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The directionality information of incoming neutrinos is essential to atmospheric neutrino oscillation
analysis since it is directly related to the oscillation baseline length. Large homogeneous liquid
scintillator detectors, while offering excellent energy resolution, are traditionally very limited in their
capabilities of measuring event directionality. In this paper, we present a novel directionality
reconstruction method for atmospheric neutrino events in large homogeneous liquid scintillator detectors
based on waveform analysis and machine learning techniques. We demonstrate for the first time that such
detectors can achieve good direction resolution and potentially play an important role in future
atmospheric neutrino oscillation measurements.
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I. INTRODUCTION

Liquid scintillator (LS) detectors play an important role
in neutrino physics. They typically offer low-threshold and
high-precision energy measurements, ideal for low-energy
topics such as reactor neutrinos and solar neutrinos.
Notable examples include the first reactor neutrino oscil-
lation measurement by KamLAND [1], sub-MeV solar
neutrino detection by Borexino [2,3], and the θ13 meas-
urement by Daya Bay [4]. The central detector (CD)
of Jiangmen Underground Neutrino Observatory (JUNO)
that is currently under construction in China will be the
largest detector of this kind [5,6]. With 20 kton target mass
and 78% photomultiplier tube (PMT) coverage, JUNO is
designed to determine the neutrino mass ordering (NMO)
via a precise measurement of the oscillation spectrum of
reactor neutrinos.
Atmospheric neutrino measurements led to the discovery

of neutrino oscillations in the late 1990s [7], and are
expected to continue contributing to the knowledge of

neutrino mixing angles, NMO, and the CP violation phase
in the next decades. Event directionality information is
mandatory to atmospheric neutrino oscillation measure-
ments since the oscillation baseline length varies as a
function of the neutrino zenith angle. Directionality meas-
urement in large homogeneous LS detectors, however, is
very challenging. On one hand, unlike tracking detectors
such as liquid argon time projection chambers used by
DUNE [8], LS detectors do not offer direct track informa-
tion. On the other hand, Cherenkov light, while offering
excellent directional information in water detectors such as
Super-K [7], is only about a few percent of scintillation
light in a typical LS detector. There have been efforts
on separating Cherenkov light from scintillation light by
utilizing slow scintillators [9,10] or photo sensors with high
timing resolution [11,12]. A notable recent progress of
these kinds is the reconstruction of solar neutrino’s direc-
tionality by SNOþ [13]. Water-based scintillator technique
with tunable Cherenkov light to scintillation light ratio
also shows great potential [14]. A novel detector concept,
THEIA, is proposed to incorporate multiple such new
techniques including water-based scintillator and fast
photon sensors [15]. While most of these techniques are
developed for lower energy topics such as solar neutrinos,
they certainly can be adapted for atmospheric neutrino
oscillation measurements. However, major hardware
upgrades are required for those techniques to be applicable
to existing detectors.
In recent years, new ideas have been developed which

turn to scintillation light for directionality information [16].
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In the low energy (tens of MeVor below) region, a charged
particle deposits energy in LS like a point source, leading to
an isotropic scintillation light distribution. But at higher
energies, the space and time distributions of scintillation
photons in the detector are the superposition of light
from points along the particle tracks, the characteristics
of which therefore reflect the event topology in the detector.
A topological reconstruction method is developed based
upon this concept and shows good potential in reconstruct-
ing muon events with the assumption of a known reference
point [17]. But the reconstruction performance of more
complex events like those from atmospheric neutrinos has
never been reported.
In this paper, we present a novel method of event

directionality reconstruction for atmospheric neutrinos
in large homogeneous LS detectors based on waveform
analysis and machine learning (ML) techniques with
information from scintillation light. This method extracts
features relevant to event directionality from PMT wave-
forms, and uses them as inputs to ML models which
are trained to predict the incoming neutrino direction.
Performances on atmospheric neutrino events using
Monte Carlo (MC) simulation with different ML models
are discussed. It is demonstrated that a large homogeneous
LS detector such as the JUNO CD can achieve good
directionality resolution for atmospheric neutrino events,
making it suitable for atmospheric neutrino oscillation
measurements. This is the first demonstration of atmos-
pheric neutrino’s directionality reconstruction in any homo-
geneous LS detectors with MC studies.
This paper is organized as follows. Section II describes

