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The radiative corrections to the τ− → ðP1P2Þ−ντ (P1;2 ¼ π, K) decays are calculated for the first time
including the structure-dependent real photon corrections, which are obtained using resonance chiral
theory. Our results, whose uncertainty is dominated by the model dependence of the resummation of the
radiative corrections and the missing virtual structure-dependent contributions, allow for precise tests of
Cabibbo-Kobayashi-Maskawa unitarity, lepton flavor universality, and nonstandard interactions.
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I. INTRODUCTION

Semileptonic tau decays are well known to be a clean
laboratory for studying QCD hadronic matrix elements at
energies below ∼1.8 GeV [1,2], where the light-flavored
resonances play a key role. All nonperturbative information
of the one-meson tau decays is encoded in the corresponding
P decay constants, that are best determined in lattice
QCD [3]. Two-meson tau decays are specified in terms of
two form factors, whose knowledge has improved over the
years thanks to the use of dispersion relations [4–16] and
nourishedwith high-qualitymeasurements [17–24]. A similar
good understanding has not yet been achieved in three-meson
tau decays [8,25–33] or higher-multiplicitymodes, preventing
for the moment their use in searches for new physics.
On the contrary, one- and two-meson tau decays have

enabled significant and promising new physics tests in
recent years [34–46]. At the precision attained, radiative
corrections for these decay modes become necessary,
which motivated their improved evaluation for the τ− →
P−ντ cases [43,44,47–49]. For the dipion tau decays, the
need for these corrections first stemmed from their use in
the dispersive integral rendering the leading-order hadronic
vacuum polarization contribution to the muon g−2 [50–52],
which was again the target of our recent analysis [53]

(see also Refs. [54–56]). Reference [11] put forward that,
assuming lepton universality, semileptonic kaon decay
measurements could be used to predict the corresponding
(crossing-symmetric) tau decays, yielding a Vus determi-
nation closer to unitarity than with the tau decay branching
ratios. In that work, the model-independent radiative cor-
rections were taken into account and the structure-dependent
ones were estimated (see also Ref. [57]), resulting in a
relative large (conservative) uncertainty. Including these
model-dependent effects is one of our main motivations:
here we focus on those with a real photon and defer the
virtual photon ones to a later dedicated study. Instead of
relying on lepton universality and checking Cabibbo-
Kobayashi-Maskawa (CKM) unitarity [11], one can in
principle test the latter, comparing the crossed channels,
or directly bind new physics nonstandard interactions from
τ− → ðKπÞ−ντ decays [38]. For completeness, we also
include the radiative corrections to the dikaon tau decays
and recall our reference results for the dipion mode [53].
As noted in Ref. [46] (see Fig. 1, for instance), bounds on
nonstandard interactions from hadronic tau decays are
competitive and complementary to those coming from
LHC searches and electroweak precision observables.
As a relevant example, the precise comparison of τ→
π−π0ντðγÞ with eþe− → πþπ−ðγÞ data, which requires the
radiative corrections computed in this work (see also
Ref. [53]), is able to reduce the allowed new physics area
(in the relevant Wilson coefficients plane) by a factor of
∼3 [46]. Real radiation was computed for the τ− → ηð0Þπ−ντ
decay channels in Ref. [58], showing that it can contend with
the nonphoton decays, as G-parity and electromagnetic
suppressions compete. Finally, we also estimate the corre-
sponding results for the K−ηð0Þ channels.
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The structure of the paper is as follows. In Sec. II, we
recall the model-independent description of the τ− →
P−
1P

0
2ντγ decays and give the leading real-photon model-

dependent corrections for the Kπ, KK̄ and ππ cases, where
only the latter are known (see, e.g., Refs. [51,53]).
Branching ratios and spectra for the radiative decays are
analyzed in Sec. IV, and the corresponding radiative cor-
rection factors are computed in Sec. V. We show the
consequences of including them in Sec. VI, where we bind
new physics couplings in an effective approach. Finally,
we conclude in Sec. VII. Appendixes cover Kl3 decays
(Appendix A), structure-independent virtual corrections to
dimeson tau decays (Appendix B), the nonradiative decays
(Appendix C), and the kinematics of these three- and four-
body processes (Appendix D).

II. THE τ − → P−
1 P

0
2ντγ DECAYS

The most general structure for the decays τðPÞ →
P−
1 ðp−ÞP0

2ðp0Þντðq0ÞγðkÞ is given by

M¼ eGFV�
uDffiffiffi

2
p ε�μ

�
Hνðp−;p0Þ
k2− 2k ·P

ūðq0Þγνð1− γ5Þðmτ þ =P− kÞ

× γμuðPÞþ ðVμν−AμνÞūðq0Þγνð1− γ5ÞuðPÞ
�
; ð1Þ

withVuD (D ¼ d, s) the correspondingCKMmatrix element
and where the hadronic matrix element can be written as

Hνðp−; p0Þ ¼ CVFþðtÞQν þ CS
Δ−0

t
qνF0ðtÞ; ð2Þ

with t ¼ q2, Qν ¼ ðp− − p0Þν − Δ−0
t qν, qν ¼ ðp− þ p0Þν,

and Δij ¼ m2
i −m2

j . One recovers the usual definition of
Hν

Kπ [38] by replacing p− → pK , p0 → pπ and Δ−0 → ΔKπ

for K−π0, and p− → pπ , p0 → pK , CV;S → −CV;S and
Δ−0 → −ΔKπ for K̄0π− (we comment on the identifications
for the P1 ¼ P2 channels below). In all cases, gauge
invariance implies kμVμν ¼ Hνðp−; p0Þ and kμAμν ¼ 0.

The structure-independent term is given by

Vμν
SI ¼

Hνðp−þ k;p0Þð2p−þ kÞμ
2k ·p−þ k2

−CV
Fþðt0Þ−FþðtÞ

k ·q
Qνqμ

þ
�
−CVFþðt0Þ−

Δ−0

t0
½CSF0ðt0Þ−CVFþðt0Þ�

�
gμν

þΔ−0

tt0

�
2½CSF0ðt0Þ−CVFþðt0Þ�

−
CSt0

k ·q
½F0ðt0Þ−F0ðtÞ�

�
qμqν; ð3Þ

where CK−π0
V ¼ CK−π0

S ¼ 1=
ffiffiffi
2

p
for the K−π0 channel and

CK̄0π−
V ¼ CK̄0π−

S ¼ −1 for the K̄0π− one, with t0 ¼
ðP − q0Þ2. The main difference between these two decay
modes comes from the overall sign difference—except for
the first term in the second line of Eq. (3)—that we absorbed
in our definition of CK̄0π−

V;S and through the order of the
arguments ofHν in the above equation.At leadingorder (LO)
in chiral perturbation theory (χPT), contributions propor-
tional to gμν in Vμν

SI stem from the diagrams in Fig. 1.
For the other tau decay modes, Vμν

SI is also obtained from
Eq. (3). In particular, we are also interested in the τ− →
K−K0ντγ decays, where CK−K0

V ¼ CK−K0

S ¼ −1.1

The structure-dependent part is given by

Vμν
SD ¼ v1ðk · p−gμν − kνpμ

−Þ þ v2ðk · p0gμν − kνpμ
0Þ

þ v3ðk · p0pμ
− − k · p−p

μ
0Þpν

−

þ v4ðk · p0pμ
− − k · p−p

μ
0Þðp− þ p0 þ kÞν ð4Þ

and

Aμν ¼ ia1εμνρσðp0 − p−Þρkσ þ ia2ðP − q0Þνεμρστkρpσ
−pτ

0

þ ia3εμνρσkρðP − q0Þσ þ ia4ðp0 þ kÞνεμλρσkλpρ
−pσ

0;

ð5Þ
where p− and p0 refer to the momentum of the charged and
neutral meson, respectively.
From Eq. (3), it is easy to show that the Low’s theorem

[59] is manifestly satisfied:

Vμν ¼ pμ
−

k ·p−
Hνðp−;p0Þ

þ
�
CVFþðtÞþ

Δ−0

t
½CSF0ðtÞ−CVFþðtÞ�

�

×

�
pμ
−kν

k ·p−
− gμν

�
−
2Δ−0

t2
½CSF0ðtÞ−CVFþðtÞ�

×

�
k ·p0

k ·p−
pμ
− −pμ

0

�
ðp−þp0Þνþ 2

�
k ·p0

k ·p−
pμ
− −pμ

0

�

×

�
CV

dFþðtÞ
dt

QνþCS
Δ−0

t
qν

dF0ðtÞ
dt

�
þOðkÞ; ð6Þ

FIG. 1. Feynman diagrams contributing to the term propor-
tional to the metric tensor gμν in Eq. (3).

