þ†γ0 are the positive energy Salpeter

wave functions for the initial and final mesons, respec-
tively. We have used the abbreviations, for example
ϵρσPσεραβμPαPf

β ¼ ϵρPερPPfμ.
Based on the covariance analysis of the Lorenz index, the

general form of hμν can be expressed as

hμν ¼ −αgμν þ βþþðPþ PfÞμðPþ PfÞν
þ βþ−ðPþ PfÞμðP − PfÞν
þ β−þðP − PfÞμðPþ PfÞν
þ β−−ðP − PfÞμðP − PfÞν
þ iγεμνρσðPþ PfÞρðP − PfÞσ; ð34Þ

where, the coefficients α, β�� and γ are functions of the
form factors ti (i ¼ 1, 2, 3, 4). Thus, the differential decay
rate of this exclusive process can be written as

FIG. 1. Feynman diagram corresponding to the semileptonic
decay Bþ → D̄⋆

2 ð2460Þ0lþνl.
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d2Γ
dxdy

¼ jVijj2
G2

FM
5

32π3

�
α

�
y − m2

l
M2

	
M2

þ 2βþþ

×

�
2x

�
1 −

M2
f

M2
þ y

�
− 4x2 − yþ m2

l

4M2

�
8xþ 4M2

f −m2
l

M2
− 3y

��

þ ðβþ− þ β−þÞ
m2

l

M2

�
2 − 4xþ y −

2M2
f −m2

l

M2

�
þ β−−

m2
l

M2

�
y −

m2
l

M2

�

−γ
�
y

�
1 −

M2
f

M2
− 4xþ y

�
þ m2

l

M2

�
1 −

M2
f

M2
þ y

��

; ð35Þ

where x≡ El=M; y≡ ðP − PfÞ2=M2, M, and Mf are the
masses of Bþ and D̄⋆

2 ð2460Þ0, respectively, and ml and El
are the mass and energy of the final charged lepton l,
respectively.

V. RESULTS AND DISCUSSION

In the calculation, we used the constituent quark masses;
mu ¼ 0.38 GeV, md ¼ 0.385 GeV, ms ¼ 0.55 GeV,
mc ¼ 1.62 GeV, and mb ¼ 4.96 GeV. Other model-de-
pendent parameters have been shown in the text. In our
calculation, for each JP, the ground-state mass is our input,
that is, its value is obtained by fitting experimental data to
determine the free parameter V0. And the masses of excited
states are our predictions. Therefore, the masses of B, Bs,
and Bc are the same as the experimental values and are not
reiterated here. The mass spectra for the tensor 2þþ states
are provided in Table I.

A. The wave functions and ratios of different
partial waves

The numerical values of the radial wave functions for 0−

pseudoscalars B and Bs are shown in Fig. 2 (for Bc meson,
see Ref. [30]). We can see the S-wave components, namely
the f1 and f2 terms in Eq. (16), are dominant, and the P-
wave ones, namely f3 and f4 terms, are small. So, Bþ, B0,
B0
s , and Bþ

c are all S-wave dominant states. To see this
clearly, we calculate the ratio between S- and P-waves
which are based on the normalization formulas Eqs. (17)
and (18), and the results are shown in Table II.
In a nonrelativistic limit, only the S-wave survives, and

f1 ¼ f2 for a 0− meson. In our semirelativistic method,
first, radial wave function f1 is not exactly equal to f2, and

second, the 0− wave function also includes the P-wave
components, f3 and f4 terms, which contribute to the
relativistic correction. The ratios in Table II, indicate that
the relativistic correction in Bþ (or B0) is a little larger than
that of B0

s , and much larger than that of Bþ
c .

For the 2þ tensors, in our semirelativistic method, their
wave functions contain 8 terms, of which four are inde-
pendent. The four independent radial wave functions for 2þ

mesons D̄⋆0
2 ðnPÞ and D⋆−

s2 ðnPÞ (n ¼ 1, 2, 3) are shown in
Figs. 3 and 4, respectively.
Among the eight terms of the wave function for a tensor,

ζ5 and ζ6 terms are P-waves, ζ3 and ζ4 terms are mixture of
P and F waves, and others, ζ1, ζ2, ζ7, and ζ8 are D-waves.
Figures 3 and 4 roughly show us that the 2þ wave function
is dominated by P wave, which is consistent with the
description of a nonrelativistic method, where only a P-
wave exists with ζ5 ¼ −ζ6. In order to show the proportion
of different waves, we use the normalization formulas,
Eqs. (26), (28), and (30), to calculate the their ratios, and
the results are shown in Table III. We can see that, the P-
wave is dominant, the D-wave is also sizable, and the F-
wave is very small.
In the nonrelativistic limit, only P-wave exists, our results

confirm that the P-wave is dominant, so these states are
marked as 1P, 2P, and 3P states in Figs. 3 and 4, and in
Tables I and III, respectively. Compared with the nonrela-
tivisticP-waves from ζ5 and ζ6 terms, theD- andF-waves, as
well as the P-waves from ζ3 and ζ4 terms in the 2þ wave
function provide the relativistic correction. From Table III, it
can be seen that for the 1P, 2P, and 3P states, the proportion
of F-wave is very small and can be ignored when precise
calculation is not required. Based on the proportions of D-
wave in Table III, we conclude that, the relativistic correction
in D⋆

2 is a little larger than that ofD⋆
s2, and much larger than

that in χc2. It also shows that the relativistic correction of the
highly excited state is larger than that of the lowly excited one,
and the latter is larger than that of the ground state.

