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Study of canonical entropy in electron-proton interactions at
ffiffiffi
s

p ¼ 300 GeV is presented. The precision
data collected by the H1 experiment at the HERA in different ranges of invariant hadronic mass W and the
squared four-momentum exchange Q2 in electron-proton ðepÞ interactions have been analyzed in the
ensemble theory approach. The canonical partition function relates to the multiplicity distribution which is
often studied in collider experiments. We use the canonical ensemble partition function to explore the
dynamics of hadron production in ep interactions by devising different methods to find the entropic
parameter and the collision temperature. The inverse slope of the transverse momentum spectrum of produced
hadrons also relates to the temperature. In the recent past, the CMS, ATLAS, and ALICE experiments at the
LHC have studied the charged hadron transverse momentum and particle distributions in proton-proton and
proton-nucleus interactions by using the Tsallis function within this approach. A detailed investigation into
the role of the system volume and relation amongst different dynamical parameters reveals interesting results.
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I. INTRODUCTION

The application of ensemble theory of statistical mechan-
ics to particle interactions gives interesting results to
understand the interaction dynamics. High-energy colli-
sions of subatomic particles such as pions, protons,
electrons, and the heavy ions, etc. produced at the particle
accelerators are studied systematically with high precision.
The production of particles, both known and unknown
in such collisions are also studied in terms of physics
principles emerging from the ensemble theory. Many of the
physical observables such as hadron multiplicity, rapidity
and transverse momentum etc., which are few of the
different outcomes from these collisions are understood
by modeling through the concepts of thermodynamics
and statistical mechanics [1–6]. Exciting new results

from the estimated behavior of these observables as a
function of center-of-mass energy have emanated from the
detailed investigations allowing the predictions for the
future experiments in pursuit of discovery of new particles
[6–8]. Ensemble theory has been used in several studies of
particle production. The multiplicity of particles produced
in a collision and its relation with the thermodynamic
temperature of a collision are used to access dynamics of
the particle interactions. Visualizing a particle interaction as
a microcanonical or canonical or grand-canonical ensemble
is one of the interpretations which has led to the under-
standing of particle-production mechanisms. For example
the canonical partition function relates to the multiplicity
distribution often measured in collider experiments and the
transverse momentum spectrum reveals information on the
early thermal or close to thermal properties of the hot state
of such collisions [8–11] etc.
Standard statistical mechanics of Boltzmann-Gibbs

which treats entropy as an extensive property of the system
and the models based on this have not been very satisfac-
tory. The possible sources of deviations included intrinsic
and nonstatistical effects, in particular fluctuations in the
properties of entropy. A generalized form of the entropy
was postulated by C. Tsallis introducing a redefinition [12]
as follows.

*soumya.sarkar@students.iiserpune.ac.in
†ritu.aggarwal1@gmail.com
‡manjit@pu.ac.in

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 109, 052008 (2024)

2470-0010=2024=109(5)=052008(13) 052008-1 Published by the American Physical Society

https://orcid.org/0009-0008-3145-7683
https://orcid.org/0000-0003-2755-5682
https://orcid.org/0000-0002-3440-2767
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.109.052008&domain=pdf&date_stamp=2024-03-25
https://doi.org/10.1103/PhysRevD.109.052008
https://doi.org/10.1103/PhysRevD.109.052008
https://doi.org/10.1103/PhysRevD.109.052008
https://doi.org/10.1103/PhysRevD.109.052008
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


The standard expression for entropy is S ¼ −k
P

W
i¼1

pi lnpi where W ∈N is the total number of possible
configurations corresponding to fpig associated probabil-
ities and

P
W
i¼1 pi ¼ 1. The entropy S is thus an extensive

property of any thermodynamical system. However, in the
redefinition of entropy, Sq ¼ k

q−1
P

W
i¼1 pið1 − pq−1

i Þ, where
k is a positive constant, q > 1 makes the entropy a
nonextensive property of the system. The q, also known
as the entropic index, characterizes the degree of non-
extensivity and the additive entropy rule stands modified,

SqðAþ BÞ ¼ ½SqðAÞ� þ ½SqðBÞ� þ ðq − 1Þ½SqðAÞ�½SqðBÞ�;
ð1Þ

where A and B are two independent systems and q > 1 is a
measure of the nonextensivity of entropy. For q ¼ 1, one
recovers back the Boltzmann-Gibbs(BG) statistics.
Thermostatistics has been applied to describe the particle

production in high-energy particle interactions. Predictions
of a thermodynamical model of hadron production for
multiplicity distributions in eþe− annihilation at LEP and
PEP-PETRA energies have been used to establish a two-
step process resulting into the clan structure [6,13–15]. The
clan model was introduced in order to interpret the wide
occurrence of the negative binomial regularity of charged
particle multiplicity distribution in high-energy reactions
[6,16]. In a reaction any produced particle originates from a
primary particle (or a parton), named ancestor. All the
particles with a common ancestor form a clan. The clans
have no mutual interaction. The reaction dynamics may be
such that all the produced particles may be correlated.
Thermostatistical aspects play an important role in the
investigations in high-energy collisions of two particles or
heavy ions to predict and understand the form of statistical
equilibrium. One of the signatures of “thermal” multi-
particle production is the exponential form of the transverse
energy distribution of the produced hadrons. The slope
parameter of this distribution can be interpreted in terms of
a temperature of the final state [8,17,18].
The slope of this distribution is interpreted in terms of a

temperature of the final state. The particle multiplicities and
transverse energy distribution are found to be consistent
with such an interpretation, at lower energies. At higher
energies, the thermal interpretation of the transverse
energy spectra is modified and described well by the non-
extensive thermostatistics of Tsallis [12,19,20]. At energies
(

ffiffiffi
s

p ¼ 200 GeV and beyond) in pp collisions a significant
deviation from the exponential transverse energy distribu-
tion, together with the violation of Koba-Nielsen-Olesen
(KNO) [21] scaling law was encountered.
The nonextensive generalization of the statistical mechan-