1We discuss briefly the π−π0 case at the end of Sec. III A; see
Ref. [53] for further details.
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and the amplitude reads

M ¼ eGFVuD
ffiffiffiffiffiffiffiffiffi
SEW

p
ffiffiffi
2

p ε�μðkÞHνðp−; p0ÞūðqÞγνð1 − γ5ÞuðPÞ
�

pμ
−

k · p− þ 1
2
M2

γ
−

Pμ

k · P − 1
2
M2

γ

�
þOðk0Þ; ð7Þ

where SEW encodes the short-distance electroweak corrections [60–67].
In the Low’s limit, one gets

jMj2 ¼ 2e2G2
FjVuDj2SEWfC2

SjF0ðtÞj2DP−P0

0 ðt; uÞ þ CSCVRe½FþðtÞF�
0ðtÞ�DP−P0

þ0 ðt; uÞ

þ C2
V jFþðtÞj2DP−P0

þ ðt; uÞg
X
γpols

				 p− · ε
p− · k

−
P · ε
P · k

				
2

þOðk0Þ; ð8Þ

where

DP−P0

þ ðt; uÞ ¼ m2
τ

2
ðm2

τ − tÞ þ 2m2
0m

2
− − 2uðm2

τ − tþm2
0 þm2

−Þ þ 2u2 þ Δ−0

t
m2

τð2uþ t −m2
τ − 2m2

0Þ þ
Δ2

−0
t2

m2
τ

2
ðm2

τ − tÞ;
ð9Þ

DP−P0

0 ðt; uÞ ¼ Δ2
−0m

4
τ

2t2

�
1 −

t
m2

τ

�
; ð10Þ

DP−P0

þ0 ðt; uÞ ¼ Δ0−m2
τ

t

�
2uþ t −m2

τ − 2m2
0 þ

Δ−0

t
ðm2

τ − tÞ
�
; ð11Þ

with u ¼ ðP − p−Þ2. In this way, besides the Low theorem, the Burnet-Kroll theorem [68] is also explicitly manifest.
Thus, after integration over neutrino and photon 4-momenta, the differential decay width in this approximation reads

dΓð0Þ

dtdu

				
PPγ

¼ G2
FjVuDj2SEW
128π3m3

τ
fC2

SjF0ðtÞj2DP−P0

0 ðt; uÞ þ CVCSRe½F�þðtÞF0ðtÞ�DP−P0

þ0 ðt; uÞ

þ C2
V jFþðtÞj2DP−P0

þ ðt; uÞggradðt; u;MγÞ; ð12Þ
where (see Refs. [50,51])

gradðt; u;MγÞ ¼ gbremsðt; u;MγÞ þ grestðt; uÞ; ð13Þ

with

gbremsðt; u;MγÞ ¼
α

π
ðJ11ðt; u;MγÞ þ J20ðt; u;MγÞ þ J02ðt; u;MγÞÞ; ð14aÞ

grestðt; uÞ ¼
α

π
ðK11ðt; uÞ þ K20ðt; uÞ þ K02ðt; uÞÞ: ð14bÞ

The relevant expressions for Jijðt; u;MγÞ and Kijðt; uÞ, which correspond to an integration over DIII and DIV=III,
respectively, can be found in Refs. [11,51,53] and in Appendix D.2

Integrating upon the u variable in Eq. (12), one gets

dΓ
dt

				
III
¼ G2

FSEWjVuDj2m3
τ

384π3t

�
1

2t2

�
1 −

t
m2

τ

�
2

λ1=2ðt; m2
−; m2

0Þ

×

�
C2
V jFþðtÞj2

�
1þ 2t

m2
τ

�
λðt; m2

−; m2
0Þδ̄þðtÞ þ 3C2

SΔ2
−0jF0ðtÞj2δ̄0ðtÞ

�
þCSCV

4ffiffi
t

p δ̄þ0ðtÞ
�
; ð15Þ

with

2The function K11ðt; uÞ turns out to be numerically negligible and is not quoted anywhere; see, e.g., Refs [36,50].
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δ̄0ðtÞ ¼
R uþðtÞ
u−ðtÞ D

P−P0

0 ðt; uÞgbremsðt; u;MγÞduR uþðtÞ
u−ðtÞ D

P−P0

0 ðt; uÞdu
; ð16aÞ

δ̄þðtÞ ¼
R uþðtÞ
u−ðtÞ D

P−P0

þ ðt; uÞgbremsðt; u;MγÞduR uþðtÞ
u−ðtÞ D

P−P0

þ ðt; uÞdu
; ð16bÞ

δ̄þ0ðtÞ ¼
3t

ffiffi
t

p
4m6

τ

Z
uþðtÞ

u−ðtÞ
DP−P0

þ0 ðt; uÞgbremsðt; u;MγÞ

× Re½F�þðtÞF0ðtÞ�du: ð16cÞ

The remaining contribution, dΓ=dtjIV=III, which corre-
sponds to the integration overDIV=III with grestðt; uÞ instead
of gbremsðt; u;MγÞ, is almost negligible and only becomes
relevant near threshold. In Ref. [69], the subleading
contributions in the Low’s approximation were studied,
showing that they are not negligible and need to be taken
into account to get a reliable estimation.

III. STRUCTURE-DEPENDENT CONTRIBUTIONS

The evaluation of the structure-dependent tensors, Vμν
SD

and Aμν in Eqs. (4) and (5), requires nonperturbative
methods or lattice QCD (which has only been explored
for the ππ case; see [70]). The tau lepton mass value probes
the hadronization of QCD currents in its semileptonic
decays beyond the regime of validity of chiral perturbation
theory [71–75] (χPT), which is the low-energy effective
field theory of QCD describing Pmeson physics. To extend
the applicability of the chiral Lagrangians to the energy
region where meson states resonate, a successful strategy
has been to include the corresponding fields as explicit
degrees of freedom into the action, using approximate
flavor symmetry, without additional assumptions affecting
the possible resonance dynamics [76,77]. This procedure
was later christened resonance chiral theory (RχT; see, e.g.,
Ref. [78]) and yields as a result the saturation of the χPT
low-energy constants upon resonance integration.
Explicitly, the construction of the relevant Lagrangian

pieces including resonances uses the chiral tensors [75] (we
only quote those relevant in our computation)

uμ ¼ i½u†ð∂μ − irμÞu − uð∂μ − ilμÞu†�;
fμν� ¼ uFμν

L u† � u†Fμν
R u;

χ� ¼ u†χu† � uχu; ð17Þ
where the pseudo-Goldstone bosons are included in u via
(λa are the Gell-Mann matrices, so that ϕ3 ¼ π0 in the
isospin symmetry limit)

u ¼ exp

�
iΦffiffiffi
2

p
f

�
; Φ ¼

X8
a¼0

λaffiffiffi
2

p ϕa; ð18Þ

and left- and right-handed sources lμ and rμ enter through

Fμν
X ¼ ∂

μxν − ∂
νxμ − i½xμ; xν� ¼ eQFμν þ � � � ;

x ¼ l; r; Q ¼ diag

�
2

3
;−

1

3
;−

1

3

�
; ð19Þ

with xμ ¼ eQAμ þ � � �, being Aμ the photon field and
Fμν ¼ ∂

μAν − ∂
νAμ the corresponding field-strength

tensor. Spin-zero sources (s and p) appear in χ� through
χ ¼ 2Bðsþ ipÞ, where we recall that the two leading chiral
low-energy constants (f and B) determine the light-quark
condensate in the chiral limit, −Bf2 ¼ h0jq̄qj0i, with f ∼
90 MeV the pion decay constant. The numerical value of B
is not needed, as it only enters the pseudoscalar meson
squared masses, which are proportional to it. Indeed, in the
isospin symmetry limit, diagð2BsÞ ¼ ðm2

π; m2
π; 2m2

K −m2
πÞ,

where s accounts for the (diagonal) light-quark mass
matrix, which ensure chiral symmetry breaking as in QCD.
The RχT Lagrangian includes the lowest-order χPT

Lagrangian in both parity sectors, which is

Leven
nonres ¼

f2

4
huμuμ þ χþi; Lodd

nonres ¼ LWZW; ð20Þ

where WZW stands for the chiral anomaly contribution
worked out by Wess-Zumino and Witten [79,80].
In addition, LRχT has pieces including resonance fields

and chiral tensors. These are usually incorporated taking into
account the order (within the chiral counting) of their
contributions—upon resonance exchange—to the χPT cou-
plings [76,77,81,82], as well as their behavior [83] in the
limit of a large number of colors [84,85]. QCD asymptotic
behavior forbids (linear combinations of) operators with
increasing number of derivatives. In this way RχT bridges
between the low-energy behavior of χPT and the high-
energy constraints of perturbative QCD, keeping predictivity
for a set of related observables, to a given precision, without
unnecessary assumptions (like, for instance, vector meson
dominance [86] or any additional symmetry of gauge type
related to them [87]). Within this framework, the need for
nonresonant contributions was explored, e.g., in Ref. [88] for
theω − π0 transition form factor,where itwas found that they
could play a role above 2 GeVonly. Taking this into account
and the fact that we are limited kinematically by the taumass,
we neglect nonresonant pieces in the following.
Apart from contributions that are suppressed by approxi-

mate flavor symmetries (more on this below), the next-to-
leading-order χPT couplings are saturated by spin-one
resonance exchange [76,77] coming from the following
operators:

LV ¼ FV

2
ffiffiffi
2

p hVμνf
μν
þ i þ i

GV

2
ffiffiffi
2

p hVμν½uμ; uν�i;

LA ¼ FA

2
ffiffiffi
2

p hAμνfμν− i; ð21Þ

where Vμν ¼
P

8
a¼0

λaffiffi
2

p Va
μν, and analogously for the axial-

vector resonances. For convenience, spin-one resonances
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are worked out in the antisymmetric tensor field formalism
[76,77]. For completeness we note that the kinetic terms
come from the Lagrangian (which also includes inter-
actions, hidden in the covariant derivative, that are however
not needed in what follows, so ∇α ∼ ∂

α)

LKin
Res ¼ −

1

2
h∇λVλν∇ρVρνi þ

M2
V

4
hVμνVμνi; ð22Þ

with obvious replacements for axial-vector resonances Aμν.
Uð3Þ symmetry in the (axial-)vector resonance masses is

broken by operators of the form hVμνVμνχþi,V↔A [89–91],
which can accommodate themeasured spectra (in this waywe
will simply replace the different spin-one resonancemasses by
the PDG values [92] in the following). Analogously, breaking
of this flavor symmetry also affects FV;A. However, in
the vector case, the coupling giving this shift3 [81] is con-
strained by short-distance QCD to vanish within the scheme
considered in Ref. [93] (see also Ref. [88], where these
contributions were neglected a priori). Based on this, flavor
symmetry on FV;A is assumed in the remainder of the paper.