the idea and technique in detail. The virtual apparatus
and data samples used in this study can be found in Sec. III.
The algorithms for PMT waveform feature extraction and
details of the ML models are discussed in Secs. IV and V.
The performances of models with MC simulation are
presented in Sec. VI. In Sec. VII, the advantage of this
method by reconstructing the incident neutrino direction
directly and the dependence on neutrino interaction models
are discussed. Finally, Sec. VIII summarizes the study.

II. METHODOLOGY

The light seen by PMTs of an LS detector is a super-
position of light generated at many points on particle tracks
inside the detector. If a particle travels with a speed faster
than the speed of light in LS, scintillation light forms a
cone-like front structure, as discussed in [16]. For each
event, the hit time of the earliest photon reaching a PMT
(“first hit time”) therefore naturally offers information on
the event directionality.
In addition to the first hit time, more information can be

extracted from the hit time distribution of photons reaching
PMTs. Consider two arbitrary points on a single charged
particle track, P0 and P1, separated by a small distance Δl,
as illustrated in Fig. 1. The time difference between the first

scintillation photons from P0 and P1 arriving at a PMTat an
angle θ with respect to the track direction is

Δt ¼
�
�
�
�

Δl
v

−
Δl cos θ
c=n

�
�
�
�
¼ Δl

�
�
�
�

1 − nβ cos θ
v

�
�
�
�

ð1Þ

where v is the speed of the particle, c is the speed of light in
vacuum and n is the effective group refraction index of LS.
Here it is assumed that the distance from P0 or P1 to the
PMT is much larger than Δl. With very small Δt and Δl,
Eq. (1) can be rewritten in a differential form:

dl
dt

¼ v
j1 − nβ cos θj : ð2Þ

dl
dt describes the change rate of track length l that is visible

to the PMT, which depends upon θ. Since the amount of
scintillation light emitted is related to l, it is easy to
conclude that the number of photons received by a PMT
as a function of time (light curve) also depends upon θ.
The exact shape of the light curve obviously also depends
on the energy deposition along the track and LS properties.
Interestingly dl

dt reaches its maximum when cos θ ¼ 1
nβ if

β > 1
n (i.e., the particle speed is greater than the speed

of light in LS), the same angle as Cherenkov radiation.
A PMT at an angle closer to θ ¼ arccosð1=nβÞ sees a light
curve with a much steeper front edge, while a PMT further
away from this angle receives light more spreading out in
time. This is then reflected in how the number of photo-
electrons (PEs) of a PMT evolves as a function of time
(NPE;iðtÞ for the ith PMT, Fig. 2), and finally in the PMT’s
waveform. In principle, PMTwaveforms in an LS detector
contain all the information one needs for a directionality

FIG. 1. Illustration of the scintillation light (orange dashed
lines) from a charged particle track (black solid line) reaching a
PMT. The isotropic emission of scintillation light from two points
(P1 and P2, separated by a distance Δl) is illustrated by blue
dashed circles. The scintillation-light front at a certain time forms
a conelike structure, illustrated by red dashed lines.
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reconstruction. In practice, however, it can be very difficult
to extract directionality information directly from wave-
forms given the complex relationship between the two and
considering the large number of PMTs involved. A two-
step method is developed to simplify the task.
First, instead of using the full waveforms, key features

are extracted from waveforms to keep only the useful
information relevant to the event directionality. Examples
of such features include the first hit time, the total charge,
and the slope of the waveforms’ front edge. Details of
waveform features and their extraction are discussed
in Sec. IV.
While it is possible to figure out some simple relations