ics has gained importance in describing the collisions at
collider experiments. It has been extensively studied in
different type of high-energy collisions [22–27] up to the

highest energy data from eþe− collisions, pp collisions and
for heavy-ion collisions [11,28–31]. Most of these studies
have focused on the particle properties and in particular the
charged particle multiplicities and the transverse momentum
spectra [8,32–34]. In the recent past, the CMS, ATLAS, and
ALICE experiments at the Large Hadron Collider (LHC)
have studied the charged hadron transverse momentum
distributions in proton-proton and proton-nucleus inter-
actions by using the Tsallis function [12,35–37]. In addition
to the description of the transverse energy spectra, the
extended statistical approach to describe multiparticle pro-
duction can be used to predict the temperature.
In this paper we present the first study in terms of

canonical entropy from the multiplicities in different
kinematic regions of electron-proton collisions at the
Hadron-Electron-Ring Accelerator (HERA). The precision
data of proton-proton interactions at the intersecting storage
rings (ISR) at different energies have been analyzed for
the validation. We use these two different methods to
describe the properties of multiplicity distributions and
their temperature dependence. Section II describes the
concepts; the equations used for computing entropic index
and the temperature with some inputs from [38]. Details of
the data being analyzed are given in Sec. III. Methodology
developed for determining the parameters are given in
Sec. IV. Results and discussion are presented in Sec. V,
followed by conclusions in Sec. VI.

II. MULTIPLICITY AND GENERALIZED
CANONICAL PROBABILITY

An important observable in the particle interactions is
the multiplicity distribution of the produced hadrons.
One of the most popular ways of expressing the probability
distribution of these hadrons is the negative binomial
distribution [39,40], which is known to arise with some
specific processes such as accompanying the Bose-Einstein
particles with different sources. The following subsection
outlines the distribution.

A. Negative binomial distribution

The multiplicity of particles produced in an interaction
can be described in terms of the negative binomial
distribution (NBD), which is the following probability
law for multiplicity n ≥ 0:

Pn¼
kðkþ1Þ…::ðkþn−1Þ

n!

� hni
hniþk

�
n
�

k
hniþk

�
k
; ð2Þ

where hni is the mean number of produced particles called
the average multiplicity and k > 0 is related to the variance
D of the distribution as

1

k
¼ D2 − hni

hni
2

: ð3Þ
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The negative binomial distribution has been extensively used
to fit the multiplicity distributions by nearly all high-energy
physics experiments. It is remarkably well-described the data
at lower energies, but showed significant deviations at higher
energies. The weighted combinations of NBDs have been
used to improve its applicability [41–43].

B. The q-statistics

It is well-known that several features of particle pro-
duction in high-energy hadronic collisions can be described
by thermostatistical models. A phase of nuclear matter
consisting of quarks and gluons in such collisions is
expected to lead to some form of statistical equilibrium,
subsequently leading to the formation of locally thermal-
ized source of particles. The generalized statistical
mechanics (with q > 1) affects the hadronic multiplicity
distribution in such collisions. In usual thermostatistics the
generalized entropy S is defined [38] by introducing the
q-entropy,

S ¼ 1 −
P

aP
q
a

q − 1
; ð4Þ

X
Pa ¼ 1; ð5Þ

where Pa is the probability of microstate a with the total
probability being normalized to unity. Any physical
observable O in this approach has a q-biased average
value defined as

hOi ¼
P

aOaP
q
aP

aP
q
a

; ð6Þ

and the q-biased microstate probability,

P̃a ¼
Pq
aP
aP

q
a
; ð7Þ

is the probability to be used in calculation of physical
quantities. In the limit, when the entropic index q → 1,
the normal Boltzmann-Gibbs-Shannon entropy is recovered
[44]. The equilibrium probabilities Pa are determined by
maximizing the entropy under the requisite constraints on
the charge and energy conservation. For a fixed value of
energy E, the conserved electric charge isQ. The constraints
are implemented through the variational principle, using the
method of undetermined Lagrange multipliers and using the
normalization conditions on the energy Ea and chargeQa of
a microstate a. The variational principle gives,

δSþ c1
X
a

δpa − c2δEþ c3δQ ¼ 0; ð8Þ

where

E ¼
X
a

Eap̃a; ð9Þ

Q ¼
X
a

Qap̃a; ð10Þ

where the constants c1, c2, and c3 are Lagrange multipliers.
The temperature T and chemical potential are related to c2
and c3 as

c2 ¼
1

T
¼

�
∂S
∂E

�
Q;V

; ð11Þ

c3 ¼
μ

T
¼ −

�
∂S
∂Q

�
E;V

: ð12Þ

The P̃a distribution can be obtained by solving the varia-
tional principle and is given as

P̃a ¼
ðexpq½−βðEa − μQaÞ�ÞqP
aðexpq½−βðEa − μQaÞ�Þq

: ð13Þ

The denominator in Eq. (13) is called the generalized
partition function, Zqðβ; μ; VÞ. The q-potential function,
expq is defined by

expqðAÞ ¼ ½1 − ðq − 1ÞA�−1=ðq−1Þ: ð14Þ

β is related to the temperature T by

T ¼ β−1 þ ðq − 1ÞðE − μQÞ
1þ ð1 − qÞS ; ð15Þ

and when q ∼ 1,

½expqðAÞ�q ∼ exp½Aþ ðq − 1ÞðAþ A2=2Þ�: ð16Þ

The Lagrange multipliers express the temperature and
chemical potential. A characterization of thermal equilibrium
connects the so called “physical” temperature via

T̃ ¼ β−1 þ ðq − 1ÞðE − μQÞ: ð17Þ

Chemical potential μ controls the average charge Q in the
grand canonical approach discussed. For small values of
Qð¼ 1Þ, when fluctuations about the mean become signifi-
cant, the canonical treatment is preferred and μ ¼ 0. The
generalized partition function for fixed charge becomes,

