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The radiative corrections to the 7= — (P P,) v, (P, = x, K) decays are calculated for the first time
including the structure-dependent real photon corrections, which are obtained using resonance chiral
theory. Our results, whose uncertainty is dominated by the model dependence of the resummation of the
radiative corrections and the missing virtual structure-dependent contributions, allow for precise tests of
Cabibbo-Kobayashi-Maskawa unitarity, lepton flavor universality, and nonstandard interactions.
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I. INTRODUCTION

Semileptonic tau decays are well known to be a clean
laboratory for studying QCD hadronic matrix elements at
energies below ~1.8 GeV [1,2], where the light-flavored
resonances play a key role. All nonperturbative information
of the one-meson tau decays is encoded in the corresponding
P decay constants, that are best determined in lattice
QCD [3]. Two-meson tau decays are specified in terms of
two form factors, whose knowledge has improved over the
years thanks to the use of dispersion relations [4—16] and
nourished with high-quality measurements [17-24]. A similar
good understanding has not yet been achieved in three-meson
tau decays [8,25-33] or higher-multiplicity modes, preventing
for the moment their use in searches for new physics.

On the contrary, one- and two-meson tau decays have
enabled significant and promising new physics tests in
recent years [34-46]. At the precision attained, radiative
corrections for these decay modes become necessary,
which motivated their improved evaluation for the 7= —
P~v, cases [43,44,47-49]. For the dipion tau decays, the
need for these corrections first stemmed from their use in
the dispersive integral rendering the leading-order hadronic
vacuum polarization contribution to the muon g—2 [50-52],
which was again the target of our recent analysis [53]
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(see also Refs. [54-56]). Reference [11] put forward that,
assuming lepton universality, semileptonic kaon decay
measurements could be used to predict the corresponding
(crossing-symmetric) tau decays, yielding a V, determi-
nation closer to unitarity than with the tau decay branching
ratios. In that work, the model-independent radiative cor-
rections were taken into account and the structure-dependent
ones were estimated (see also Ref. [57]), resulting in a
relative large (conservative) uncertainty. Including these
model-dependent effects is one of our main motivations:
here we focus on those with a real photon and defer the
virtual photon ones to a later dedicated study. Instead of
relying on lepton universality and checking Cabibbo-
Kobayashi-Maskawa (CKM) unitarity [11], one can in
principle test the latter, comparing the crossed channels,
or directly bind new physics nonstandard interactions from
77 = (Kn)v, decays [38]. For completeness, we also
include the radiative corrections to the dikaon tau decays
and recall our reference results for the dipion mode [53].
As noted in Ref. [46] (see Fig. 1, for instance), bounds on
nonstandard interactions from hadronic tau decays are
competitive and complementary to those coming from
LHC searches and electroweak precision observables.
As a relevant example, the precise comparison of 7 —
7%, (y) with eTe™ — zt7z~(y) data, which requires the
radiative corrections computed in this work (see also
Ref. [53]), is able to reduce the allowed new physics area
(in the relevant Wilson coefficients plane) by a factor of
~3 [46]. Real radiation was computed for the 7~ — )z~ v,
decay channels in Ref. [58], showing that it can contend with
the nonphoton decays, as G-parity and electromagnetic
suppressions compete. Finally, we also estimate the corre-
sponding results for the K~5") channels.
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FIG. 1. Feynman diagrams contributing to the term propor-
tional to the metric tensor ¢ in Eq. (3).

The structure of the paper is as follows. In Sec. II, we
recall the model-independent description of the 77 —
P PYu,y decays and give the leading real-photon model-
dependent corrections for the Kz, KK and zz cases, where
only the latter are known (see, e.g., Refs. [51,53]).
Branching ratios and spectra for the radiative decays are
analyzed in Sec. IV, and the corresponding radiative cor-
rection factors are computed in Sec. V. We show the
consequences of including them in Sec. VI, where we bind
new physics couplings in an effective approach. Finally,
we conclude in Sec. VII. Appendixes cover K,; decays
(Appendix A), structure-independent virtual corrections to
dimeson tau decays (Appendix B), the nonradiative decays
(Appendix C), and the kinematics of these three- and four-
body processes (Appendix D).

IL THE 7~ — P{ P,y DECAYS

The most general structure for the decays 7(P) —
PT(p-)P5(po)v.(q')y(k) is given by

eGFV*D Hy(p—vpo)— / 5
_ u * Vil — -k
M="5 ek p "I (1= )m L=k

< pu(P)+ (V= A)a(q )y, (1 -7 )u(P)|. (1)

with V,p (D = d, s) the corresponding CKM matrix element
and where the hadronic matrix element can be written as

A_
H"(p_,po) = CyF  (1)Q" + CSTOCIDFO(t)7 (2)
with £ = ¢°, Q”— (P- = Po)’ =22¢", ¢ = (p- + po)",
and A;; =m? - m . One recovers the usual definition of

H%, [38] by replacmg P- — Pk, Po = Prand A_y — Ay,
for K=2°% and p_ — p,, py— pg, Cys— —Cys and
A_y = —Ag, for K7~ (we comment on the identifications
for the P; = P, channels below). In all cases, gauge
invariance implies k,V** = H"(p_, p,) and kA" = 0.

The structure-independent term is given by
H'(p-+kpo)2p_+ k) _ . Fi(f)=F,(1)

Ve = vt
2% p_ + K kg 24
A_
{1 =TGR - CoF ()]
Ay / /
t 2[CsFo(f') = CyF ()]
Cst
- E) = Fal0] bt )
q
where C"ff”o = Cg(f”o = 1/+/2 for the K~z° channel and
C"fo”_ :C§° " =—1 for the K% one, with ¢ =
(P — ¢')%. The main difference between these two decay

modes comes from the overall sign difference—except for
the first term in the second line of Eq. (3)—that we absorbed

in our definition of C{f?gf and through the order of the
arguments of H” in the above equation. Atleading order (LO)
in chiral perturbation theory (yPT), contributions propor-
tional to ¢* in V4| stem from the dlagrams in Fig. 1.

For the other tau decay modes, VY is also obtained from
Eq. (3). In particular, we are also interested in the 7= —
K=K,y decays, where CK &K' = CK'K* = _1!

The structure-dependent part is given by
Vap = vi(k- p_g" = k"pL) + va(k - pog" — k¥ pp)

+ v3(k - popt — k- p_pi)p~

+ gk popt —k-p_pp)(p-+po+ k) (4)
and
Am/ = iale;w/m(pO - p—)/)ka + ia2(P - ql)yeﬂpmk/’p’ipé

+ ia38ﬂup0kp (P - q/)a + ia4(p0 + k)ugﬂlpnklpepgv

(5)

where p_ and p refer to the momentum of the charged and
neutral meson, respectively.

