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We explore the consequences of relativistic causality and covariant stability for short-wavelength
dispersion relations in classical systems. For excitations described by a finite number of partial differential
equations, as is the case in relativistic hydrodynamics, we give causality and covariant stability constraints
on the excitation’s frequency at large momenta.
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I. INTRODUCTION AND SUMMARY

We are interested in the following question: for a
relativistic physical system which admits small excitations
whose frequency ω is related to the wave vector k by the
dispersion relation ωðkÞ, what do causality and stability
imply about the functional form of ωðkÞ? Let us start with
(linear) stability. This notion is relatively straightforward to
define in “classical” theories, by which we mean theories in
which the signals in question are described by a finite
number of partial differential equations. Linearizing the
equations about a given solution, the excitations of the
classical theory are the eigenmodes of the linearized partial
differential equations. Linearizing homogeneous equations

about a constant solution representing an equilibrium/
ground state, and taking the perturbations proportional to
expð−iωtþ ik · xÞ will give rise to the dispersion relations
ωðkÞ. One example is Maxwell’s equations in matter,
where ωðkÞ describe electromagnetic waves. In fluid-
dynamical equations, ωðkÞ describe mechanical and ther-
mal perturbations of the fluid, such as sound waves and
shear waves. Stability of these linearized perturbations
implies that ImðωðkÞÞ ≤ 0 for real k; the inequality
corresponds to dissipation of small excitations.
We next define the following notion of “classical

causality”:

A classical theory is causal if its equations are ðat least weaklyÞ hyperbolic;
and normals to the characteristics lie outside the light cone: ð1Þ

Hyperbolicity gives rise to a finite propagation speed, and
characteristic normals outside the light cone ensure that the
propagation speed is below the speed of light (for an
elaboration refer to Appendix A). The requirement of
classical causality1 will constrain the possible forms of
ωðkÞ which can emerge from a causal (according to the
above definition) classical theory. Here we will use the
term “classical theory” to denote a description of a

D-dimensional physical system in terms of a finite number
of partial differential equations for functions ofD variables.
In quantum relativistic theory, on the other hand, causality

is defined through the vanishing of (anti)commutators of
local operators outside the light cone [1]. Among other
things, this “microscopic causality” has implications for
retarded Green’s functions. As a simple example, consider
two local bosonic operators AðxÞ and BðxÞ, whose retarded
Green’s function isGRðx − yÞ ¼ iθðx0 − y0Þh½AðxÞ; BðyÞ�i,
where θðzÞ is the step function, and angular brackets denote
the expectation value in the equilibrium/ground state. As the
commutator vanishes outside the light cone, microscopic
causality implies that the retarded Green’s function is not
only proportional to θðx0 − y0Þ, but also proportional to
θðc2ðx0 − y0Þ2 − ðx − yÞ2Þ, where c is the speed of light.
Fourier transforming GRðx − yÞ, one arrives at G̃Rðω;kÞ.
The first theta-function implies that,whenk is real, G̃Rðω;kÞ
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1It is worth emphasizing that weak hyperbolicity of the
equations, while necessary in order to define classical causality,
does not guarantee local well-posedness.
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is an analytic function of ω in the upper complex half-plane,
ImðωÞ > 0. Taken together, the two theta-functions imply2

that G̃Rðω;kÞ is analytic when ImðωÞ > cjImðkÞj.
Thus, the Fourier transform of the retarded function can

only have singularities when

ImðωÞ ≤ cjImðkÞj: ð2Þ

While the causality condition (2) is textbook material in
relativistic quantum theory [2], its implications for classical
relativistic theories appear somewhat underexplored.
Suppose that the macroscopic dynamics of quantities
corresponding to A and B is described by a classical theory
in the appropriate macroscopic limit (as an example, A
could be the energy density, and B the particle number
density). Linear response then dictates that the eigenmodes
of the classical theory appear as singularities of G̃R; in other
words G̃RðωðkÞ;kÞ−1 ¼ 0. See for example [3] for a
discussion. Thus the dispersion relations ωðkÞ of the
classical theory must satisfy (2), in order to ensure that
the classical theory is consistent with microscopic causality.
Recently, Refs. [4,5] applied the inequality (2) to power-

series expansions of ωðkÞ at small k in relativistic theories
(including relativistic hydrodynamics) and derived con-
straints on hydrodynamic transport coefficients in terms of
the convergence radius of the expansion of the function
ωðkÞ about k ¼ 0. The goal of the present paper is to
explore the consequences of the constraint (2) at large k,
where the notion of causality is conventionally defined in
classical theories [6]. From now on, we will set the speed of
light c to one.
The constraint (2) on the eigenfrequencies of a classical

system may be equivalently viewed in terms of stability: if
the system is stable in all reference frames, then (2) follows
[7,8]. Thus, one can also refer to the microscopic causality
constraint (2) as a covariant stability constraint.
In classical theories, if one is interested in ωðkÞ, there is

more to the causality conditions than what one can naively
read off from Eq. (2). As an example, consider the equation,