Zqðβ; Q; VÞ ¼
X
a

δðQ −QaÞðexpq½−βðEaÞ�Þq; ð18Þ

where δðQ −QaÞ is the Kronecker delta. The generalized
canonical probability is given as

P̃a ¼
δðQ −QaÞ
Zqðβ; Q; VÞ ½expqð−βðEaÞ�q: ð19Þ
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The probability that a system has exactly N number of
particles in the Tsallis statistics, with Na particles in a given
state a is

PN ¼
X
a

δðN − NaÞP̃a: ð20Þ

The N-particle partition function can then be written as

ZðNÞ
q ðβ; μ; VÞ ¼

X
a

δðN − NaÞ½expqð−βðEa − μQaÞÞ�q;

ð21Þ

where

PN ¼ ZðNÞ
q

Zq
: ð22Þ

The generating function for the multiplicity distribution can
now be defined by

FðtÞ≡X∞
N¼0

tNPN: ð23Þ

The multiplicity distribution for the N-particle system can
then derived from the generating function. For example, for
the negative binomial distribution the generating function is

FNBðtÞ ¼
�
1 −

hNi
k

ðt − 1Þ
�
−k

¼ expq½hNiðt − 1Þ�: ð24Þ

With q ¼ 1þ 1=k, Eq. (24) gives the negative binomial
distribution. For large values of k or small values of q we
have the asymptomatic behavior of FNBðtÞ given by

FNBðtÞ ≈ exp

�
hNiðt − 1Þ þ hNi2

2k
ðt − 1Þ2

�
: ð25Þ

When these results are applied to an ideal relativistic gas to
study the Tsallis statistics of hadron gas, it is observed that
with q > 1 the generalized partition function Zq becomes
infinite. Thus, there is no ideal Tsallis gas with q > 1 and the
q-statistics of an ideal relativistic gas cannot be defined.
However, the case q > 1 is the focus of interest in high-
energy collisions. For an ensemble of N particles, the

generalized ideal gas partition function ZðNÞ
q has a well-

defined integral representation in terms of the corresponding
Boltzmann-Gibbs function subject to the condition that
N < 1

3ðq−1Þ. Particle production above this limit is the cause

of divergence in the partition function of the Tsallis ideal gas.
One way to include such interactions is to introduce a
“Van der Waals” excluded volume simulating the effect of
hard-core potentials among particles. It tries to model the
effect of nonzero volume of particles of the system as

opposed to ideal gas where the volume of particles are taken
to be zero [45,46]. Also the ideal gas system is noninteract-
ing but Van der Waals gas takes into account the interaction
by considering the particles as hard spheres. The repulsive
interactions among the produced particles are thus respon-
sible for the divergence in partition function of the Tsallis
ideal gas. To include such interactions, the Van der Waals
excluded volume was introduced. This Van der Waals gas
model has been used to study particle abundances in high-
energy heavy-ion collisions as it gives an appropriate
description of the particle dynamics in the gas. The Van
der Waals gas model as well as the Boltzmann-Gibbs
statistics with extensive entropy (q ¼ 1) produce a multi-
plicity distribution with a narrower width as compared
with the experimental distribution. However, with Tsallis
statistics, increasing q very slightly (q > 1) a much
broader distribution is obtained and in good agreement
with the experimental data. This result is true for data at
different energies.

C. Excluded volume for N-particle system

The ideal gas description proved to be inadequate in
many ways. A primary reason being it does not consider the
interaction and finite volume of its constituent particles.
The simplest way to add an interaction and also a finite
volume is to consider the repulsive hard-core or hard-
sphere potential. In this case, the volume which remains
inaccessible to other particles of the system as a result of the
presence of the first particle, is called the excluded volume.
For example, the excluded volume of a single hard sphere
(particle) is eight times its volume. If the system has two
identical hard spheres then the excluded volume gets
distributed among the two [47]. Assuming that the two
spheres are identical, it becomes four times the volume of
each sphere, as shown in the schematic Fig. 1. For a hard-
core sphere the excluded volume depends on the radius of
the spheres. In principle all particles can have their own
hard-core radii, subject to the restrictions that:

(i) Vex ≪ V, with V is the total volume of the system
and Vex the total excluded volume of all particles;

(ii) Also as described in Ref. [48], the radii should not
be too small to circumvent any contradiction with
lattice quantum chromodynamics (LQCD). This
results in having certain flexibility in defining the
value of excluded volume or hard-core radii as long
as these conditions are satisfied. It has been observed
that excluded volume remains nearly constant for
nucleon-nucleon scattering. For nucleon-nucleon
scattering this value of hard-core radius (r0) is
observed to be around r0 ¼ 0.3 fm[48]. For the
current analysis we take the value of excluded
volume, v0 ¼ 0.368 fm3, same as used in [38] for
all the analysis of pp interactions. We use the same
value for analysis of ep interactions as well since for
all-hadron final state a constant value of v0 can be
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used, as mentioned earlier. To further understand the
effect of Tsallis and Van der Waals corrections to the
ideal gas, necessary details as described by Aguiar
and Kodama in Ref. [38] are reproduced below.

The starting point is the relativistic ideal gas. For a
relativistic ideal gas the Boltzmann-Gibbs grand canonical
partition function is given by

Zðβ; μ; VÞ ¼ exp

�
V
Xh
i¼1

ΦiðβÞ expðβμqiÞ
�
; ð26Þ

where

ΦiðβÞ ¼
gi
2π2

m2
i

β
K2ðβmiÞ; ð27Þ

gi denotes the degeneracy factor of ith hadron species with
mass mi and charge qi. h denotes the total number of
hadrons. K2ðzÞ is the modified Bessel function of second
kind. β denotes the inverse temperature, μ denotes the
chemical potential and V the volume of the system. Hence,
the N-particle partition function is given by

ZðNÞðβ; μ; VÞ ¼ 1

N!

