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We employ the Einstein-Abelian-Higgs theory to investigate the structure of vortex-antivortex lattices
within a superconductor driven by spatial periodic magnetic fields. By adjusting the parameters of the
external magnetic field, including the period (T ) and the amplitude (B0), various distinct vortex states
emerge. These states encompass theWigner crystallization state, the vortex cluster state, and the suppressed
state. Additionally, we present a comprehensive phase diagram to demarcate the specific regions where
these structures emerge, contributing to our understanding of superconductivity in complex magnetic
environments.
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I. INTRODUCTION

Type II superconductors are a distinct class of super-
conducting materials characterized by higher critical fields
and stronger diamagnetism compared to type I super-
conductors [1–5]. The type of superconductor can be
determined by the characteristic parameter κ ¼ λ=ξ, which
is defined as the ratio of the magnetic penetration depth (λ)
to the coherence length of the order parameter (ξ). When
κ < 1ffiffi

2
p , the interface energy between the superconducting

and normal states is positive, resulting in diamagnetism and
classifying it as a type I superconductor. On the other hand,
when κ > 1ffiffi

2
p , the interface energy is negative, resulting in

the formation of the mixed state [6–13], i.e., the normal
state occurs as vortices emerge on the superconductor to
maintain a minimal free energy, which characterizes the
type II superconductor.
Specifically, upon the application of a weak, uniform

magnetic field to a superconductor, diamagnetic surface
currents are induced inside the superconductor because of
the presence of an external field outside the superconduc-
tor-vacuum interface. The penetration of the magnetic field
within the superconductor follows the expression
BðxÞ ∼ B0e−x=λ, where B0 is the external magnetic field
and x is the direction perpendicular to the interface,

magnetic fields decay exponentially inside the supercon-
ductor; this can be obtained from the London equation.
This phenomenon is known as the Meissner effect. When
the magnetic field increases to a critical point, the super-
conductor and magnetic field “meet a compromise”,
forming Abrikosov vortices, which can be arranged as
triangular or square lattices [14–18].
Unlike the effects of a uniform magnetic field, the

application of a periodic magnetic field to a superconductor
gives rise to amore diverse range of phenomena, notably the
emergence of vortex-antivortex pairs. These phenomena
have been extensively studied in nonlinear time-dependent
Ginzburg-Landau (TDGL) theory, yielding a wealth of
insight [19–24]. Nonetheless, the study of magnetic fields
in strongly coupled superconductors is constrained by the
limitations of the TDGL equation. Therefore, the explora-
tion of such systems necessitates the utilization of alternative
theoretical tools or approaches. Recently, it became possible
to address magnetic field effect in strongly coupled type II
superconductor using holographic duality discovered in
string theory, mapping a superconductor to a gravitational
theory in one higher dimension with a charged scalar living
in the bulk [25–29]. The charged scalar field represents the
superconducting order parameter in dual field theory, and its
condensation leads to the formation of a superconducting
phase. The scalar can have a nonzero profile with lower free
energy than the trivial zero solution when the temperature of
the black hole is low enough [29]. Furthermore, the holo-
graphic works [30–34] found that the holographic model
shares numerous similarities with the TDGL equations
and extends beyond their scope. In [35–37], it was demon-
strated that the model indeed corresponds to superfluid
hydrodynamics. Previous studies have investigated the
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formation of a vortex lattice in a rotating holo-
graphic superfluid [38–40], as well as the effects of an
external magnetic field in the holographic superconductor
model [41–44]. Otherwise, excitation with dynamical
Maxwell fields at the boundary has also been explored
in [45–47]. The single vortex solution [48–51], vortex lattice
solution [52–54] under the magnetic field, and a periodic
solution called the holographic checkerboard [55,56]
have already been obtained. Notably, all these previous
studies have focused primarily on the effects of a uniform
magnetic field; thus, how the periodic magnetic field affects
the holographic superconductivity is a problem worth
exploring.
In this research, we conducted an in-depth analysis of