between the waveform features and the directions for single
particles with distinctive track-like topology such as cosmic
muons, the task is still not as easy for atmospheric neutrinos
in the GeV energy region. The photons detected by PMTs
in atmospheric neutrino events may contain the contribu-
tions from both charged leptons and hadrons produced by
neutrinos interacting with the detector nuclei. Moreover,
electrons or hadrons usually produce showers in LS,
making it even more difficult to deduce the neutrino
directionality from the PMT waveform features with any
traditional methods such as likelihood-based methods.
To further simplify the task, a machine learning (ML)
approach is developed. ML is now widely used in particle
physics experiments and shows great potential in extracting
information from detector signals and improving detector
performances, making it a possible solution to this prob-
lem. In this study, several ML models are developed and
trained with a large number of atmospheric neutrino events
to find out the original neutrino direction from feature
patterns. Note that in principle it is also possible to
reconstruct the direction of the final-state charged lepton.
Neutrino direction is chosen as the ML model output

because it has a larger impact on the neutrino oscillation
sensitivity, while the relation between the charged lepton
direction and the neutrino direction is smeared by differ-
ential neutrino-nucleus cross sections. Details of the ML
models used in this study are discussed in Sec. V.

III. DETECTOR AND SIMULATION

The simulation of JUNO CD is used to demonstrate
the method. The JUNO CD is a large-scale spherical LS
detector under construction (Fig. 3). Linear alkylbenzene
is used as the detection medium, with 2.5 g=L 2,5-
diphenyloxazole (PPO) as the fluor and 3 mg=L p-bis-
(o-methylstyryl)-benzene (bis-MSB) as the wavelength
shifter [6,18]. The total LS mass is 20 kton, contained
in an acrylic sphere with a radius of 17.7 m. 17,612 20-inch
PMTs will be arranged facing-inward on a 19.5 m radius
spherical structure to detect photons, including 12,612
dynode PMTs and 5,000 MCP PMTs, with a total coverage
of about 75%. Parameters of the 20-inch PMTs used in the
simulation are summarized in Table I. In addition, 25,600
3-inch PMTs will also be installed, although they are not
used in this paper for simplicity.

GENIE (v3.0.6) event generator [19,20] is used to simulate
charged current (CC) neutrino interactions in the detector
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FIG. 2. The normalized NPE;iðtÞ distributions for PMTs at
different angles with respect to the track by a 1 GeV muon
simulated at the center of the detector. The PMTangle θ is defined
as the intermediate angle between the muon direction and the line
connecting the middle point of the muon track and the PMT.
Distinct NPE;iðtÞ shapes can be observed for PMTs at different
angles.

FIG. 3. Drawing of the JUNO central detector design.

TABLE I. Summary of the PMT parameters used in the
simulation including charge resolution, transit time spread
(TTS) defined as the σ of the transit time distribution, and dark
noise rate.

PMT type Dynode MCP

Charge resolution (p.e.) 0.28� 0.02 0.33� 0.03
Transit time spread 1.1� 0.1 7.6� 0.1
Dark noise rate (kHz) 15� 4 32� 14
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with neutrino flux from [21]. The detector response is
simulated based on GEANT4 [22,23], with a customized
package developed for the simulation of various electronic
effects. In the end, a simulated data sample with about
135 k νμ=ν̄μCC and 57 k νe=ν̄eCC events with incoming
neutrino energy between 1 GeV and 20 GeV are produced
for the training and validation of ML models. In addition,
an independent sample is simulated with the NuWro event
generator [24] to check the robustness of the performance
with variations of neutrino interaction models.