�
V
Xh
i¼1

ΦiðβÞ expðβμqiÞ
�N

: ð28Þ

To have Van der Waals-type effects in relativistic gas an
excluded volume v0 is introduced, which changes V to
V − Nv0 to take into account the finite volume of particles.
The partition function got modified as

ZðNÞðβ; μ; VÞ → ZðNÞðβ; μ; V − Nv0ÞΘðV − Nv0Þ: ð29Þ

The Heaviside Θ function limits the number of particles to
be fitted in a particular volume V i.e., N < V=v0. The
partition function of a relativistic Van der Waal’s gas is
given by

Zðβ;μ;VÞ¼
X
N

1

N!
nðβ;μÞNðV−Nv0ÞNΘðV−Nv0Þ: ð30Þ

Here nðβ; μÞ denotes the particle density and its expression
can be derived from ideal relativistic gas,

nðβ; μÞ ¼
Xh
i¼1

ΦiðβÞ expðβμqiÞ: ð31Þ

In the large V asymptotic limit, partition function for
relativistic ideal gas reduces to

Zðβ; μ; VÞ ¼ exp

�
V
v0

W½v0nðβ; μÞ�
�
; ð32Þ

where WðxÞ is the Lambert function. Hence, from Eq. (32)
the q-exponential partition function and hence generating
function can be derived as

Zqðβ; μ; VÞ ¼
Z

∞

0

dxGðxÞ exp
�
V
v0

W½v0nðxβ; μÞ�
�

ð33Þ

FðtÞ ¼ 1

Zqðβ; μ; VÞ
Z

∞

0

dxGðxÞ exp
�
V
v0

W½tv0nðxβ; μÞ�
�

ð34Þ

The partition function Zq then remains convergent as long
as q < 1þ v0

3V. To understand the effect of Tsallis statistics
on the multiplicity distribution, the case in which q − 1 and
v0 are both small, the generating function for the Van der
Waals–Tsallis relativistic gas can be written as:

FðtÞ ≈ exp

�
ðt − 1ÞVn½ð1þ ðq − 1ÞξðVnξ − 1Þ − 2v0n�

þ ðt − 1Þ2ðVnÞ2
�
ðq − 1Þ ξ

2

2
− v0=V

��
; ð35Þ

where ξ in Eq. (35) is given by

ξ ¼ −
β

n
∂n
∂β

ð36Þ

and n≡ nðβ; μÞ is given by Eq. (31).On comparing
Eq. (35) with generating function for negative binomial
distribution, Eq. (25), the values of hNi and k can be
deduced and is given by

hNi ¼ n0 þ ðq − 1Þn0ξðn0ξ − 1Þ − 2v0
V

n20; ð37Þ

1

k
¼ ðq − 1Þξ2 − 2v0

V
: ð38Þ

FIG. 1. Schematic figure of excluded volume with two hard
spheres [47].
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Where n0 ≡ Vn denotes the number of particles at a fixed
temperature [n as defined by Eq. (31) and ξ≡ ξðβ; μÞ ¼
− β

n0
∂n0
∂β as given by Eq. (36)]. For further analysis, we take

μ ¼ 0. Hence, n0 is given by

n0 ¼ V
Xh
i¼1

ΦiðβÞ: ð39Þ

All the equations have been adopted from [38]. Using
Eqs. (37) and (38) the temperature, β−1 and nonextensivity
parameter, q can be derived, from experimental quantities
namely average charged multiplicity, hNi and k, which are
related to width and shape of the NBD distribution, as given
in Eq. (3).

III. DATA USED

The primary aim of the analysis is to study the hadronic
multiplicities in ep interactions at HERA energy using the
canonical partition function with the q-statistics. This is the
first analysis with this data. The analysis of data from pp
interactions at ISR energies also has been done for the
same reason, in addition to it being used for the purpose of
validation. Beyond these energies, the KNO scaling [21]
violations were reported as mentioned in Ref. [49].
A separate analysis of the pp data for

ffiffiffi
s

p
> 200 GeV is

under consideration.

A. Electron-proton collisions at HERA

The data used for the present analysis were collected
with the H1 detector [50] at the HERA storage ring at
DESY during the 1994 running period which recorded
collisions of positrons, with an incident energy of
27.5 GeV, and protons with an energy of 820 GeV givingffiffiffi
s

p ¼ 300 GeV. Multiplicity distributions measured in
four different kinematic regions in W ¼ 80–115 GeV,
115–150 GeV, 150–185 GeV, 185–220 GeV for charged
particles and in four different pseudorapidity sectors;
1 < η� < η�c with η�c ¼ 2,3,4,5 have been analyzed.

1. Kinematics of deep inelastic scattering

In deep inelastic scattering, a high-energy lepton scatters
off a hadron after interaction with one of its constituents
through a virtual photon or a weak boson as shown in
Fig. 2. Let the initial 4-momentum of lepton be k and final
4-momentum k0. The initial 4-momentum of proton be p,
fraction of proton momentum carried by the struck quark
as x and final 4-momentum of the hadronic system be p0.
The following invariant variables can be defined:

s ¼ ðpþ kÞ2; ð40Þ

t ¼ ðp − p0Þ2; ð41Þ

Q2 ¼ −q2γ ¼ −ðk − k0Þ2; ð42Þ

y ¼ p:qγ
p:k0

; ð43Þ

W2 ¼ ðp0Þ2 ¼ ðpþ qγÞ2: ð44Þ

Where s is the center-of-mass energy squared, t is the
four-momentum transferred squared between proton and
final-state hadronic system, Q2 is negative square of the
four-momentum transferred (qγ) from the electron to the
proton, y is the inelasticity of the scattered lepton, andW2 is
the invariant squared mass of final state hadrons. The
energy-momentum conservation demands that,

x ¼ Q2

2p:qγ
; ð45Þ

y ¼ Q2

sx
; ð46Þ

W2 ¼ Q2
1 − x
x

: ð47Þ

Pseudorapidity is defined as η� ¼ − ln tan θ
2
, with θ the

angle between the hadron momentum and the direction of
the virtual photon in the γ�p rest system.