B. The branching ratios of the semileptonic decays

With the numerical values of wave functions and the
formula for the transition matrix element, Eq. (33), the

TABLE I. Mass spectra of the 2þ tensors in unit of GeV.

mD̄⋆0
2

mD⋆−
2

mD⋆−
s2

mχc2

1 3P2 2.461 (input) 2.465 (input) 2.569 (input) 3.556 (input)
2 3P2 2.985 2.992 3.111 3.972
3 3P2 3.342 3.352 3.474 4.270
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calculation of the semileptonic decay is straightforward.
We present our results for branching ratios and other
theoretical predictions in Table IV. It is observed that there
are few theoretical results in the literature regarding the
case of highly excited tensor particles as the final state.
Almost all existing results focus on studying the 1P final-
state process, with significant differences in predictions
from different models, especially for Bþ → D̄⋆0

2 ð1PÞlνl,
whose branching ratios vary from 1.01 to 38.0.
Currently, only the production of the ground state

D⋆
2 ð1PÞ in the semileptonic decay of the B meson and

its cascade strong decay have been detected in experiments.
The decay chains are B→D⋆

2 ð2460Þlνl,D⋆
2 ð2460Þ → Dπ.

The averaged experimental results are [34]

BðBþ → D̄⋆0
2 lþνlÞBðD̄⋆0

2 → D−πþÞ
¼ ð1.53� 0.16Þ × 10−3;

BðBþ → D̄⋆0
2 lþνlÞBðD̄⋆0

2 → D⋆−πþÞ
¼ ð1.01� 0.24Þ × 10−3; ð36Þ

BðB0 → D⋆−
2 lþνlÞBðD⋆−

2 → D̄0π−Þ
¼ ð1.21� 0.33Þ × 10−3;

BðB0 → D⋆−
2 lþνlÞBðD⋆−

2 → D̄⋆0π−Þ
¼ ð0.68� 0.12Þ × 10−3: ð37Þ

The mass of D⋆
2 is above the thresholds of Dπ and

D⋆π, so D⋆
2 has the OkuboZweigIizuka-allowed strong

decay channels D⋆
2 → Dπ and D⋆

2 → D⋆π, which are
the dominant decay processes of D⋆

2 . Reference [52]
predicted BðD̄⋆0

2 → D−πþÞ ¼ BðD⋆−
2 → D̄0π−Þ ¼ 44.5%

and BðD̄⋆0
2 →D⋆−πþÞ¼BðD⋆−

2 →D̄⋆0π−Þ¼21.0%. Using
these, our theoretical predictions are

BðBþ→D̄⋆0
2 lþνlÞBðD̄⋆0

2 →D−πþÞ¼1.33×10−3;

BðBþ→D̄⋆0
2 lþνlÞBðD̄⋆0

2 →D⋆−πþÞ¼0.628×10−3; ð38Þ

BðB0→D⋆−
2 lþνlÞBðD⋆−

2 →D̄0π−Þ¼1.23×10−3;

BðB0→D⋆−
2 lþνlÞBðD⋆−

2 →D̄⋆0π−Þ¼0.582×10−3: ð39Þ

The first two are slightly smaller than the experimental
values, while the last two are in good agreement with the
experimental data.
Similarly, using BðD⋆−

s2 → D̄0K−Þ ¼ 48.7% and
BðD⋆−

s2 → D−K̄0Þ ¼ 44.1% from Ref. [52], we obtain

BðB0
s →D⋆−

s2 l
þνlÞBðD⋆−

s2 → D̄0K−Þ¼ 1.83×10−3;

BðB0
s →D⋆−

s2 l
þνlÞBðD⋆−

s2 →D−K̄0Þ¼ 1.66×10−3: ð40Þ

Compared to the ground 1P final-state case, our results
show that the branching ratio of the process with a highly
excited final state (2P or 3P) is very small. The small
branching ratio may be caused by the node structures (see
Figs. 3 and 4) in the wave functions of the excited 2P and
3P mesons. The contributions of the wave functions on
both sides of the node cancel each other, resulting in a very
small branching ratio.
In Table IV, the ratios RðD̄⋆0

2 Þ, RðD⋆−
2 Þ, RðD⋆

s2Þ, and
Rðχc2Þ are also listed, where, for example,

RðD̄⋆0
2 Þ ¼ BðBþ → D̄⋆0

2 ð1PÞτντÞ
BðBþ → D̄⋆0

2 ð1PÞlνlÞ
: ð41Þ

The ratio R may cancel some model-dependent factors,
which can be seen from the results of Refs. [37,39], and
ours. The branching ratios are much different, but the
RðD̄⋆0

2 Þ values is around 0.04, which is very close to each
other. We have similar conclusions forRðD⋆

s2Þ andRðχc2Þ.

