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Bosonic and fermionic holographic fluctuation and dissipation
at finite temperature and density
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In this paper we investigate some general aspects of fluctuation and dissipation in the holographic
scenario at zero and finite density. We model this situation with a probe string in a diagonal metric
representing a black brane. The string stretches from the black brane to a probe brane, thus simulating a
stochastic driven particle. In this scenario, we compute the admittance, the diffusion coefficient, the
correlation functions, and the regularized mean square displacement, for bosons and fermions, all from
the metric components. We check these calculations with the fluctuation-dissipation theorem. Further, we
show that at finite temperature and density, the mean square displacement in the limit of short times
reproduces the usual quadratic (ballistic) behavior, for bosons and fermions. For large times, we find
ultraslow diffusive processes in various cases, except for bosons at the zero chemical potential. We apply
this general analysis in two different models: hyperscaling violation at finite temperature and a charged
dilatonic anti—de Sitter black hole, both for bosons and fermions. This is important because we found the
fermionic diffusion in systems that allow the appearance of Fermi surfaces and Fermi liquids.
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I. INTRODUCTION

The study of the dynamics of finite temperature and/or
finite chemical potential systems occupies an important
part in physical sciences. Of particular interest is how such
systems respond to an external force and its diffusive
process. Huge results in this direction can be made studying
the linear regime of those processes and the related
quantities obtained from this analysis. Thus it is interesting
to explore methods to get relevant quantities in this context.

As a tool for this study we can use the framework of
AdS/CFT correspondence in its broader form, applying its
dictionary, for example, to analyze and describe aspects of
this kind of phenomenon.

The study of linear response in the context of Brownian
motion using holographic models started in [1] where a
setup was proposed based on a stretched string that goes
from the black hole horizon to a probe brane near the
spacetime boundary. The presence of a horizon associated
with a black hole allows one to calculate the Hawking
temperature and to obtain some quantities as functions of
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temperature. One then interprets the string end point as a
probe particle in a thermal bath. From the excitation of the
string at the boundary one reads the motion of the particle
and finds the diffusion coefficient from the admittance.
They also calculate the mean square displacement, for short
and long times reproducing the ballistic and diffusive
regimes, respectively.

This setup was used to study quantum critical points with
Lifshitz symmetry in [2] and with hyperscaling-Lifshitz
symmetry in [3]. In [4] a description in terms of a metric
written as monomials of the holographic coordinate was
presented and applied to many different cases encompass-
ing the previous results [1-3] and discussing further cases.
In particular, in Ref. [3] a chemical potential at zero
temperature was introduced in the case of the extremal
black branes. This was also discussed in [5] where a very
low temperature compared to the chemical potential was
introduced.

In Ref. [6] an exponential factor was used to deform the
AdS-Schwarzschild metric. This deformation was inspired
by the soft-wall model where a quadratic exponential
dilaton is included in the action [7]. This exponential
factor was introduced in the metric in Ref. [8] to guarantee
confinement in a quark-antiquark potential. This metric
was used in Ref. [6] to obtain the admittance, obtain the
diffusion coefficient, compute the regularized mean square
displacement, and verify the fluctuation-dissipation theo-
rem for this setup. In Ref. [9], this problem was reanalyzed
including a backreaction from the exponential factor
altering the horizon function, generalizing the results of
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Ref. [6]. In Ref. [10], this setup with an exponential
deformation in the metric was further extended to include
a nonzero chemical potential allowing the discussion of
bosonic and fermionic mean square displacements and also
to verify the fluctuation-dissipation theorem in both
(bosonic and fermionic) cases. In particular, the longtime
regime for both cases present a Sinai-like diffusion loga-
rithm behavior [11].

In this work we extend some finite temperature
results [1-4] regarding the linear response and diffusion
in the literature to a general diagonal background metric. It
is important to mention that these previous results are
restricted to bosons. We include a nonzero chemical
potential in this general metric allowing us to distinguish
between the bosonic and fermionic cases. Using the
corresponding statistical distributions we calculate and
present the values of the mean square displacement for
bosonic and fermionic cases. After obtaining closed
expressions, we get the limits of short and long times
for zero and nonzero chemical potentials for bosons and
fermions. This is important because the diffusion and mean
square displacement were not discussed previously in the
fermionic case, as we present here (we discussed the
fermionic case for an exponential deformed metric which
is a particular case of the present discussion).

As an application for these general results we apply our
findings on two holographic models of interest. First, we
consider the hyperscaling-Lifshitz model at finite temper-
ature and the zero chemical potential for bosons and
fermions. This background was studied as a holographic
dual for a series of condensed matter systems, and it was
used in the holographic study of Fermi surfaces [12].
Second, we discuss a charged dilatonic anti—de Sitter (AdS)
black hole presented in Ref. [13], as another application of
our general results. This is a top-down model with a finite
chemical potential which describes dual Fermi liquids with
massless charged fermionic modes. In this model, the
entropy is a linear function of the temperature, for low
T. So, our general results allow us to obtain the diffusion
coefficient and mean square displacement of fermionic
systems that are relevant to the study of Fermi surfaces and
Fermi liquid in the holographic setup.

This work is organized as follows. In Sec. II, we start
setting the class of metrics explored here and calculating
the Hawking temperature. From the Nambu-Goto action we
find the general equation of motion in the linear regime.
Then we solve it using a patching method. In Sec. III, we
find a general expression for the linear response function
and for the diffusion coefficient in terms of the general
metric elements. In Sec. IV, we calculate correlation
functions in the bosonic and fermionic cases. In Sec. V,
we check our results for the admittance and correlation
functions with the fluctuation-dissipation theorem for
bosons and fermions. In Sec. VI, our goal is to calculate
the regularized mean square displacement s?eg(t) for

multiple scenarios. We begin establishing the boundary
conditions for the solutions, and from them we get a general
integral representation for srzeg(t). After that, we specialize
to four different cases: bosonic and fermionic at zero and
nonzero chemical potentials. For each of these cases we
further obtain the regimes of short and large times. At the
end of this section we present a summary of these results
and compare them. Going ahead, in Sec. VII, we apply the
previous results to a hyperscaling violation d + 2 spacetime
metric at finite temperature and the zero chemical potential
presenting some interesting cases for particular values of
the parameters of the model. In Sec. VIII, we look at a top-
down finite chemical potential model in 2 + 1 dimensions
introduced in [13]. We use it as an illustration for our
general finite chemical results in the bosonic and fermionic
cases presenting interesting properties. Finally, in Sec. IX,
we show our conclusions, making general comments about
the results. Some technical calculations are presented in
three appendixes.