B. Proton-proton collisions at the ISR

The second dataset used was obtained by the experiment
at the CERN ISR using the SFM detector to measure
momenta of all charged particles. Four samples of non-
single-diffractive (NSD) events were obtained from the pp
collisions at

ffiffiffi
s

p ¼ 30.4 GeV, 44.5 GeV, 52.6 GeV, and

FIG. 2. Deep inelastic scattering of lepton on hadron.
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62.2 GeV. The experiment, data samples and event selec-
tion procedure are given in [51,52].

IV. METHODOLOGY

In the present analysis, we study the particle multiplicity
distributions aiming to understand the effect of q-statistics.
The selected data are being analyzed using the Tsallis
statistics to search for the nonextensive behavior of these
interactions as described in Sec. II. Following the details
provided in the section, we devise two different methods, as
described below, to solve for the nonextensivity parameter
q and temperature, β−1.

A. Method 1

In this method the ξ dependence on β is studied and the
value of β is obtained as follows. We rearrange Eq. (38) to
obtain (q − 1) given in Eq. (48),

ðq − 1Þ ¼ 1=kþ 2v0=V
ξ2

; ð48Þ

and substituting (q − 1) into Eq. (37), we get the following
expression for ξ:

ξ ¼ α1n0
n0 þ ðα1 − α2Þn20 − hNi ; ð49Þ

where α1 ¼
1

k
þ 2v0

V
; ð50Þ

α2 ¼
2v0
V

: ð51Þ

Using Eqs. (39) and (27), n0 can be obtained as a function
of β, and putting this value of n0 in Eq. (49), ξ can be
obtained as a function of β.
The expression of ξ can also be deduced from Eqs. (39),

(27), and (36) which is based on theoretical Tsallis model
and does not use the hNi and k as used above. The steps are
outlined as follows:

ξ ¼ −
β

n0

∂n0
∂β

; ð52Þ

ΦiðβÞ ¼
gim2

i

2π2β
K2ðβmiÞ; ð53Þ

where n0 is given by Eq. (39) as follows:

n0 ¼ V
Xh
i¼1

ΦiðβÞ: ð54Þ

KnðzÞ below refers to modified bessel function of second
kind. putting n ¼ 2 gives us an expression to calculate ξ as
given below,

∂KnðzÞ
∂z

¼ −Kn−1ðzÞ −
n
z
KnðzÞ; ð55Þ

∂K2ðβmÞ
∂β

¼ −mK1ðβmÞ − 2

β
K2ðβmÞ; ð56Þ

∂ΦiðβÞ
∂β

¼ gim2
i

2π2

�
−
K2ðβmiÞ

β2

−
1

β

�
miK1ðβmiÞ þ

2

β
K2ðβmiÞ

��
: ð57Þ

Finally we get ξ as

ξ ¼ 1

Σm2
i giK2ðβmiÞ

Σm2
i gi½3K2ðβmiÞ þ ðβmiÞK1ðβmiÞ�:

ð58Þ

Both these expressions of ξ given by Eqs. (58) and (49) are
solved simultaneously using a graphical method. Hence,
plotting Eqs. (58) and (49) as a function of β, the point of
intersection of the two plots gives the value of (β, ξ). The
value of ξ is substituted in Eq. (48) to get the value of q.
The parameters hNi and k that go into the Eqs. (49)

and (50) above are obtained by fitting a negative binomial
distribution to the charged multiplicity distribution. We use
the data for pp collisions at

ffiffiffi
s

p ¼ 44.5 GeV data from
Ref. [53] for validation with results from C. Aguiar
et al. [38]. The fit procedure uses CERN ROOT6.2 library.
The values of hNi ¼ 12.21 and k ¼ 9.226 thus obtained are
given in Table I. Using these values, Fig. 3 shows the plot of
ξ versus β calculated both for Eq. (49) and for Eq. (58).
Other values used for the calculations are from Ref. [38] as
listed below:

(i) Excluded volume, v0 ¼ 0.368 fm3 and Volume,
V ¼ 40.1 fm3 are used from [38];

(ii) As described in Ref. [38], π�;0, η, ω and ρ�;0 are
considered as the final-state hadrons, their mass and
degeneracy factor are mπ ¼ 139.5 MeV,
mη ¼ 548.8 MeV, mρ ¼ 770 MeV, and mω ¼
782 MeV and gπ ¼ 3, gρ ¼ 3, gη ¼ 1, and gω ¼ 1.

The two curves in Fig. 3 intersect at β ≈ 0.00615 MeV−1

which gives β−1 ≈ 162.60 MeV. These results are in agree-
ment with the values reported by Aguiar et al. in Ref. [38].
Method 1 therefore validates the correctness of our

TABLE I. Experimental hNi and fit parameters for NBD and
χ2=d:o:f for pp interactions at the ISR energies.
ffiffiffi
s

p
(GeV) hNi (Expt) hNi (Fit) k χ2=ndf

30.4 10.54� 0.14 10.73� 0.13 11.14� 0.69 24.04=15
44.5 12.08� 0.13 12.21� 0.11 9.23� 0.49 11.74=17
52.6 12.76� 0.14 12.79� 0.10 7.90� 0.28 7.93=19
62.2 13.63� 0.16 13.65� 0.14 8.35� 0.37 26.32=17
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procedure to calculate the entropic index q and the temper-
ature parameter, β−1.