vortex-antivortex lattices within a holographic supercon-
ducting film subjected to a periodic magnetized field.
Once the period number surpasses a specific threshold,
the vortex and antivortex will annihilate each other,
resulting in a magnetic field of zero throughout.
Consequently, the Meissner state can be maintained
regardless of the value of B0, unless an excessively strong
magnetic field completely disrupts the superconducting
state. If the period number is kept within a suitable range,
as the magnetic strength increases, the superconductor
will go through the Meissner state, vortex state (including
Wigner crystallization with rotational symmetry and
vortex clusters with mirror symmetry), suppressed state,
and eventually the normal state. It is worth noting that, in
the context of our study, we also discovered that at a
critical magnetic field strength, vortex-antivortex pairs
begin to proliferate, forming larger clusters. This phe-
nomenon leads to the emergence of long-range order
within the system.
The paper is organized as follows. In Sec. II, we

introduce the holographic model and illustrate our setup,
including the necessary theoretical framework and meth-
odologies. In Sec. III, we show various configurations of
vortex-antivortex lattices in a superconducting film with
an external periodic magnetic field and explore the
dynamics of these lattices within the film. In Sec. IV,
we show the phase diagram taking the period T and the
strength of the external magnetic field B0 as variables.
This phase diagram provides a visual representation of the
different phases and states exhibited by the superconduct-
ing film under varying conditions. We summarize our
results in Sec. V.

II. HOLOGRAPHIC MODEL

In (3þ 1)-dimensional anti–de Sitter (AdS) space-time,
we adopted a holographic superconducting model with a
gauge field and a complex scalar field in the presence of
a planar Schwarzschild black hole. This model is dual to a
(2þ 1)-dimensional conformal field theory on the boun-
dary. The action [28,29,57,58] can be expressed as

SðΨ;AμÞ¼
1

16πGN

Z
d4x

ffiffiffiffiffiffi
−g

p �
Rþ 6

L2
þ 1

q2
LmatterðΨ;AμÞ

�

ð1Þ

in which a complex scalar field Ψ is coupled to a U(1)
gauge field Aμ in ð3þ 1ÞD gravity with a cosmological
constant related to the AdS radius as Λ ¼ −3=L2. The GN
is the gravitational constant, we set 16πGN ¼ 1. The first
two terms in parentheses are the gravitational part of the
Lagrangian with the Ricci scalar R, and the radius of the
AdS spacetime L. The Lagrangian matter field is

LmatterðΨ; AμÞ ¼ −
1

4
FμνFμν − jDμΨj2 −m2jΨj2; ð2Þ

where Fμν ¼ ∂μAν − ∂νAμ is the component of the Uð1Þ
gauge field and Ψ is the complex scalar field with mass m.
Dμ is the covariant derivative written as DμΨ ¼ ∂μΨ −
iqsAμΨ with the charge of the scalar field, as a Cooper pair,
qs ¼ 2e. We work in the probe limit by taking the q → ∞,
which means that the matter fields decouple from gravity,
so standard Schwarzschild-AdS black brane to provide a
constant temperature with metric,

ds2 ¼ l2

z2
ð−fðzÞdt2 − 2dtdzþ dx2 þ dy2Þ; ð3Þ

where z ¼ 0 represents the AdS boundary and z ¼ zh is the
horizon of black hole. Without loss of generality, we can set
zh ¼ L ¼ 1, then fðzÞ ¼ 1 − z3, and the Hawking temper-
ature can be written as T ¼ 3=4π.
With the action one can obtain the equation of motion for

the scalar field

DμDμΨ −m2
sΨ ¼ 0; ð4Þ

and the equation of motion for the vector field

∂
νFνμ − iqsðΨ�DμΨ − ΨDμΨ�Þ ¼ 0: ð5Þ

A trivial solution with Ψ ¼ 0 can be easily obtained from
the equation mentioned above. However, when the poten-
tial on the AdS boundary is increased beyond a critical
value, a nonzero solution for the scalar field appears. This
indicates that for temperatures below Tc, a charged scalar
operator has condensed, leading to the breaking of U(1)
symmetry and the emergence of superconductivity.
The conformal dimensions of the scalar field can

be obtained by setting m2
s ¼ −2, which yields Δ ¼

3
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9
4
−m2L2

q
¼ 3

2
� 1

2
. Therefore, the expansion of the

scalar field solution near the AdS boundary takes the
form of

Ψ ¼ ϕzþ ψz2 þOðz3Þ; ð6Þ
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where ϕjz¼0 is set to be zero as a boundary condition when
solving the model. Similarly, the gauge field near the AdS
boundary can be expressed as