II. NAMBU-GOTO ACTION AND EQUATIONS
OF MOTION

In this section we study the dynamics of the probe string,
finding its equations of motion and their solutions. The
setup we are going to use [1] considers a probe string in
bulk with a black hole. One end point of the string interacts
with the horizon (IR) and the other to a brane near the
boundary (UV). The end point near the UV behaves as a
particle simulating a stochastic motion. This setup was used
to describe Lifshitz as well as hyperscaling violation [2—4].

We start with a general diagonal metric

d
ds> = —g,dt* + g,.dr* + Zgiidxiz, (1)

i=1
where we defined

=al\r r), =@
9u = ( )f( )’ grr—f(r),

(2)

Note that d is the number of spatial dimensions and r is the
holographic coordinate. The horizon function f(r) of the
black hole is assumed to have a simple zero at r = r; and
goes to 1 for r — .

In the particular case of asymptotically AdS spaces, a(r),
c(r), and 1/b(r) go to r* as r — oo, where the boundary is
located. On the other hand, in the case of hyperscaling
violation, discussed in Sec. VII, the metric coefficients are
given by
a(r) — rz(z—ﬁ/d); :

b(r) — r—2(1+6'/d) c(r) — ,,2(1—6'/51)’

3)

which also reduce to the AdS case when z — 1 and 8 — 0.
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The Hawking temperature for the general metric, Eq. (1),
is given by

_ 1 a(rh) / 2
T_E b(rh)[ (rh)]

A )l a(ry)
. Ax b(ry) )

Let us now describe the motion of the probe string using
the Nambu-Goto action:

1
2rad

Sng = — /dﬂ:da\/—_, (5)
where o is the string tension, y = det(y,s), and y,5 =
Imn0eX"0pX" is the induced metric on the world sheet
with m,n =0,1,....,d + 1.

We choose the usual static gauge, where t = 7, r = o,
and X™ = X"(z,0). By using the general metric Eq. (1)
and expanding the Nambu-Goto action keeping up to
quadratic terms X> and X', one gets

|:X29ii(r) g,,(r)g,r(r)

1
Sng & ——— [ drd
NG 47[0’/ e Gu(r)

_ Xlzgii(r) gtt(r)grr(r)
9re(7) ] ’ ©

where X = 0,_,X and X’ = d,_,X. From this action one
obtains the Equation of Motion (EoM) and defines g,, =
g;; (without sum over i from now on) for any i,

9 (X’(t, 7)(gex(1) gn(r)grr(r))>
9rr(7)

ar
" X(t, r)(gxx(r) gzt<r)grr<r))
Gu (1)

=0. (7)

Then, by using the decomposition X(z, r) = ¢'®'h,(r), the
EoM reads

O (1 IV Gulr)\ | @)V Grn(r) (o
or (hw( ) 9rr(r) ) - gtl(r) hw( ) -0

For a general background metric this equation cannot be
solved analytically. Then, we will apply a standard patching
method to obtain approximate analytical solutions, to be
presented in the next section.

A. General solution in the hydrodynamic limit

In this section we are going to consider approximate
solutions for Eq. (8) considering three different particular
cases, following Refs. [1-4]:

(A) Near the horizon (IR);

(B) Hydrodynamic limit: @ — 0;

(C) Far from the horizon (UV).
Then, we will match these expressions to get an approxi-
mate solution for Eq. (8) near UV, but keeping essential
data from the IR and the hydrodynamic limit. This is useful
to describe the motion of the string end point simulating the
stochastic behavior.

First, we consider the solution for region A:

hA(n ( r) =

_%{14%1@; <r—rh—1>] 9)

where A;(w) is a normalization factor. This solution is
obtained in Appendix A.

Now we solve the equation of motion for the hydro-
dynamic limit which is a general solution in » but only up to
order w. In this case one can neglect the term proportional
to o’ in Eq. (8),

d (G dh,,
(ssBithe) Lo
dr \ /g, dr

which implies that we are considering the condition

In general, close to the boundary we can take the metric
coefficients as monomials

a(r) ~r, b(r) ~ rt, c(r) ~rés.
Using the condition in Eq. (11) in the UV (r — r,) one gets
the constraint

a,—a,—2a, >0, (12)

which is saturated by the asymptotic AdS case with a(r),
c(r),and 1/b(r) going to r* as r — co. Note that in the IR,
r — r, +0, where 6 is a small finite positive quantity
(6 > 0) usually called the “stretched horizon” (see, for
instance, [1] and references therein), the condition Eq. (11)
implies

(r—ry) = S. (13)

This is the hydrodynamic limit considered from now on in
this work.
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Solving Eq. (10), we obtain

BB (r) — /gﬁ dr + By (o)

r b(r’)

Gux (7 a(r

= By (w)

'+ By(w), (14)

where B;(w) and B,(w) are integration constants with
respect to r but are functions of w. This can be seen as the
general solution up to order w® of the equation of motion.

One can approximate the integral above in the IR using
the fact that f(r) has a simple zero at the horizon. Then we
can write

hB \/ rh Bl
o(IR)
gxx rh vV a rh

Bi) <_1> +By(w).  (15)

_477:Tgxx(rh) I'n

d’+Bz( )

To obtain the functions B (@) and B,(®), we compare this
expression with the solution Eq. (9) for the deep IR region:

Bl(w) = _iAl(w)w\/ gxx(rh)’

where A;(w) can be determined by a convenient
normalization.

For the case far from the horizon (case C: UV region) we
use the solution for case B (14)

hi(r) & by ()
—Bl(w)[ﬂg v (\)/_d + By(w)
_7A1(a)) —iwg, . (r
- gxx(}"h) < gxx( h)

L) 0

In the last expression we are interested mainly in the
asymptotic behavior of hS(r) for large r.

This solution will be used to describe the motion of the
string close to the boundary brane r — r,. Please note that
this solution is valid in the regime of small frequencies; in
particular, it can be seen as an expansion for w/7T < 1. This
becomes clear when we notice that the integral in Eq. (17)
is dominated by its near horizon part (r = r}) since f(r)
has a simple zero in this region[f(r) =~ f'(r,)(r — r;)1,
while a(r) and b(r) are regular functions at r = r;,. Using
these facts one can approximate Eq. (17) by

o V)(VNVb)

A;((E)b - o b(g{)m g ) =i~ iostr)
_ M) {1 - lﬁlog (i) —iE— ia)Q(rb)} . (18)

gxx(r h)

where 2 and Q(r,,) are functions resulting from the integral
in Eq. (17), which depends on geometry. The function E is
associated with intermediate values of r, which is sub-
dominant with respect to the log term and therefore will be
ignored in the following. On the other side, Q(r;,) depends
on the asymptotic behavior of the metric functions for large
r. Close to the boundary, the metric coefficients behave
as a(r) ~r%, b(r) ~r%, c(r) ~ r%, so that the constraint,
Eq. (12), implies that Q(r,) vanishes in the limit r, — co.
In particular, if the metric under consideration is asymp-
totically AdS, then a(r), c(r), and 1/b(r) go to r* as
r— 1y, so that Q(r,) ~1/r3, which is very small for
large ry,.