B. Method 2

In the second method, to solve for q and β we explicitly
solve Eqs. (37) and (38). Rearranging these equations, we
get the following set of equations:

n0 þ ðq − 1Þn0ξðn0ξ − 1Þ − 2v0
V

n20 − hNi≡ e1; ð59Þ

ðq − 1Þξ2 − 2v0
V

−
1

k
≡ e2: ð60Þ

Substituting ξ from Eq. (58) into Eqs. (59) and (60), the
equations are in terms of β and q. For a particular ðβ; qÞ
when e1 ≃ 0 and e2 ≃ 0, that value of ðβ; qÞ is the desired
solution. The values of parameters and constants used
are the same as used in Method 1. A nonlinear solver
scipy.optimize.fsolve() (a PYTHON module Ref. [54]) is used
for solving the equations. By applying this method, we
obtain the following values: e1 ¼ −4.336 × 10−12 and
e2 ≈ −6.522 × 10−16, β ≈ 0.00615 and q ≈ 1.0089.
These values of the (β, q) pair which satisfy the

equations, are consistent with the values obtained in
Method 1 and also with the values quoted in Ref. [38].
Hence, it is confirmed that these methods indeed are the
correct approach to solve for β and q. Having established
the correctness of both methods, we use Method 2 for the
analysis presented in this paper. Since Method 1 and
Method 2 give exactly the same solution for β and q
values, the choice does not affect the results.

V. RESULTS AND DISCUSSION

A. Charged multiplicities

As described in the two methods, the values of q and β−1

are validated with the results published in [38] for pp
collisions for the 44.5 GeV data from ISR [51]. As further
cross checks, we analyzed four sets of data from ISR range

of energies by propagating experimental errors. The neg-
ative binomial distribution is fitted to the pp data atffiffiffi
s

p ¼ 30.4 GeV, 52.6 GeV, 62.2 GeV. Table I gives the
experimental value of average multiplicity and the NBD fit
parameters. Table II shows the results for q and β−1

evaluated by using Method 2. The variation of q and
β−1 with center-of-mass energy

ffiffiffi
s

p
is presented in Fig. 4.

It is observed that q increases slowly and linearly with
center-of-mass energy

ffiffiffi
s

p
as q ¼ a

ffiffiffi
s

p þ b where a ¼
7.4849 × 10−5 and b ¼ 1.0055. The parameter β−1 also
increases linearly with the center-of-mass energy as β−1 ¼
c

ffiffiffi
s

p þ d with c ¼ 0.09 and d ¼ 157.65.
It is observed from Table II that the variations in q and

β−1 values on account of quoted experimental errors are
very small. Hence, for further analysis, the error values are
not quoted.
Charged multiplicities in ep interactions in different W

ranges obtained by the H1 [55] experiment at HERA,
are analyzed using the canonical partition function and the

TABLE II. q and β−1 values obtained from the pp interactions
at different ISR energies [53].
ffiffiffi
s

p
(GeV) q β−1 (MeV)

30.4 1.0076� 0.0004 160.81� 1.11
44.5 1.0089� 0.0005 162.47� 0.97
52.6 1.0102� 0.0004 161.80� 0.71
62.2 1.0097� 0.0004 164.46� 0.92

FIG. 4. variation of q (top) and β−1 (bottom) with
ffiffiffi
s

p
for pp

collisions at the ISR energies [53].

FIG. 3. ξ versus β for Eqs. (49) and (58) computed for pp
collisions at

ffiffiffi
s

p ¼ 44.5 GeV.

SOUMYA SARKAR, R. AGGARWAL, and M. KAUR PHYS. REV. D 109, 052008 (2024)

052008-8



q-statistics. Values of entropic index q and the temperature
are calculated. The data in four W ranges; 80–115 GeV,
115–150 GeV, 150–185 GeV, and 185–220 GeV and each
range having data measured in four pseudorapidity inter-
vals are analyzed. Thus a total of 16 datasets have been
analyzed. To begin, each data is fitted with negative
binomial distribution. Figure 5 shows the best-fit results
for one energy range, 185 < W < 220 GeV and four
pseudorapidity sectors. Figures are given only for one
invariant hadron-mass range W to avoid repetition of
multiple similar diagrams. Table III shows the fit results
for all the data. The χ2=d:o:f: in Table III shows the
accuracy of fitting. q and β−1 values calculated by using
v0 ¼ 0.368 fm3 and V ¼ 40.1 fm3 are shown in Table IV.
Next we analyze both the ep and pp data in detail to study
the relationships among various parameters. In a previous

study [38] the q-statistics was studied in pp interactions by
using V values between 24.5–49.2 fm3 to reproduce the
experimental multiplicity distributions. It is interesting to
study the variation of β−1 and q as a function the volume V.

B. Variation of β− 1 with V

Figure 6 shows a plot of β−1 as a function of volume V
for ep collisions in one pseudorapidity sector, 1 < η� < 2

for W ¼ 80–115 GeV, 185–220 GeV ranges, correspond-
ing to the lowest and the highest hWi values. Similar
distributions are studied for all W-ranges and of η�-
pseudorapidity sectors. Figures are not included to omit
repetition. It is observed that the temperature (β−1)
decreases slowly with the increase in the volume for all
ranges of W. We also studied the variation of β−1 for the
different values of volume V ¼ 30–75 fm3 in four pseu-
dorapidity sectors for the lowest and the highest hWi
values. It is again observed that, β−1 decreases with
volume V. With the increase in volume of the system,
the temperature decreases by ≃25% as the volume changes
from 30 fm3 to 75 fm3 for every hQ2i. However, at a given
value of V the temperature increases with hQ2i. Figure 7
shows the dependence β−1 on V for pp collisions at
different cms energies. It is observed that for pp inter-
actions, β−1 falls with volume V i.e., with the increase in
volume of the system, the temperature decreases for each
center-of-mass energy. However, at a fixed value of the
volume, the temperature rises with

ffiffiffi
s

p
. From the pT

spectrum study using the Tsallis function, the results from
the CMS experiment [35] also show that Tðβ−1Þ increases
with

ffiffiffi
s

p
. Thus, the temperature dependence on volume is

very similar in both type of interactions, ep and pp.

0 5 10 15 20
N

0

0.05

0.1

0.15

0.2
N

P

*< 2�1<

*< 3�1<

*< 4�1<

*< 5�1<

FIG. 5. NBD fit to the charged particle probability distribution
in DIS of ep for 185 < W < 220 GeV in the different pseudor-
apidity η� sectors.