All resonance contributions to the vi form factors (those
to the ai are differed by one chiral order and thus neglected)
depend on ratios of resonance couplings over the meson

decay constant ðFVGV
f2 ; F

2
V

f2 ;
F2
A

f2 Þ, which are constrained by

asymptotic QCD. Therefore the well-known SUð3Þ sym-
metry breaking which causes fK ∼ 1.2fπ [92] cannot be
accounted for, within the considered simplified scheme,
without conflicting with short-distance QCD requirements.
Thus, we are using f ∼ 90 MeV for the vi also in the
strangeness-changing channels.4 The dispersive construc-
tions giving the Fþ;0 form factors account for flavor
symmetry breaking in the Kπ channels, as required by
the precision of the corresponding measurements, which
fed the phase shifts entering the dispersive integrals.

A. Vector contributions

Including those Lagrangian terms that, upon resonance
integration, contribute to the χPT Oðp4Þ low-energy
constants, we have found the following contributions to
the vector form factors vi in Eq. (4), which are depicted
in Fig. 2:

v1 ¼
FVGVffiffiffi
2

p
f2M2

ρ

��
1þ 1

3

M2
ρ

M2
ω
þ 2

3

M2
ρ

M2
ϕ

��
1þ 1

2
ðt − ΔKπÞD−1

K� ðtÞ
�

þ 2M2
ρD−1

K� ðt0Þ þM2
ρðt − ΔKπÞD−1

K� ðtÞD−1
K� ðt0Þ

�

þ F2
V

2
ffiffiffi
2

p
f2M2

ρ

�
−
1

2

�
1þ 1

3

M2
ρ

M2
ω
þ 2

3

M2
ρ

M2
ϕ

�
ð1 − t0D−1

K� ðt0ÞÞ −M2
ρD−1

K� ðt0Þ
�

þ F2
Affiffiffi

2
p

f2M2
K1

�
M2

K1
−
1

2
ΣKπ þ

1

2
t
�
D−1

K1
½ðpK þ kÞ2�; ð23aÞ

3It is λV6 in the notation of Ref. [81] and λV in Ref. [93], with λV6 ¼ λVffiffi
2

p .
4The associated error is, however, much smaller than the uncertainty that we will find in our results; see Sec. V.

FIG. 2. Vector and axial-vector meson exchange diagrams contributing to the τ− → P−
1P

0
2ντγ decays atOðp4Þ. V0 stands for the ρ0, ω

and ϕ resonances, V− ¼ K�− for the Kπ modes and V− ¼ ρ− for the K−K0 one, and A− ¼ K−
1 in K−K0 and K−π0,

and A− ¼ a−1 in π−K̄0.
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v2 ¼
FVGVffiffiffi
2

p
f2M2

ρ

ðtþ ΔKπÞ
�
−
1

2

�
1þ 1

3

M2
ρ

M2
ω
þ 2

3

M2
ρ

M2
ϕ

�
D−1

K� ðtÞ −M2
ρD−1

K� ðtÞD−1
K� ðt0Þ

�

þ F2
V

2
ffiffiffi
2

p
f2M2

ρ

�
−
1

2

�
1þ 1

3

M2
ρ

M2
ω
þ 2

3

M2
ρ

M2
ϕ

�
ð1þ t0D−1

K� ðt0ÞÞ −M2
ρD−1

K� ðt0Þ
�

þ F2
Affiffiffi

2
p

f2M2
K1

ðM2
K1

−m2
K − k · pKÞD−1

K1
½ðpK þ kÞ2�; ð23bÞ

v3 ¼
F2
Affiffiffi

2
p

f2M2
K1

D−1
K1
½ðpK þ kÞ2�; ð23cÞ

v4 ¼ −
2FVGVffiffiffi

2
p

f2
D−1

K� ðtÞD−1
K� ðt0Þ þ F2

V

2
ffiffiffi
2

p
f2M2

ρ

�
1þ 1

3

M2
ρ

M2
ω
þ 2

3

M2
ρ

M2
ϕ

�
D−1

K� ðt0Þ; ð23dÞ

for K−π0,

v1 ¼ −
FVGV

f2M2
ρ

�
2þ 2M2

ρD−1
K� ðt0Þ þ 1

2

�
1þ 1

3

M2
ρ

M2
ω
þ 2

3

M2
ρ

M2
ϕ

�
ðtþ ΔKπÞD−1

K� ðtÞ þ ðtþ ΔKπÞM2
ρD−1

K� ðtÞD−1
K� ðt0Þ

�

−
F2
V

2f2M2
ρ

�
−M2

ρD−1
K� ðt0Þ þ 1

2

�
1þ 1

3

M2
ρ

M2
ω
þ 2

3

M2
ρ

M2
ϕ

�
t0D−1

K� ðt0Þ þ 1

2

�
−3þ 1

3

M2
ρ

M2
ω
þ 2

3

M2
ρ

M2
ϕ

��

−
F2
A

f2M2
a1

�
M2

a1 −
1

2
ΣKπ þ

1

2
t

�
D−1

a1 ½ðpπ þ kÞ2�; ð24aÞ

v2 ¼ −
FVGV

f2M2
ρ

�
ðt − ΔKπÞ

�
−M2

ρD−1
K� ðtÞD−1

K� ðt0Þ − 1

2

�
1þ 1

3

M2
ρ

M2
ω
þ 2

3

M2
ρ

M2
ϕ

�
D−1

K� ðtÞ
�
þ 1 −

1

3

M2
ρ

M2
ω
−
2

3

M2
ρ

M2
ϕ

�

−
F2
V

2f2M2
ρ

�
−M2

ρD−1
K� ðt0Þ − 1

2

�
1þ 1

3

M2
ρ

M2
ω
þ 2

3

M2
ρ

M2
ϕ

�
t0D−1

K� ðt0Þ þ 1

2

�
−3þ 1

3

M2
ρ

M2
ω
þ 2

3

M2
ρ

M2
ϕ

��

−
F2
A

f2M2
a1

ðM2
a1 −m2

πk · pπÞD−1
a1 ½ðpπ þ kÞ2�; ð24bÞ

v3 ¼ −
F2
A

f2M2
a1

D−1
a1 ½ðpπ þ kÞ2�; ð24cÞ

v4 ¼
2FVGV

f2
D−1

K� ðtÞD−1
K� ðt0Þ − F2

V

2f2M2
ρ

�
1þ 1

3

M2
ρ

M2
ω
þ 2

3

M2
ρ

M2
ϕ

�
D−1

K� ðt0Þ; ð24dÞ

for K̄0π−, and

v1 ¼ −
FVGV

f2M2
ρ

�
1þ 1

3

M2
ρ

M2
ω
þ 2

3

M2
ρ

M2
ϕ

þ ðt − ΔK−K0ÞD−1
ρ ðtÞ þ 2M2

ρD−1
ρ ðt0Þ þM2

ρðt − ΔK−K0ÞD−1
ρ ðtÞD−1

ρ ðt0Þ
�

−
F2
V

2f2M2
ρ

�
−
1

3

M2
ρ

M2
ω
−
2

3

M2
ρ

M2
ϕ

þ t0D−1
ρ ðt0Þ −M2

ρD−1
ρ ðt0Þ

�
−

F2
A

f2M2
K1

�
M2

K1
−
1

2
ΣK−K0 þ 1

2
t
�
D−1

K1
½ðp− þ kÞ2�; ð25aÞ

v2 ¼ −
FVGV

f2M2
ρ

�
−1þ 1

3

M2
ρ

M2
ω
þ 2

3

M2
ρ

M2
ϕ

− ðtþ ΔK−K0ÞD−1
ρ ðtÞ −M2

ρðtþ ΔK−K0ÞD−1
ρ ðtÞD−1

ρ ðt0Þ
�

−
F2
V

2f2M2
ρ

�
−
1

3

M2
ρ

M2
ω
−
2

3

M2
ρ

M2
ϕ

− t0D−1
ρ ðt0Þ −M2

ρD−1
ρ ðt0Þ

�
−

F2
A

f2M2
K1

ðM2
K1

−m2
K− − k · p−ÞD−1

K1
½ðp− þ kÞ2�; ð25bÞ
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v3 ¼ −
F2
A

f2M2
K1

D−1
K1
½ðp− þ kÞ2�; ð25cÞ

v4 ¼
2FVGV

f2
D−1

ρ ðtÞD−1
ρ ðt0Þ − F2

V

f2M2
ρ
D−1

ρ ðt0Þ; ð25dÞ

for K−K0, where Σ−0 ¼ m2
− þm2

0 and DRðxÞ ¼ M2
R −

x − iMΓRðxÞ. Off-shell resonancewidths5 are given in terms
of the leading pseudo-Goldstone boson cuts [26,27,94].
It is straightforward to show that, except for a Clebsch-

Gordan coefficient (CGC) factor, one recovers the expres-
sions found in Refs. [51,53] for the vector form factors of
the τ− → π−π0ντγ decays in the isospin-symmetry limit.
All the former resonance contributions are given in terms

of three couplings: FV , responsible for instance of the
coupling of the vector resonance to the vector current; FA
for the couplings of the axial resonance; and GV which
yields, among others, vertices between the vector resonance
and a couple of pseudo-Goldstone bosons (see, e.g.,
Ref. [76] for further details).

B. Axial contributions

The Feynman diagrams that contribute to these decays
are depicted in Figs. 3–5. At Oðp4Þ, the axial form factors
ai in Eq. (5), which receive contributions from the Wess-
Zumino-Witten functional [79,80], are given by

a1 ¼
Nc

12
ffiffiffi
2

p
π2f2

; a2 ¼ −
Nc

6
ffiffiffi
2

p
π2f2ðt0 −m2

KÞ
;

a3 ¼ −
Nc

24
ffiffiffi
2

p
π2f2

; ð26Þ

for K−π0,

a3 ¼ −
Nc

24π2f2
; ð27Þ

for K̄0π−, and

a3 ¼
Nc

24π2f2
; ð28Þ

for K−K0, where Nc ¼ 3 is the number of colors and f is
the pion decay constant in the chiral limit, f ∼ 90 MeV.
In Fig. 5, only one diagram contributes to the τ− →

K−K0ντγ decays similarly to the τ− → K̄0π−ντγ decays.
This is because the K− → K̄0π−γ (or π− → K−K0γ) vertex
is absent in the WZW Lagrangian.6 We reproduce the
known anomalous contributions [51,53] for the τ− →
π−π0ντγ case. We neglect resonance contributions in the
anomalous sector, which start at Oðp6Þ in the chiral power
counting [82].