III. ADMITTANCE AND DIFFUSION
COEFFICIENT

In this section we proceed to calculate the admittance from
which we find the diffusion coefficient. The admittance is the
linear response of the system to an external force. Thus, first
we need to introduce a small external force acting on the
boundary particle. With this purpose, we turn on an electro-
magnetic potential A, on the UV brane. This will not change
the bulk dynamics but will introduce an external force to the
string end point. The linearized Nambu-Goto action, Eq. (6),
then becomes (with unit charge)

S =— didr {Xz Ixx v/ Yrr X2 Gxx/ Y1t
drol [ Grr
+ / di(A,+ A5, (19)

From this expression we get a modified equation of motion in
the brane position given by

)

gxx(rb)X/|r:rh —2zd'F = 0, (20)
grr(rb)

with F=0,A,—0,A,. Since X' =0,X and X(t,r) =
e hS(r), we can write from Eq. (17)

—iwA (@)
2na

—iwA, (@)
2na

/ gxx(rh) f(rb) ~

gxx(rh) )

F(w) = 7
(21)

Note that for this regime of small frequencies and large string
energy [large ry,, f(r,) ~ 1] the force on the particle depends
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only on the IR structure of the metric. Then, the admittance
can be written as

he(rp)
(1 —iwgy(ry) [ ¢dr’>

B , 9uc () f(r)A/a(r)

=2na - . (22)
_lngx(rh)
So, its imaginary part is
2ol

Sy(w) =——+—. 23
( ) a)gxx(rh) ( )

The results expressed in Egs. (22) and (23) are valid for
any metric in the form of Eq. (1) in the regime of small
frequencies, as proposed in Ref. [4].

From the response function y(w), Eq. (22), we can
calculate the diffusion coefficient D. It is given by [2]

1 2ra 2nd' T
D = —lim(—iwy(w)) = =
ﬂw—>0 ﬁgxx(rh) gxx(rh)

. (24)

where f = 1/T. We can rewrite this result just in terms of
the metric using (4) as

_d|f(r)| Jal(ry)
b= zgxx(rh) b(rh)‘ (25)

At this stage we have found the linear response and the
diffusion coefficient as functions of the black hole radius
ry,. Also we have the temperature as a function of the same
parameter, and so in principle we can invert the equations to
get results as functions of temperature. On the other hand,
as temperature depends on different parts of the metric
compared with, for example, admittance, we cannot write at
this point a general expression for it as a function of
temperature. We will need then to specialize to some
particular model to get such a relation.

Before we conclude this section, let us comment that the
real part of the admittance y(w), Eq. (22), is given by

, Ty \/b(l’/)
Ny(w) = 2na r
(@) =2 Aﬂ%vwwhmwﬂ

o 1
~——log(—), 26
2Tgxx(rh) o8 (€> ( )

where we considered the approximation that the integral is
dominated by the near horizon (IR) region, as discussed
after Eq. (18). Note that this expression is independent of
the frequencies, at least in the hydrodynamical limit @ — O.
This result is in consonance with Kramers-Kronig relations
such that the real part of the admittance is an even function
in .

/

IV. CORRELATION FUNCTIONS

The mean square displacement is a measure of the
variance of the random walk of the particle in the thermal
bath from the motion of the probe string. In the following,
we are going to calculate in general grounds this quantity
using the results from previous sections.

First, to obtain the mean square displacement one needs
to impose ingoing and outgoing boundary conditions near
the horizon

Alw) . .
h}}} r) = el +B w)e ior
( ) V gxx(rh)[ ( ) ]
:;ﬂﬂ_p#M%ﬂ+mma%W%w]
gxx(rh)

(27)

In the UV region the solution for small @ considering
these modes is

e
B ol ) W v 1)

+B(w) (1 +imgy(r) / + gxx(r/ﬁ \)/mdrlﬂ ’

(28)

where the coefficients A(w) and B(w) are the same as in the
IR region.

Matching the UV solution with the Neumann boundary
condition in r = r;,, one obtains that the coefficient B(w) is
a pure phase ¢’ (see Appendix B). On the other side
imposing Neumann boundary condition (b.c.) at the IR, one
obtains a discretization of the frequencies as

_xf'(ry)
~ log(})

a(ry)  An’T

Ao b(rn)  Tog(l)’

(29)

analogous to the result found in [1]. For details, see
Appendix B.

A. Grand canonical ensemble and correlation functions

In the grand canonical ensemble, the density operator is
defined as

g ibaunilan
Tr(e_ﬁ(H_ﬂN>) ’

Po = (30)

where aI, and a, are the usual creation and annihilation
operators that satisfy
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5(0&)’

(abay) = = =—;
ePlo—n) 41

(ab,ab) = 0; {a,a,) = 0.

(31)
Note that the plus (minus) sign corresponds to the fermionic

(bosonic) case. With these operators, one can write down the
solution for the equation of motion near the boundary

S (a, B (e - al (HY(r) e, (32)

>0

X(t,r) =

where we used explicitly the quantization of the frequencies
obtained in the previous section. Then, the two point function
for the string end point reads

(x(2)x(0))
= (X(t,15)X(0,r3))
_ ZZ(hUV*("b /’lUV<rb) iot —i—hUV(rb)hUV*( b)e—ia)t

>0 o' >0 (’“_ﬂ) +1
¥ hgwrb)hgywrb)e-fW) b
2 t .
— Z|hUV COS( ) + et | (33)
>0 (@=¥) +1

Substituting in the above equation the expression for
hYY(r,) given by (28), taking into account the fact that
A(w) ~ o™ '/? from Eq. (B11), and disregarding terms of

order w?, we obtain
4722 T Zl 2 cos(wt) 4 emion )
gxx(rh) ]Og(é) 0>0 w eﬂ(m—u) +1

(x(1)x(0)) =

(34)

Considering the approximation

Analogously, one can obtain
(x(0)x(1)) = (X(2,r,)X (1, 7))
= [hV(r

2
)
>0 Wl

- G
= (x(0)x(0)). (36)

Note that in Egs. (33)—(36) the sums and integrals span
over all positive frequencies w. On the other side, the
modes present in |hYV(r,)|> are the first terms of an
expansion for w/T < 1, as discussed after Eq. (17). As
we show in Appendix C, when we substitute |25V (r;,)|? by
Eq. (28) in the above equations, the frequencies w > T are
exponentially suppressed. Then, it is a good approximation
to keep only the first terms in an expansion of /T

for g (ry) .

V. FLUCTUATION-DISSIPATION THEOREM

In this section, we are going to verify the consistency of
our results with the fluctuation-dissipation theorem, using
the admittance obtained in Sec. III and the correlation
functions in Sec. IV.