IV. PMT WAVEFORM FEATURE EXTRACTION

The photoelectron signal collected by PMTs is con-
verted to waveforms through Flash Analog-to-Digital
converters modules. The observed PMT waveforms
are affected by charge-smearing effects and various
noise sources, which limits the accuracy of the event
reconstruction. To improve the signal quality, the decon-
volution method is used to mitigate the single photo-
electron (SPE) waveform response of the PMTs and
reduce the high-frequency noise [25,26].
The deconvolution method works by estimating the SPE

waveforms and noise properties of PMTs, and then using
this information to reconstruct the photoelectron signal.
Consider the fact that the PMT waveform can be decom-
posed into two parts: signal and noise. The signal is a sum
of individual PEs, with each one convoluted with the SPE
waveform response. The time-dependent observed wave-
form of the ith PMT, OiðtÞ, can be expressed as

OiðtÞ ¼ HiðtÞ � UiðtÞ þ NiðtÞ ð3Þ

where HiðtÞ is the true photoelectron hit at time t, UiðtÞ is
the SPE waveform, NiðtÞ represents the white noise, and �
denotes the convolution.
The deconvoluted waveform of the ith PMT, Hdeconv

i ,
which estimates the true photoelectron distribution, can be
calculated using the following formula in the frequency
domain:

Hdeconv
i ðfÞ ¼ ½OiðfÞFiðfÞ�=TiðfÞ ð4Þ

where FiðfÞ is the filter, and TiðfÞ is the SPE template in
the frequency domain. The SPE template for each PMT is
obtained by averaging over a large number of SPE wave-
forms produced from a simulated 68Ge calibration sample.
The filter is calculated as ½ðsðfÞ þ nðfÞÞ2 − nðfÞ2�=ðsðfÞþ
nðfÞÞ2, where sðfÞ þ nðfÞ and nðfÞ are the average
amplitude of the SPE signal and the noise in the frequency
domain, respectively. The final deconvoluted waveform
Hdeconv

i ðtÞ is obtained by converting Hdeconv
i ðfÞ into the

time domain with baseline adjusted by setting the average
white noise level to zero. Figure 4 shows the ideal PE signal
without considering any PMT electronic effects, observed

waveform, and deconvoluted waveform for one of the
PMTs as an example.
The key features of the waveform distributions are

extracted from the deconvoluted waveform in the first
1.25μs readoutwindowof each PMT.These features include:

(i) Total charge, which is calculated by integrating the
charge over the entire readout time window;

(ii) First hit time (FHT), which is calculated by using a
constant fraction discriminator method with a
threshold of 20% of peak charge;

(iii) Slope, which describes the average slope of the
deconvoluted waveform in the first 4 ns after the
first hit time:

slopei ¼ ½Hdeconv
i ðt ¼ FHT þ 4Þ − Hdeconv

i ðt ¼
FHTÞ�=4

(iv) Charge ratio, which is defined as the ratio of charge
in the first 4 ns after FHT to the total charge;

(v) Peak charge and peak time, which correspond to the
charge and time of the peak of the deconvoluted
waveform, respectively.

In principle, additional features could be extracted to provide
further details about the waveforms. Only the tested features

(a)

(b)

(c)

FIG. 4. The ideal PE signal (a), observed waveform (b), and the
deconvoluted waveform with baseline adjusted (c) of one of the
PMT. The signal was produced by one of the atmospheric νμ
events in Monte Carlo simulation.
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that turn out to have a non-negligible impact on the direc-
tionality reconstruction are listed. Feature images of all the
20-inch PMTs are used as inputs to the ML models.

V. MACHINE LEARNING MODELS

The convolutional neural network (CNN) [27] technique
is very powerful in processing images, and has been widely
used in particle physics experiments. Features extracted
from PMTs in an LS detector form image-like data on the
PMT surface, which is well-suited for CNN models to deal
with. However, given the PMTs in many LS detectors such
as JUNO are arranged on a spherical surface, the features
extracted cannot be fed to a CNN directly since typical
models based upon CNN can only process images on the
Euclidean domain and there is no way to define a sliding
window (i.e., the convolution kernel) on the sphere.
Three different approaches are developed to deal with