FIG. 2. The radial wave functions of the 0− mesons Bþ (left) and B0
s (right), where f1 and f2 terms are S-waves; f3 and f4 terms are P-

waves, and q≡ jq⃗j.

TABLE II. Ratios between the S wave and P wave in the 0−

wave function.

0− meson Bþ B0 B0
s Bþ

c

S∶P 1∶0.339 1∶0.333 1∶0.227 1∶0.0815
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We have pointed out that the relativistic corrections of
excited states are greater than those of ground states
[23,30]. And there are still significant differences in
semileptonic decays between theoretical results, especially
for the B decays. The differences may be caused by the
relativistic corrections. So for these processes, which
contains excited states, we need a more careful study,
especially the relativistic corrections. In the following, we
will study the detailed contributions of different partial
waves.

C. Contributions of different partial waves

We provide the proportions of different partial waves in
the wave function, allowing us to roughly estimate the
magnitude of the relativistic correction. However, this does
not represent the true relativistic correction of particles in
interaction, as different partial waves behave differently in
interactions. What we need is the overlapping integration

between wave functions, not the individual wave functions
themselves. Therefore, using some transition processes as
examples, we present the detailed contributions of par-
tial waves.

1. B+ → D̄⋆0
2 ð1PÞl+ νl

Table II shows that the wave function of Bþ is dominated
by S-waves (A1 and A2 terms) but mixed with P-waves
(A3 and A4 terms), their ratio is S∶P ¼ 1∶0.339. For D̄⋆0

2 ,
P-wave is dominant and mixed with D- and F-waves,
P∶D∶F ¼ 1∶0.393∶0.0729.
To see the detail of the transition Bþ → D̄⋆0

2 ð1PÞ,
we will carefully study the overlapping integral of
ðSþ PÞ × ðP0 þD0 þ F0Þ, where to distinguish between
the initial and final states, we use “prime” to represent the
final state. We show some of the detailed contributions of
different partial waves to the branching ratio of Bþ →
D̄⋆0

2 ð1PÞlþνl in Table V. Where “whole” means the
complete wave function, while “S-wave” in the column or
“P0-wave” in the row means the corresponding result is
obtained only using the S- or P0-wave and ignoring
others, etc.
From Table V, we can see that the dominant S-partial

wave in the Bþ state and P0-wave in D̄⋆0
2 ð1PÞ provide the

dominant contribution. The P-wave in Bþ and D0-wave in
D̄⋆0

2 ð1PÞ give the main relativistic corrections, while the
F0-partial wave in D̄⋆0

2 ð1PÞ has a tiny contribution, which
can be safely ignored.

TABLE III. Ratios between the partial waves in the 2þ wave
function.

2þ 1P 2P 3P

D⋆0
2

P∶D∶F 1∶0.393∶0.0729 1∶0.461∶0.0787 1∶0.560∶0.0640
D⋆−

2 P∶D∶F 1∶0.389∶0.0732 1∶0.456∶0.0793 1∶0.550∶0.0657
D⋆−

s2 P∶D∶F 1∶0.298∶0.0743 1∶0.349∶0.0843 1∶0.404∶0.0813
χc2 P∶D∶F 1∶0.140∶0.0551 1∶0.160∶0.0673 1∶0.177∶0.0726

FIG. 3. The four independent radial wave functions for the 2þ tensors D̄⋆0
2 ð1PÞ (left), D̄⋆0

2 ð2PÞ (middle) and the D̄⋆0
2 ð3PÞ (right).

FIG. 4. The four independent radial wave functions for the 2þ tensors D⋆−
s2 ð1PÞ (left), D⋆−

s2 ð2PÞ (middle) and the D⋆−
s2 ð3PÞ (right).
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For the Bþ meson, its nonrelativistic wave function only
contains S-wave, so its P-wave provides the relativistic
correction. For the D⋆0

2 ð1PÞ, the situation is relatively
complex. In the nonrelativistic case, its wave function only
contains P0-waves, but only P0-waves from ζ5 and ζ6 terms,
without the ones from ζ3 and ζ4 terms, see the formula in
Eq. (33). Therefore, in the nonrelativistic scenario, the
branching ratio of S × P0 changes from 35.6 × 10−4 in
Table V to 37.2 × 10−4. Our complete branching ratio is
Brel ¼ 29.9 × 10−4, so the relativistic effect can be calcu-
lated as

Bnon-rel − Brel

Brel
¼ 24.4%; ð42Þ

which is significant but not as large as expected. This might
be due to two possible reasons. First, there could be a

cancellation between relativistic corrections; for example,
the contribution of ovarlapping P × P0 is 4.45 × 10−4,
P ×D0 is 10.1 × 10−4, while their sum contribution P ×
ðP0 þD0Þ is 1.48 × 10−4. Second, from Table V, we can see
that the main relativistic correction is from the interaction
P ×D0, not from S ×D0 or P × P0.