Starting from the correlation functions (x(7)x(0)) and
(x(0)x(#)), one can define a symmetric Green’s function as

1

Goym (1) = 5 ((x()x(0)) + (x(0)x(r))).  (37)

The fluctuation-dissipation theorem in the presence of a
chemical potential for the bosonic [14] and fermionic [15]
cases can be written as

Ggyil(t) -

FHA + 2np )3y (@), (38)
where F~![- - -] denotes the inverse Fourier transform, n r
are the Bose-Einstein and Fermi-Dirac distributions, and
Sy (w) is the imaginary part of the admittance. Note that the
frequencies in this equation are positive physical quantities.

Then, one can rewrite the rhs of Eq. (38) as Fourier
transforms as

F (4 2n5 )3y (w)]

T / d‘”( \wl—w n 1) Sr(w)e

o dw 2 .
v 1+ = el 39
= o) | o] ( T ¢ 1>e (39)

iot

where we used the admittance, Eq. (23), and the plus

(minus) sign represents fermions (bosons).
On the other hand, from the correlation functions,

Eq. (35), the lhs of Eq. (37) becomes

o wdw ( 4cos(wt) , '
GEE (1) = do (4cos(ot)
Sym( ) gxx(rh)A W (eﬁ<w_l‘)j:1+e +e )
a/ /°°da) (2(e_iwt +ei(1)t) N i . iwt)
o) T\ T aTy . € e .
Go(rn) Jo ||\ efllol=r) £ 1
(40)
Since
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/ ® doof (o) + / ® dof (o] e
0 0
- / ® dof(|o])e . (41)

Eq. (40) becomes

o / dw( 2
 Gu(rn) S l@] \ePU#l=1) £ 1

which coincides with Eq. (39). Therefore, it completes the
check of our calculations with the fluctuation-dissipation
theorem.

GSym

1> vl (42)

VI. MEAN SQUARE DISPLACEMENTS

From the results of Sec. IV, one can calculate the
regularized expression for the mean square displacement as

Steg (1) = (:[x(1) = x(0)]*: ) = (:[X(t. 1) = X(0.7,) ).
(43)

where the double dots notation : |- -
using normal ordering. Explicitly,

) ad © dw4(1 — cos(wt))
Sreg(t) = —
gxx(rh) 0o w eﬂ(a}—y) +1

8 /00 do sin*(%)
gxx(rh) 0

W P £
In the following, we are going to calculate the regularized
mean square displacement in various interesting cases.

:|: means that we are

(44)

A. Zero chemical potential

In this section, we study the particular case of the zero
chemical potential from previous results. This is interest-
ing, for instance, in models that describe the superfluid
Bose-Mott insulator transition [16] and massless Dirac
fermions in graphene [17,18].

For the zero chemical potential,
displacement, Eq. (44), reads

8 /
gxx(rh) 0
This expression is valid for the bosonic (—) and fermionic

(+) cases. In the following we discuss separately these
two cases.

the mean square

dw sin (%)
PYCESh

Steg (1) (45)

1. Bosons

To solve the integral (45) for the bosonic case (—), we
follow [6] and find

) 2 o sinh(7)
w0 = Ze(C) o

For the short time approximation ¢ < 5, we have

2.0 2
2 ot

N ———,
sreg( ) 3gxx(rh)/}2

which is the expected result for the ballistic regime.
Considering now the approximation for large times
t > [, one finds

(47)

2ol I
gxx(rh) ﬂ '

which is the standard diffusion result.

Sieg (1) ~ (48)

2. Fermions

Now, considering the fermionic case (4) corresponding
to the integral (45), we have

8 [edw sin*(%)
gxx(rh) 0o w e/iw +1 .

20 é—’/?
= log ( ) . (49)
YGxx (rh) tanh(g_/t})
In the limit # < f (short times) one can approximate this
expression by

srzeg<t> =

20 P2
s? 1) ~ &—, 50
eg( ) 6gxx(rh)ﬁ2 ( )
in agreement with the well-known result for the ballistic
regime.
For large times, or ¢ > f, we have that
2a nt
s2alt)~ 2 1os( 7). (51)
° gxx(rh) 2ﬁ

which is a Sinai-like subdiffusive regime [11].

B. Finite chemical potential

In the case of a finite chemical potential the mean square
displacement is given by Eq. (44), which we repeat here for
convenience

8a’ ©
aa =5
eg< ) gxx<rh) 0

In the following, we specialize to the bosonic (—) and
fermionic (+) cases.

do  sin?(2)

woenyy O

1. Bosons

To calculate the mean square displacement given by the
above equation for the bosonic case, we take y < 0, and
consider the series expansion

1 Po—p)

—p(o—p)(n+1
o Rl Z@” W (53)
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Then,

8d K [ dw wt
2 ()= —— E / —— g Plo—ungin? <—> 54
Breg( ) gxx(rh) n—1 0 @ 2 ( )

Performing the integral, one gets

2
szBreg g Z eﬂ”” IOg < + 2ﬁ2> (55)

This expression can be rewritten in a formal way as

2a
s]23reg(t) = m

" [q><0~1v0> (e", 0.1+ if)
p
+ @010 (e”,O, - zéﬂ } (56)

In this equation we used the following notation: Lii (x,y)
is the first derivative of the polylogarithm function of order
n with respect to its first argument x; @010 (x,y,z) is the
first derivative of the Lerch transcendent function with
respect to the second argument y.

First, we consider ¢ < f, which is the short time
approximation, and then from Eq. (55), we find

20a/ (i eﬂl‘”> 12
Ngxx<rh) n=1 n? ﬂz a

In the rhs of this equation we used the polylogarithm
function of order 2, Li,(e’#). This equation gives the usual
ballistic behavior since it goes like 7.

On the other side, in the late time approximation ¢ >
the sum in Eq. (55) is dominated by its first term, and we
have

{2Lio<'»0> (0, e)

2a t2
—aLiz(EﬂM)—z.
gxx<rh) ﬂ

(57)

s123reg (t)

s%reg(t)

4d t
~ Z —. 58
gxx(rh)e Og(ﬂ) ( )

This equation corresponds to a subdiffusive regime, which
is due to the presence of the nonzero chemical potential in
this case. This result is analogous to what was found in
classical physical systems in [11] or in Lorentz invariant
bosonic theories [10].

2. Fermions

Now, we consider the regularized mean square dis-
placement for the fermionic case. From Eq. (44), with
u >0, we have

slz:reg ( t)

8a'  [d sin® (2
_ % / aw <(2)) (59)
gxx(rh) 0 w eﬁ(w—,u) +1
To evaluate this integral we resort to the Sommerfeld
expansion:

/ood_w sin*(%) _/MSinz(%t)da)—i----
0 o \eflom 11 0 )

= %(—Ci(tu) +log(tu) +y)+---,
(60)

where Ci(z) is the Cosine integral function, y is Euler-
Mascheroni constant, and we disregarded terms of order
1/p?p? and higher, since we are considering the low
temperature regime, uf = %> 1.