this problem. The first approach projects spherical data on a
planar surface so that it can easily be processed by various
state-of-art ML models such as EfficientNetV2 [28].
The second approach utilizes a model based upon
DeepShere [29], a graph convolution neural network
(GCNN) designed to process spherical data dedicatedly.
Lastly, a 3D model based upon PointNetþþ [30] which
processes PMT data as a 3D point cloud is utilized. For
each model, the output is designed to be the (x,y,z)
components of the unit directional vector representing
the incident neutrino direction. The loss function is defined
as the Euclidean distance between the true (x,y,z) and the
reconstructed (x0,y0,z0) points. This definition is completely
rotation invariant and turns out to be able to avoid
reconstruction bias while maintaining good resolution
performance. Details of the three kinds of models are
discussed in the following subsections, and their perfor-
mances are compared in Sec. VI.

A. A planar machine learning model: EfficientNetV2

Many CNN models, such as VGG [31], ResNet [32],
EfficientNet [33], and EfficientNetV2 [28], have emerged
with superior performance in the ImageNet Large-
Scale Visual Recognition Challenge (ILSVRC). While
Transformer-based architectures [34,35] have shown prom-
ise in recent ILSVRC, they require significantly larger
datasets for training. In contrast, CNNs’ convolution
operation extracts high-level and multilevel features from
planar images, giving them superior generalization capa-
bilities with small datasets.
As mentioned, the features of each event form spherical

imagelike data. To incorporate the planar machine learning
models, the PMT map is projected onto a two-dimensional
θPMTϕPMT grid (Fig. 5), where θPMT and ϕPMT are the
zenith and azimuth angles of the PMT position. The grid
size of 128 × 224 is chosen to ensure each grid cell
corresponds to at most one PMT. The PMT features are

first filled into the θPMTϕPMT grids and then stacked
together. The direction of the incident neutrino is sub-
sequently reconstructed using the state-of-the-art CNN
model, EfficientNetV2, known for its superior performance
and reduced training time. ATanh layer, appended after the
fully connected (FC) layer of the original EfficientNetV2-S
architecture [28], normalizes the output to fall within the -1
to 1 range.

B. A spherical machine learning model: DeepSphere

DeepShere is a GCNN model originally developed
for cosmology studies to deal with data distributed on a
sphere [29]. One of the major advantages DeepShere
provides is that it avoids projecting data to a planar surface,
and maintains rotation co-variance, i.e., rotation of the
input variables causes the same rotation of the predicted
value. The main idea of DeepShere is to model the
spherical data to a graph of connected pixels, and perform
graph convolution based on spectral graph method.
To utilize DeepSphere, the spherical surface formed by

PMTs is pixelized by the HEALPix scheme [36], which
divides the surface by Npix ¼ 12N2

side equal-sized pixels.
In this study, Nside ¼ 32 is used, so that the total pixel
number is 12,288, which is less than the total PMT
number. This Nside value is optimized to balance between
computational resources and the actual performance as a
larger value would significantly increase the data size and
computing time. Since it is likely that one pixel covers
more than one PMTs, the total charge of the pixel is the
sum of all PMTs in the pixel, while FHT is taken as the
earliest one. The other features are simply calculated by
averaging PMTs in the pixel. Each pixel is then repre-
sented as a graph vertex before being fed into the model.
The connectivity between graph vertices is represented
by the adjacency matrix Wi;j, which is calculated via

exp ð− kx⃗i−x⃗jk2
ρ2

Þ if vertex i and vertex j are neighbors (0 if

otherwise), where x⃗i and x⃗j are the coordinates, ρ is the

FIG. 5. The projected total charge (a) and first hit time
(b) information on θPMTϕPMT grids for one of the atmospheric
νμCC events.
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averaged distance over all connected pixels. Since there
is no straightforward way to implement convolution via
sliding windows on the sphere, the convolution on the
graph is implemented through an efficient spherical
harmonic transform (SHT), proposed by [37,38]. The
architecture of the model developed based on DeepShere
is shown in Fig. 6. It consists of 4 sets of convolution
blocks, followed by one Chebyshev convolution
(ChebConv) layer, a fully connected layer and lastly a
prediction block. Each convolution block contains two
Chebyshev convolution layers and one max pooling layer.