IV. RADIATIVE HADRONIC TAU DECAYS

The differential rate for the τ− → P−
1P

0
2ντγ decays in the

τ rest frame is given by

dΓ ¼ ð2πÞ4
4mτ

X
spin

jMj2 dΦ4; ð29Þ

where dΦ4 is the corresponding four-body phase space,
given by

dΦ4 ¼ δð4ÞðP − p− − p0 − q0 − kÞ d3p−

ð2πÞ32E−

d3p0

ð2πÞ32E0

×
d3q0

ð2πÞ32Eν

d3k
ð2πÞ32Eγ

; ð30Þ

FIG. 3. Axial contributions to the τ− → K−π0ντγ decays at
Oðp4Þ.

FIG. 4. Axial contributions to the τ− → K̄0π−ντγ decays at
Oðp4Þ.

FIG. 5. Axial contributions to the τ− → K−K0ντγ decays at
Oðp4Þ.

5The on-shell width corresponds to the imaginary part of the
pole position of the resonance. The imaginary part of the
corresponding loop function provides an off-shell width function,
which extends off the pole [94].

6This feature was already studied for the Kl3 decays in
Ref. [95], where the nonlocal kaon pole term is only present
in Aþ

μν for Kþ → π0lþνlγ decays.
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and jMj2 is the unpolarized spin-averaged squared ampli-
tude. Inasmuch as this amplitude is not IR finite, we follow
the same procedure as in Refs. [51,53] where a photon
energy cut Ecut

γ was introduced to study the dynamics of the
τ− → π−π0ντγ decays.
In this analysis, we call “complete bremsstrahlung” or

simply “SI” the amplitude with v1;2;3;4 ¼ a1;2;3;4 ¼ 0.
For the Oðp4Þ contributions, as in Ref. [53], we dis-
tinguish between using the set of short-distance constraints
FV ¼ ffiffiffi

2
p

F, GV ¼ F=
ffiffiffi
2

p
[77] and FA ¼ F; or FV ¼ ffiffiffi

3
p

F,
GV ¼ F=

ffiffiffi
3

p
and FA ¼ ffiffiffi

2
p

F [81,82,96,97]. The former
corresponds to the constraints from two-point Green
functions and the second to the values consistent up to
three-point Green functions, which include operators that
contribute atOðp6Þ (that we are not including in this work).
The difference between both sets of constraints has been
employed to estimate roughly the model-dependent error of
this approach [43,44,49,53,91]. In all our subsequent
analyses, the Oðp4Þ results include the SI part and the
structure-dependent part (either with the FV ¼ ffiffiffi

2
p

F or
with the FV ¼ ffiffiffi

3
p

F set of constraints).
Integrating Eq. (29) using the dispersive vector and

scalar form factors [6,7,9,13,14,98–100], we get the P−
1P

0
2

invariant mass distribution, the photon energy distribution
and the branching fraction as a function of Ecut

γ . The
outcomes are depicted in Figs. 6–9 and summarized in
Tables I–III.
The branching fractions of the radiative decays as a

function of Ecut
γ are shown in Fig. 6. In Tables I and II, one

can see that for Ecut
γ ≲ 100 MeV the main contribution at

Oðp4Þ comes from the complete bremsstrahlung (SI) amp-
litude in agreement with the results in Refs. [51,53,55] for
the τ− → π−π0ντγ decays (see also the recent Ref. [101]). It
is also seen that the Low’s approximation is sufficient to
describe the K−π0 decays up to these energies, while this is
not the case for the K̄0π− ones. Contrary to the τ− →
ðKπÞ−ντ transitions, where the K−π0 and π−K̄0 decay
modes differ only by a squared CGC factor in the isospin
symmetry limit, the radiative decays are more subtle. At
low photon energies, these two modes are approxi-
mately related by Brðτ → K̄0π−ντγÞ=Brðτ− → K−π0ντγÞ ≈
2ðmK=mπÞ ∼ 7, which explains their hierarchy. In both

decay channels, the SD contributions seem to be subdomi-
nant, while the τ− → K−K0ντγ decays are more susceptible
to these contributions (see Table III).
In Fig. 7, the decay spectrum is depicted with vi ¼

ai ¼ 0 for different Ecut
γ values. For the τ− → ðKπÞ−ντγ

decays, the first peak is due to bremsstrahlung off the
charged meson, i.e. K− or π−, and the second one receives
contributions from bremsstrahlung off the τ lepton and

TABLE I. Branching ratios Brðτ− → K−π0ντγÞ for different
values of Ecut

γ . The third column corresponds to the complete
bremsstrahlung, and the fourth and fifth to the Oðp4Þ contribu-
tions.

Ecut
γ Br(Low) BR(SI)

BR(FV ¼ ffiffiffi
2

p
F)

½Oðp4Þ�
BR(FV ¼ ffiffiffi

3
p

F)
½Oðp4Þ�

100 MeV 3.4 × 10−6 3.0 × 10−6 3.5 × 10−6 3.8 × 10−6

300 MeV 6.2 × 10−7 3.4 × 10−7 6.3 × 10−7 9.4 × 10−7

500 MeV 7.4 × 10−8 3.5 × 10−8 1.5 × 10−7 3.3 × 10−7

FIG. 6. Branching ratio for the τ− → K−π0ντγ (top), the τ− →
K̄0π−ντγ (center) and the τ− → K−K0ντγ (bottom) decays as a
function of Ecut

γ . The dotted line represents the bremsstrahlung
contribution; the solid line and dashed line represent the Oðp4Þ
corrections using FV ¼ ffiffiffi

3
p

F and FV ¼ ffiffiffi
2

p
F, respectively. The

red one corresponds to the Low approximation.
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resonance exchange. In Fig. 8, we compare the distri-
butions for Ecut

γ ¼ 300 MeV using the Low’s approxi-
mation (red dashed line), the SI amplitude (dotted line),
and the Oðp4Þ amplitude with FV ¼ ffiffiffi

2
p

F (dashed line)
and FV ¼ ffiffiffi

3
p

F (solid line). The most important contri-
bution for the ðKπÞ− decay channels comes from the
K�ð892Þ resonance exchange around s ∼ 0.79 GeV2. It is
worth noting that for the τ− → K̄0π−ντγ decays, there is a
huge suppression around the K�ð892Þ peak when the full
distribution is compared to the Low one. The reason for
that is the following. While the Low approximation in
Eq. (7) includes only the Oðk−1Þ dominant contributions
from the bremsstrahlung off the initial tau lepton and the
final charged meson, the full amplitude in Eq. (1)
contains also the Oðk0Þ subdominant contribution from
the first line of this equation, which is common to both
ðKπÞ− channels, plus all the Oðk0Þ contributions from
Eq. (6). Among the latter, the leading numerical con-
tribution comes from the first term in the second line of
Eq. (3), which has different sign depending on the
channel, as already mentioned after that equation. This
fact makes that in the case of the K−π0 mode these two
leading subdominant contributions approximately cancel
each other and the Low and full distributions are quite

similar at the K�ð892Þ peak. Conversely, for the K̄0π−

mode, the two contributions combine with the overall
effect of decreasing considerably the peak. Finally, we
just mention that the K−K0 invariant mass distribution is
more sensitive to SD contributions, although the ρð1450Þ
effect is hidden in the spectrum because of the corre-
sponding kinematical suppression.

TABLE II. Branching ratios Brðτ− → K̄0π−ντγÞ for different
values of Ecut

γ . The third column corresponds to the complete
bremsstrahlung, and the fourth and fifth to the Oðp4Þ contribu-
tions.

Ecut
γ Br(Low) BR(SI)

BR(FV ¼ ffiffiffi
2

p
F)

½Oðp4Þ�
BR(FV ¼ ffiffiffi

3
p

F)
½Oðp4Þ�

100 MeV 2.6 × 10−5 1.4 × 10−5 1.6 × 10−5 1.6 × 10−5

300 MeV 6.2 × 10−6 1.1 × 10−6 1.7 × 10−6 1.9 × 10−6

500 MeV 1.0 × 10−6 7.1 × 10−8 2.0 × 10−7 2.4 × 10−7

TABLE III. Branching ratios Brðτ− → K−K0ντγÞ for different
values of Ecut

γ . The third column corresponds to the complete
bremsstrahlung, and the fourth and fifth to the Oðp4Þ contribu-
tions.

Ecut
γ BR(Low) BR(SI)

BR(FV ¼ ffiffiffi
2

p
F)

½Oðp4Þ�
BR(FV ¼ ffiffiffi

3
p

F)
½Oðp4Þ�

100 MeV 5.3 × 10−7 3.7 × 10−7 6.8 × 10−7 9.4 × 10−7

300 MeV 4.8 × 10−8 1.9 × 10−8 1.7 × 10−7 3.1 × 10−7

500 MeV 3.7 × 10−10 3.0 × 10−10 1.1 × 10−8 2.9 × 10−8

FIG. 7. The K−π0 (top), K̄0π− (center) and K−K0 (bottom) SI
hadronic invariant mass distributions for several Ecut

γ values.
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The photon energy distribution is shown in Fig. 9. The SI
amplitude in all these decays governs the distribution for
Eγ ≲ 100 MeV, in agreement with the outcomes for the
branching ratio. However, the SD contributions become
relevant for Eγ ≳ 250 MeV. This feature makes these
decays an excellent probe for testing SD effects. The same
analysis for the τ− → π−π0ντγ decays can be found for
instance in Ref. [53].