The mean square displacement, Eq. (59), for small times
ut < 1, can be approximated as

/

Brg) #— g 1 (61)

gxx(rh)

This expression for s?

regime .
On the other hand, taking the large time approximation
ut > 1 in Eq. (59), we obtain

gives the well-known ballistic

/

oz ). (62)

sl%reg(t) ~ g (rh
XX

which corresponds to a subdiffusive behavior log ¢, as in the
bosonic case discussed above. Note that this behavior also
appears in classical setups as in Ref. [11]. In Ref. [10] we
found a similar fermionic behavior for a Lorentz invariant
context.

C. Summary and discussions on sﬁeg

We can now summarize the results of this section in
Table I. First, one can note that for all scenarios we get
the usual ballistic regime g, ~ 1> for short times. This is
expected since for this situation the particle had not
completely felt the characteristics of the environment.

TABLE I. Mean square displacement for the zero and nonzero
chemical potentials for bosons and fermions.

Stg(f) short times Sheg (1) large times

= af 2t __

0 o sutrp = D1

24D

0 9”(”1 ]:12( )1_2 ng(‘/rh) o log() = :Tpeﬁ” log(3)
= ! 24
=0 Gg,w(rh)/% (/ (r,,) log(Zﬂ) IOg( )
#0 gm,u(lrh)”zt2 ( )IOg (tn) = 2/iD log (u)
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Another feature for all these results is the proportionality to
the inverse of g,,(r,), showing the dependence on the IR of
the metric in the direction of motion of the test particle.

For the bosonic case, the short time behavior at the zero
chemical potential is obtained directly just by taking the
u =0 limit from the finite chemical potential result.
However, at large times, one cannot obtain the zero
chemical potential case by taking the above limit. In this
case it is necessary to go back to Eq. (44) and recalculate
this quantity. Then turning on a chemical potential changes
the longtime behavior of the regularized mean square
displacement for the bosonic scenario.

In doing the present analysis it is necessary to bear in
mind that the term g, (r;,) will bring a nontrivial depend-
ence on the temperature and on the chemical potential. So,
in general, the temperature behavior of these quantities
depends heavily on the particular form of the metric. In the
following sections we apply the results obtained here for
two setups as an illustration for those aspects.

As a general comment, it is interesting to note that the
setup discussed above for bosons and fermions at the zero
or nonzero chemical potential verifies the fluctuation-
dissipation theorem. This is done relating the imaginary
part of the admittance with the two point correlation
functions calculated above, as discussed in Sec. V.

VII. HYPERSCALING VIOLATION AT FINITE
TEMPERATURE FOR BOSONS AND FERMIONS

In this section, we apply the general results obtained in
the previous parts of the text to a particular system, the
Lifshitz-hyperscaling family of metrics:

d 2
"), (63)
f(r)r

where z and @ are the Lifshitz (or dynamical) and hyper-
scaling violation parameters, respectively, and d is the
spacetime dimension. The horizon function is given by

f@):]-—(%)dﬂ4. (64)

This problem was studied by the authors of Refs. [3,4]
for some particular cases without fermions. In our presen-
tation we will discuss the Lifschitz-hyperscaling violation
metrics at finite temperature for fermions and bosons at the
zero chemical potential.

The constraint in Eq. (12) applied for the hyperscaling-
Lifshitz metric case becomes

ds> = r=t (—rzzf(r)dt2 + r2dx* +

20
P RERR LY (65)

It is also important to note as pointed out in [19] that the
null energy condition imposes additional constraints in the
values of the parameters 6 and z, explicitly

(d-0)(d(z—1)—-0)

Z 07
(z=1)(d+z-0)>0. (66)
To have a positive specific heat we need to impose one
more condition [19]:

d—-0
Z

> 0. (67)

Considering that the number d of spatial dimensions in the
boundary is a positive number and imposing all these
conditions results in the parameters assuming the possible
values

(i) 2<=3,0>—=(z+ 1), (68)

NSIESW

(ii) =3<z<0,0>d, (69)

d
(i) 1S3 <2~5(c+ 1) <O<d(z=1). or 0 =d.
(70)

0@z21—§@+nses¢ (71)

In this background, we then calculate the response function,
the diffusion coefficient, and the mean square displacement
from our general discussion of the previous sections. This
will allow us to understand the independence of the diffusion
process on different hyperscaling parameters, dynamical
exponents, and dimensions for bosons and fermions. Also,
it will be illustrative to explore some particular configura-
tions of those quantities, presenting some cases in detail.
Such Analysis is interesting since those types of gravitational
systems are relevant as holographic duals for some con-
densed matter systems. In some works, for example, they are
seen as possessing Fermi surfaces in the boundary theory
such as strange metals [12,16,19-23]. In other cases, they
were used to study the behavior of some (bosonic) theories
close to the critical point [2,3].

The horizon function Eq. (64) implies that the Hawking
temperature reads

:|d+z—9|rz

T .
4z h

(72)

Then, we can write the admittance from Eq. (23) as

Sy(w) = T-2d=0)/zd  (73)

2rao 4
w

—2(d—0)/zd
M+z—ﬂ>
Note that the condition (67) implies a negative exponent for
the temperature dependence of the imaginary part of the
admittance, which is the usual behavior for holographic
systems such as the ones investigated in Ref. [1].
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Now, using Eq. (24), the diffusion coefficient for this
model is

T(=2(d=0)+zd)/zd (74)

~2(d—0)/zd
D = 2nd < 4m >

|d+z -6

It is interesting to note that this diffusion coefficient could
increase or decrease with the temperature depending on the
choice of the parameters z, d, 6.

In the particular case where d = 6 one has the usual
Einstein diffusion proportional to 7. On the other side, for
d — 0 = zd one has the diffusion coefficient proportional to
T-'. This behavior was also found in Ref. [1] for pure AdS
space. These cases are thermodynamically stable accord-
ingly to the condition given by Eq. (67).

A. Bosons

The regularized mean square displacement for the bosonic
case without a chemical potential (¢ = 0), Eq. (46), on a
Lifshitz and hyperscaling violation metric reduces to

AT \~2d-0)/zd  (sinh(Ttz)
2 =20 ———M— 1 —_— .
Sbieg (1) (Z<M—Fz—90 og( Tin >

(75)
For short times one reobtains the ballistic regime

2a 47T —2(d=0)/zd
2 — Ttr)? 7
sBreg(t) 3 (ld tz— 9|> ( t”) s ( 6)

and for long times we find

4T -
Shreg (1) = 20 (m) (Ttr)

=2nd ( 4

— ) ()= (77
u+z—m> () (77)

which is the usual diffusive behavior in time.