C. A 3D-based machine learning model: PointNet+ +

Each PMT within the JUNO CD can be regarded as an
individual discrete point. After the PMT waveform feature
extraction, each event can be represented as a 3D point-
cloud data, where each point contains the information of
the three coordinates and the extracted features of one
PMT. Therefore it can be directly fed into 3D point-cloud-
based machine learning models.
PointNet [39] is one of the most influential 3D-based

deep learning models, which directly takes point clouds as
input. It is effective in learning global features from point
cloud data but incapable of learning local neighborhood
features. To overcome this issue, a hierarchical network
based on PointNet, the so-called PointNetþþ [30], was
proposed. The PointNetþþ architecture is designed to
recursively sub-sample a small neighborhood from the
whole point clouds, group the neighborhood into larger
units, and then extract local features with mini-PointNet.
Therefore, it is able to capture the fine-grained local
features besides learning global ones.

In this study, the object classification version of
PointNetþþ’s implementation [40] is selected as the
backbone network, and a tanh layer is added at the end
of the network. The input data are those featured by the
Cartesian coordinates of the PMT position, together with
the PMT features mentioned in section IV.

VI. PERFORMANCE

For each model mentioned above, 80% of the νμ=ν̄μ
and νe=ν̄eCC samples described in Sec. III are used for
training separately, with the other 20% used for validations.
The results of the validation sample are quoted as the
reconstruction performances.
The performances are evaluated in two ways: firstly

by evaluating the opening angle α between the true and
reconstructed neutrino directions, and secondly by evalu-
ating the difference between the true and reconstructed
zenith angle of the incoming neutrino (θν). Both α and the
true and reconstructed θν (θν;true and θν;rec) are illustrated in
Fig. 7. The evaluation is done in 1 GeV neutrino energy
bins since the performances can be energy-dependent, and
also for the whole sample from 1 GeV to 20 GeV. The
zenith angle θν is of particular interest since cos θν is the
direct input to atmospheric neutrino oscillation measure-
ments. The resolution on α (σα) is defined as the 68%
quantile of the α distribution, given that α is always larger
than 0. For θν, the resolution in each energy bin (σθν) is
defined as the standard deviation of the Gaussian fit to
the distribution of differences between the reconstructed
and true values (θν;rec − θν;true), since these distributions are
found to be approximately Gaussian. While for the per-
formance integrated over all energy bins, the standard

FIG. 6. Architecture of the model based on DeepSphere. Subsequent to the input features are four sets of Chebyshev convolution layer
and max pooling layer blocks (each with two Chebyshev convolution layers and one max pooling layer). Then another Chebyshev
convolution layer and a fully connected layer are followed by the prediction block.
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deviation of the θν;rec − θν;true distribution (Stdθν) is used in
place of the Gaussian σθν . This substitution is made due to
the non-Gaussian shape resulting from the superposition of
all the energies.
The resulting performances are shown in Figs. 8 and 9 for

νμ=ν̄μ and νe=ν̄eCC events from 1 GeV to 20 GeV respec-
tively. The plots on the top row show the distributions of α,
the distributions of θν;rec − θν;true are shown in the middle
row, and the θν;rec vs θν;true 2D plots are shown in the bottom
row. From left to right the three columns correspond to the
three models: EfficientNet, DeepSphere and PointNetþþ
respectively. The reconstruction results are also summarized
in Table II. Overall the three models show comparable
performances, with the maximum difference between mod-
els around 2°. No obvious reconstruction bias is observed.
The α and θν resolutions as functions of the incoming

neutrino energy are shown in Fig. 10. As one would expect
the performance gets better as the energy increases for both
neutrino flavors, and a consistent trend is observed for the

FIG. 7. Illustration of the angles defined to benchmark the
reconstruction performance: α is the angle between the true
(green, dashed) and reconstructed (blue, solid) directional vector
while θν;true and θν;rec are the zenith angle of the true and
reconstructed vectors respectively.