From Eq. (3), it is easy to show that the Low’s theorem

[59] is manifestly satisfied:

u"

=
k-p_ (P-.Po)

{0+ 5210k - 0.0
()
(k:pop’i—p())( _+ Do) +2<k pop"—p())

k-p
A, dF
Ay o()]Jr

v =

2A0

[CsFo(t) = CyF (1)]

Q”+C q

d t dt Ofk),  (6)

'We discuss briefly the 7~ 70 case at the end of Sec. Il A; see
Ref. [53] for further details.
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and the amplitude reads

eGpVupVSew
V2

where Sgw encodes the short-distance electroweak corrections [60—67].
In the Low’s limit, one gets

M= 0 (- o)l (1 = PP (P = ) O ()

mw—wewm%wﬁmmw”<> CCyRe[F () F3(]D7 (1.1)

P-el|?
CYIF (DY (1, )}Z — "7z O (8)
ypols
where
. 2 A, A2 m2
Dipo(t,u)fm—(m — 1)+ 2mim? = 2u(m? —t + m} + m?) + 2u> + — %(2u+t—m$—2m%)+t—;0%(m$—t),
©)
- p0 A%Omﬁ t
Dy () == 1--5) (10)
- Aog_m? A

DL (1,) = 0= [2u—|—t—m%—2m%—|—t_0(mg—t)}, (11)

with u = (P — p_)?. In this way, besides the Low theorem, the Burnet-Kroll theorem [68] is also explicitly manifest.
Thus, after integration over neutrino and photon 4-momenta, the differential decay width in this approximation reads

dr® #Vup|*Sew po
—"7C2F IDP P (t, C,C(Re|F* (1)F, D t
iy, = 1ot (CHFO(OP D (0) + € CRelF (O Fo(0)DL (1.0
CV|F+(Z‘)|2D§:P“(L u)}grad(t’ u, My)’ (12)
where (see Refs. [50,51])
grad(t’ u, My) = gbrems(tv u, M}/) + grest<t7 u)’ (13)
with
a
gbrems(t’ u, M}/) = ; (Jll(t’ u, M}/) + J20(t’ u, My) + J02(t’ u, My))? (148')
a
Gres(1.1) = — (Ky1 (1, u) + Koo (t,u) + Koo (1. 1)) (14b)

The relevant expressions for J;;(t,u,M,) and K;;(t,u), which correspond to an integration over D' and D/,
respectively, can be found in Refs [11,51,53] and in Appendix D.?
Integrating upon the u variable in Eq. (12), one gets

dar G%SEw|V D|2m3 1 t 2
| =R Dl Tt (- — ) AV2(y, 2 m?
dr |y 3847°1 220 \" w2 (1, m=, my)
2t -
[P0 (1425 )t d)3.0) + 3R (OPR0)| +C:Cv B0} (19

with

The function K 11(¢, u) turns out to be numerically negligible and is not quoted anywhere; see, e.g., Refs [36,50].
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S (t) . f‘:{((t? Dg_PO(t, u)gbrems(tv u, My)du (16a)
0 o u*(t) P—PO
Sy DG 7 (8 u)du
S (l) o fl?:((tl)) Di7P0<t, u)gbrems(ta M,My)du (16b)
* o ut (1) ~p-po
Jurwy DY (1, u)du
5 30t [ut)
5+0(t) = Am® " DiOPO(t, u)gbrems(t, u,My)
T Ju (1
x Re[F (1)Fy(1)]du. (16¢)

The remaining contribution, dI'/dt|y y;, which corre-
sponds to the integration over Dyy i With gyeq (2, u) instead
Of Grems (2, 1, M,,), is almost negligible and only becomes
relevant near threshold. In Ref. [69], the subleading
contributions in the Low’s approximation were studied,
showing that they are not negligible and need to be taken
into account to get a reliable estimation.

III. STRUCTURE-DEPENDENT CONTRIBUTIONS

The evaluation of the structure-dependent tensors, V&p,
and A" in Egs. (4) and (5), requires nonperturbative
methods or lattice QCD (which has only been explored
for the 7z case; see [70]). The tau lepton mass value probes
the hadronization of QCD currents in its semileptonic
decays beyond the regime of validity of chiral perturbation
theory [71-75] (yPT), which is the low-energy effective
field theory of QCD describing P meson physics. To extend
the applicability of the chiral Lagrangians to the energy
region where meson states resonate, a successful strategy
has been to include the corresponding fields as explicit
degrees of freedom into the action, using approximate
flavor symmetry, without additional assumptions affecting
the possible resonance dynamics [76,77]. This procedure
was later christened resonance chiral theory (RyT; see, e.g.,
Ref. [78]) and yields as a result the saturation of the y PT
low-energy constants upon resonance integration.

Explicitly, the construction of the relevant Lagrangian
pieces including resonances uses the chiral tensors [75] (we
only quote those relevant in our computation)

w, = ilu' (0, — ir,)u —u(9, —it,)u'l,

= uFu" £ u"Fi u,
ye = u'yu' £ uyu, (17)

where the pseudo-Goldstone bosons are included in u via
(4, are the Gell-Mann matrices, so that ¢* = z° in the
isospin symmetry limit)

o L)
—exp(— ), @=Y Ty 18
! ep(ﬁf) ;x/i (18)

and left- and right-handed sources ¢, and r, enter through

Fi = o' = 0 — il ] = eQF" + -

(2 1 1

x=27,r,; Q—dlag<3, 3 3>, (19)
with x, = eQA, +---, being A, the photon field and
Fr = gtAY — 0”A*  the corresponding field-strength
tensor. Spin-zero sources (s and p) appear in y. through
¥ = 2B(s + ip), where we recall that the two leading chiral
low-energy constants (f and B) determine the light-quark
condensate in the chiral limit, —Bf? = (0|gq|0), with f ~
90 MeV the pion decay constant. The numerical value of B
is not needed, as it only enters the pseudoscalar meson
squared masses, which are proportional to it. Indeed, in the
isospin symmetry limit, diag(2Bs) = (m2, m2,2m% — m2),
where s accounts for the (diagonal) light-quark mass
matrix, which ensure chiral symmetry breaking as in QCD.

The RyT Lagrangian includes the lowest-order yPT
Lagrangian in both parity sectors, which is

2

Lithres = 4 <”ﬂu/4 +Z+>’
where WZW stands for the chiral anomaly contribution
worked out by Wess-Zumino and Witten [79,80].

In addition, Lg,7 has pieces including resonance fields
and chiral tensors. These are usually incorporated taking into
account the order (within the chiral counting) of their
contributions—upon resonance exchange—to the y PT cou-
plings [76,77,81,82], as well as their behavior [83] in the
limit of a large number of colors [84,85]. QCD asymptotic
behavior forbids (linear combinations of) operators with
increasing number of derivatives. In this way RyT bridges
between the low-energy behavior of yPT and the high-
energy constraints of perturbative QCD, keeping predictivity
for a set of related observables, to a given precision, without
unnecessary assumptions (like, for instance, vector meson
dominance [86] or any additional symmetry of gauge type
related to them [87]). Within this framework, the need for
nonresonant contributions was explored, e.g., in Ref. [88] for
the @ — 7° transition form factor, where it was found that they
could play a role above 2 GeV only. Taking this into account
and the fact that we are limited kinematically by the tau mass,
we neglect nonresonant pieces in the following.

Apart from contributions that are suppressed by approxi-
mate flavor symmetries (more on this below), the next-to-
leading-order yPT couplings are saturated by spin-one
resonance exchange [76,77] coming from the following
operators:

['gggres = 'CWZW ’ (20)

Fy . Gy
Ly =—=V ' +i—=(V, [u", u]),
\%4 2\/§</4f+> 2\/§<ﬂ[ ]>

Fy
Ln=—A (4, ), 21
A 2\/§< w ™) (21)
where V,, = 3:0% V4,, and analogously for the axial-

vector resonances. For convenience, spin—one resonances
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FIG. 2. Vector and axial-vector meson exchange diagrams contributing to the 7~ — Py PYv,y decays at O(p*). V? stands for the p°, @
and ¢ resonances, V- = K*~ for the Kz modes and V~ =p~ for the K K° one, and A~ =K7 in K K° and K~ 7°,

and A~ = ay in 7~ K°.

are worked out in the antisymmetric tensor field formalism
[76,77]. For completeness we note that the kinetic terms
come from the Lagrangian (which also includes inter-
actions, hidden in the covariant derivative, that are however
not needed in what follows, so V* ~ 9%)

My

EKin
Res 4

(22)