2. B+ → D̄⋆0
2 ð2PÞl+ νl

Table VI shows the details of the decay Bþ →
D̄⋆0

2 ð2PÞlþνl. Compared with the case of D̄⋆0
2 ð1PÞ final

state, the contributions of all the partial waves are much
smaller. The main reason is that there are nodes in all the
partial-wave functions of the 2P state, and the contributions
of the wave functions before and after the nodes cancel
each other, resulting in a very small branching ratio. In
addition, the mass of D̄⋆0

2 ð2PÞ is heavier than that of

TABLE IV. Branching ratios (10−3) of semileptonic decays and ratios RðD⋆
2 Þ, RðD⋆

s2Þ, and Rðχc2Þ.
Process Ours

Bþ → D̄⋆0
2 ð1PÞlνl 4.5∼8.0 [36] 38.0 [37] 1.01 [38] 12.3 [39]a 6.3 [39]b 2.99

Bþ → D̄⋆0
2 ð1PÞτντ 1.5 [37] 0.16 [38] 0.49 [39]a 0.22 [39]b 0.135

BðBþ→D̄⋆0
2
ð1PÞτντÞ

BðBþ→D̄⋆0
2
ð1PÞlνlÞ

0.041 [37] 0.16 [38] 0.040 [39]a 0.035 [39]b 0.045

Bþ → D̄⋆0
2 ð2PÞlνl 0.075

Bþ → D̄⋆0
2 ð3PÞlνl 0.0024

B0 → D⋆−
2 ð1PÞlνl 3.1(3.8) [40] 2.5 [41] 5.9 [42] 5.86 [43] 2.77

B0 → D⋆−
2 ð1PÞτντ 0.125

BðB0→D⋆−
2

ð1PÞτντÞ
BðB0→D⋆−

2
ð1PÞlνlÞ

0.045

B0 → D⋆−
2 ð2PÞlνl 0.070

B0 → D⋆−
2 ð3PÞlνl 0.0022

B0
s → D⋆−

s2 ð1PÞlνl 3.5 [41] 4.32 [44] 2.2 [45] 6.7 [46] 3.76 [47] 3.76
B0
s → D⋆−

s2 ð1PÞτντ 0.31 [44] 0.926 [45] 0.29 [46] 0.182
BðB0

s→D⋆−
s2 ð1PÞτντÞ

BðB0
s→D⋆−

s2 ð1PÞlνlÞ
0.071 [44] 0.42 [45] 0.043 [46] 0.048

B0
s → D⋆−

s2 ð2PÞlνl 0.124
B0
s → D⋆−

s2 ð3PÞlνl 0.0047

Bþ
c → χc2ð1PÞlνl 1.0 [41] 1.6 [48] 1.7 [49] 1.3 [50] 2.12 [51] 1.82

Bþ
c → χc2ð1PÞτντ 0.093 [48] 0.082 [49] 0.093 [50] 0.33 [51] 0.108

BðBþ
c →χc2ð1PÞτντÞ

BðBþ
c →χc2ð1PÞlνlÞ

0.058 [48] 0.048 [49] 0.072 [50] 0.15 [51] 0.059

Bþ
c → χc2ð2PÞlνl 0.033 [48] 0.187

Bþ
c → χc2ð3PÞlνl 0.0271

TABLE V. Contributions of partial waves to the branching ratio
of Bþ → D̄⋆0

2 ð1PÞlþνl (in 10−4).

2þ

0− Whole P0-wave
D0-wave

ðB1; B2; B7; B8Þ F0-wave

Whole 29.9 15.1 3.06 0.063
S-wave ðA1; A2Þ 18.9 35.6 3.91 0.0026
P-wave ðA3; A4Þ 1.48 4.45 10.1 0.048

TABLE VI. Contributions of partial waves to the branching
ratio of Bþ → D̄⋆0

2 ð2PÞlþνl (in 10−4).

2þ

0− Whole P0-wave
D0-wave

ðB1; B2; B7; B8Þ F0-wave

Whole 0.752 0.0087 0.573 0.0033
S-wave ðA1; A2Þ 0.015 0.0357 0.006 0.0001
P-wave ðA3; A4Þ 0.557 0.0106 0.691 0.0026
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D̄⋆0
2 ð1PÞ, and the phase space of the decay Bþ →

D̄⋆0
2 ð2PÞlþνl is smaller than that of Bþ → D̄⋆0

2 ð1PÞlþνl.
It can be seen from Table VI that the largest contribution

does not come from the nonrelativistic term S × P0, nor
from the relativistic corrections S ×D0 and P × P0, but
from the relativistic correction P ×D0. The results show
that the node structure has a more severe inhibitory effect
on S × P0 than on P ×D0, leading to the latter providing the
maximum contribution and a large relativistic effect in this
process.

3. B0
s → D⋆−

s2 ð1PÞl+ νl
Table VII shows that, similar to the process of

Bþ → D̄⋆0
2 ð1PÞlþνl, the overlap of S × P0 provides the

dominant contribution to B0
s → D⋆−

s2 ð1PÞlþνl, which is
mainly nonrelativistic. All other contributions are relativ-
istic corrections, with P ×D0 being the largest, followed by
S ×D0 and P × P0, while the contribution of F0-waves can
be safely ignored. In the nonrelativistic limit, the branching
ratio of S × P0 should be changed from 48.0 × 10−4 in
Table VII to 48.4 × 10−4, so the relativistic effect is

Bnon-rel − Brel

Brel
¼ 28.8%; ð43Þ

which is also not as large as we expected, but a little larger
than those of Bþ → D̄⋆0

2 ð1PÞ. However, we cannot simply
conclude that the relativistic effect of the former is greater
than that of the latter. When we look at the details of
relativistic corrections, compared with the nonrelativistic
contribution, the contributions of P ×D0, S ×D0, and
P × P0 in the process B0

s → D⋆−
s2 ð1PÞlþνl are much

smaller than those in Bþ → D̄⋆0
2 ð1PÞlþνl, respectively.