Aν ¼ aν þ bνzþOðz2Þ; ð7Þ

where at ¼ μ represents the chemical potential when
AtðzhÞ ¼ 0. If the value of μ exceeds a critical value
μc ¼ 4.07, the U(1) gauge symmetry of the system is
spontaneously broken, resulting in a finite-valued solution
for the expectation value of the scalar operator hOi ¼ ∂zψ.
From holographic renormalization [59], we can add the
counterterms of the scalar fields,

Sc:t: ¼
Z

d3x
ffiffiffiffiffiffi
−γ

p
Ψ�Ψ ð8Þ

into the divergent on shell action, where γ is the determi-
nant of the reduced metric on the z → 0 boundary. To
obtain the dynamical gauge fields on the boundary, we
impose the Neumann boundary conditions for the gauge
fields as z → 0 [60,61]. Thus, the surface term

Ssurf ¼
Z

d3x
ffiffiffiffiffiffi
−γ

p
nμFμνAν ð9Þ

near the boundary should be added as well in order to have
a well-defined variation, where nμ is the normal vector
perpendicular to the boundary. Hence, we obtain the finite
renormalized on shell action Sren. Therefore, the expect-
ation value of the order parameter, hOi ¼ Ψ1, can be
obtained by varying Sren with respect to Ψ0. Expanding
the z-component of the Maxwell equations near the
boundary we get ∂tbt þ ∂iJi ¼ 0, which is exactly a
conservation equation of the charge density and current
on the boundary since from the variation of Sren one can
easily deduce that bt ¼ −ρ with ρ the charge density and
Ji ¼ −bi − ð∂iat − ∂taiÞ (which is the i-direction current),
respectively. In the Eddington coordinate, the current jμ is
related to bμ through jμ ¼ −bμ − ∂μat þ ∂taμ and the
temperature T is related to μ through T ¼ ðμc=μÞTc,
following the holographic dictionary. In the case of a
superconductor, the Neumann boundary condition for Ax
and Ay is fixed as jx ¼ jy ¼ 0 in z ¼ 0.
In order to apply an external periodic magnetic field to

the superconducting film at t ¼ 0, we turn to

Ax ¼ A0 sin
�
T
yπ
l

�
; ð10Þ

Ay ¼ −A0 sin

�
T
xπ
l

�
; ð11Þ

where T represents the period number and l represents the
size of superconductor. The magnetic field can be obtained

by taking the curvature of the vector potential A using the
equation B ¼ ∇ × A. In two dimensions, this equation can
be expressed as

B ¼ −B0

�
cos

�
T
xπ
l

�
þ cos

�
T
yπ
l

��
; ð12Þ

where B0 ¼ A0T π=l. A periodic magnetic field can be
generated experimentally by arranging cubic magnetic dots
in an array. This allows researchers to study superconductor
film directly in a controlled and repeatable way with
periodic magnetic field [62–64].
For the numerical simulation, the Chebyshev spectral is

used in the z-direction with 30 points. Fourier spectral is
used in the ðx; yÞ-direction with 200 × 200 points. The
evolution of time is simulated by the fourth-order Runge-
Kutta method. The initial configuration at t ¼ 0 is chosen
to be a superconducting state at fixed l ¼ 50 and μ ¼ 10, so
temperature T ¼ 0.407Tc.