(a) (b) (c)

FIG. 8. The directionality reconstruction performance for νμ=ν̄μCC events from 1 GeV to 20 GeV by (a) EfficientNet, (b) DeepSphere,
and (c) PointNetþþ models. Top: 1D distribution of the opening angle α, between the predicted and true neutrino directional vectors.
The vertical dashed line marks the 68% quantile. Middle: 1D distribution of the difference between the predicted and true incoming
neutrino zenith angle, θν;rec and θν;true. Bottom: Two-dimensional distribution of θν;rec vs θν;true. The black diagonal line has a slope of 1
for reference.
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three different models. Moreover, for neutrinos with the
same energy, νμ=ν̄μCC has better resolution than νe=ν̄eCC.
This is also expected since the muon track in the final state
of νμ=ν̄μCC interactions generally exhibits stronger direc-
tionality than the electron shower in the case of νe=ν̄eCC at
the same energy.

VII. DISCUSSION

In this work, the incident atmospheric neutrino’s direc-
tion is reconstructed, which is different from most other
atmospheric neutrino measurements where the final-state
charged lepton’s direction is used. This is a feasible strategy
in an LS detector such as JUNO for two reasons: most
importantly, both the charged lepton and hadrons can fully
deposit their energy and produce scintillation light received
by PMTs, preserving most of the incident neutrino’s
information; Furthermore, powerful ML models are able
to resolve the complex relationship between the neutrino
directionality and the PMT waveform features. Figure 11
compares the angle between the true and reconstructed
neutrino directions, α, using the PointNetþþ result as an
example, with the one between the incident neutrino and
final-state charged lepton using the same νμCC and νeCC
samples as described in Sec. III. The former is considerably
smaller than the latter, by about 11° if evaluated by the
68% quantile, for both flavors. This implies that the
reconstructed neutrino direction is better than a perfectly

(a) (b) (c)

FIG. 9. The directionality reconstruction performance for νe=ν̄eCC events from 1 GeV to 20 GeV by (a) EfficientNet, (b) DeepSphere,
and (c) PointNetþþ models. Top: 1D distribution of the opening angle, α, between the predicted and true neutrino directional vectors.
The vertical dashed line marks the 68% quantile. Middle: 1D distribution of the difference between the predicted and true incoming
neutrino zenith angle, θν;rec and θν;true. Bottom: two-dimensional distribution of θν;rec vs θν;true. The black diagonal line has a slope of 1
for reference.

TABLE II. Summary of the reconstruction performances for
νμ=ν̄μCC and νe=ν̄eCC events using three different models. The
performances on α (σα) are benchmarked by the 68% quantile of
the α distribution. The performances on θν are evaluated by the
standard deviation values of the θν;rec − θν;true distributions given
their non-Gaussian shapes.

EfficientNet-V2 DeepSphere PointNetþþ
νμ=ν̄μ σα 22.3° 19.5° 19.9°

Stdθν 17.4° 15.5° 15.6°

νe=ν̄e σα 25.7° 24.5° 22.6°
Stdθν 18.8° 17.9° 16.8°
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measured final-state charged lepton direction in reflecting
the true neutrino directionality, which can be an advantage
for large LS detectors in atmospheric neutrino oscillation
measurements. For water Cherenkov detectors, in com-
parison, hadrons produced in atmospheric neutrino inter-
actions are often below the Cherenkov threshold and

invisible, making it more difficult to reconstruct the
incident neutrino direction.
While being able to utilize the information from hadrons

brings an advantage, it can also potentially be subject to
uncertainties from the neutrino interaction models used
in the simulation. To understand the dependence of this

(a) (b)

FIG. 10. The α (top) and θν (bottom) resolutions are shown as a function of neutrino energy Eν for (a) νμ=ν̄μCC and (b) νe=ν̄eCC
events in the three models. The resolution improves with increasing Eν. The νμ=ν̄μCC events in general have better resolution than the
νe=ν̄eCC events at the same energy.