B. Fermions

Now, we are going to analyze the fermionic case with the
zero chemical potential within a Lifshitz and hypescaling
violation metric. So, here we will calculate the mean square
displacement for this system. We get from Eq. (50) that for
short times one has

2 1?
sl%reg(t) DN R 20/(

N 4nT —2(d—-0)/zd §2
- gxx(rh) ﬁz

|d+z—0)| 2
(78)

which is the typical ballistic behavior, while for long times,
in turn, from Eq. (51), one finds

2a it
z ()~ log( —
SFreg( ) gxx(rh) o8 (2:8)
4zT ~2(d~0)/zd rt
g og(ZH), (7
*(r=a) ox(33): 9

which corresponds to a fermionic subdiffusive regime analo-
gous to the classical (Boltzmann) ones found in Ref. [11].

Now, we are going to discuss two special cases: € = d,
which reproduces the Einstein diffusion coefficient, and
60 = d — 1, in which the admittance goes with the inverse
temperature as in the pure AdS case, in the next two
sections.

C. The particular case =d

In this section, we discuss the Lifshitz and hyperscaling
violation at the zero chemical potential (1 = 0) presented
above for the particular case of 8 = d. In this case, the
admittance, Eq. (73), is independent of the temperature

2na

X(@)|p—g = p (80)

and the diffusion coefficient, Eq. (74), becomes

which is the usual expected behavior for Brownian motion,
as obtained by Einstein in his original formulation of the
problem.

1. Bosons

The regularized mean square displacement for bosons,
Eq. (75), in this case is given by

Ttn (82)

sinh(T'tr)
szBreg(t) |6=d =2d 10g ( ) .

Taking this expression in the limit of short times, one finds
the usual ballistic regime

2d
SzBreg(t)l():d =3 (Ttx)?, (83)

while for long times one finds
SBreg (lo—a = 27Tt = Dr, (84)

which is also the usual Einstein diffusive regime.

2. Fermions

In this case (6 = d) the fermionic mean square displace-
ment from (78) for small times reads the natural ballistic
profile
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t2
Slzjreg( )|9 d~2(l /);2 (85)

From the diffusive regime (79), we get

S (o 20108 57 (56)

which is also a subdiffusive behavior as the ones found
in Ref. [11].

It is interesting to note that in this case § = d there is no
dependence on the dynamical exponent z in the admittance,
although the diffusion coefficient and the mean square
displacement depend on the temperature.

In Ref. [19] the authors consider d — @ as an effective
spatial dimension so that one obtains a (0 + 1)-dimensional
system regarding the entropy of the system. However, even
for & = d one finds nonzero spatial correlations, as we
found above.

D. The particular case 0 =d -1

The particular case @ = d — 1 is interesting because it
can be related to a compressible state with hidden Fermi
surfaces, as discussed in Ref. [12]. In this case without a
chemical potential, the imaginary part of the admittance,
Eq. (73), gives

N 2nd [ 4nT \ 2/«
ol =2 () )

By condition (67), which keeps the specific heat positive,
one finds that in this case one has z > 0, so that the
imaginary part of the admittance is proportional to some
inverse power of the temperature. It is also remarkable that
for z — oo the imaginary part of the admittance becomes a
constant independent of the temperature.

The diffusion coefficient, Eq. (74), will be now

4 —2/zd
D‘ezd_1=2ﬂa’< i ) T1-2/2d (88)

|z + 1]

If z — o0, this diffusion coefficient becomes proportional
to T, and if zd = 2, it becomes a constant.

1. Bosons
From Eq. (75) one finds for 8 =d — 1

g 1) = 2(1’( puh >_2/Zd log <M> (89)

|z + 1] Tin

Then, for short times one has the ballistic regime

2d 4
sl =5 (i

—2/zd
> (ﬂT)z—Z/zdtz (90)

and for long times the diffusive response

o (%) _d%(frT)_d%“t. (91)

Note that for z > 2/d the mean square displacement is
proportional to 7% with a > 0, in both regimes. If z — oo,
then the ballistic regime goes with 72 and the diffusion
as T.

szBreg(t) |9:d—l -

2. Fermions

For fermions in this special case and for short times the
mean square displacement, Eq. (78), becomes

4rT \ 2/ £
. ) (92)

|z + 1] g

In the diffusive regime (long times) we have, from

Eq. (79), that
AgT \ 2/ nt
<| +1I) 1°g<ﬁ>' 3

VIII. CHARGED DILATONIC AdS BLACK HOLES

slz:reg([) |9:d—1 ~2d <

2
SFreg |6=d—1

Our objective here is to provide an application of our
findings to a nonzero chemical potential system. As an
example, we consider the Gubser-Rocha model [13,16],
which is a top-down construction from 11 to 4 spacetime
dimensions for a charged dilatonic AdS black hole. In this
model there are fermionic modes that indicate the presence
of Fermi surfaces. The Lagrangian in four dimensions is
given by

L=R- ¢/fF2 ——(a $)? -

e )

and it is a particular case of an Einstein-Maxwell-dilaton
system. The solution of the corresponding equations of
motion are [21,24]

2

ds*> = 22 <Q + 1)3/2(— f(r)de* + dx?)
L%dr? -3/2
e
_VBOR  /30R'7 V3 0
Tryo 1 ¢71n(1+7>’
~L2

In the above equations, Q is related to the black hole
charge, i > 0 is related to the black hole mass, and L is the
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AdS radius. The black hole horizon is located at
r= (aL?)'3 —Q =r, Defining the new coordinate
7=r+ Q so that 7, = r, + Q, then

fiL? V3003 [1 7

le_?3 A== 1273 _7}’ (97)

which is similar to that of a Reissner-Nordstrom charged
black hole with a chemical potential given by

The Hawking temperature, using the r coordinate defined
in Eq. (99), is then given by

T = (W) 5, (99)

Then, the imaginary part of the admittance can be written
from Eq. (23) as a function of the temperature as

3o
20T

9d'Q

12)-1/3 — ’
ST L) 2wTu*L?

Sy(o) = (100)

while the real part from Eq. (26) is Ry ~ —2zd’/3r;. Note
that the real part of the admittance is small compared with
its imaginary part since the former does not depend on the
frequency w, which is small.

The diffusion coefficient for this model, from Eq. (24),
reads

90d

== 101
2/42L2 ( )

which is temperature independent and decreases for a
growing chemical potential.