III. THE PATTERNS OF VORTEX-ANTIVORTEX
LATTICES

This study investigates the consequences of introducing
an external periodic magnetic field to a superconductor.
This leads to the formation of various patterns of vortex-
antivortex lattices. Similar to the experimental setup for
generating vortices, we prepare a homogeneous super-
conducting state as the initial configuration, where the
boundary condition is adjusted to introduce a periodic
magnetic field onto the superconductor, resulting in system
driving. To intuitively understand this, it can be considered
as a regular cubic array of magnetic dots on the super-
conductor film. This cubic symmetry allows us to gain
insight into the behavior of the system when exposed to
external magnetic fields. The density of the array is
correlated with the period number. As the period number
increases, the array contains more magnetic dots, leading to
a higher density. On the contrary, a smaller period number
results in a lower density of magnetic dots in the array. The
density of the array is a major factor in determining the
system’s overall behavior and characteristics. There are
several physical effects that cause patterns to form, such as
matching effects with ordered pinning arrays, which add to
the pinning force due to the magnetic properties of the
pinning centers.
As A0 increases, the process of a superconducting film

can be described in four stages; the Meissner state, the
vortex state including Wigner crystallization morphology
and the vortex cluster morphology, the suppressed state,
and the normal state. We examine two types of type II
superconductor patterns; vortex-antivortex pairs lattice and
suppressed patterns. Our study delves into the phase
transition between vortex pairs and suppressed states,
as well as the transition to the Meissner or normal state.
The paper analyzes superconductor instabilities under a
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magnetic field in a holographic model, where checkerboard
order and periodic lattice states of vortex-antivortex pairs
have been observed previously in the GL theory.
In Figs. 1–4, we show the vortex state patterns of the

superconducting film, these patterns formed by the vortex-
antivortex pairs exhibit various types of symmetry, includ-
ing rotational symmetry, which can be expressed as an
element of the group SOð2Þ in the form of a matrix,

Rðπ=4Þ ¼
�
0 −1
1 0

�
:

FIG. 1. Order parameter (left panels) and magnetic field (right
panels) when (a),(b) B0 ¼ 1.0304, (c),(d) B0 ¼ 1.0556, (e),(f)
B0 ¼ 1.3195, and (g),(h) B0 ¼ 2.9531. The order parameter is
defined as hOi ¼ ∂zΨ, the magnetic field is defined as
B ¼ ∂xAy − ∂yAx. In this situation, with a magnetic period
T ¼ 2, it can be considered as a primitive cell. The temperature
T ¼ 0.407Tc.

FIG. 2. Order parameter (left panels) and magnetic field (right
panels) when (a),(b) B0 ¼ 2.0609, (c),(d) B0 ¼ 2.2117, (e),(f)
B0 ¼ 3.5186, (g),(h) B0 ¼ 4.0212, (i),(j) B0 ¼ 6.2832, and (k),(l)
B0 ¼ 8.5451. The temperature T ¼ 0.407Tc and the magnetic
period T ¼ 4.
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Additionally, the vortex cluster and antivortex cluster
exhibit mirror symmetry form the vortex-antivortex
cluster pair, which can be expressed as the equation
MXðxÞ ¼ XðMxÞ, where M represents the mirror sym-
metry operation and XðxÞ represents the position of the
vortex. Furthermore, the patterns display transitional sym-
metry in some situations, suggesting the Wigner crystal-
lization property. In normal cases, the entire pattern can be
obtained through symmetry operations. Starting with a
vortex cluster, applying the mirror symmetry operation
results in a vortex-antivortex cluster pair. By rotating this
cluster pair, a primitive cell is obtained. Finally, by trans-
lating this primitive cell, the entire pattern can be generated.
We choose even period numbers to maintain a zero total