- <vl V/h/vp Vpu> + <V;w VW> ’

1

2
with obvious replacements for axial-vector resonances A,
U(3) symmetry in the (axial-)vector resonance masses is
broken by operators of the form (V,,V*y. ), V < A [89-91],
which can accommodate the measured spectra (in this way we
will simply replace the different spin-one resonance masses by
the PDG values [92] in the following). Analogously, breaking
of this flavor symmetry also affects Fy 4. However, in
the vector case, the coupling giving this shift’ [81] is con-
strained by short-distance QCD to vanish within the scheme
considered in Ref. [93] (see also Ref. [88], where these
contributions were neglected a priori). Based on this, flavor
symmetry on Fy 4 is assumed in the remainder of the paper.
|

FyGy 1M
v ==\ T3 s
V212 M> 3MZ 0 3M,

All resonance contributions to the »; form factors (those
to the a; are differed by one chiral order and thus neglected)
depend on ratios of resonance couplings over the meson
FyGy Fy F}

ForF
asymptotic QCD. Therefore the well-known SU(3) sym-
metry breaking which causes fx ~ 1.2f, [92] cannot be
accounted for, within the considered simplified scheme,
without conflicting with short-distance QCD requirements.
Thus, we are using f ~ 90 MeV for the »; also in the
strangeness-changing channels.” The dispersive construc-
tions giving the F,, form factors account for flavor
symmetry breaking in the Kz channels, as required by
the precision of the corresponding measurements, which
fed the phase shifts entering the dispersive integrals.

decay constant ( ), which are constrained by

A. Vector contributions

Including those Lagrangian terms that, upon resonance
integration, contribute to the yPT O(p*) low-energy
constants, we have found the following contributions to
the vector form factors v; in Eq. (4), which are depicted
in Fig. 2:

+ 298 14 - A0

+ 2M5D (1) + M5 (1 — Ag,) D! (1) D! (t/)}

S |3
WA
2V2f*M>

F% (M

+ R E—
VaPa U T2

1M 2M

2
P

3M;, 3M;

1 1
% —7Zket > t) D! (pk + k)%,

)1 = DRk - M)

(23a)

‘It is A¢ in the notation of Ref. [81] and Ay in Ref. [93], with A/ = 4.
*The associated error is, however, much smaller than the uncertainty that we will find in our results; see Sec. V.
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F,G 1 1 M2 2 M2
V2= (1 o) | =5 (1375 T35 ) PR () = MADR () DR ()
V2*M 2 3M2  3M
P @ ¢
F? 1 1 M2 2 M?
+W]X21\42 |:—§ (1 +§M—g +§M£> (1 + t’D}l(t’)) —M/%D}l(l‘/)]
P ® ¢
F,%t 2 2 -1 2
+\/§f2M_2 (M, —mg — k- pg)Dx, [(px + k)°], (23b)
K,
Fi | 2
vy = Dy + k)|, 23¢
= VA x [(Px + k)7 (23¢)
2FyGy o, F, LMy 2MpN\
= e PeOPE O e g T ) P 9
P w q
for K=",
FyG 1 1 M2 2 M?
v = - szMX [2 +2MDEH (1) + 5 (1 + §M£ §M3> (t+ Agr) DRt (1) + (1 + AKﬂ)M/%Dgl(t)Dgl(t’)}
4 2] ¢
F?, 1 I M2 2M? 1 I M2 2M?
—— Y =MD () = (1 4+ L+ L) D () += (-3 +=-—L4+Z-2L
2f2M/2,{ oDl Hz( +3M§,+3M; i Hz +3Mg)+3M§,
F? 1 1
- f—zﬁg (Mﬁl —EZK#EI)D;,' [(Pe + k)%, (24a)
2o - s [-aogongi) -3 (14358 + 208 oo +1 - ok - 200
U2 ==y U7 Bka) | =MD (D P 1) = 5 32 T3z ) K 32 32
M3 2 3M;, 3M; 3M;, 3M;
F?, 1 I M2 2M? 1 1 M2 2M?
— VvV MDA () = (1224 22\ DY+ = 342224 27°°
2f2Mg[ oD (1) 2< +3M§,+3M§5 K()+2 +3M3,+3M;
FZ
= apgz (Ma, = mzk - po) DG (pr 4 K)?) (24b)
Fi
U3 =—="5:> Dgll[(pn+k)2}7 (240)
M
2FyGy oo Fy IM; 2Mp\
1)4:7]02 DKX(Z‘)DK*(I)—ZJ(QMZ §W+§M_% DK*(I), (24d)
4 @ ¢

for K°z~, and

FyG 1M2, 2M2,
v =——Y [1+— P4z é—}-(I—AKKo)D;l(t)+2M/2,D;1(t/)+M/2,(t—AKKo)D;l(t)D;l(t/):|

*M2 3M;  3M;
F?, [ M5 2M; F3 1 1

eV ST ST Dl () = MEDSN ()| = A (MY — g0 = | DR (- + k)7, (259)
21°M2 | 3M%L 3M; ’ pep oMz R 27 g )Tk

B [ e+ 20— 1 M)} (0= M0+ 8 )07 (0519

Uy =— LT3 TR T K~ K° - K K°
szg 3M(%, 3M2/ P P P 4
F%/ 1 M/21 2M/2’ -1 2n-1 F,%\ 2 2 -1 2
_TM% [—gM—Z)—gM—é— D, (1) —M,D;' (1) —sz%(l (M, —mg-—k-p_)Dx![(p- +k)*], (25b)

053003-6



RADIATIVE CORRECTIONS TO THE 7~ — (PP,) v, ...

PHYS. REV. D 109, 053003 (2024)

// K_ // K_
FANTY @AY
\\ K \\
N TEO N no
FIG. 3. Axial contributions to the 7= = K~zv,y decays at
o(p*)

= — A _DM(p_ + k)7, 25
==y DR [0~ + 7 (25¢)
2F,Gy F2
vy = ——LDYN\D; (¢) - =L D1 (¢), 25d
4 f2 P () P ( ) szlz) P ( ) ( )

for K~K° where £_o=m?+m} and Dg(x) = M% —
x — iMTg(x). Off-shell resonance widths’ are given in terms
of the leading pseudo-Goldstone boson cuts [26,27,94].

It is straightforward to show that, except for a Clebsch-
Gordan coefficient (CGC) factor, one recovers the expres-
sions found in Refs. [51,53] for the vector form factors of
the 7= — 7~ 7%,y decays in the isospin-symmetry limit.

All the former resonance contributions are given in terms
of three couplings: Fy, responsible for instance of the
coupling of the vector resonance to the vector current; Fy
for the couplings of the axial resonance; and Gy which
yields, among others, vertices between the vector resonance
and a couple of pseudo-Goldstone bosons (see, e.g.,
Ref. [76] for further details).

B. Axial contributions

The Feynman diagrams that contribute to these decays
are depicted in Figs. 3-5. At O(p*), the axial form factors
a; in Eq. (5), which receive contributions from the Wess-
Zumino-Witten functional [79,80], are given by

N, N.
a =————, a, = — ,
TN 26Vl - md)
N.
4y = —— e 26
3 24\/§ﬂ2f2 ( )
for K= 7°,
N.
— e 27
BT T4 (27)

for K%z~, and

The on-shell width corresponds to the imaginary part of the
pole position of the resonance. The imaginary part of the
corresponding loop function provides an off-shell width function,
which extends off the pole [94].

FIG. 4. Axial contributions to the 7= — K’z v,y decays at
o(p*).

. KO
KA Y
S K-
FIG. 5. Axial contributions to the 7~ — K~ K%,y decays at
Oo(p*).
N,
a3 =——, 28
P 24022 (28)

for K-K°, where N, = 3 is the number of colors and f is
the pion decay constant in the chiral limit, f ~90 MeV.