However, when summing them up, the overall result of the
latter is smaller, due to cancellation.

4. B0
s → D⋆−

s2 ð2PÞl+ νl
Table VIII illustrates the scenario of B0

s→D⋆−
s2 ð2PÞlþνl,

which bears resemblance to the case of Bþ →
D̄star0

2 ð2PÞlþνl. Notably, significant relativistic effects
are observed. The primary contributions to the branching
ratio arise from relativistic corrections, particularly the
P ×D0 term, rather than nonrelativistic contributions.

5. B+
c → χ c2ð1PÞl+ νl

In contrast to the value 21.9 × 10−4 of S × P0 shown in
Table IX, in the nonrelativistic limit, the branching ratio for
S × P0 is 22.2 × 10−4, so we obtain

Bnon-rel − Brel

Brel
¼ 22.1% ð44Þ

for Bþ
c → χc2ð1PÞlþνl. This value seems not much

different from that of Bþ → D̄⋆0
2 ð1PÞlþνl or B0

s →
D⋆−

s2 ð1PÞlþνl. However, from Tables V, VII, and IX,
we can see that, although the complete branching ratios
and nonrelativistic results do not differ significantly, each
relativistic correction in Bþ

c →χc2ð1PÞlþνl is much
smaller than that in Bþ → D̄⋆0

2 ð1PÞlþνl or in B0
s →

D⋆−
s2 ð1PÞlþνl, respectively. We also note that the largest

relativistic correction comes from S ×D0, not P ×D0.

6. B+
c → χ c2ð2PÞl+ νl

From Table X, we can see that, unlike the cases of Bþ →
D̄⋆0

2 ð2PÞlþνl and B0
s → D⋆−

s2 ð2PÞlþνl, the nonrelativistic

TABLE VIII. Contributions of partial waves to the branching
ratio of B0

s → D⋆−
s2 ð2PÞlþνl (in 10−4).

2þ

0− Whole P0-wave
D0-wave

ðB1; B2; B7; B8Þ F0-wave

Whole 1.24 0.137 0.546 0.00411
S-wave ðA1; A2Þ 0.154 0.327 0.0241 0.00105
P-wave ðA3; A4Þ 0.528 0.0414 0.789 0.00545

TABLE VII. Contributions of partial waves to the branching
ratio of B0

s → D⋆−
s2 ð1PÞlþνl (in 10−4).

2þ

0− Whole P0-wave
D0-wave

ðB1; B2; B7; B8Þ F0-wave

Whole 37.6 29.7 1.23 0.0359
S-wave ðA1; A2Þ 29.0 48.0 2.90 0.0168
P-wave ðA3; A4Þ 0.620 2.29 4.80 0.0309

TABLE IX. Contributions of partial waves to the branching
ratio of Bþ

c → χc2ð1PÞlþνl (in 10−4).

2þ

0− Whole P0-wave
D0-wave

ðB1; B2; B7; B8Þ F0-wave

Whole 18.2 19.1 0.110 0.00246
S-wave ðA1; A2Þ 18.3 21.9 0.255 0.00012
P-wave ðA3; A4Þ 0.0211 0.108 0.0761 0.00181

TABLE X. Contributions of partial waves to the branching ratio
of Bþ

c → χc2ð2PÞlþνl (in 10−4).

2þ

0− Whole P0-wave
D0-wave

ðB1; B2; B7; B8Þ F0-wave

Whole 1.87 1.50 0.0245 0.00101
S-wave ðA1; A2Þ 1.54 1.79 0.0241 0.00002
P-wave ðA3; A4Þ 0.0169 0.0126 0.0523 0.00085
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S × P0 in Bþ
c → χc2ð2PÞlþνl still contributes the most,

much larger than the relativistic corrections, indicating that
the node structure has different effects on the processes
Bþ
c → χc2ð2PÞlþνl and Bþ → D̄⋆0

2 ð2PÞlþνl (or B0
s →

D⋆−
s2 ð2PÞlþνl).

VI. CONCLUSION

We present a semirelativistic study on the semileptonic
decays of heavy pseudoscalars Bþ, B0, B0

s , and Bþ
c to 1P,

2P, and 3P 2þ tensors caused by the transition of b̄ → c̄
by using the instantaneous Bethe-Salpeter method.
We obtain BðBþ → D̄⋆0

2 ð1PÞlþνlÞ ¼ 2.99 × 10−3 and
BðB0 → D̄⋆−

2 ð1PÞlþνlÞ ¼ 2.77 × 10−3, which are in good
agreement with the experimental data. For the undetected
channels, our results are BðB0

s → D⋆−
s2 ð1PÞlþνlÞ ¼ 3.76 ×

10−3 and BðBþ
c → χc2ð1PÞlþνlÞ ¼ 1.82 × 10−3. For the

decays to the 2P and 3P states, all branching ratios are very
small and cannot be detected in current experiments.
In this paper, we focus on studying the different partial

waves in the Salpeter wave functions and their contribu-
tions in semileptonic decays.
(1) In the wave function for the 0− states, Bþ, B0, B0

s , or
Bþ
c , the S-wave is dominant and provides the non-

relativistic contribution; the P-wave is sizable and
gives the relativistic correction. While for the 2þ

states, D̄⋆0
2 , D⋆−

2 , D⋆−
s2 , or χc2, the P-wave is

dominant, combined with sizable D-wave, and tiny
F-wave, where P-wave from ζ5 and ζ6 terms gives
the nonrelativistic contribution, others contribute to
the relativistic corrections.