flux passing through the superconductor film. This choice
ensures that there is an equal number of vortex and
antivortex, thereby preserving the symmetry in the patterns
of vortex-antivortex pairs. The patterns of T ¼ 2 can be
regarded as a single positive magnetic dot that acts in the
center of the film, and thus can be treated as a primitive cell,
specifically a 1 × 1 crystal lattice, as depicted in Fig. 1.
Due to the positive magnetic dot being pinned to provide
positive flux on the film center, when the magnetization
reaches a sufficient level, the negative flux near the
magnetic dot induces the magnetic field lines to “join”
and form antivortices. Since the total flux must remain zero,
the emergence of vortex-antivortex pairs occurs near the
magnetic dot. When T ¼ 4, as shown in Fig. 2, the patterns
exhibit translation symmetry. Patterns can be identified as
2 × 2 crystal lattices. This situation can be interpreted as an
array formed by four magnetic dots acting on the film.
Around each magnetic dot, several vortex-antivortex pairs
will form, resulting in the creation of vortex clusters, These
vortex clusters represent a repeating units. The entire
pattern observed in the superconducting film can always
be obtained by translating a vortex cluster. Therefore,
primitive cells can be associated with each magnetic dot.
As the same way, the patterns of T ¼ 6 shown in Fig. 3
could be regarded as a 3 × 3 crystal lattice formed by an
array of nine magnetic dots acting on the film. Similarly,
the patterns of T ¼ 8 shown in Fig. 4 could be regarded as
a crystal lattice of 4 × 4 formed by an array of sixteen
magnetic dots acting on the film. In each case, the patterns
induce transitional symmetry, suggesting the Wigner crys-
tallization property. Not that, when T ¼ 6, the primitive
cells do not exhibit rotational symmetry, so the entire
pattern does not have rotational symmetry. The reason
could be that the number of primitive cells is odd. In crystal
lattices with an odd number of primitive cells, there is no
equivalent rotation that can map one primitive cell onto
another.
There is a special situation observed in Figs. 1(e)–(h), it

is indeed observed that, when the system becomes very
complex, the strict maintenance of symmetry becomes
challenging due to the free evolution process of the system.

FIG. 3. Order parameter (left panels) and magnetic field
(right panels) when (a),(b) B0 ¼ 3.7699, (c),(d) B0 ¼ 4.9009,
(e),(f) B0 ¼ 5.2779, (g),(h) B0 ¼ 5.6549, and (i),(j) B0 ¼ 11.3097.
The temperature T ¼ 0.407Tc and the magnetic period T ¼ 6.

FIG. 4. Order parameter (left panels) and magnetic field (right
panels) when (a),(b) B0 ¼ 7.0372. The temperature T ¼ 0.407Tc
and the magnetic period T ¼ 8.
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When the system reaches a certain level of complexity, the
interactions between the vortex-antivortex pairs become
intricate. The presence of multiple factors, such as the
density and arrangement of the pairs, their motion and
dynamics, and the influence of thermal fluctuations, con-
tribute to the intricate behavior observed in the system. The
complex interplay of various factors leads to deviations
from idealized symmetrical patterns. Understanding and
characterizing the complexity that arises from the inter-
actions of vortex-antivortex pairs and thermal fluctuations
is a challenging task in superconductivity research [65].
What is the cause of the complexity of the patterns

increasing as the magnetic field strength increases when
T ¼ 2, but increasing initially and then stabilizing in a
region when T ¼ 4, 6, 8? The answer is that when
T ¼ 4; 6; 8, there are multiple magnetic dots on the super-
conducting film, the vortex-antivortex pairs only can
generate between the magnetic dots, the narrow area limits
the complexity of the system as the vortex-antivortex pairs
interact with each other. As the strength of the magnetic
field increases, the area that can accommodate the vortex
between the magnetic dots is restricted because the size of
the area of influence of the magnetic dots also increases. So
we can see the complexity of Figs. 2 and 3 rise first then
down as increasing magnetic field, and the film is Meissner
state when T ¼ 8, A0 ¼ 20, i.e., B0 ¼ 10.0531. However,
when T ¼ 2, there is only one magnetic dot on the film,
allowing the formation of multiple vortex-antivortex pairs.
Sufficient area and strong magnetic strength induce the
generation of large number pairs, that increases the com-
plexity of the system. The system’s complexity increases as
more pairs are formed, creating intricate patterns. When
T ¼ 4; 6; 8, the magnetic dots are arranged in a homo-
geneous alignment on the film and vortex-antivortex pairs
are generated in the gap. The size of the magnetic dots is
fixed and directly linked to the magnetization, so the
system reaches a point where the number of pairs begins
to decrease as the magnetization increases, even though it is
theoretically expected that a higher magnetization will lead
to more pairs as a result of the more prominent fluctuations
in the superconducting film. This can be explained as
follows. As the size of the magnetic dots “expands” due to a
stronger magnetization, the available space for the for-
mation of pairs is limited. This restriction on pair formation
keeps the system’s complexity in check, even when the
magnetic field strength is higher.
When the strength of magnetic field applied to the