In Fig. 5, only one diagram contributes to the 7~ —
K~ K%,y decays similarly to the 7= — K°z"v,y decays.
This is because the K~ — K27y (or 7~ — K~K") vertex
is absent in the WZW Lagrangian.6 We reproduce the
known anomalous contributions [51,53] for the 77 —
a v,y case. We neglect resonance contributions in the
anomalous sector, which start at O(p®) in the chiral power
counting [82].

IV. RADIATIVE HADRONIC TAU DECAYS

The differential rate for the z= — P PJv,y decays in the
7 rest frame is given by

_ ) ton
dl’ = Wz |IM? d,, (29)

7 spin

where d®, is the corresponding four-body phase space,
given by

dp.  dpg

y d3q’ d3k
(27)*2E, (27)*2E,

(30)

SThis feature was already studied for the K,; decays in
Ref. [95], where the nonlocal kaon pole term is only present
in A, for K — 7°¢* v,y decays.
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TABLE 1. Branching ratios Br(z~ — K~ 2%;,y) for different
values of ES™. The third column corresponds to the complete
bremsstrahlung, and the fourth and fifth to the O(p*) contribu-
tions.

BR(Fy = V2F) BR(Fy = V/3F)

ES Br(Low)  BR(SI) [O(p*)] [O(p")]

100 MeV 34 x107° 3.0x 107 3.5x10°° 3.8 x 1076
300 MeV 6.2 x 1077 34 x 1077 6.3 x 1077 9.4 x 1077
500 MeV 7.4 x 1078 35x 1078 1.5x 1077 3.3 x 1077

and | M|? is the unpolarized spin-averaged squared ampli-
tude. Inasmuch as this amplitude is not IR finite, we follow
the same procedure as in Refs. [51,53] where a photon
energy cut E5" was introduced to study the dynamics of the
v~ — 7~ 7',y decays.

In this analysis, we call “complete bremsstrahlung” or
Slmply “SI” the amplitude with V1234 = A1234 = 0.
For the O(p*) contributions, as in Ref. [53], we dis-
tinguish between using the set of short-distance constraints
Fy =+2F,Gy =F/\2[77]and F, = F;or Fy, = \/3F,
Gy = F/\/3 and F, = /2F [81,82,96,97]. The former
corresponds to the constraints from two-point Green
functions and the second to the values consistent up to
three-point Green functions, which include operators that
contribute at O( p®) (that we are not including in this work).
The difference between both sets of constraints has been
employed to estimate roughly the model-dependent error of
this approach [43,44,49,53,91]. In all our subsequent
analyses, the O(p*) results include the SI part and the
structure-dependent part (either with the Fy = v/2F or
with the Fy = \/§F set of constraints).

Integrating Eq. (29) using the dispersive vector and
scalar form factors [6,7,9,13,14,98-100], we get the Pl‘Pg
invariant mass distribution, the photon energy distribution
and the branching fraction as a function of Ej". The
outcomes are depicted in Figs. 6-9 and summarized in
Tables I-III.

The branching fractions of the radiative decays as a
function of E;"* are shown in Fig. 6. In Tables I and II, one
can see that for E;‘“ < 100 MeV the main contribution at
O(p*) comes from the complete bremsstrahlung (SI) amp-
litude in agreement with the results in Refs. [51,53,55] for
the 7~ — 7~ 7%,y decays (see also the recent Ref. [101]). It
is also seen that the Low’s approximation is sufficient to
describe the K~ z" decays up to these energies, while this is
not the case for the Kz~ ones. Contrary to the 7~ —
(Kz)~v, transitions, where the K~z and z~K° decay
modes differ only by a squared CGC factor in the isospin
symmetry limit, the radiative decays are more subtle. At
low photon energies, these two modes are approxi-
mately related by Br(z = K°z7v,y)/Br(t~ - K= 7%,y) ~
2(mg/m,) ~7, which explains their hierarchy. In both
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9 ]
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fffff o™y, Fy=\2 f
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T T T T T
1076 ~
*
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L 1078 1
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E;‘“ [GeV]

FIG. 6. Branching ratio for the 7~ — K~ 7%,y (top), the 7~ —
K%z v,y (center) and the 7= — K~ K%y (bottom) decays as a
function of E;". The dotted line represents the bremsstrahlung

contribution; the solid line and dashed line represent the O(p*)

corrections using Fy = V3F and F v = V2F, respectively. The
red one corresponds to the Low approximation.

decay channels, the SD contributions seem to be subdomi-
nant, while the 7~ — K~ K,y decays are more susceptible
to these contributions (see Table III).

In Fig. 7, the decay spectrum is depicted with v; =
a; = 0 for different EJ" values. For the 7~ — (Kz)7v,y
decays, the first peak is due to bremsstrahlung off the
charged meson, i.e. K~ or z~, and the second one receives
contributions from bremsstrahlung off the 7z lepton and
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TABLE II. Branching ratios Br(z~ — K%z~ v,y) for different
values of ES™. The third column corresponds to the complete

bremsstrahlung, and the fourth and fifth to the O(p*) contribu-
tions.

BR(Fy = V2F) BR(Fy = V/3F)

ES Br(Low)  BR(SI) [O(p*)] [O(p")]

100 MeV 2.6 x 10~ 1.4 x 1073 1.6 x 1073 1.6 x 1073
300 MeV 6.2x107° 1.1 x 10 1.7x107° 1.9 x 1076
500 MeV 1.0 x 10° 7.1 x 1078 2.0x 1077 2.4 x 1077

resonance exchange. In Fig. 8, we compare the distri-
butions for E;“t =300 MeV using the Low’s approxi-
mation (red dashed line), the SI amplitude (dotted line),
and the O(p*) amplitude with F\, = /2F (dashed line)
and F, = v/3F (solid line). The most important contri-
bution for the (Kz)~ decay channels comes from the
K*(892) resonance exchange around s ~ 0.79 GeV?2. It is
worth noting that for the 7~ — K%z~ v,y decays, there is a
huge suppression around the K*(892) peak when the full
distribution is compared to the Low one. The reason for
that is the following. While the Low approximation in
Eq. (7) includes only the O(k~!) dominant contributions
from the bremsstrahlung off the initial tau lepton and the
final charged meson, the full amplitude in Eq. (1)
contains also the O(k") subdominant contribution from
the first line of this equation, which is common to both
(Kz)~ channels, plus all the O(k°) contributions from
Eq. (6). Among the latter, the leading numerical con-
tribution comes from the first term in the second line of
Eq. (3), which has different sign depending on the
channel, as already mentioned after that equation. This
fact makes that in the case of the K~z° mode these two
leading subdominant contributions approximately cancel
each other and the Low and full distributions are quite

TABLE III.  Branching ratios Br(z~ — K~ K°v,y) for different
values of ES™. The third column corresponds to the complete

bremsstrahlung, and the fourth and fifth to the O(p*) contribu-
tions.

BR(Fy = V2F) BR(Fy = V/3F)

ES BR(Low)  BR(ST) [O(p")] [O(p")]

100 MeV 53 x 107 3.7x 107 6.8 x 1077 9.4 x 1077
300 MeV 48 x 1078 1.9x 108 1.7x 1077 3.1 x 1077
500 MeV 3.7x107°3.0x 10710 1.1 x 1078 29x%x 108
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FIG. 7. The K~z (top), Kz~ (center) and K~K° (bottom) SI
hadronic invariant mass distributions for several E;“‘ values.

similar at the K*(892) peak. Conversely, for the K'z~
mode, the two contributions combine with the overall
effect of decreasing considerably the peak. Finally, we
just mention that the K~K° invariant mass distribution is
more sensitive to SD contributions, although the p(1450)
effect is hidden in the spectrum because of the corre-
sponding kinematical suppression.
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FIG. 8. The K~2° (top), K°z~ (center) and K~K (bottom)

hadronic invariant mass distributions for E;C,‘" > 300 MeV. The

solid and dashed line represent the O(p*) corrections using F, =
V3F and Fy, = \/2F, respectively. The dotted line represents the
bremsstrahlung contribution (SI). The red one corresponds to the
Low approximation.