V. RADIATIVE CORRECTIONS

The overall differential decay width is given by

dΓ
dt

				
PPðγÞ

¼ dΓ
dt

				
PP

þ dΓ
dt

				
III
þ dΓ

dt

				
IV=III

þ dΓ
dt

				
rest

; ð31Þ

where the first term is the nonradiative differential width
in Eq. (C5), the second and third terms correspond to the

FIG. 8. The K−π0 (top), K̄0π− (center) and K−K0 (bottom)
hadronic invariant mass distributions for Ecut

γ ≥ 300 MeV. The

solid and dashed line represent theOðp4Þ corrections using FV ¼ffiffiffi
3

p
F and FV ¼ ffiffiffi

2
p

F, respectively. The dotted line represents the
bremsstrahlung contribution (SI). The red one corresponds to the
Low approximation.

FIG. 9. Photon energy distribution for the τ− → K−π0ντγ (top),
the τ− → K̄0π−ντγ (center) and the τ− → K−K0ντγ (bottom)
decays normalized with the nonradiative decay width. The dotted
line represents the bremsstrahlung contribution and the red one
the Low approximation. The solid and dashed lines represent the
Oðp4Þ corrections usingFV ¼ ffiffiffi

3
p

F andFV ¼ ffiffiffi
2

p
F, respectively.
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Low approximation integrated according to the kinematics
in Refs. [51,53], Eq. (15), and the last term includes the
remaining contributions.
To evaluate the first term in the right-hand side of

Eq. (31) we use two models for the factorization of the
radiative corrections to the form factors. Both of them were
pioneered in Kl3 decays and have also been employed in
the τ− → ðKπÞ−ντ processes. As we will see, the difference
between both results will saturate the uncertainty of our
real-photon radiative corrections. To the best of our knowl-
edge, the importance of the factorization model for the
former corrections was not previously recognized in the
literature.
The contributions to the form factors due to virtual

corrections can be written as

Fþ=0ðt; uÞ ¼ Fþ=0ðtÞ þ δFþ=0ðt; uÞ; ð32Þ

where δF0ðt; uÞ ¼ δFþðt; uÞ þ t
Δ−0

δf̄−ðuÞ. In model 1,
δFþðt; uÞ is given by [51]

δFþðt; uÞ
FþðtÞ

¼ α

4π

�
2ðm2

− þm2
τ − uÞCðu;MγÞ

þ 2 log

�
m−mτ

M2
γ

��
þ δf̄þðuÞ; ð33Þ

while in model 2, it is written as [11] [we note that in this
second case, the correction δf̄þðuÞ to δFþðt; uÞ is not
modulated by the vector form factor FþðtÞ]

δFþðt; uÞ
FþðtÞ

¼ α

4π

�
2ðm2

− þm2
τ − uÞCðu;MγÞ

þ 2 log

�
m−mτ

M2
γ

��
þ δf̄þðuÞ

FþðtÞ
; ð34Þ

where Cðu;MγÞ, δf̄þðuÞ and δf̄−ðuÞ are defined in
Appendix B. A similar factorization prescription was
used in Ref. [102], where model 2 was preferred over
model 1 for the Kμ3 decays since the loop contributions
to f̄þ=−ðuÞ are different.7 We will see here that model 1
factorization warrants smoother corrections than model
2 when resonance contributions are included, as reso-
nance enhancements will cancel in the long-distance
radiative correction factor GEMðtÞ in Eq. (35), as
opposed to model 2. This motivates our preference of
model 1 over model 2 in our following phenomeno-
logical analysis.

A couple of points are worth to stress in connection to
both factorization models and the preferred one. First, a
measurement of dimeson or photon energy spectra in the
considered decays will be really helpful in reducing the
model dependence of our results (particularly on the
factorization prescription). Second, we will present else-
where the corresponding computations of the virtual
photon structure-dependent corrections, which will com-
plete these at the one-loop order. We expect that the model
dependence is reduced in the sum of all radiative correc-
tions, so having this last missing piece available will also be
valuable for diminishing the model dependence (again with
particular emphasis on the precise factorization in the
considered decays).
The correction factors δ̄AðtÞ for the four-body decays and

δ̃AðtÞ for the three-body processes appearing in Eqs. (16)
and (C6), respectively, where A ¼ þ; 0;þ0, are both IR
divergent when Mγ → 0. Nevertheless, the overall contri-
bution, δAðtÞ ¼ δ̄AðtÞ þ δ̃AðtÞ, is finite. In Fig. 10, we show
the predictions for δAðtÞ for the K−π0, K̄0π− and K−K0

decay modes using the form factors in models 1 and 2.
While our results for δþðtÞ in model 2 agree with those in
Ref. [11] in Fig. 2, the predictions for δ0ðtÞ are slightly
different as a consequence of the parametrization of the
scalar form factor.8

The differential decay width can be written as

dΓ
dt

				
PPðγÞ

¼ G2
FjVuDFþð0Þj2SEWm3

τ

768π3t3

×

�
1 −

t
m2

τ

�
2

λ1=2ðt; m2
−; m2

0Þ

×

�
C2
V jF̃þðtÞj2

�
1þ 2t

m2
τ

�
λðt; m2

−; m2
0Þ

þ 3C2
SΔ2

−0jF̃0ðtÞj2
�
GEMðtÞ; ð35Þ

where GEMðtÞ encodes the electromagnetic corrections due
to real and virtual photons. For simplicity, we have split
GEMðtÞ in two parts: the leading Low approximation plus

nonradiative contributions, Gð0Þ
EMðtÞ, and the remainder,

δGEMðtÞ, which includes the SD contributions to the
amplitude. The predictions for both are shown in Fig. 11.
Integrating upon t, we get

ΓPPðγÞ ¼
G2

FSEWm
5
τ

96π3
jVuDFþð0Þj2IτPPð1þ δPPEMÞ2; ð36Þ

where7Both prescriptions were studied for the Ke3 decays in
Ref. [69]; their outcomes for δKl

EMðD3Þð%Þ are shifted from
0.41 to 0.56 for K0

e3 and from −0.564 to −0.410 for K�
e3 modes

where the former numbers correspond to model 2.

8This effect is mainly responsible for the slight difference
between our results for model 2 in Table 10 and those in Ref. [11].
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IτPP ¼ 1

8m2
τ

Z
m2

τ

tthr

dt
t3

�
1 −

t
m2

τ

�
2

λ1=2ðt; m2
−; m2

0Þ

×

�
C2
V jF̃þðtÞj2

�
1þ 2t

m2
τ

�
λðt; m2

−; m2
0Þ

þ 3C2
SΔ2

−0jF̃0ðtÞj2
�
: ð37Þ

The results for δPPEM are shown in Table IV, where the
third and fourth columns correspond to the sum of the first
three terms in Eq. (31), and the last three columns to the
fourth term in that equation. The value in model 1 for the
K̄0π− channel agrees with the result in Ref. [57], which is
related to our definition by δK̄

0π−
EM ¼ δm:i:

EM=2 ≃ −0.063%.
Although our outcomes for the ðKπÞ− modes agree within
errors with those in Refs. [11,57], the value in model 2

(and also model 1) for the K−π0 decay channel is larger
than the K0π− one, which is at odds with Ref. [11].9

The complete radiative corrections (that we always quote
in percent) are obtained adding to the model 1 and 2 results,
which comprise the (negligible) DIV=III part, the 2F=3F
contributions, which include the SI part. We explained
before why we prefer the model 1 over the model 2 results.
We will take the difference with respect to model 2 as an
asymmetric error on the model 1 results. For the structure-
dependent contributions, we consider the 3F results as our
central values and the difference with respect to 2F as a
symmetric error for our model dependence. To be on the
safe side, we will take twice this error as our corresponding

FIG. 10. Correction factors δþðtÞ (left) and δ0ðtÞ (right) to the differential decay rates of the K−π0, K̄0π− and K−K0 modes from top to
bottom, according to models 1 (solid black line) and 2 (dashed red line).

9Incidentally, our results would agree more closely swapping
the numbers for δK

−τ
EM ↔ δK̄

0τ
EM in Ref. [11].
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uncertainty. Finally, we have to account for the uncertainty
associated to the missing structure-dependent virtual-
photon corrections. According to the results in Refs. [43,44]
for the one-meson tau decays, this contribution is of the same
size as the structure-independent correction. We will thus

estimate its absolute value as the sum of the “model 1” and
”SIþ 3F” results in Table IV, allowing it to have either sign.
Wewill assign an additional 60% uncertainty on it according
to the results in Refs. [43,44]. Proceeding this way, our main
results are

FIG. 11. Correction factors Gð0Þ
EMðtÞ − 1 (left) and δGEMðtÞ (right) to the differential decay rates of the K−π0, K̄0π−, K−K0, and π−π0

modes from top to bottom.
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δK
−π0

EM ¼ −ð0.009þ0.010
−0.118Þ; δK̄

0π−
EM ¼ −ð0.166þ0.100

−0.157Þ;
δK

−K0

EM ¼ −ð0.030þ0.032
−0.180Þ; δπ

−π0
EM ¼ −ð0.186þ0.114

−0.203Þ: ð38Þ

We see that the model-independent contributions are
responsible for the relatively large radiative corrections
obtained for the ðK̄=πÞ0π− modes. For the modes with a
K−, the dominant (asymmetric) uncertainty comes from
the difference between the model 1 and 2 results, which
is much larger than the deviation between the model-
dependent 2F=3F values. Instead, for the modes with a π−,
the dominant uncertainty comes from the missing model-
dependent virtual-photon corrections. Our results for the

δK
−π0=K̄0π−

EM agree with those in Ref. [11], and we reduce the
uncertainty band by ∼45% in the K− channel. We note that
the estimate of the errors in this reference yields also an

uncertainty band in agreement with ours for δK
−K0=π−π0

EM (our
errors are smaller by a factor ∼2 again in the K−K0 case).10

Although our δK
−π0

EM and δK̄
0π−

EM seem to differ (the main
reason being the scaling of the inner bremsstrahlung
contribution with the inverse of the charged meson mass),
the corresponding significance of their nonequality is only
∼0.7σ, according to our uncertainties. Our radiative cor-
rections in Eq. (38) improve over previous analysis (where,
for instance, the structure-dependent corrections were not
computed) and, as such, should be employed in precision
analysis like, e.g., CKM unitarity or lepton universality
tests [103] and searches for nonstandard interactions.
For completeness, we have also evaluated these correc-

tions for the K−ηð0Þ modes. In the Gð0Þ
EM approximation and

using the respective dominance of the vector (scalar) form
factor [13], we obtain

δK
−η

EM ¼ −ð0.026þ0.029
−0.163Þ; δK

−η0
EM ¼ −ð0.304þ0.422

−0.185Þ; ð39Þ

where the uncertainty is saturated by the difference between
the model 1 and 2 results in the η channel and by the non yet
computed virtual-photon structure-dependent corrections
for the η0 mode. The K−η0 decay mode is the only one

(completely) dominated by the scalar form factor, which
causes the relatively large magnitude of the corresponding
radiative correction.