(2) We note that, considering only the wave functions,
the relativistic corrections for B, Bs, D̄⋆

2 , and D⋆
s2

mesons are large, while the relativistic corrections
for χc2 and Bc are small. However, when calculating
the transition process, the overlapping integration
of wave functions plays a major role. Thus, we
obtain similar relativistic effects, for example,
24.4% for Bþ → D̄⋆0

2 ð1PÞlþνl, 28.8% for B0
s →

D⋆−
s2 ð1PÞlþνl and 22.1% for Bþ

c → χc2ð1PÞlþνl.
(3) When we look at the details, there are significant

differences. For example, in the transition of
B → D⋆

2 ð1PÞ, the individual contributions of rela-
tivistic partial waves are significant, while in the
overall result, they are in a canceling relationship,
resulting in a small overall relativistic effect. While
in Bþ

c → χc2ð1PÞ, the individual contributions of
relativistic waves are small, directly leading to a
small overall relativistic effect.

(4) When the process contains a radially excited state,
the node structure in the wave function of the
radially excited state plays an overwhelming role,
resulting in a very small branching ratio.
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APPENDIX: SALPETER EQUATIONS

MF1ðq⊥Þ ¼ ðω1 þ ω2ÞF1ðq⊥Þ þ
Z

dk⃗
ð2πÞ3

1

24ω1ω2

�
4ðVS − VVÞðe1m2 þ e2m1Þ

�
−ðF3ðk⊥Þ − F4ðk⊥ÞÞ

−
m1 −m2

e1 þ e2
ðF1ðk⊥Þ þ F2ðk⊥ÞÞ −

�
e1 − e2
m1 þm2

ðF1ðk⊥Þ − F2ðk⊥ÞÞ þ ðF3ðk⊥Þ þ F4ðk⊥ÞÞ
�
ω1 þ ω2

e1 þ e2

�
q2⊥k⃗ · q⃗
k4⊥

− 9ðVS þ VVÞ
�
ðF1ðk⊥Þ þ F2ðk⊥ÞÞðq2⊥ þm1m2 − ω1ω2Þ þ ðF1ðk⊥Þ − F2ðk⊥ÞÞðω1m2 − ω2m1Þ

e1 − e2
m1 þm2

�

×
�ðk⃗ · q⃗Þ2

k4⊥
−

q2⊥
3k2⊥

�
þ 3ðVS − VVÞðe1m2 þ e2m1Þ

�
ðF1ðk⊥Þ þ F2ðk⊥ÞÞ

5m1 þm2

e1 þ e2
þ 2ðF3ðk⊥Þ − F4ðk⊥ÞÞ

þ
�
5e1 þ e2
m1 þm2

ðF1ðk⊥Þ − F2ðk⊥ÞÞ þ 2ðF3ðk⊥Þ þ F4ðk⊥ÞÞ
�
ω1 þ ω2

e1 þ e2

��ðk⃗ · q⃗Þ3
k6⊥

−
q2⊥k⃗ · q⃗
3k4⊥

�

; ðA1Þ
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MF2ðq⊥Þ ¼ −ðω1 þ ω2ÞF2ðq⊥Þ −
Z

dk⃗
ð2πÞ3

1

24ω1ω2

�
4ðVS − VVÞðe1m2 þ e2m1Þ

�
−ðF3ðk⊥Þ − F4ðk⊥ÞÞ

−
m1 −m2

e1 þ e2
ðF1ðk⊥Þ þ F2ðk⊥ÞÞ þ

�
e1 − e2
m1 þm2

ðF1ðk⊥Þ − F2ðk⊥Þ þ ðF3ðk⊥Þ þ F4ðk⊥ÞÞÞ
�
ω1 þ ω2

e1 þ e2

�
q2⊥k⃗ · q⃗
k4⊥

− 9ðVS þ VVÞ
�
ðF1ðk⊥Þ þ F2ðk⊥ÞÞðq2⊥ þm1m2 − ω1ω2Þ − ðF1ðk⊥Þ − F2ðk⊥ÞÞðω1m2 − ω2m1Þ