The photon energy distribution is shown in Fig. 9. The SI
amplitude in all these decays governs the distribution for
E, £ 100 MeV, in agreement with the outcomes for the
branching ratio. However, the SD contributions become
relevant for E, 2 250 MeV. This feature makes these
decays an excellent probe for testing SD effects. The same
analysis for the 7~ — 7~ 2%,y decays can be found for
instance in Ref. [53].
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FIG.9. Photon energy distribution for the 7~ — K~ 7%,y (top),
the 7~ — K%z~ v,y (center) and the 7~ — K~ K%,y (bottom)
decays normalized with the nonradiative decay width. The dotted
line represents the bremsstrahlung contribution and the red one
the Low approximation. The solid and dashed lines represent the

O(p*) corrections using Fy = v/3F and Fy, = \/2F, respectively.

V. RADIATIVE CORRECTIONS
The overall differential decay width is given by

dr
dt

_dar
re)

n dar
pp Al

n dar
m o dt

dr

wm o di

. (31)

rest

where the first term is the nonradiative differential width
in Eq. (C5), the second and third terms correspond to the
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Low approximation integrated according to the kinematics
in Refs. [51,53], Eq. (15), and the last term includes the
remaining contributions.

To evaluate the first term in the right-hand side of
Eq. (31) we use two models for the factorization of the
radiative corrections to the form factors. Both of them were
pioneered in K3 decays and have also been employed in
the 7~ — (Kx) v, processes. As we will see, the difference
between both results will saturate the uncertainty of our
real-photon radiative corrections. To the best of our knowl-
edge, the importance of the factorization model for the
former corrections was not previously recognized in the
literature.

The contributions to the form factors due to virtual
corrections can be written as

Foyo(t,u) = Fo(t) + 0F  jo(t,u), (32)
where 6F(t,u) = 6F (t,u) —I—AL_O(SJ_‘_(M). In model 1,
SF . (t,u) is given by [51]

% -2 [2<mz +m2 —u)C(u. M,)

+21log <mﬂ‘4’?ﬂ Yo (w),  (33)

14

while in model 2, it is written as [11] [we note that in this
second case, the correction &f, (u) to 8F,(t,u) is not
modulated by the vector form factor F_ ()]

&’Fi%)) -2 {z<mz +m2 —u)C(u. M,)
(5] e

where C(u,M,), 6f,(u) and Sf_(u) are defined in
Appendix B. A similar factorization prescription was
used in Ref. [102], where model 2 was preferred over
model 1 for the K3 decays since the loop contributions
to f.,_(u) are different.” We will see here that model 1
factorization warrants smoother corrections than model
2 when resonance contributions are included, as reso-
nance enhancements will cancel in the long-distance
radiative correction factor Ggy(7) in Eq. (35), as
opposed to model 2. This motivates our preference of
model 1 over model 2 in our following phenomeno-
logical analysis.

"Both prescriptions were studied for the K, decays in
Ref. [69]; their outcomes for 65 (D;)(%) are shifted from
0.41 to 0.56 for KY; and from —0.564 to —0.410 for K modes
where the former numbers correspond to model 2.

A couple of points are worth to stress in connection to
both factorization models and the preferred one. First, a
measurement of dimeson or photon energy spectra in the
considered decays will be really helpful in reducing the
model dependence of our results (particularly on the
factorization prescription). Second, we will present else-
where the corresponding computations of the virtual
photon structure-dependent corrections, which will com-
plete these at the one-loop order. We expect that the model
dependence is reduced in the sum of all radiative correc-
tions, so having this last missing piece available will also be
valuable for diminishing the model dependence (again with
particular emphasis on the precise factorization in the
considered decays).

The correction factors 6, () for the four-body decays and
5,4(t) for the three-body processes appearing in Eqgs. (16)
and (C6), respectively, where A = +,0, 40, are both IR
divergent when My — 0. Nevertheless, the overall contri-
bution, 8, (t) = 8,(¢) + 8,4(¢), is finite. In Fig. 10, we show
the predictions for 64(t) for the K~ z°, K%z~ and K=K
decay modes using the form factors in models 1 and 2.
While our results for 6 (7) in model 2 agree with those in
Ref. [11] in Fig. 2, the predictions for §)(¢) are slightly
different as a consequence of the parametrization of the
scalar form factor.®

The differential decay width can be written as

dr

dr| _ G3VipF.(0)PSpwm
dt

768713

t 2
X <l —?> /11/2(1‘, m%,m(z))

T

PP(y)

s 2t
x [C2V|F+(z)|2<1 —i—W)/I(t, m%, m3)

T

+ 3C§A%O|Fo<r>|2] Gem(). (35)

where Gy (t) encodes the electromagnetic corrections due

to real and virtual photons. For simplicity, we have split

Ggy (1) in two parts: the leading Low approximation plus

nonradiative contributions, Gg\)/l(t), and the remainder,

6Gpp (), which includes the SD contributions to the

amplitude. The predictions for both are shown in Fig. 11.
Integrating upon ¢, we get

2 5
_ GpSewm;

FPP(V) - 967[3 |VMDF+(O>|2I1}-’P(1 + 5]?1{)/[)2’ (36)

where

This effect is mainly responsible for the slight difference
between our results for model 2 in Table 10 and those in Ref. [11].
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FIG. 10. Correction factors &, (¢) (left) and §,(¢) (right) to the differential decay rates of the K~7°, K°z~ and K~ K° modes from top to
bottom, according to models 1 (solid black line) and 2 (dashed red line).

1 m; dt t\2
Iy :W/ 73(1 _W> M2 (t,m2, md)
T

Tinr T

- 2t
X [C%,|F+(l‘)|2 (1 + $>/1(t, m%, m3)

T

" 3C§A%O|Fo<t>|2]. (37)

The results for 8£5; are shown in Table IV, where the
third and fourth columns correspond to the sum of the first
three terms in Eq. (31), and the last three columns to the
fourth term in that equation. The value in model 1 for the
K°7~ channel agrees with the result in Ref. [57], which is
related to our definition by 5{5(1(\),;” = omk /2 ~ —0.063%.
Although our outcomes for the (Kz)~ modes agree within
errors with those in Refs. [11,57], the value in model 2

(and also model 1) for the K~z° decay channel is larger
than the K%z~ one, which is at odds with Ref. [11].”
The complete radiative corrections (that we always quote
in percent) are obtained adding to the model 1 and 2 results,
which comprise the (negligible) D'V/™ part, the 2F/3F
contributions, which include the SI part. We explained
before why we prefer the model 1 over the model 2 results.
We will take the difference with respect to model 2 as an
asymmetric error on the model 1 results. For the structure-
dependent contributions, we consider the 3F results as our
central values and the difference with respect to 2F as a
symmetric error for our model dependence. To be on the
safe side, we will take twice this error as our corresponding

9. . .
Incidentally, our results would agree more closely swapping
the numbers for 5& 7 < 5&F in Ref. [11].
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FIG. 11. Correction factors G\ny (1) — 1 (left) and 5Gy(7) (right) to the differential decay rates of the K~z°, K%z~, KK, and 7~ 2°

modes from top to bottom.

uncertainty. Finally, we have to account for the uncertainty
associated to the missing structure-dependent virtual-
photon corrections. According to the results in Refs. [43,44]
for the one-meson tau decays, this contribution is of the same
size as the structure-independent correction. We will thus

estimate its absolute value as the sum of the “model 1" and
”SI + 3F” results in Table IV, allowing it to have either sign.
We will assign an additional 60% uncertainty on it according
to the results in Refs. [43,44]. Proceeding this way, our main
results are
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TABLEIV. Electromagnetic corrections to hadronic = decays in
percent.