TABLE III. NBD fit parameters from Eq. (2) for the Charged particle multiplicity distributions in ep interactions. The data are
obtained by the H1 experiment [55].

W range (GeV) hWi (GeV) η� hQ2i (GeV2) hNi (Expt) hNi (Fit) k χ2=ndf

80–115 96.9 1 < η� < 2 13.9 2.46� 0.10 2.44� 0.11 3.09� 0.72 0.47=11
1 < η� < 3 27.6 4.90� 0.18 4.87� 0.14 4.71� 0.63 1.90=15
1 < η� < 4 55.0 6.45� 0.33 6.47� 0.17 9.78� 2.02 0.46=16
1 < η� < 5 385.3 6.90� 0.34 6.87� 0.14 15.91� 3.39 0.55=16

115–150 132.0 1 < η� < 2 13.9 2.50� 0.12 2.54� 0.07 3.24� 0.44 0.60=12
1 < η� < 3 27.5 5.06� 0.27 5.10� 0.14 3.85� 0.46 1.79=16
1 < η� < 4 55.1 7.00� 0.35 7.07� 0.13 7.99� 0.89 3.51=18
1 < η� < 5 372.8 7.72� 0.42 7.68� 0.12 15.31� 2.30 3.75=19

150–185 166.8 1 < η� < 2 13.9 2.63� 0.18 2.70� 0.09 3.77� 0.81 1.02=12
1 < η� < 3 27.6 5.32� 0.35 5.37� 0.13 3.85� 0.46 2.21=18
1 < η� < 4 55.1 7.51� 0.51 7.59� 0.19 7.43� 1.21 2.95=20
1 < η� < 5 378.4 8.45� 0.58 8.46� 0.20 12.23� 2.65 1.41=20

185–220 201.9 1 < η� < 2 13.9 2.66� 0.18 2.71� 0.10 3.62� 0.78 0.49=12
1 < η� < 3 27.6 5.35� 0.35 5.38� 0.16 3.77� 0.43 1.87=19
1 < η� < 4 54.9 7.66� 0.47 7.76� 0.16 6.34� 0.73 6.00=20
1 < η� < 5 374.2 8.81� 0.55 8.83� 0.18 15.40� 2.93 4.22=21
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C. Variation of q with V

Figure 8 shows the variation of (q − 1) with volume V for
ep collisions in W¼80–115GeV and W¼185–220GeV
range and with different hQ2i values having pseudorapidity
in 1 < η� < 2 interval. It is observed that q has nearly no

dependence on V for each hQ2i value in the mentioned
pseudorapidity region. Same trend is found in all pseudor-
apidity regions andW ranges. The (q − 1) decreases margin-
ally with the increase in hQ2i for every V. However,
ðq − 1Þ > 0 is always true which shows canonical entropy
characteristically nonextensive.
Figure 9 shows the (q − 1) variation with V for pp

collisions at different center-of-mass energies. Similar to
the case of ep interactions, (q − 1) for each

ffiffiffi
s

p
is nearly

constant for all V. Similar trend persists for all center-of-
mass energies. However, q is always greater than unity at
every V and every

ffiffiffi
s

p
. The (q − 1) value increases with

the center-of-mass energy
ffiffiffi
s

p
. Thus, as the center-of-mass

TABLE IV. Values of q and β−1 for the ep interactions from the
data obtained by the H1 [55] experiment in different W ranges.

W range
(GeV)

hWi
(GeV) η�

hQ2i
(GeV2) q β−1

80–115 96.9 1 < η� < 2 13.9 1.0228 111.37
1 < η� < 3 27.6 1.0152 130.92
1 < η� < 4 55.0 1.0080 144.76
1 < η� < 5 385.3 1.0057 150.17

115–150 132.0 1 < η� < 2 13.9 1.0243 111.22
1 < η� < 3 27.5 1.0187 129.64
1 < η� < 4 55.1 1.0096 145.28
1 < η� < 5 372.8 1.0063 152.90

150–185 166.8 1 < η� < 2 13.9 1.0243 112.34
1 < η� < 3 27.6 1.0197 130.22
1 < η� < 4 55.1 1.0112 145.45
1 < η� < 5 378.4 1.0069 154.52

185–220 201.9 1 < η� < 2 13.9 1.0239 112.70
1 < η� < 3 27.6 1.0193 130.59
1 < η� < 4 54.9 1.0119 145.27
1 < η� < 5 374.2 1.0068 156.01

FIG. 6. β−1 versus volume V computed for ep collisions in the
W ¼ 80–115 GeV (top) and W ¼ 185–220 GeV (bottom) range
for the four values of hQ2i.

FIG. 7. β−1 versus volume V computed for pp collisions at fourffiffiffi
s

p ¼ 30.5 GeV, 44.5 GeV, 52.6 GeV, 62.2 GeV.

FIG. 8. (q − 1) versus V dependence for ep collisions in W ¼
80–115 GeV (top) and W ¼ 185–220 GeV (bottom) range and
with different hQ2i.
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energy of interaction increases, the nonextensive behavior
of the system becomes more predominant.

D. Variation of q and β− 1 with hWi
To study the dependence of the entropic index q on the

hadronic mass W, we show in Fig. 10 the variation plot for
ep interactions in different η� sectors. It is observed that q
varies slightly but almost linearly with hWi in each phase-
space region shown by the pseudorapidity range. The fit
parameters of the linear fit are given in Table V. β−1 also
depends linearly on hWi with a marginal change. However,

both q and β−1 depend upon the phase-space size. While q
decreases, β−1 increases with increasing η� region. The
linear fit is parameters are given in Table VI.

E. Variation of q and β− 1 with hQ2i
The variations of q and β−1 as a function of hQ2i, the

negative square of the four-momentum transferred from the
electron to the proton, are shown in Fig. 11. The variation

FIG. 9. Variation of (q − 1) with V for pp collisions at different
energies.