ð∂2t ∂2x − ∂
4
xÞφðt; xÞ ¼ 0: ð3Þ

Its eigenfrequencies ωðkÞ ¼ �k satisfy (2); however the
equation itself is inconsistent with classical causality: in
fact, (3) is not even hyperbolic, let alone causal. If, on the
other hand, one is interested in working with kðωÞ instead
of ωðkÞ, then, the eigenmomenta are kðωÞ ¼ �ω, and
kðωÞ ¼ 0; the latter clearly does not satisfy (2); hence
Eq. (3) is not covariantly stable.
The constraint (2) in fact contains much more than just

the requirement of subluminal propagation. It is possible
for a classical system to be subluminal, while at the same

time violating (2) due to instabilities. As an example,
consider the equation,

ð∂2t − ∂t − ∂
2
xÞφðt; xÞ ¼ 0: ð4Þ

The equation is causal yet unstable, and its eigenfrequen-
cies ωðkÞ do not satisfy (2).
For classical linear perturbations of a given equilibrium/

ground state, causality as defined by (1) is a significantly
weaker statement than the covariant stability condition (2).
Every linear classical theory that is covariantly stable is
causal, but, as the previous example illustrates, not every
causal theory is covariantly stable.
Let us now come to the consequences of the covariant

stability condition (2) for large-k dispersion relations in
classical theories. For real k, covariant stability implies

0 ≤ lim
jkj→∞

jReðωðkÞÞj
jkj ≤ 1; lim

jkj→∞

ImðωðkÞÞ
jkj ¼ 0: ð5Þ

In a given classical theory, such as relativistic fluid
dynamics, the dispersion relations ωðkÞ are determined
as solutions to Fðω;kÞ ¼ 0, where Fðω;kÞ is a polynomial
of finite degree in ω and k whose exact form is determined
by the differential equations of the classical theory. One can
show that classical causality as defined in (1) amounts to
three conditions onωðkÞ. The first two conditions are given
by Eq. (5), while the third condition concerns the number of
“modes”, i.e. the number of solutions when Fðω;kÞ ¼ 0 is
solved for ω at fixed nonzero k.
This third condition is

Oω½Fðω;k ≠ 0Þ� ¼ Ojkj½Fðω ¼ ajkj;k ¼ sjkjÞ�; ð6Þ

where a is a nonzero real constant, s is a real unit vector,
and Oz denotes the order of the polynomial in the variable
z. A linear classical theory whose dispersion relations ωðkÞ
satisfy the conditions (5), (6) is causal. In our earlier
example (3), we had Fðω; kÞ ¼ k2ðω2 − k2Þ; hence, the
theory is not causal because of its violation of (6), even
though it respects (5).
In a rotation-invariant theory, in a rotation-invariant state,

choose k along x, and let k≡ kx. For large k (not
necessarily real), dispersion relations in a classical cova-
riantly stable theory admit convergent expansions as
jkj → ∞,

ωðkÞ ¼
Xn0
n¼0

c1−2nk1−2n þ c−2n0k
−2n0 þ � � � ð7Þ

The leading-order coefficient c1 is real with 0 ≤ jc1j ≤ 1,
and n0 is a non-negative integer. All of the coefficients
c1−2n are real, and could be zero. The term c−2n0 must have
Imðc−2n0Þ ≤ 0. The dots refer to subleading terms, which
do not necessarily come with integer powers of 1=k.

2Under the standard assumption of no exponential growth in
spacetime.
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Our work is motivated by causal theories of relativistic
hydrodynamics. As we will later explain, causal theories of
relativistic hydrodynamics must contain nonhydrodynamic
modes. Even though the existence of such modes in
classical theories is required by causality, the physics
described by such causality-restoring modes is outside of
the validity regime of the hydrodynamic approximation, as
has been appreciated for many years; see e.g. [9]. This is
not surprising, given that causality restoration corresponds
to large-k physics, unlike hydrodynamic excitations which
describe small-k physics. In general, one may hope that
choosing the classical causality-restoring modes in a way
that mimics the true large-k behavior of the fundamental
microscopic theory will improve the predictive power of
the classical theory. Clearly, the ability of classical theories
to mimic the large-k behavior of an interacting quantum
field theory is limited at best. Our results may be viewed as
a way to quantify precisely what the limitations of classical
theories are when mimicking the true large-k physics, and
what is beyond their abilities.
The constraints stated above are quite elementary to

derive, and we do so in the next section. Following the
derivation, we will discuss a few illustrative examples of
the above causality conditions. Appendix A shows that the
conditions (5) and (6) can be viewed as a restatement of
classical causality (1) for linear partial differential equa-
tions. In Appendix B, we prove that classical systems admit
convergent expansions in the jkj → ∞ limit, and that the
first term in these expansions is always integer.