VI. IMPACT OF RADIATIVE CORRECTIONS
ON NP BOUNDS

In this section, we update the results of Ref. [41]
concerning one- and two-meson tau decays including the
radiative corrections computed in this paper.11 We recall
briefly the main aspects here but refer the reader to
Ref. [41] for details.
The low-energy effective Lagrangian describing the

τ− → ūDντ decays (D ¼ d, s) can be written as [104,105]

Leff ¼ −
GFVuDffiffiffi

2
p ½ð1þ ετLÞτ̄γμð1 − γ5Þντ · ūγμð1 − γ5ÞD

þ ετRτ̄γμð1 − γ5Þντ · ūγμð1þ γ5ÞD
þ τ̄ð1 − γ5Þντ · ūðετS − ετPγ5ÞD
þ ετT τ̄σμνð1 − γ5Þντ · ūσμνð1 − γ5ÞD� þ H:c:; ð40Þ

where GF corresponds to the Standard Model (SM) tree-
level definition of the Fermi constant and the nonvanishing
εi (i ¼ S, P, V, A, T) Wilson coefficients (assumed to be
real for simplicity in what follows) determine the new
physics. Beyond the SM, super allowed nuclear Fermi β
decays do not depend on GFVud but rather on
GFVudð1þ εeL þ εeRÞ, as it is accounted for in our analysis.
After usingLeff , the relevant (for two-meson decays) scalar,
vector and tensor hadron matrix elements are computed
using dispersion relations, nourished with experimental
data, keeping track of the associated uncertainties.
We will discuss in the following the separate results for

the strangeness-conserving and changing channels and,
finally, those of a joint fit.

A. ΔS= 0
From τ− → π−ντðγÞ, we restrict [37,41,43,44,46]

ετL − εeL − ετR − εeR −
m2

π

mτðmu þmdÞ
ετP

¼ −ð0.14� 0.72Þ × 10−2; ð41Þ
using fπ ¼ 130.2ð8Þ MeV [3], jVudj ¼ 0.97373ð31Þ [92],
SEW ¼ 1.0232 [65], masses and branching ratios from the
PDG [92], and δτπem ¼ −0.24ð56Þ% from Ref. [44].
After performing a fit that includes one- (π) and two-

meson (ππ, KK) strangeness-conserving exclusive tau
decays, the constraints for the nonstandard interactions
(at μ ¼ 2 GeV in the MS scheme) are

TABLE IV. Electromagnetic corrections to hadronic τ decays in
percent.

Gð0Þ
EMðtÞ δGEMðtÞ

δPPEM Reference [11] Model 1 Model 2 SI SIþ 2F SIþ 3F

K−π0 −0.20ð20Þ −0.019 −0.137 −0.001 þ0.006 þ0.010
K̄0π− −0.15ð20Þ −0.086 −0.208 −0.098 −0.085 −0.080
K−K0 � � � −0.046 −0.223 −0.012 þ0.003 þ0.016
π−π0 � � � −0.196 −0.363 −0.010 −0.002 þ0.010

10A former estimation of the π−π0 radiative corrections yielded
δπ

−π0
EM ∼ −0.08% [52], where the SD contributions were evaluated
using a vector meson dominance model.

11One-meson channels were updated in Refs. [43,44] using
the improved radiative corrections calculated in those papers. It
would also be interesting to reanalyze Refs. [11,46] with our new
radiative corrections.
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0
BBBBB@

ετL − εeLþ ετR− εeR

ετRþ m2
π

2mτðmuþmdÞε
τ
P

ετS
ετT

1
CCCCCA

¼

0
BBBBB@

0.0� 0.6þ6.8
−6.4 � 0.1� 1.7þ0.0

−0.2

0.1� 0.5þ3.4
−3.3

þ0.0
−0.1 � 0.9� 0.1

10.3� 0.5þ1.2
−25.0

þ0.0
−0.1 � 0.9þ6.2

−22.4

0.4� 0.2þ4.1
−4.4

þ0.0
−0.1 � 1.1þ0.3

−0.2

1
CCCCCA

× 10−2; ð42Þ
with χ2=d:o:f: ∼ 0.8, and the associated (statistical) corre-
lation matrix is

ρij ¼

0
BBB@

1 0.662 −0.487 −0.544
1 −0.323 −0.360

1 0.452

1

1
CCCA: ð43Þ

The first error in Eq. (42) is the statistical fit uncertainty, the
second error comes from the theoretical uncertainty asso-
ciated to the pion form factor, the third and fourth ones
come from the quark masses and from the uncertainty
related to the tensor form factor, respectively, and the last
error is a systematic uncertainty coming from the radiative
corrections to two-meson tau decays.
The results obtained are extremely consistent with those

in Ref. [41]. In general, the uncertainties induced by the
radiative corrections are negligible with respect to others
except for ετS, where they are leading. This is interesting
since this is the largest Wilson coefficient, so its compat-
ibility with the SM gets even stronger upon including our
new radiative corrections computed in this work.

B. jΔSj= 1
From τ− → K−ντ, we bind [37,41,43,44,46]

ετL − εeL − ετR − εeR −
m2

K

mτðmu þmsÞ
ετP

¼ −ð1.02� 0.86Þ × 10−2; ð44Þ

using the lattice result fK ¼ 155.7ð3Þ MeV [3], jVusj ¼
0.2243ð8Þ [92], masses and branching ratios from PDG
[92], and δτKem ¼ −0.15ð57Þ% from Ref. [44].
The bounds for the non-SM effective couplings resulting

from a fit to one- (K) and two-meson (Kπ; Kη) strangeness-
changing transitions (at μ ¼ 2 GeV in the MS scheme) are
0
BBBBB@

ετL− εeLþ ετR− εeR

ετRþ m2
K

2mτðmuþmsÞε
τ
P

ετS
ετT

1
CCCCCA

¼

0
BBB@

0.4� 1.5� 0.4þ0.1
−0.0

0.7� 0.9� 0.2þ0.1
−0.0

0.8� 0.9� 0.2þ0.0
−0.1

0.5� 0.7� 0.4� 0.0

1
CCCA× 10−2;

ð45Þ
with χ2=d:o:f: ∼ 0.9, and

ρij ¼

0
BBB@

1 0.874 −0.149 0.463

1 −0.130 0.404

1 −0.057
1

1
CCCA: ð46Þ

In this case, the first error in Eq. (45) is the statistical fit
uncertainty, the second one is due to the tensor form factor,
and the last uncertainty is associated to the radiative
corrections to two-meson tau decays. The uncertainties
related to the kaon vector form factor and the quark masses
are negligible. These results comply nicely with those in
Ref. [41], and the uncertainty induced by the radiative
corrections is in all couplings negligible.

C. ΔS= 0 and jΔSj= 1 joint fit

Our previous fits to the strangeness-conserving and
changing channels were not able to separate ετR and ετP.

12

In Ref. [41], we attained this within minimal flavor
violation [106] (MFV),13 as we will do here. The CKM
matrix elements used in this analysis are obtained from
the correlation between jVudj and jVusj, jVus=Vudj ¼
0.2313ð5Þ, and jVusj ¼ 0.2232ð6Þ from Ref. [3], which
correspond to the region described by the red ellipse in
Fig. 10 of Ref. [3].
Performing thus a joint fit that includes both one- and

two-meson strangeness-conserving and strangeness-chang-
ing tau decays (within MFV), the limits for the NP effective
couplings (at μ ¼ 2 GeV in the MS scheme) are

0
BBBBBB@

ετL − εeL þ ετR − εeR
ετR
ετP
ετS
ετT

1
CCCCCCA

¼

0
BBBBBBBB@

2.7� 0.5þ2.3
−3.1

þ0.4
−0.5 � 0.0� 0.3þ0.0

−1.3 � 0.0

7.1� 4.7þ1.2
−1.6 � 0.9� 1.8� 0.2þ12.3

−3.6 � 0.0

−7.7� 6.1� 0.0þ1.3
−1.2

þ2.4
−2.3 � 0.0þ4.1

−17.0 � 0.0

5.3þ0.6
−0.7

þ2.0
−14.9

þ0.1
−0.0 � 0.0� 0.1þ0.1

−15.9
þ0.1
−0.0

−0.2� 0.2þ3.6
−2.9

þ0.1
−0.0 � 0.0� 0.4þ0.5

−0.0
þ0.2
−0.0

1
CCCCCCCCA

× 10−2;

ð47Þ

with χ2=d:o:f: ∼ 1.5, and

12This was achieved by combining inclusive and exclusive
information in Refs. [37,46].