superconductor film reaches a certain threshold, a new
state shown in Fig. 5 emerges that the order parameter of
the superconducting film is suppressed. This state is
referred to as a metastable state because it can persist
for a significant duration before transitioning back to either
the vortex state or the superconducting state. The system
returns to the vortex state shown in Fig. 6, it is a special
case only when T ¼ 2. And when T ¼ 4; 6; 8, the system

reverts to the Meissner state. These situations also can be
explained by considering the periodic magnetic field as a
square array of submicrometer cubic magnetic dots with
perpendicular magnetization. As was mentioned above, as
the magnetic field strength increases, the size of the
influence of magnetic dots also grows, resulting in a
smaller gap between them. Consequently, although the
system has a tendency to generate vortex-antivortex pairs,
the reduced gap between the magnetic dots causes the pairs
to cluster closely together, resulting in annihilation when
T ¼ 4; 6; 8. This phenomenon only occurs when the
magnetic field strength is relatively strong, and the specific
properties of the magnetic dots lead to a cancellation of
the magnetic field across the entire superconducting film.

FIG. 5. Order parameter (left panels) and magnetic field (right
panels) when (a),(b) magnetic period T ¼ 2 and B0 ¼ 4.7752,
(c),(d) magnetic period T ¼ 4 and B0 ¼ 9.5504, (e),(f) magnetic
period T ¼ 6 and B0 ¼ 14.3257, and (g),(h) magnetic period
T ¼ 8 and B0 ¼ 19.1009. The temperature T ¼ 0.407Tc and the
vector potential A0 ¼ 38.
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In Fig. 6, for T ¼ 2 and A0 ¼ 38 (i.e., B0 ¼ 4.7752),
where only one magnetic dot interacts with the film, vortex
pairs are not constrained to narrow gaps between magnetic
dots, allowing the vortex state to persist. The dynamic
transitions from the suppressed state back to the super-
conducting state due to vortex annihilation, and from the
suppressed state back to the vortex state, are illustrated in a
movie provided in the Supplementary Material [66].

IV. THE PHASE DIAGRAM

We have already shown that type II superconductors
exhibit different types of phases under a periodic magnetic
field, including the Meissner state, the vortex lattice state,

the suppressed superconductivity state, and the normal
state, as depicted in Fig. 7. On the basis of the phase
diagram, the basic physical landscape could be described.
When T < 8, magnetization is too week in the cyan zone,
so the magnetic field cannot enter the superconductor, as
the magnetization gets stronger, the superconductor enters
the vortex state and the quantity of vortex increases as B0

increases. When the magnetic field strength increases to a
critical value between the cyan zone and the magenta zone
for a fixed T , the superconductor transitions to the sup-
pressed state, where the order parameter is suppressed due
to the influence of a strong magnetic field on the super-
conducting film. Note that as T increases, the slope of the
dividing line between different phases increases. To com-
prehend this behavior, we use a helpful analogy of the
periodic magnetic field acting on the superconductor film
as a regular array of cubic magnetic dots acting on the film.
As the magnetic period number T increases, the density of
these magnetic dot arrays also increases on the film. The
increased density of magnetic dot array provides additional
stability to the vortex state, making it less susceptible to
suppression by the external magnetic field. The emerge of
suppressed state and its evolution progress is interesting,
the phenomenon and the progress including rich dynamic
procedure between order parameter and magnetic field.
Then as B0 continue increases to a critical value between
yellow zone and green zone for a fixed T , the super-
conductor is completely destroyed by magnetic field. The
situation of T > 8 is special, the density of the magnetic
dot array is too high, resulting in a gap between two dots
that is too small. This causes vortex annihilation before the
system can become stable, leaving only superconducting
and normal states.