G (1) 5Gem (1)

SI+2F SI+3F

SEP Reference [11] Model 1 Model 2 SI

K70 —0.20(20) -0.019 -0.137 -0.001 +0.006 -+0.010
Kz~ —0.15(20) —-0.086 —0.208 —0.098 —0.085 —0.080
K- K° —-0.046 —-0.223 —-0.012 +0.003 -+0.016
a —-0.196 -0.363 —-0.010 —0.002 -+0.010
~ 70 0.010 KOn~ 0.100
5§Mﬂ = _(0'009j0.118)’ 5115(1\/1[ = —(0-1665.157)7
-KO 0.032 -0 0.114
5§MK :_(0'0301_0.]80)’ OEM :_<0-186fo.203)- (38)

We see that the model-independent contributions are
responsible for the relatively large radiative corrections
obtained for the (K/z)°z~ modes. For the modes with a
K, the dominant (asymmetric) uncertainty comes from
the difference between the model 1 and 2 results, which
is much larger than the deviation between the model-
dependent 2F /3 F values. Instead, for the modes with a 7™,
the dominant uncertainty comes from the missing model-
dependent virtual-photon corrections. Our results for the
ég/fo/ K" agree with those in Ref. [11], and we reduce the
uncertainty band by ~45% in the K~ channel. We note that
the estimate of the errors in this reference yields also an
uncertainty band in agreement with ours for 55;4’(0/ 7 (our
errors are smaller by a factor ~2 again in the K~K° case)."’
Although our 85 and 8K seem to differ (the main
reason being the scaling of the inner bremsstrahlung
contribution with the inverse of the charged meson mass),
the corresponding significance of their nonequality is only
~0.70, according to our uncertainties. Our radiative cor-
rections in Eq. (38) improve over previous analysis (where,
for instance, the structure-dependent corrections were not
computed) and, as such, should be employed in precision
analysis like, e.g., CKM unitarity or lepton universality
tests [103] and searches for nonstandard interactions.

For completeness, we have also evaluated these correc-

tions for the K~5) modes. In the Gg;\)/I approximation and
using the respective dominance of the vector (scalar) form
factor [13], we obtain

BT = —(0026%0). o = ~(0304032), (39

where the uncertainty is saturated by the difference between
the model 1 and 2 results in the # channel and by the non yet
computed virtual-photon structure-dependent corrections
for the # mode. The K% decay mode is the only one

'°A former estimation of the 7~ z° radiative corrections yielded

66\,’[’0 ~ —0.08% [52], where the SD contributions were evaluated
using a vector meson dominance model.

(completely) dominated by the scalar form factor, which
causes the relatively large magnitude of the corresponding
radiative correction.

VI. IMPACT OF RADIATIVE CORRECTIONS
ON NP BOUNDS

In this section, we update the results of Ref. [41]
concerning one- and two-meson tau decays including the
radiative corrections computed in this paper.11 We recall
briefly the main aspects here but refer the reader to
Ref. [41] for details.

The low-energy effective Lagrangian describing the
7~ — Dy, decays (D = d, s) can be written as [104,105]

GF VuD

Lo = — 2 (14 €7)7y, (1 = ys)v, - ay* (1 —ys)D

+ exTr,(1 —ys)v, - uy"(1 +ys)D
+7(1 = ys)v, - u(e§ — epys)D
+ €570, (1 = ys)v, - io* (1 —ys)D] + H.c.,  (40)

where Gy corresponds to the Standard Model (SM) tree-
level definition of the Fermi constant and the nonvanishing
g (=S, P,V,A, T) Wilson coefficients (assumed to be
real for simplicity in what follows) determine the new
physics. Beyond the SM, super allowed nuclear Fermi f
decays do not depend on GgV,; but rather on
GrV,a(1 + & + €%), as it is accounted for in our analysis.
After using L., the relevant (for two-meson decays) scalar,
vector and tensor hadron matrix elements are computed
using dispersion relations, nourished with experimental
data, keeping track of the associated uncertainties.

We will discuss in the following the separate results for
the strangeness-conserving and changing channels and,
finally, those of a joint fit.

A. AS=0
From 7= — z7v,(y), we restrict [37,41,43,44,46]

2

mr(mu + md)
= —(0.14+£0.72) x 102, (41)

eh —ef — €y — g% — m fof1
L L R R P

using f, = 130.2(8) MeV [3], |V, = 0.97373(31) [92],
Sgw = 1.0232 [65], masses and branching ratios from the
PDG [92], and 67, = —0.24(56)% from Ref. [44].

After performing a fit that includes one- () and two-
meson (zz, KK) strangeness-conserving exclusive tau
decays, the constraints for the nonstandard interactions
(at u = 2 GeV in the MS scheme) are

"One-meson channels were updated in Refs. [43,44] using
the improved radiative corrections calculated in those papers. It
would also be interesting to reanalyze Refs. [11,46] with our new
radiative corrections.
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€ — el t et — el 0.0+0.6708+0.1+1.7739

m2 34400
ekt sen | | 010551580 £0.9:£0.1

g 103405712700 +0.992,
o 0.440.2441 709 £ 11703
x 1072, (42)

with ¥?/d.o.f. ~ 0.8, and the associated (statistical) corre-
lation matrix is

1 0662 —0487 —0.544
- 1 0323 0360 w3
Pij = 1 0.452
!

The first error in Eq. (42) is the statistical fit uncertainty, the
second error comes from the theoretical uncertainty asso-
ciated to the pion form factor, the third and fourth ones
come from the quark masses and from the uncertainty
related to the tensor form factor, respectively, and the last
error is a systematic uncertainty coming from the radiative
corrections to two-meson tau decays.

The results obtained are extremely consistent with those
in Ref. [41]. In general, the uncertainties induced by the
radiative corrections are negligible with respect to others
except for €5, where they are leading. This is interesting
since this is the largest Wilson coefficient, so its compat-
ibility with the SM gets even stronger upon including our
new radiative corrections computed in this work.

B. |AS|=1
From 7= — K™ v,, we bind [37,41,43,44,46]

2
my T

— €&
m(m, +mg) "

= —(1.02 +0.86) x 102,

T_

T
€r

€ —ER T ER
(44)

using the lattice result fx = 155.7(3) MeV [3], |V,| =
0.2243(8) [92], masses and branching ratios from PDG
[92], and 62K = —0.15(57)% from Ref. [44].

The bounds for the non-SM effective couplings resulting
from a fit to one- (K) and two-meson (K7, K7) strangeness-
changing transitions (at 4 = 2 GeV in the MS scheme) are

€ — &8 + % — g5, 04+1.54+0450)

2

T My T 0.1
ekt ammimn € | _ | 07£09£021%5 | 02,
€ 0.840.9+0.219
& 0.5+0.7+0.4+0.0

(45)

with y2/d.o.f. ~0.9, and

1 0874 —0.149 0463
- I —0.130 0.404 o
Pij = 1 —0057
|

In this case, the first error in Eq. (45) is the statistical fit
uncertainty, the second one is due to the tensor form factor,
and the last uncertainty is associated to the radiative
corrections to two-meson tau decays. The uncertainties
related to the kaon vector form factor and the quark masses
are negligible. These results comply nicely with those in
Ref. [41], and the uncertainty induced by the radiative
corrections is in all couplings negligible.