II. IMPLICATIONS OF COVARIANT STABILITY

We consider a classical system in D-dimensional flat
space, described by partial differential equations for func-
tions of D variables xμ. The equations are taken to be
Lorentz covariant, so that Lorentz transforms of solutions
solve Lorentz transformed equations. In order to find the
eigenmodes of the classical system, one takes the unknown
functions UAðxÞ as UAðxÞ ¼ ŪA þ δUAðxÞ, where ŪA are
constant solutions, representing the ground/equilibrium
state of interest, and linearizes the equations in δU.
The resulting linear system of differential equations,
LAB½∂�δUB ¼ 0, can be solved by the Fourier transform,
δUAðxÞ ¼ δŨAðKÞ expðiKμxμÞ, where Kμ ¼ ð−ω;kÞ.
Nontrivial solutions exist provided

Fðω;kÞ≡ detL½iK� ¼ 0: ð8Þ

Solving this equation gives rise to the dispersion relations
ωðkÞ. Let us now explore the consequences of Eqs. (2)
and (8) for the large-k dispersion relations.
For simplicity, we investigate the case where the linear-

ized equations are rotation-invariant. An example of such a
system is given by relativistic fluid dynamics, when the
background solution ŪA describes a fluid at rest. We choose

k along x, and let k≡ kx. The spectral curve Fðω; kÞ is a
finite-order polynomial in ω and k. The dispersion rela-
tions ωðkÞ are determined by the polynomial equation
Fðω; kÞ ¼ 0, which describes a complex curve in C2. We
are interested in the solutions ωðkÞ of this polynomial
equation, in the limit k → ∞. The Puiseux theorem [10]
implies that the solutions ωiðkÞ can be expanded in
convergent Laurent series as k → ∞,

ωðkÞ ¼
X∞
m¼m0

cmζm; ð9Þ

where ζr ¼ 1=k, and r is a positive integer. IfM is the order
of the polynomial Fðω; kÞ as a function of ω, then there are
M expansions (9) for each solution ωðkÞ. The modes come
as N sets, each with ra branches, such that

P
N
a¼1 ra ¼ M.

In particular, each term in the expansion (9) is
cmðe2πil=rÞm=km=r, where l ¼ 0; 1;…; r − 1 for the r
branches.
Let us look at the leading-order term in this expansion,

ωðkÞ ∼ Ckp þ � � �, where p is a real rational exponent,
and the coefficient C is in general complex, C ¼ C0 þ iC00.
For complex momentum k ¼ κeiα, covariant stability (2)
implies

κp−1ðC00 cosðpαÞ þ C0 sinðpαÞÞ ≤ j sin αj: ð10Þ

Taking α ¼ 0, α ¼ π=p, and α ¼ �π=2p in this equation
implies that the dispersion relations are at most linear,
ωðk → ∞Þ ∼ Ck, where the coefficient C is real, with
jCj ≤ 1.3 Therefore, in the expansion (9), we must have
m0 ≥ −r for all modes. Supposing the linear term is
nonzero, depending on the value of r for a given set of
modes, the expansion thus may proceed in the following
way:

r ¼ 1∶ ωðkÞ ¼ c−1kþ c0 þ c1=kþ…; ð11Þ

r¼ 2∶ ωðkÞ ¼ c−2kþ c−1k1=2þ c0þ c1=k1=2þ…; ð12Þ

r¼3∶ωðkÞ¼c−3kþc−2k2=3þc−1k1=3þc0þc1=k1=3þ…

ð13Þ

In general, since the linear term is real for α ¼ 0;�π, the
next term in the expansion can also be constrained by (10),
though in a more limited fashion. Setting p to be less than
unity, one can see that if p is noninteger (and therefore
r > 1), the next term will generically violate (10) due to the
phase factor in (9). The next term must therefore come with
an integer power of 1=k; moreover, its coefficient must be
such that ImðcnÞ ≤ 0, as may be seen by setting α ¼ 0 in