13MFV assumes that flavor mixing within the Standard Model
effective field theory is aligned with the SM one (here, in
particular, in the quark sector). This generally allows for orders
of magnitude smaller new physics scales in precision flavor tests.
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ρij ¼

0
BBBBBB@

1 0.056 0.000 −0.270 −0.402
1 −0.997 −0.015 −0.023

1 0.000 0.000

1 0.235

1

1
CCCCCCA
: ð48Þ

Now, the first error in Eq. (47) corresponds again to the
statistical fit uncertainty, the second one comes from the
uncertainty on the pion form factor, the third error is related
to the CKMmatrix elements jVudj and jVusj, the fourth one
comes from the radiative corrections δτπem and δτKem, the fifth
error is associated to the tensor form factor, the sixth error
comes from the uncertainty of the quark masses, and the
last one is due to the radiative corrections to two-meson tau
decays.
These results accord with Ref. [41] closely. As seen, in

this joint fit the uncertainties induced by radiative correc-
tions are always subdominant.

VII. CONCLUSIONS

Radiative corrections to the one-meson tau decays have
been employed in CKM unitarity, lepton universality and
nonstandard interaction tests. The corresponding results for
the dipion tau decays allowed tau-based computations of
the leading-order piece of the hadronic vacuum polarization
part of the muon g − 2. Even though the model-indepen-
dent part of these corrections was available for the Kπ
modes, the structure-dependent one remained to be calcu-
lated. We have performed the first step toward bridging this
gap, by computing the real-photon structure-dependent
radiative correction factors with reduced uncertainties,
and will continue with the required virtual-photon
model-dependent corrections in a forthcoming work. For
completeness, we also quoted our numbers for the PP
(P ¼ π, K) modes and estimated them for the Kηð0Þ cases.
We recapitulate our main results in Eq. (38):

δK
−π0

EM ¼ −ð0.009þ0.010
−0.118Þ%; δK̄

0π−
EM ¼ −ð0.166þ0.100

−0.157Þ%;

δK
−K0

EM ¼ −ð0.030þ0.032
−0.180Þ%; δπ

−π0
EM ¼ −ð0.186þ0.114

−0.203Þ%;

which reduce previous uncertainties by a factor of ∼2 for
the K− modes and have similar errors to those quoted for
the K̄0π− channel.
We have put forward the importance of the factorization

model for the radiative corrections, which saturates the
uncertainties in Eq. (38) for the K− channels. Analogous
relevance shall be found in the radiative corrections for
processes including diverse final states with hadrons (if the
resonance regime is allowed by phase space), which calls for
further devoted studies. While lattice QCD obtains these
complicated radiative corrections, a deeper understanding of
their factorization will probe key in increasing the reach of
new physics searches through processes including hadrons.

We have finally illustrated the application of our results
updating our fits of non-SM interactions in dimeson tau
decays (also one-meson channels were included in the fits),
finding results compatible with our earlier work, where these
corrections and their uncertainties were neglected. As inter-
esting outlooks, the reanalysis of Refs. [36,38] [looking for
NP in τ− → π−π0ντ and τ− → ðKπÞ−ντ decays, respectively],
of inclusive and exclusive semileptonic tau decays [37,46]
and of the impact of kaon data on strangeness-violating tau
decays [11], are among the important applications of our
results that we can envisage, which can be incorporated into
the heavy flavor averaging group analysis [107]. All these
studies will benefit from our future results for the virtual-
photon structure-dependent radiative corrections.
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APPENDIX A: Kl3 DECAYS

The most general amplitude for the KðpKÞ →
πðpπÞlðPÞνlðq0ÞγðkÞ decays that complies with Lorentz
invariance and the discrete symmetries of QCD can be
written as

M ¼ eGFV�
usffiffiffi

2
p ε�μ

�
Hνð−pK; pπÞ
k2 þ 2k · P

ūðq0Þγνð1 − γ5Þ

× ðml − =P − kÞγμvðPÞ þ ðVμν − AμνÞūðq0Þ

× γνð1 − γ5ÞvðPÞ
�
; ðA1Þ

where

Hνð−pK; pπÞ≡ hπðpπÞjs̄γνujKðpKÞi

¼ −CVFþðtÞ
�
ðpK þ pπÞν −

ΔKπ

t
ðpK − pπÞν

�

− CS
ΔKπ

t
ðpK − pπÞνF0ðtÞ; ðA2Þ

with t ¼ ðpK − pπÞ2.
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The structure-independent term is given by

Vμν
SI ¼

Hνð−pK þ k; pπÞðk − 2pKÞμ
k2 − 2k · pK

þ
�
−CVFþðt0Þ −

ΔKπ

t0
½CSF0ðt0Þ − CVFþðt0Þ�

�
gμν

þ CV
Fþðt0Þ − FþðtÞ
k · ðpK − pπÞ

�
ðpK þ pπÞν −

ΔKπ

t
ðpK − pπÞν

�
ðpK − pπÞμ

þ ΔKπ

tt0

�
2½CSF0ðt0Þ − CVFþðt0Þ� þ

CSt0

k · ðpK − pπÞ
½F0ðt0Þ − F0ðtÞ�

�
ðpK − pπÞμðpK − pπÞν; ðA3Þ

where CK−π0
V ¼ CK−π0

S ¼ 1=
ffiffiffi
2

p
for Kþ → π0lþνlγ, and

Vμν
SI ¼

Hνð−pK; pπ þ kÞðkþ 2pπÞμ
k2 þ 2k · pπ

þ
�
CVFþðt0Þ −

ΔKπ

t0
½CSF0ðt0Þ − CVFþðt0Þ�

�
gμν

þ CV
Fþðt0Þ − FþðtÞ
k · ðpK − pπÞ

�
ðpK þ pπÞν −

ΔKπ

t
ðpK − pπÞν

�
ðpK − pπÞμ

þ ΔKπ

tt0

�
2½CSF0ðt0Þ − CVFþðt0Þ� þ

CSt0

k · ðpK − pπÞ
½F0ðt0Þ − F0ðtÞ�

�
ðpK − pπÞμðpK − pπÞν; ðA4Þ

where CK̄0π−
V ¼ CK̄0π−

S ¼ 1 for K0 → π−lþνlγ, both with t0 ≡ ðpK − pπ − kÞ2. All these expressions are obtained from
Eqs. (1)–(3) by replacing f p−

p0
g → f −pK

pπ g, Δ−0 → ΔKπ , P → −P and mτ → ml for Kþ → π0lþνlγ and f p−
p0
g → f pπ

−pKg,
Δ−0 → −ΔKπ , CV;S → −CV;S P → −P and mτ → ml for K0 → π−lþνlγ. The structure-dependent terms are analogous to
those in Eqs. (4) and (5).
At Oðp0Þ, we get

Vμν
SI ¼ −CKþ

pμ
K

k · pK
ðpK þ pπÞν − CKþ

�
gμν −

pμ
Kk

ν

k · pK

�
; ðA5Þ

for Kþ → π0, and

Vμν
SI ¼ −CK0

pμ
π

k · pπ
ðpK þ pπÞν þ CK0

�
gμν −

pμ
πkν

k · pπ

�
; ðA6Þ

for K0 → π−, where CK ¼ CS ¼ CV . Thus, the overall amplitude at Oðp0Þ is given by

Mγ ¼
eGFffiffiffi

2
p V�

usCKþ ūðq0Þð1þ γ5Þð2=pπ −mlÞ
�
ε · P
k · P

−
ε · pK

k · pK
þ k=ε
2k · P

�
vðPÞ ðA7Þ

and

Mγ ¼
eGFffiffiffi

2
p V�

usCK0 ūðq0Þð1þ γ5Þð2=pK þmlÞ
�
ε · P
k · P

−
ε · pπ

k · pπ
þ k=ε
2k · P

�
vðPÞ; ðA8Þ

respectively. These two expressions agree with Eqs. (13) and (14) in Ref. [69]. To this order, Vμν
SD and Aμν

SD, which areOðp2Þ,
can be neglected.
In the Low limit, we obtain

Mγ ¼
eGFV�

usffiffiffi
2

p ūðq0Þγνð1 − γ5ÞvðPÞHνð−pK; pπÞ
�
ε · pþ
k · pþ

−
ε · P
k · P

�
; ðA9Þ

where the subscript þ refers to the charged meson. The spin-averaged squared matrix element is then given by
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jMγj2 ¼ 4C2
Ke

2G2
FjVusj2SKEW

��
m2

l

2
ðt −m2

lÞ þ 2m2
Km

2
π þ 2uðm2

l − tþm2
K þm2

πÞ − 2u2

−
ΔKπ

t
m2

lð2uþ t −m2
l − 2m2

πÞ þ
Δ2

Kπ

t2
m2

l

2
ðt −m2

lÞ
�
jFþðtÞj2

þ ΔKπm2
l

t

�
2uþ t −m2

l − 2m2
π þ

ΔKπ

t
ðm2

l − tÞ
�
Re½FþðtÞF�

0ðtÞ�

þ Δ2
Kπm

2
l

2t2
ðt −m2

lÞjF0ðtÞj2
�X

γ pols

				 p− · ε
p− · k

−
P · ε
P · k

				
2

þOðk0Þ; ðA10Þ

where u ¼ ðpK − PÞ2. The last expression can also be written in terms of fþ=−ðtÞ:

jMγj2 ¼ 2C2
Km

4
Ke

2G2
FjVusj2SKEWρð0Þðy; zÞ

X
γpols

				 p− · ε
p− · k

−
P · ε
P · k

				
2

þOðk0Þ; ðA11Þ

where

ρð0Þðy; zÞ ¼ Að0Þ
1 ðy; zÞjfþðtÞj2 þ Að0Þ

2 ðy; zÞRe½fþðtÞf�−ðtÞ� þ Að0Þ
3 ðy; zÞjf−ðtÞj2; ðA12Þ

and the kinematical densities are

Að0Þ
1 ¼ 4ðyþ z − 1Þð1 − yÞ þ rlð4yþ 3z − 3Þ − 4rπ þ rlðrπ − rlÞ; ðA13aÞ

Að0Þ
2 ¼ 2rlðrl − rπ − 2y − zþ 3Þ; ðA13bÞ

Að0Þ
3 ¼ rlðrπ − rl þ 1 − zÞ; ðA13cÞ

with

z ¼ 2pπ · pK

m2
K

¼ 2Eπ

mk
; y ¼ 2pK · pl

m2
K

¼ 2El

mk
; ðA14Þ

rl ¼ ðml=mKÞ2, and rπ ¼ ðmπ=mKÞ2. Here, Eπ (El) is the energy of the pion (charged lepton) in the kaon rest frame. The
expression in Eq. (A11) can be compared directly with the results in Refs. [69,102,108].
The K → πlνl decay width without radiative corrections [11] is given by

ΓðK → πlνlÞ ¼
G2

Fm
5
K

192π3
SKEWjVusj2jFþð0ÞjIlK; ðA15Þ

where

IlK ¼
Z

tmax

m2
l

dt
1

m8
K
λ3=2ðt; m2

K;m
2
πÞ
�
1 −

m2
l

t

�
2
�
1þm2

l

2t

��
C2
V jF̃þðtÞj2 þ

3Δ2
Kπm

2
l

ð2tþm2
lÞλðt; m2

K;m
2
πÞ
CSjF̃0ðtÞj2

�
ðA16Þ

and tmax ¼ ðmK −mπÞ2.