(a) (b)

FIG. 11. Comparison between two included angles: the one between the true and reconstructed neutrino direction from PointNetþþ
in this study (blue lines), and the one between the incident neutrino and final-state charged lepton directions (red lines) using the same
(a) νμ=ν̄μCC and (b) νe=ν̄eCC samples.
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reconstruction method on neutrino interaction models, an
independent sample simulated with an alternative gener-
ator, NuWro, is used. The ML models trained with the GENIE

sample are used to reconstruct the events of the NuWro

sample. The differences between the resolutions obtained
from GENIE and NuWro samples as functions of neutrino
energy are shown in Fig. 12. The results are consistent in
most energy bins for all three models with the maximum
difference around 2°. This additional check shows that the
results are not severely affected by the differences in
interaction models from the two generators.
Another potential systematic uncertainty source that may

affect this method is the simulation of PMT’s electronic
effects. Since the ML models are trained by features
extracted from simulated waveforms, uncertainties in the
simulation can propagate to the uncertainties of the
features, and finally to the uncertainties of the directionality
reconstruction. To estimate this effect, an additional sample

is produced by shifting the TTS values used in the
simulation by �10%, which is about the uncertainty
obtained from the JUNO PMT testing [41]. This sample
is tested by the PointNetþþ model trained by the default
samples, and the differences in σθν from the default results
are shown in Fig. 13. The maximum difference is again
within 2°.
Finally, it is worth pointing out that in addition to

neutrino directionality, the PMT waveform can also be
influenced by other event details, such as the track/shower
starting/stopping points and energy deposition (dE=dx).
Therefore, in principle, the method developed in this work
by utilizing PMT waveform analysis and ML models
can also be applied to the reconstruction of additional
event information such as energy, interaction vertex, track
trajectories, and particle types. These tasks can be accom-
plished simply by adjusting the combination of input
features and the output of the ML models.

VIII. SUMMARY AND OUTLOOK

This is the world’s first attempt to reconstruct atmos-
pheric neutrinos’ directionality in a large homogeneous LS
detector. Despite their wide applications in various neutrino
physics topics, such detectors have never been used for
atmospheric neutrino oscillation measurements before.
In this study, we demonstrate for the first time that an
LS detector can offer good angular resolution for atmos-
pheric neutrino oscillation measurements with waveform
analysis and ML techniques. Different ML models, neu-
trino event generators, and PMT simulation parameters are
tested. The performance differences obtained are small and
can be treated as systematic uncertainties. This method also
has the advantage of reconstructing the neutrino direction
directly rather than the final-state charged lepton direction,
which can potentially further improve the neutrino oscil-
lation sensitivity. Combined with good energy resolution,
this work makes a large LS detector such as JUNO
an excellent candidate for future atmospheric neutrino

(a) (b)

FIG. 12. The difference in the θν resolutions obtained from (a) νμ=ν̄μCC and (b) νe=ν̄eCC samples simulated by NuWro and GENIE

using different ML models as functions of incoming neutrino energy. The ML models are trained on the same GENIE sample and tested
on either an independent GENIE sample or a NuWro sample.

FIG. 13. The difference in θν resolutions (Δσθν ) as functions of
neutrino energy obtained by �10% shifting of the TTS values in
the simulation for the νμ=ν̄μ-CC and νe=ν̄e-CC samples. The
model is trained by the default sample without TTS shifting, and
Δσθν is calculated as the maximum deviation from the default
number in a certain neutrino energy bin.
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oscillation measurements. Future detectors that utilize
water-based scintillator such as THIEA may also benefit
from this method in exploring neutrino oscillations in the
GeV energy region.
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