V. SUMMARY

In this paper, we have presented a holographic super-
conductor model for the numerical investigation of the
behavior of a superconducting film in response to a
periodic magnetic field. Due to the back reaction of black
hole is not considered, the dynamic equations was derived
from the Lagrangian matter field LmatterðΨ; AμÞ, the
temperature and external magnetic field of the super-
conducting system were regulated by setting boundary
conditions for the dynamic equations. When a periodic
magnetic field interacts with the superconducting film
within a suitable parameter range, patterns with multiple
symmetries emerge, formed by vortex-antivortex pairs.
This emergence results in both the effects of broken U(1)
symmetry influenced by the magnetic field and a zero
magnetic flux, attributable to the periodic features. The
results exhibit diverse structures of vortex states, encom-
passing the Wigner crystallization state, the vortex cluster
state, and the suppressed state, across different period
numbers (T ) and magnetic field strengths (B0). Through a
series of simulations, it is observed that when the quantity

FIG. 6. Order parameter (left panels) and magnetic field (right
panels) when the temperature T ¼ 0.406Tc, the vector potential
A0 ¼ 38, and magnetic field B0 ¼ 4.7752 and the magnetic
period T ¼ 2. Suppressed state back to vortex state.
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PHASE DIAGRAM

Meissner state
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suppressed state
normal state

FIG. 7. The phase diagram of the holographic superconductor
model with the magnetic period number (T ) on the x-axis and the
strength of the magnetic field (B0) on the y-axis. The cyan zone
represents the meissner state in which magnetic field can not enter
into superconductor. The magenta zone represents vortex state.
The yellow zone represents suppressed state in which magnetic
field suppressed order parameter for a long time, then the
superconductor goes back to the vortex state or Meissner state.
And the green zone represents normal state in which super-
conductor is completely destroyed by magnetic field.
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of vortices in the pattern is very small, the results are
exactly the same for both large and medium-sized systems
if the system scale increases by integer multiples.
However, if the increase in system scale is not an integer
multiple, the pattern may differ. Nevertheless, the sym-
metry remains constant when the magnetic period T is
fixed in very large systems/medium-sized systems. On the
other hand, when both the system scale and the magnetic
period number are very large, the system becomes highly
complex, and the symmetry may no longer be maintained.
This observation is also evident in cases with a very small
magnetic period number and medium-sized systems, as
shown in Figs. 1(g)–(h). Due to this point, the phase
diagram may vary with changes in the system scale. A
larger system, allowing for a larger magnetic period
number, introduces changes in the annihilation of vortices
dependent on the gap between magnetic dots. With the
scale of the system increasing and the gap growing larger
while maintaining T fixed, the vortex pairs that would
have been annihilated may no longer undergo annihila-
tion. This leads to the emergence of a more complex phase
diagram. In general, the symmetry of the patterns remains
unaffected by the system scale, resulting in no qualitative
distinctions observed in very large or medium-sized

systems. Therefore, we have opted to maintain a fixed-
system scale, treating it as a constant, while allowing the
magnetic field and magnetic period to vary as variables.
As the magnetic field increases, for 2 < T < 8, the
superconductor undergoes transitions through the
Meissner state, the vortex state (encompassing Wigner
crystallization and vortex clusters), the suppressed state,
and eventually reaches the normal state. If T > 8, the
superconductor will transition directly from the Meissner
state to the normal state. We also provided a phase
diagram with the period number (T ) and the strength
of the magnetic field (B0) to sum up the results. Finally,
the observation can be verified since the experimental
developments enabled to produce a periodic magnetic
field with the magnetic cubic dot array on the top of
superconductor directly [62–64].
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