APPENDIX B: VIRTUAL CORRECTIONS TO THE HADRONIC TAU DECAYS

The radiative corrections to the τ− → ðP1P2Þ−ντ decays at Oðp2Þ in χPT [71–73] are depicted in Fig. 12. The overall
contribution is given by [50]

δHμðt; uÞ
CV

¼ δfþðuÞðp1 − p0Þμ þ δf−ðuÞðp1 þ p0Þμ; ðB1Þ
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where

δfþðuÞ ¼
α

4π

�
2þ 1

ε
− γE þ log 4π − log

m2
τ

μ2
þ ðu −m2

−ÞAðuÞ þ ðu −m2
− −m2

τÞBðuÞ

þ 2ðm2
− þm2

τ − uÞCðu;MγÞ þ 2 log

�
m−mτ

M2
γ

��
; ðB2Þ

δf−ðuÞ ¼
α

4π

�
−5 − 3

�
1

ε
− γE þ log 4π

�
þ log

m2
−

μ2
þ 2 log

m2
τ

μ2
þ ð3uþm2

− − 2m2
τÞAðuÞ þ ðuþm2

− −m2
τÞBðuÞ

�
; ðB3Þ

with

AðuÞ ¼ 1

u

�
−
1

2
log rτ þ

2 − yffiffiffiffi
rτ

p x
1 − x2

log x

�
; ðB4Þ

BðuÞ ¼ 1

u

�
1

2
log rτ þ

2rτ − yffiffiffiffi
rτ

p x
1 − x2

log x

�
; ðB5Þ

Cðu;MγÞ ¼
1

mτm−

x
1 − x2

�
−
1

2
log2xþ 2 log x logð1 − x2Þ − π2

6
þ 1

8
log2rτ

þ Li2ðx2Þ þ Li2

�
1 −

xffiffiffiffi
rτ

p
�
þ Li2ð1 − x

ffiffiffiffi
rτ

p Þ − log x log

�
M2

γ

mτm−

��
; ðB6Þ

and Cππ;KK;K−π0;K0π−

V ¼ ð ffiffiffi
2

p
;−1; 1ffiffi

2
p ;−1Þ. Here, AðuÞ, BðuÞ and Cðu;MγÞ are written in terms of the variables

rτ ¼
m2

τ

m2
−
; y ¼ 1þ rτ −

u
m2

−
; x ¼ 1

2
ffiffiffiffi
rτ

p
�
y −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − 4rτ

q �
ðB7Þ

and the dilogarithm

Li2ðxÞ ¼ −
Z

1

0

dt
t
logð1 − xtÞ: ðB8Þ

The radiative corrections to these decays induce a dependence in the u variable. From a comparison with the results in
Ref. [11], we get the following relation:

δf̄þðuÞ ¼
α

4π

1

fþð0Þ
½Γ1ðu;m2

τ ; m2
−Þ þ Γ2ðu;m2

τ ; m2
−Þ� þ � � �

¼ α

4π

1

fþð0Þ
½ðu −m2

−ÞAðuÞ þ ðu −m2
− −m2

τÞBðuÞ� þ � � � ; ðB9Þ

and

δf̄−ðuÞ ¼
α

4π

1

fþð0Þ
½Γ1ðu;m2

τ ; m2
−Þ − Γ2ðu;m2

τ ; m2
−Þ� þ � � �

¼ α

4π

1

fþð0Þ
½ð3uþm2

− − 2m2
τÞAðuÞ þ ðuþm2

− −m2
τÞBðuÞ� þ � � � : ðB10Þ

FIG. 12. Photon loop diagrams that contribute to the τ− → ðP1P2Þ−ντ decays.
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APPENDIX C: τ − → ðP1P2Þ− ντ DECAYS

After the inclusion of the virtual-photon radiative cor-
rections to the form factor in Appendix B, the amplitude for
the τ−ðPÞ → P−

1 ðp−ÞP0
2ðp0Þντðq0Þ decays is given by

M0 ¼
GFVuD

ffiffiffiffiffiffiffiffiffi
SEW

p
ffiffiffi
2

p Hνðp−; p0Þūðq0Þγνð1 − γ5ÞuðPÞ:

ðC1Þ
Thus, the spin-averaged squared amplitude follows:

jM0j2 ¼ 2G2
FjVuDj2SEWfC2

SjF0ðt; uÞj2DP−P0

0 ðt; uÞ
þ CSCVRe½Fþðt; uÞF�

0ðt; uÞ�DP−P0

þ0 ðt; uÞ
þ C2

V jFþðt; uÞj2DP−P0

þ ðt; uÞg; ðC2Þ
where we have defined Fþ=0ðt; uÞ in Eq. (32) and the

expressions forDP−P0

0 ðt; uÞ,DP−P0

þ0 ðt; uÞ andDP−P0

þ ðt; uÞ are
given in Eqs. (9)–(11).
The differential decay width in the tau rest frame is

d2Γ
dtdu

¼ 1

32ð2πÞ3m3
τ
jM0j2; ðC3Þ

where t ¼ ðp− þ p0Þ2 is the invariant mass and u ¼
ðP − p−Þ2 ¼ ðp0 þ kþ q0Þ2. The physical region is limited
by ðm− þm0Þ2 ≤ t ≤ m2

τ and u−ðtÞ ≤ u ≤ uþðtÞ, with

u�ðtÞ ¼ 1

2t

h
2tðm2

τ þm2
0 − tÞ − ðm2

τ − tÞðtþm2
− −m2

0Þ

� ðm2
τ − tÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðt; m2

−; m2
0Þ

q i
; ðC4Þ

and λðx; y; zÞ ¼ x2 þ y2 þ z2 − 2xy − 2xz − 2yz.
The invariant mass distribution is obtained integrating

upon the u variable

dΓ
dt

¼ G2
FSEWjVuDj2m3

τ

384π3t

�
1

2t2

�
1 −

t
m2

τ

�
2

λ1=2ðt; m2
−; m2

0Þ

×

�
C2
V jFþðtÞj2

�
1þ 2t

m2
τ

�
λðt; m2

−; m2
0Þð1þ δ̃þðtÞÞ

þ 3C2
SΔ2

−0jF0ðtÞj2ð1þ δ̃0ðtÞÞ
�
þ CSCV

4ffiffi
t

p δ̃þ0ðtÞ
�
;

ðC5Þ
where

δ̃0ðtÞ ¼
R uþðtÞ
u−ðtÞ D

P−P0

0 ðt; uÞ2Re½F0ðtÞδF�
0ðt; uÞ�duR uþðtÞ

u−ðtÞ D
P−P0

0 ðt; uÞjF0ðtÞj2du
; ðC6aÞ

δ̃þðtÞ ¼
R uþðtÞ
u−ðtÞ D

P−P0

þ ðt; uÞ2Re½FþðtÞδF�þðuÞ�duR uþðtÞ
u−ðtÞ D

P−P0

þ ðt; uÞjFþðtÞj2du
; ðC6bÞ

δ̃þ0ðtÞ ¼
3t

ffiffi
t

p

4m6
τ

Z
uþðtÞ

u−ðtÞ
DP−P0

þ0 ðt; uÞðRe½FþðtÞδF�
0ðt; uÞ�

þ Re½F0ðtÞδF�þðuÞ�Þdu: ðC6cÞ

APPENDIX D: KINEMATICS

As in Refs. [11,51,53,109], after an integration over
DIV=III and DIII, the functions in Eqs. (14) are given by (we
note that K11 is numerically negligible)

J11ðt; uÞ ¼ log

�
2xþðt; uÞγ̄

Mγ

�
1

β̄
log

�
1þ β̄

1 − β̄

�
ðD1aÞ

þ 1

β̄
½Li2ð1=Y2Þ − Li2ðY1Þ þ log2ð−1=Y2Þ=4

− log2ð−1=Y1Þ=4�; ðD1bÞ

J20ðt; uÞ ¼ log

�
Mγðm2

τ − tÞ
mτxþðt; uÞ

�
; ðD1cÞ

J02ðt; uÞ ¼ log

�
Mγðm2

τ þm2
0 − t − uÞ

m−xþðt; uÞ
�
; ðD1dÞ

K20ðt; uÞ ¼ K02ðt; uÞ ¼ log

�
x−ðt; uÞ
xþðt; uÞ

�
; ðD1eÞ

where

x�ðt; uÞ

¼ −m4
− þ ðm2

0 − tÞðm2
τ − uÞ þm2

−ðm2
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0 þ tþ uÞ
2m2

−

� λ1=2ðu;m2
τ ; m2
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−; m2

0Þ
2m2

−
: ðD2Þ

These expressions are written in terms of

Y1;2 ¼
1 − 2ᾱ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − 2ᾱÞ2 − ð1 − β̄2Þ
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with
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τ þm2
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;
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