FIG. 10. Variations of q and β−1 versus hWi for ep interactions.
hWi ¼ 96.9 GeV, 132.0 GeV, 166.8 GeV, 201.9 GeV corre-
sponding to the W range 80–115 GeV, 115–150 GeV, 150–
185 GeV, and 185–220 GeV, respectively.

TABLE V. Linear variation plot q ¼ ahWi þ b for ep inter-
actions in different η� sectors, from Table IV.

η� a (×10−5) b

1 < η� < 5 1.115 1.0047
1 < η� < 4 3.802 1.0044
1 < η� < 3 3.803 1.0125
1 < η� < 2 0.939 1.0224

TABLE VI. Linear variation plot β−1 ¼ ahWi þ b for ep
interactions in different η� sectors, from Table IV.

η� a (×10−4) b

1 < η� < 5 547 145.225
1 < η� < 4 48 144.464
1 < η� < 3 −12 130.519
1 < η� < 2 145 109.727

FIG. 11. q and β−1 versus hQ2i variation for all ep interactions
in different hWi values listed in the Table IV.
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of q has a quadratic dependence on loghQ2i with param-
eters given in Table VII.
It may be observed that the q decreases quadratically

with loghQ2i. For a given hQ2i the q value is higher for
the interactions from higher W range i.e., higher hWi.
However for all values of hQ2i the q remains greater than
unity (> 1). This indicates the nonextensive dynamics of
interactions.
On the other hand, temperature β−1 rises quadratically

with loghQ2i. The parameters of fit are given in Table VIII.
Also at the highest hQ2i value, the temperature is
the highest for maximum hWi. For a given hWi four-
momentum transferred from the electron to the proton in an
ep interaction increases with the phase space size i.e., from
jΔη�j ¼ 1 to 4. Correspondingly the increase in the energy
in the region results in increase in temperature.

VI. CONCLUSION

The paper presents the first analysis of ep interactions atffiffiffi
s

p ¼ 300 GeV and pp interactions at various ISR ener-
gies by using the canonical partition function and
q-statistics. We devised two different methods for finding
the entropic parameter q and the temperature parameter
β−1. The two methods are validated with the previously
published results [38] and are found to be consistent.
The analysis of ep interactions in different ranges of the
invariant mass of the hadronic system shows that the
interactions deviate from Maxwell-Boltzmann statistics
and show that the canonical entropy is nonextensive.
The entropic parameter q > 1 for all W ranges and in all
pseudorapidity sectors between η� ¼ 1 to 5. Similarly the
analysis of pp interactions establishes that entropic param-
eter q > 1 for all center-of-mass energies. From a detailed
study of the interdependence of q, β, V,

ffiffiffi
s

p
, hWi, and hQ2i,

we observe that for ep interactions, with the increase in

volume of the system, the temperature decreases at a given
hQ2i. However, for fixed volume V, the temperature rises
with hQ2i. The temperature dependence on volume is
very similar in ep and pp interactions as observed from
Figs. 6 and 7. It is observed that q has nearly no dependence
on system volume for both ep and pp interactions.
However, q > 1 is always true, which shows that the
canonical entropy is characteristically nonextensive.
In ep interactions, q has a linear dependence on hWi and

the value of q decreases with the increase in allowed phase
space i.e., as the size of η� sector increases. The temperature
parameter β−1 depends marginally upon hadronic invariant
mass hWi but β−1 increases with the size of the phase space,
roughly from 111 MeV to 155 MeVas the η� changes from
1 < η� < 2 to 1 < η� < 5. For a given hWi, square of
the four-momentum transferred from the electron to the
proton hQ2i in an ep interaction increases with the phase
space size (jΔη�j) as can be observed from Table IV.
Correspondingly the temperature (β−1) also increases. In
the case of pp interactions q has linear dependence on

ffiffiffi
s

p
,

similar to the ep case. The temperature increases with the
center-of-mass energy,

ffiffiffi
s

p
. The results from the CMS

experiment [35,36] have also shown that the temperature
increases with the energy,

ffiffiffi
s

p
.

It is concluded that canonical entropy derived in both ep
and pp interactions is nonextensive, with entropic param-
eter q > 1: In the Van der Waals gas model with q ¼ 1, the
multiplicity distribution is narrower in width and does not
agree with the data [38]. The Tsallis q-statistics broadens
the width and reproduces the multiplicity distribution well.
This also implies an increase in the events with higher
multiplicity. In the limit of small (q − 1), the distributions
are well represented by negative binomial distribution. The
present work has a potential scope of extension to the ep
and electron-nucleus collisions at the future Electron-Ion
Collider (EIC) and to pp and proton-nucleus collisions at
the high luminosity (HL)-LHC experiments. The present
study is validated using the pp collisions data at ISR
energies and the entropic parameter is found to increase
slightly with the energy,

ffiffiffi
s

p
. The HL-LHC experiments

will facilitate to explore the nature of entropic parameter
and study the temperature parameter, β−1, at higher

ffiffiffi
s

p
energies. The entropic parameter based on present study
can be predicted to be nonextensive for pp collisions at
higher energies. The future planned experiments at the EIC
will enable to explore the nonextensive nature of entropic
parameter, and temperature β−1 in ep collisions, at lower
values of hadronic invariant mass hWi as compared to the
present study.
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TABLE VII. Variation plot q ¼ a log2hQ2i − b loghQ2i þ c
for ep interactions in different W ranges.

W (GeV) a (×10−4) bð×10−4Þ c

80 < W < 115 140 641 1.0776
115 < W < 150 126 602 1.0773
150 < W < 185 99 497 1.0688
185 < W < 220 84 438 1.0634

TABLE VIII. Plot β−1 ¼ −a0 log2hQ2i þ b0 loghQ2i − c0 for
ep interactions in different W ranges.

W (GeV) a0 b0 c0

80 < W < 115 32.89 148.99 15.14
115 < W < 150 32.58 150.52 18.61
150 < W < 185 30.21 142.09 10.94
185 < W < 220 28.59 136.73 06.47
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