A. Bosons
The bosonic case is characterized by imposing the
condition on the chemical potential 4 < 0. Then, for short
times t < f, Eq. (57) gives

2a 2

94'Q 2
— _Liy(eP*
YGxx ( rh) ? ( )

7= amerr 2
(102)

Breg(t) ~

which decreases when |u| increases.
On the other side, for long times, ¢t > f, from Eq. (58),
one finds

4o t 9d'Q t
NELCARTIN <_> SLLL N <_>
gxx(rh) g ﬂ ﬂ/’tszT & ﬁ
(103)

szBreg (t)

Since u < 0, the diffusion also drops down when || grows.

B. Fermions

The fermionic case is described by u > 0. So, for short
times, from Eq. (61), we obtain

a/ qu [2 — %I—QQ t2.
gxx(r h) 2zL°T
Note that if one keeps Q fixed, there is no dependence on a
chemical potential for this result. On the other hand, for
long times we can use the results in Eq. (62) to obtain

Streg (1) & (104)

/ /

9a’Q
shug 1) = og () = —5log (). (109)

which diminishes for growing u.

IX. CONCLUSIONS

In this work we presented some results regarding the
dynamics of a particle in a thermal bath at finite density, in
the linear regime, using holographic methods. For a general
diagonal metric, we obtained expressions for the linear
response function, mean square displacement, correlations
functions, and diffusion coefficient, in terms of the metric
elements. As we showed here, the mean square displace-
ment differs for fermions and bosons. Also, we have
verified the fluctuation-dissipation theorem for the zero
and nonzero chemical potentials for both statistics. As these
results are presented in terms of the metric components, this
is a quite general result.

Since we have a general relation between different metric
elements and physical quantities as the admittance, the
regularized mean square displacement, and the temper-
ature, it is possible to choose particular backgrounds in
order to produce systems with holographic duals that may
have some desired physical behavior.

For all these results we see a dependence on the IR part
of the metric in the direction of the electrical field on
the brane, which acts as an external force for the system.
This is quantified by the presence of g, (r;,) in the general
expressions.

For the admittance, we have found the hydrodynamic
behavior w™~! of its imaginary part, in accordance with the
literature [1-4]. However, one finds different temperature
behaviors with respect to different choices of the metrical
components. Note also that the admittance does not depend
on the statistics.

For the regularized mean square displacement for bosons
we found, in the late times limit, that the effect of turning
on the chemical potential makes the diffusion process
slower. The usual behavior sreg t then becomes a
logt On the other hand, for
fermions, we always find sreg ~logt irrespective of the
value of the chemical potential.

Sinai-like diffusion, sreg
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In the first application, we studied the hyperscaling-
Lifshitz background exploring different values for the
parameters z and 6 for a varied number of spatial dimen-
sions d. It is interesting to say that using this freedom of
choice it was possible to obtain some interesting cases
without violating the thermodynamic stability. For in-
stance, the usual Einstein linear dependence of the temper-
ature in the diffusion constant can be found, for a certain
choice of parameters (d = 0).

For the Gubser-Rocha model, Sec. VIII, our second
application, we found that the diffusion coefficient does not
depend on the temperature, and it is inversely proportional
to the chemical potential. For bosons, the regularized mean
square displacement decreases when the absolute value of
the chemical potential increases. Also, this quantity is
inversely proportional to the temperature. As expected, the
presence of a non-null chemical potential makes the
diffusion processes become slower. The same behavior is
found for the fermionic case, but now sreg log ¢, and it is
inversely proportional to the square of temperature.

We presented here calculations allowing us to determine
the diffusion coefficient, the admittance, and the mean
square distance for fermions that are relevant for systems
with Fermi surfaces and Fermi liquids. We hope that
the discussion presented here might help find new appli-
cations for holographic systems, in particular for fer-
mionic ones.
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APPENDIX A: SOLUTION FOR THE EoM

Here in this appendix we are going to find the solution
for the EoM, Eq. (8), following Refs. [1-4]. First, we will
show how to rewrite the EoM into a convenient form using
the Regge-Wheeler (tortoise) coordinates as a Schrodinger-
like equation in Appendix A 1. We then obtain the solution
near the horizon in Appendix A 2. The solutions for the
other regions are discussed in Sec. I A.

1. Regge-Wheeler coordinate
and Schrodinger-like equation

First, we assume that the metric elements a(r), b(r), and
c(r), defined in Eq. (2), are regular functions at r = r;, and
the function f(r), dubbed the horizon function, has the
following asymptotic values:

lim f(r) ~ f'(ry)(r —r;); and

r—=ry

limf(r)=1.  (Al)

The equation of motion, Eq. (8). up to quadratic terms in
the Nambu-Goto action reads

0 (gxx\/% 05x> Gur/Grr 0°6x 0 (A2)
G Or Vn  oF ’
Substituting the following Fourier decomposition:
ox(t,r) = hy(r)e”™, (A3)
into the above equation of motion, one finds
XX ah XX rr
<g Vlu ) W TNIT L 0. (Ad)
/G Or N

It is convenient to use the Regge-Wheeler coordinate. It
naturally comes if we rewrite the line element as

rrdrz
_ 9_> N
it

Then, the Regge-Wheeler coordinate r, is defined by

d 2 rr
Iy dr, = Y9 gy
Gt Y

The boundary conditions in this new coordinate are
lim,_,, r,(r) = —co and lim,_ r,(r) = 0. So, the equa-
tion of motion (A4) can be cast in the form

&2h,

ds> = g, (dt2 (A5)

dr? = (A06)

dlog(gy,) dh,

—_— ’h,, = 0. A7
dr? dr, dr, (A7)
We rewrite the above equation as
d*h dh,,
@ =0, A8
T ar) G B, (A8)

which can be transformed into Hill’s standard form [25]

dy,
2+ 0w =0, (A9)
by putting
ry)
h(H( ) = exp 2 l//!l)’ (AIO)
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dA
= All
a(r.) = 55 (A1)
lda 1 ,
=—0——— Al2
Comparing Eq. (A7) with (A8) we have
dl
a(r,) = 9089w and p(r.) =w*. (Al3)
Iy
Equation (A11) gives
dlogg,, dA
ZoJxx A =1 . Al4

Substituting the above result into Eq. (A10) we get

hy(r.) = exp {—A(Zr*)}ww

_ log g,
o -8,
_Volr) (A15)
gXX
and Q(r), Eq. (A12), is given by
lda 1,
Q(r) _Ed_r*_Za +ﬂ
__ldrd (drdlogg,, 1 (dr dlogg,,\?
~ 2dr.dr\dr, dr 4\dr, dr
+ @?
1O d (Vondlogg) _1gu (dlogg.)?
2 vV 9rr dr VI9rr dr 4grr dr

Then, Hill’s equation (A9) can be written as a
Schrodinger-like equation:

.,
d 2

+ (0?® = V(r))y, =0, (A17)

where y,, is defined as w,(r,)
potential is given by

V(r>:1\/%g V9 d10g(g.)\ | 19 (dlog(g))?
20 0r \\Gyr  dr 4g,,\ dr '
(A18)

= /Gl (r,) and the

In terms of the metric functions, Eq. (2), this potential reads

_& a(r) d f(r)de(r)
2 \lb(r)ar c(r) dr
La(r) f2(r) < >

4b(r) (r)

Notice that V(r;,) = 0 asexpected as f(r;,) = 0. Furthermore,
it has units of squared energy. Now, one can obtain the

solution of the Schrodinger-like equation (A17) into two
different regions: nearby and far from the horizon.