C. AS=0 and |AS|=1 joint fit

Our previous fits to the strangeness-conserving and
changing channels were not able to separate € and 8}.12
In Ref. [41], we attained this within minimal flavor
violation [106] (MFV),13 as we will do here. The CKM
matrix elements used in this analysis are obtained from
the correlation between |V,,| and |V,|, |V./Vidl =
0.2313(5), and |V, = 0.2232(6) from Ref. [3], which
correspond to the region described by the red ellipse in
Fig. 10 of Ref. [3].

Performing thus a joint fit that includes both one- and
two-meson strangeness-conserving and strangeness-chang-
ing tau decays (within MFV), the limits for the NP effective
couplings (at # = 2 GeV in the MS scheme) are

T e T (4
& — € + €p — €p

2.7 +£0.5557 04 £0.0+£03709+£0.0
71+£47724+09+1.84+0252°+0.0

=| -7.746.1+00"3 24 4+00",+£00 | x 1072,
5.3707 Ta Toio £ 0.0 £ 0.1555 5
—02+£ 02738100 £0.0 £ 04705 702
(47)

with y2/d.o.f. ~ 1.5, and

"This was achieved by combining inclusive and exclusive
information in Refs. [37,46].

“MFV assumes that flavor mixing within the Standard Model
effective field theory is aligned with the SM one (here, in
particular, in the quark sector). This generally allows for orders
of magnitude smaller new physics scales in precision flavor tests.
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1 0056 0000 -0270 —0.402
1 —0997 —0.015 —0.023
pij = 1 0.000  0.000 [. (48)
1 0.235
1

Now, the first error in Eq. (47) corresponds again to the
statistical fit uncertainty, the second one comes from the
uncertainty on the pion form factor, the third error is related
to the CKM matrix elements |V,4| and |V |, the fourth one
comes from the radiative corrections 6%% and 62K, the fifth
error is associated to the tensor form factor, the sixth error
comes from the uncertainty of the quark masses, and the
last one is due to the radiative corrections to two-meson tau
decays.

These results accord with Ref. [41] closely. As seen, in
this joint fit the uncertainties induced by radiative correc-
tions are always subdominant.

VII. CONCLUSIONS

Radiative corrections to the one-meson tau decays have
been employed in CKM unitarity, lepton universality and
nonstandard interaction tests. The corresponding results for
the dipion tau decays allowed tau-based computations of
the leading-order piece of the hadronic vacuum polarization
part of the muon g — 2. Even though the model-indepen-
dent part of these corrections was available for the Kz
modes, the structure-dependent one remained to be calcu-
lated. We have performed the first step toward bridging this
gap, by computing the real-photon structure-dependent
radiative correction factors with reduced uncertainties,
and will continue with the required virtual-photon
model-dependent corrections in a forthcoming work. For
completeness, we also quoted our numbers for the PP
(P = #, K) modes and estimated them for the Kn<’ ) cases.

We recapitulate our main results in Eq. (38):

S = —(0.0092571%)%.

S = —(0.03070155) %

SBF = —(0.166 9199,
r = —(0.186:0114)

which reduce previous uncertainties by a factor of ~2 for
the K~ modes and have similar errors to those quoted for
the K%z~ channel.

We have put forward the importance of the factorization
model for the radiative corrections, which saturates the
uncertainties in Eq. (38) for the K~ channels. Analogous
relevance shall be found in the radiative corrections for
processes including diverse final states with hadrons (if the
resonance regime is allowed by phase space), which calls for
further devoted studies. While lattice QCD obtains these
complicated radiative corrections, a deeper understanding of
their factorization will probe key in increasing the reach of
new physics searches through processes including hadrons.

We have finally illustrated the application of our results
updating our fits of non-SM interactions in dimeson tau
decays (also one-meson channels were included in the fits),
finding results compatible with our earlier work, where these
corrections and their uncertainties were neglected. As inter-
esting outlooks, the reanalysis of Refs. [36,38] [looking for
NPinz~ — 7z~ 2%, andt~ — (Kx)~v, decays, respectively],
of inclusive and exclusive semileptonic tau decays [37,46]
and of the impact of kaon data on strangeness-violating tau
decays [11], are among the important applications of our
results that we can envisage, which can be incorporated into
the heavy flavor averaging group analysis [107]. All these
studies will benefit from our future results for the virtual-
photon structure-dependent radiative corrections.
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APPENDIX A: K,3; DECAYS

The most general amplitude for the K(pg)—
7(p.)C(P)vy(q)y(k) decays that complies with Lorentz
invariance and the discrete symmetries of QCD can be
written as

M= eG\%zs & [Ii:z(:rl;i’? ;) a(q)r(1-7)
X (m = P = B)po(P) + (VI = A")i(q)
<= ()] (A1)
where
H*(=pxk. px) = (7(po) 57" u|K(pk))
= ~CuF 0| (0 + 1 =S5 (= ey
= B (g — ) o). (A2)

with 1 = (pg — ps)*.
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The structure-independent term is given by

v = R kP2 e (1) - Sy - o 0] o
+ CV% [(pK +pe) = Af” (P — pn)”} (Pk = Px)"
5 G = CoP O]+ oS Ro) = Fol0] e = pe e = et (A3)
where CK™' = CK™7" = 1/\/2 for K = 2°¢*v,y, and
vy P etk _)Z{f 2pe) | {CVFM) B8 GOy (1) — Oy (1) }g“”
w0 DT (ot e =255 (o oy (o= oy
e LGSR = o (0] + 1 S o) = Fal0] o = peP e = el (M)

where C{_ﬁo”_ = Cfo ™ =1 for K - z=¢*uv,y, both with ¢ = (pgx — p, — k)?. All these expressions are obtained from
Eqs. (1)-(3) by replacing {5, } = {,/*}, Ay = Ay, P — —P and m, » m, for K™ - 2% Fv,y and {5;} — {5, 1,
Ay — —Ak,, Cys > —Cy g P— —Pand m, — m, for K° — 7=¢*uv,y. The structure-dependent terms are analogous to
those in Egs. (4) and (5).

At O(p?), we get

o __ C plllf v C HY —p/;(k” A5
Vg == K*k'pK(PK‘f'Pn) —Cgr| g _k-pK , (AS)
for Kt - 79, and
H H1v
v Pr v v prk
VI;I:_CK"k'p (Px + Px) "’CKU(Q” _k'P>’ (A6)

for K® — 7=, where Cx = Cy = Cy,. Thus, the overall amplitude at O(p°) is given by

_@ * = 1 5 _ E-P_&"pK kél
M, =Sy, Con@)1 4+ 7) e = m) (- 2 Yo (A7)
and
Gy eP_ep M
M, =SV, Coanlg) 1+ 7)o+ m) (5 = 2 Yo, (A%)

respectively. These two expressions agree with Eqs. (13) and (14) in Ref. [69]. To this order, V%], and A%y, which are O(p?),
can be neglected.
In the Low limit, we obtain

= O W (1 = 7)o P ) ( Py P)’ (A9)

k-p, k-P
where the subscript + refers to the charged meson. The spin-averaged squared matrix element is then given by

M,
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- 2
M, > = 4C§e2G%|VM|zS§W{ [% (t = m2) + 2myxm?2 + 2u(m% — t + my + m2) — 2u?