e1 − e2
m1 þm2

�

×

�ðk⃗ · q⃗Þ2
k4⊥

−
q2⊥
3k2⊥

�
þ 3ðVS − VVÞðe1m2 þ 3e2m1Þ

�
ðF1ðk⊥Þ þ F2ðk⊥ÞÞ

5m1 þm2

e1 þ e2
þ 2ðF3ðk⊥Þ − F4ðk⊥ÞÞ

−
�
5e1 þ e2
m1 þm2

ðF1ðk⊥Þ − F2ðk⊥ÞÞ þ 2ðF3ðk⊥Þ þ F4ðk⊥ÞÞ
�
ω1 þ ω2

e1 þ e2

��ðk⃗ · q⃗Þ3
k6⊥

−
q2⊥k⃗ · q⃗
3k4⊥

�

; ðA2Þ

MF3ðq⊥Þ ¼ ðω1 þ ω2ÞF3ðq⊥Þ þ
Z

dk⃗
ð2πÞ3

1

24ω1ω2

�
−10ðVS þ VVÞ

��
m1 −m2

m1 þm2

e1 − e2
e1 þ e2

× ðF1ðk⊥Þ þ F2ðk⊥ÞÞ þ
e1 − e2
m1 þm2

ðF3ðk⊥Þ − F4ðk⊥ÞÞ
�
ðm2ω1 −m1ω2Þ

þ
�

e1 − e2
m1 þm2

ðF1ðk⊥Þ − F2ðk⊥ÞÞ þ ðF3ðk⊥Þ þ F4ðk⊥ÞÞ
�
ðq2⊥ þm1m2 − ω1ω2Þ

� �
k⃗ · q⃗

�2
k4⊥

− 8ðVS − VVÞ
e2m1 þ e1m2

ðe1 þ e2Þðm1 þm2Þ
½m2ððe1 − e2ÞðF1ðk⊥Þ − F2ðk⊥ÞÞ þ ðm1 þm2ÞðF3ðk⊥Þ þ F4ðk⊥ÞÞÞ

þ ω2ððm1 −m2ÞðF1ðk⊥Þ þ F2ðk⊥ÞÞ þ ðe1 þ e2ÞðF3ðk⊥Þ − F4ðk⊥ÞÞÞ�
q2⊥k⃗ · q⃗
k4⊥

þ 10ðVS − VVÞðe2m1 þ e1m2Þ
�
e1 − e2
e1 þ e2

ðF1ðk⊥Þ − F2ðk⊥ÞÞ þ
m1 þm2

e1 þ e2
ðF3ðk⊥Þ þ F4ðk⊥ÞÞ

þ ω1 þ ω2

m1 þm2

�
m1 −m2

e1 þ e2
ðF1ðk⊥Þ þ F2ðk⊥ÞÞ þ ðF3ðk⊥Þ − F4ðk⊥ÞÞ

��
q2⊥k⃗ · q⃗
k4⊥

− 2ðVS − VVÞðe2m1 þ e1m2Þ
�
5e1 þ e2
e1 þ e2

ðF1ðk⊥Þ − F2ðk⊥ÞÞ þ 2
m1 þm2

e1 þ e2
ðF3ðk⊥Þ þ F4ðk⊥ÞÞ

þ ω1 þ ω2

m1 þm2

�
5m1 þm2

e1 þ e2
ðF1ðk⊥Þ þ F2ðk⊥ÞÞ þ 2ðF3ðk⊥Þ − F4ðk⊥ÞÞ

��
q2⊥k⃗ · q⃗
k4⊥

þ 3ðVS þ VVÞ
�
ðF1ðk⊥Þ þ F2ðk⊥ÞÞðm1ω2 −m2ω1Þ −

e1 − e2
m1 þm2

ðF1ðk⊥Þ − F2ðk⊥ÞÞ

× ð−q2⊥ þm1m2 − ω1ω2Þ
��

q2⊥
k2⊥

−
3ðk⃗ · q⃗Þ2

k4⊥

�
þ ðVS þ VVÞ

1

m1 þm2

�
e1 − e2
e1 þ e2

ððm1 −m2Þ

× ðF1ðk⊥Þ þ F2ðk⊥ÞÞ þ ðe1 þ e2ÞðF3ðk⊥Þ − F4ðk⊥ÞÞÞðm2ω1 −m1ω2Þ þ ððe1 − e2Þ

× ðF1ðk⊥Þ − F2ðk⊥ÞÞ þ ðm1 þm2ÞðF3ðk⊥Þ þ F4ðk⊥ÞÞÞðq2⊥ þm1m2 − ω1ω2Þ
�

×

�
3q2⊥
k2⊥

þ ðk⃗ · q⃗Þ2
k4⊥

�
þ 2ðVS − VVÞ

e2m1 þ e1m2

ðe1 þ e2Þðm1 þm2Þ
½m2ðð5e1 þ e2ÞðF1ðk⊥Þ − F2ðk⊥ÞÞ

þ 2ðm1 þm2ÞðF3ðk⊥Þ þ F4ðk⊥ÞÞÞ þ ω2ðð5m1 þm2ÞðF1ðk⊥Þ þ F2ðk⊥ÞÞ

þ 2ðe1 þ e2ÞðF3ðk⊥Þ − F4ðk⊥ÞÞÞ�
�
3ðk⃗ · q⃗Þ3

k6⊥
−
q2⊥k⃗ · q⃗
k4⊥

�

; ðA3Þ
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MF4ðq⊥Þ ¼ −ðω1 þ ω2ÞF4ðq⊥Þ −
Z