(A19)

2. Region A: Deep IR

The deep IR regime is the near horizon region, defined by

re~ T, V(r) < a?. (A20)
This happens because V(r) is modulated by f(r), and near
the horizon this function becomes arbitrarily close to zero as
can be seen in Eq. (A19).

In this region, the Schrodinger-like equation (A17) is
written as

Py,
i A PYa =02 Wy, = AT £ Ajel . (A21)
The tortoise coordinate r,, Eq. (A6), is given by
dr* \/ b(rh) 1 N
r*
dr \/g_r a(ry) f'(rp)(r —ry)
1 b(ry) (r )
~ log(——-1), A22
70 \atr) 7, A2

where Eq. (A1) was used. From Eq. (A15) and considering
only the ingoing solution (A, = 0) in Eq. (A21), one finds
Ale—iwr*

hy,(r) = .
( ) gxx(rh)

(A23)

Since one is interested in the long wavelength limit
(w — 0), using (A22), the above equation reads

)

(A24)

A

hAw(r) N gxx(rh) ll - if/(rh)

Note also that Q(r), Eq. (A12), near the horizon becomes

Q(r) ~ @?, since r = r;, and using Eq. (2), one gets
VO ) e ) =0 (A25)

9rr b(rh>r—>r/,
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APPENDIX B: NEUMANN BOUNDARY
CONDITION AND NORMALIZATION

1. Neumann boundary condition

The coefficient B from Eq. (28) can be obtained from a
Neumann boundary condition at UV in the position r = ry,.
At zero order in w, it is simply

B=1. (BI1)
In general, keeping higher orders in @ this coefficient will

be a pure phase ¢’ for some 6 real. This will happen
because the general solution can always be written as

hy (r) = A(@)[g(r) + B(w)g*(r)] (B2)
that implies
Bw) = —;fg%((rr)) e (B3)

From a Neumann boundary condition near the horizon the
coefficient B can be obtained:

__O0h™(r)
B(a)) B _arhout(r) r/rp=1+e
—exp{ —2i—2 b(ra) 0 !
B p{ g I'(ra) \ a(rs) g<€)}, (B4)

which is a pure phase in .

2. Normalization

Now we proceed to find the coefficient A in Eq. (28). With
this purpose, we write the Klein-Gordon inner product as

(f.g9) =~

l k
s [ V(0,5 =0, ).  (BS)
where £ is the induced metric on the Cauchy surface X, n* is
the normal vector to this surface, and f and g are solutions of
the equations of motion.

As a Cauchy surface we take a constant time slice of our
world sheet. Therefore, we have in the present situation

1
n”:( ,O), h=g,,.
\ Gt

Thus, the Klein-Gordon inner product becomes

I Grr
dx, |— 0,9" —0.fg"). B7
s | atrog o). 87

To obtain a proper normalization, we demand that
(X(t,7),X(t,7)) = 1. Then,for X(¢, r) = e""h,(r) we get

(B6)

(f’g):_

(X0 X () =y [ [
_2 )12 "b , @gxx(r) |2
= gl [ an [0 a0
(B

For regular functions b(r) and a(r) this integral will be
dominated by the near horizon region because of the zero in
f(r). Therefore, we can approximate this integral by

(X(z,r), X(2,r))

Ni 2 b(rh> gxx(rh) r"ﬂ|hw(r)|2

" nd A@)] a(ry) f'(rn) [h T ,—rh— 1

~£ 2 b rh)gxx(rh) rbﬂ 1

~— 5 lA(o)] a(r) () /Q WIT (BY)

where we used the near horizon expression for A, (r),
Eq. (27), keeping only terms smaller than O(w?). The final
result is

(K1) X(1.7) APy [ B8] [T

a(ry) f'(ra) Ty =1
Nﬁ @ 2 b(rh)gxx(rh) o l
o o (0)
(B10)

where the integral was regularized considering in the lower
limit of integration r;, — rj, + €. Imposing the normaliza-
tion condition we obtain

a(ry)
b(rh)'

md f'(ry)
4ngx(rh) ]Og(é)

Alw) =

(B11)

APPENDIX C: HIGH FREQUENCIES
SUPPRESSION

In the text calculations we see integrals in the form

Aw doh(w) g(a)t)

efo+1°

(C1)

where g(wt) is a periodic function such as cos(w?) or
sin(wt), with maxima and minima for the arguments equal
to nz with n = 0, 1,2, .... Note that this kind of integral is
dominated by the frequencies w < T, where T = 1/f is the
temperature of the system. Making the change of variables

046020-15
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the integral becomes

o dx g(x)
“Zh
A 7 ) P

with k = /t. The function 52521 works as a “filter”; each

maximum (minimum) chooses one specific value of x of
the function A(x). Those values are given by x = nz. For
the nth maximum (minimum) P, we have

(€2)

+1

Po= gt (©3)
For x,, = nz > 1/k we can approximate
P, ~ e knm, (C4)

This means that for large values of x, the function i(x) is
exponentially suppressed. In terms of frequencies we can
write that

1 ¢ 1
Xy =wut>»>-=—-=w,>—-=T.

k p

Thus, frequencies higher than the temperature are expo-
nentially suppressed in the integral. Then, it is a good
approximation to take frequencies smaller than the temper-
ature 7 in the function h(w) in the integral. In the case
where the chemical potential is nonzero, the relevant
integral is

(C5)

© g(wr)
doh(w) ———. C6
A wh(@) ePlo—n) 1 (C6)
After the change of variables
w—y=t(w-p). (€7)

this integral becomes

/m@h(y) 9(») ’

) e+ 1

(C8)

where k = f/t. Then, in an analogous way we conclude
that for

(€9)

the function / is exponentially suppressed.
Note that in the case of fermions we have u > 0 and then
w, > w, —p making those frequencies satisfying

w,>T (C10)

become exponentially suppressed as well.

For bosons, in the limit of |u| < w,, or |u| < T we have
that (C9) implies that frequencies w, > T are suppressed,
too. On the other hand, in the case of |u| > T,z = e > 1,
and we can write

(C11)

From this we can use the same argument carried out after
Eq. (C1) and conclude that frequencies

w,>T (C12)

are essentially irrelevant for the integral.
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