2

A A2 m?
S 1= = 2m3) + S = )| | 0P

Ag,m> Ak,
+ % {ZM +1t—m—2m2 TK (m?% — t)} Re[F  (1)F§(1)]

2 2

+ S5 - m)I (0 | S

y pols

p_-e P-g|?

p_-k P-k

+ O(kY), (A10)

where u = (px — P)*. The last expression can also be written in terms of f,_():

2

p_-e P-g

2 =22 2G|V, 28K 0O (y, ——— + 0Ok, All
M, kMg e’ GElV [ Stwp (yZ)YPZOlS bk Pk + O(K%) (Al1)
where
0 0 " 0
pO(y,2) = A (3. 2)f ()2 + AL (v, D)Re[f 4 (1) £2.(0] + A (v, ) - (D) P (A12)
and the kinematical densities are
AV =4y + 2= 1)1 =y) + rp(dy +32=3) —drp + ro(ry = 10), (Al3a)
Ago) :2rf(rbp—r,,—2y—z+3), <A13b)
AV = rp(rp=rp+1-
3 =re(rz—rg 2), (A13c)
with
2p - 2E 20k - 2E
_ pﬂsz:_ﬂ’ y= pszf:_f’ (A14)
mK my mK nmy

rp = (my/mg)?, and r, = (m,/mg)?. Here, E, (E,) is the energy of the pion (charged lepton) in the kaon rest frame. The
expression in Eq. (A11) can be compared directly with the results in Refs. [69,102,108].

The K — nfv, decay width without radiative corrections [11] is given by

Gimy ,
(K - ntv,) = 1927 — L SEV Vs IF 4 (0)| 1%, (A15)
where
tmdx 1 m2 2 2 3A2 m2
14 = dt— B2 (1, me,m2) ([ 1-=2) (1 C3|F . (1)]? Kn 2 Fo(t)|? Al6
K L; mt, ( me)< p +2 vIF(1)] +(2z+m§,),1(t .y Cs|Fo(1)] (A16)

and Tmax = (mK - mﬂ)z‘
APPENDIX B: VIRTUAL CORRECTIONS TO THE HADRONIC TAU DECAYS

The radiative corrections to the 7~ — (P, P,) v, decays at O(p?) in yPT [71-73] are depicted in Fig. 12. The overall
contribution is given by [50]

SHH(t,u)

C = of+(u)(py — po) +8f-(u)(p1 + po), (B1)
\%4
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T
FIG. 12. Photon loop diagrams that contribute to the 7= — (P, P,) v, decays
where
1 2
of . (u) = e {2 +——yg +logdn — 10g—2 + (u—m2)A(u) + (u — m2 — m2)B(u)
+2(m2 + m2 = u)C(u, M,) + 210 < m)] (B2)
2+ m; g5 )|
1 2
Sf_(u) = yp { -5-3 <— —ye+ log4n:> + log e + 210g 2 + Bu+m? =2m2) A(u) + (u +m?® —m?2)B(u)|, (B3)
n
with
1/ 1 2-y
Alu) . (—Elog r,+ N 10gx>, (B4)
1 2r,—y
B(u)—;<2lo re+ N l_leogx>, (B5)
1 1 21
Clu.M,) = p— _xxz [—Elogzx +2log xlog(l — x?) — % + glogzr,
FLiy(?) + Lip (1 =) + Liy(1 ) —log x1o M (B6)
—— — r —
2(x 2 N 2L =xy/rp gxlog| = |
and CTPRKK KT _ (/) —1,%,—1). Here, A(u), B(u) and C(u, M,) are written in terms of the variables
m?2 u 1
re=a y:l—l—r,—m—%, x—z\/r_r<y—\/y2—4rf) (B7)
and the dilogarithm
. L dt
Lip(x) = —/ 710g(1 — xt). (B8)
0

The radiative corrections to these decays induce a dependence in the u variable. From a comparison with the results in
Ref. [11], we get the following relation:

oF () = - f+1( I 2 m2) 4+ Dot mE 2] 4
= ) A + = = B+ (B9)
and
5f - (u) _%f:(O) Iy (. m2,m2) = To(u, m2, m2)] + - --
Bt = 2 + a m — m)B) (810
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APPENDIX C: 7~ — (PP,) v, DECAYS

After the inclusion of the virtual-photon radiative cor-
rections to the form factor in Appendix B, the amplitude for
the z=(P) = P7(p_)PY(po)v.(q') decays is given by

My = SN 1, it (1 = ).
(C1)
Thus, the spin-averaged squared amplitude follows:
Mo = 2GHV . Sew { G5 Fo (e u) PDG " (1..)
+ CsCyRe[F_ (1, u)F(t,u)| DY (1, u)
+ CYIF (1) PDE P (1, w)}, (C2)

where we have defined F )y(¢,u) in Eq. (32) and the
expressions for Dy (,u), DY (1, u) and DY’ (1, u) are
given in Eqgs. (9)—(11).

The differential decay width in the tau rest frame is

d’r 1 5
- : C3
dtdu ~ 32(2z)m3 Mo (©3)

where ¢t = (p_ + py)? is the invariant mass and u =
(P—p_)? = (po + k + ¢')*. The physical region is limited
by (m_ +my)? <t <m? and u=(t) <u < u't(t), with

1
(1) = o [zz(mz md— 1) = (m2 = 1)(t + m® — m2)

+ (m2 = 1)/t m2, mg)},

and A(x,y,z) = x> + > + 22 — 2xy — 2xz — 2yz.
The invariant mass distribution is obtained integrating
upon the u variable

dF G%:SEw|V D|2m3 1 t 2
T EEEWT Pl T (] - — /11/2 t, %’ 2
d 38471 22\ " m2 (. m=, mg)

T

(C4)

<31 0P (14 25 ) atem (143, )

T

T 3C2A2 Fo()2(1 + %(r))} n cscviao(r)},

Vi
(Cs5)
where
o DY waReFo (o (1wl
O([) - ut (1) DP’PO B ( a)
Sy DG 7 (2 u)|Fo(1)[du
ut(t) ryp=pO *
B VD t,u)2Re|F_. (t)O0F" (u)|du
5 () = ety DL Rl (0oF e

S DI )| (1) P

3/t [t
o 4m1(3 (1)

+ Re[Fy(1)6F* (u)])du.

5,0(1) DI (t.u)(Re[F (1)5F3(t. u)]

(C6c)

APPENDIX D: KINEMATICS

As in Refs. [11,51,53,109], after an integration over
Dyy i and Dyyy, the functions in Eqgs. (14) are given by (we
note that K, is numerically negligible)

Ji1(t,u) = log (W) %bg <11f+§>
14

+%[Liz(1/Y2) —Lip(Y,) + log*(=1/Y,)/4

(Dla)

—log®(—1/¥1)/4], (D1b)
M,(m? —t)
Joo(t,u) =log( ——— |, Dl
20(t, 1) 0g<m,x+(t, u)> (Dlc)
M,(m? +m]—t—u)
Joo(t, u :10g< ! ), D1d
02< ) m_x+(t, M) ( )
xX_(t,u
Kz()([, l/t) = Koz(t, M) = log <x+(([, u;) s (Dle)
where
x(t,u)
N —m* + (m3 — 1) (m2 — u) +m2(m? + m3 + t + u)
2m?
A2 m2 m2)AV2 (1, m2, m?
2m=
These expressions are written in terms of
1 =2a++/(1 =2a)*> = (1 = p>
Y1.2 — \/( _ ) ( ) , (D3)
1+p
with
oo (m2 —1)(m?+md —1—u) ./l(u,mé,mg)
(m2 + m? — u) 26 '
. Mu, m*, m?)
o omiami-u’
VA, mE mz)
r=——"—F=".
25
6= —mim? + m:(m? —t)(m3 — u) — tu(-m? +t + u)

+ mi(—m? + tu + m2t + m?u).
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