dk⃗
ð2πÞ3

1

24ω1ω2

�
−10ðVS þ VVÞ

��
−
m1 −m2

m1 þm2

ðe1 − e2Þ
ðe1 þ e2Þ

× ðF1ðk⊥Þ þ F2ðk⊥ÞÞ þ
e1 − e2
m1 þm2

ðF3ðk⊥Þ − F4ðk⊥ÞÞ
�
ðm2ω1 −m1ω2Þ

þ
�

e1 − e2
m1 þm2

ðF1ðk⊥Þ − F2ðk⊥ÞÞ þ ðF3ðk⊥Þ þ F4ðk⊥ÞÞ
�
ðq2⊥ þm1m2 − ω1ω2Þ

� ðk⃗ · q⃗Þ2
k4⊥

− 8ðVS − VVÞ
ðe2m1 þ e1m2Þ

ðe1 þ e2Þðm1 þm2Þ
½m2ððe1 − e2ÞðF1ðk⊥Þ − F2ðk⊥ÞÞ þ ðm1 þm2ÞðF3ðk⊥Þ þ F4ðk⊥ÞÞÞ

− ω2ððm1 −m2ÞðF1ðk⊥Þ þ F2ðk⊥ÞÞ þ ðe1 þ e2ÞðF3ðk⊥Þ − F4ðk⊥ÞÞÞ�
q2⊥k⃗ · q⃗
k4⊥

þ 10ðVS − VVÞðe2m1 þ e1m2Þ
�
e1 − e2
e1 þ e2

ðF1ðk⊥Þ − F2ðk⊥ÞÞ þ
m1 þm2

e1 þ e2
ðF3ðk⊥Þ þ F4ðk⊥ÞÞ

−
ω1 þ ω2

m1 þm2

�
m1 −m2

e1 þ e2
ðF1ðk⊥Þ þ F2ðk⊥ÞÞ þ ðF3ðk⊥Þ − F4ðk⊥ÞÞ

��
q2⊥k⃗ · q⃗
k4⊥

− 2ðVS − VVÞðe2m1 þ e1m2Þ
�
5e1 þ e2
e1 þ e2

ðF1ðk⊥Þ − F2ðk⊥ÞÞ þ 2
m1 þm2

e1 þ e2
ðF3ðk⊥Þ þ F4ðk⊥ÞÞ

−
ω1 þ ω2

m1 þm2

�
5m1 þm2

e1 þ e2
ðF1ðk⊥Þ þ F2ðk⊥ÞÞ þ 2ðF3ðk⊥Þ − F4ðk⊥ÞÞ

��
q2⊥k⃗ · q⃗
k4⊥

þ 3ðVS þ VVÞ
�
−ðF1ðk⊥Þ þ F2ðk⊥ÞÞðm1ω2 −m2ω1Þ −

e1 − e2
m1 þm2

ðF1ðk⊥Þ − F2ðk⊥ÞÞ

× ð−q2⊥ þm1m2 − ω1ω2Þ
��

q2⊥
k2⊥

−
3ðk⃗ · q⃗Þ2

k4⊥

�
þ ðVS þ VVÞ

1

m1 þm2

�
−
e1 − e2
e1 þ e2

ððm1 −m2Þ

× ðF1ðk⊥Þ þ F2ðk⊥ÞÞ þ ðe1 þ e2ÞðF3ðk⊥Þ − F4ðk⊥ÞÞÞðm2ω1 −m1ω2Þ þ ððe1 − e2Þ

× ðF1ðk⊥Þ − F2ðk⊥ÞÞ þ ðm1 þm2ÞðF3ðk⊥Þ þ F4ðk⊥ÞÞÞðq2⊥ þm1m2 − ω1ω2Þ
�

×

�
3q2⊥
k2⊥

þ ðk⃗ · q⃗Þ2
k4⊥

�
þ 2ðVS − VVÞ

e2m1 þ e1m2

ðe1 þ e2Þðm1 þm2Þ
½m2ðð5e1 þ e2ÞðF1ðk⊥Þ − F2ðk⊥ÞÞ

þ 2ðm1 þm2ÞðF3ðk⊥Þ þ F4ðk⊥ÞÞÞ − ω2ðð5m1 þm2ÞðF1ðk⊥Þ þ F2ðk⊥ÞÞ

þ 2ðe1 þ e2ÞðF3ðk⊥Þ − F4ðk⊥ÞÞÞ�
�
3ðk⃗ · q⃗Þ3

k6⊥
−
q2⊥k⃗ · q⃗
k4⊥

�

: ðA4Þ

Here, ei ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

i þ k2T
p

, VS ¼ VSðq⃗ − k⃗Þ and VV ¼ VVðq⃗ − k⃗Þ. When solving the Salpeter equations (A1)–(A4), since the
radial wave function ζiðq⃗2Þ or Fiðq⃗2Þ decreases with the increase of jq⃗j (see Fig. 3 for example), we truncate the relative
momentum jq⃗j (and jk⃗j) to a certain maximum value jq⃗jmax (jk⃗jmax ¼ jq⃗jmax), and discretize this momentum into n parts (n is a
large number). Thus, the four coupled eigenvalue equations were transformed into a 4n × 4n matrix formula, and then the
numerical solutions were implemented.
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