3If ωðk → ∞Þ ∼ Ck with −1 ≤ C ≤ 1 in one reference frame,
it remains so in all reference frames.
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(10). If the next term after the linear term has an odd-integer
power of 1=k, the coefficient must be real, ImðcnÞ ¼ 0, as
may be seen by setting α ¼ �π.
Terms with real coefficients do not appear in (10) when

α ¼ 0;�π, and so if the next term after the leading-order
term is odd (and therefore has a real coefficient), condition
(10) also constrains the next term after the next-to-leading-
order term. If that term is even, then it must have negative
imaginary part, and (10) does not (immediately) constrain
the following subleading terms, including possible frac-
tional terms. If it is real, the process repeats.
Therefore, noninteger terms may only begin appearing

after the first even-integer term in the expansion. The
expansion must generically be of the form,

ωðkÞ ¼
Xn0
n¼0

c1−2nk1−2n þ c−2n0k
−2n0 þ � � � ; ð14Þ

where n0 is a non-negative integer, the c1−2n are all real, and
any (or all) of the c1−2n may be zero. Additionally, jc1j ≤ 1,
and Imðc−2n0Þ ≤ 0. The dots denote higher-order sublead-
ing terms, which may include fractional powers of 1=k.
Some examples of expansions which are not ruled out by

Eq. (10) are the following:

ωðkÞ ¼ c1kþ c0 þ c−1=2k−1=2 þ…; ð15Þ

ωðkÞ ¼ c0 þ c−1=2k−1=2 þ…; ð16Þ

ωðkÞ¼ c1kþc−1k−1þc−3k−3þc−4k−4þc−9=2k−9=2þ…

ð17Þ

It may be possible to extract covariant stability constraints
on the terms beyond the first even-integer term. We plan to
return to exploring further large-k constraints in the future.
Returning to linear order, one may straightforwardly

show that condition (6) follows from (2) as well. Suppose
one had a polynomial spectral curve Fðω; kÞ which did not
satisfy condition (6). Then the highest order terms in the
polynomial [giving ω and k the same power counting, as ω
may be at most linear in large-k by conditions (5)] must
necessarily have an overall factor of k,

Fðω; kÞ ¼ kg−MGðω; kÞ þ � � � ¼ 0;

where M is the order of the polynomial G in ω, and …
denotes lower-order terms. Suppose one then Lorentz-
boosted the system longitudinally in ω, k. Then kg−M →
ðk0 − vω0Þg−M, where −1 ≤ v ≤ 1 is the boost parameter.
There are therefore g −M new modes which appear at
linear order in large-k which violate conditions (5), and
therefore (2).
Another condition may be extracted by making use of

condition (6). This condition ensures that the spectral curve
Fðω; kÞ is of the form,

Fðω;kÞ¼aMðkÞωMþaM−1ðkÞωM−1þ���þa1ðkÞωþa0ðkÞ;
ð18Þ

where the aNðkÞ are polynomials in k of order
lN ≤ M − N. One can show then that unless all aNðkÞ
are k-independent, there must be at least one branch of the
large-k expansion of ωðkÞ which has a nonzero linear term.
Refer to Appendix B for more details.

III. EXAMPLES AND DISCUSSION

As a simple example, consider the diffusion equation,

ð∂t −D∂
i
∂iÞφðt;xÞ ¼ 0; ð19Þ

where D > 0 is the diffusion constant, and φ is a scalar
field. The corresponding dispersion relation ωðkÞ ¼
−iDk2 violates the second condition in (5); hence the
diffusion equation is not causal. A violation of causality
implies a violation of covariant stability [7]; hence the
relativistic covariant version of the equation must be
unstable. The covariant equation is

ðuμ∂μ −DΔμν
∂μ∂νÞφðt;xÞ ¼ 0; ð20Þ

where the unit timelike velocity vector uμ specifies the rest
frame of the diffusing matter, Δμν ≡ gμν þ uμuν is the
spatial projector, and gμν is the inverse (flat-space) metric.
At small k, there is indeed an instability due to a mode
which behaves as ωðk → 0Þ ¼ i=ðDγv2Þ, where v is the
spatial velocity of uμ, and γ ¼ ð1 − v2Þ−1=2 is the relativ-
istic boost factor. Similarly, choosing the boost velocity
along k, one finds ωðk → ∞Þ ¼ k=vþ � � �, with an acausal
leading order term, and an unstable subleading term. See
e.g. Ref. [11] for a discussion of Eq. (20).
As another example, consider modifying the diffusion

equation by a higher-derivative term,

ð∂t −D∂
i
∂i − τD∂t∂

i
∂iÞφðt;xÞ ¼ 0; ð21Þ

where constant “relaxation time” τ > 0. The dispersion
relation isωðkÞ¼−iDk2=ð1þτDk2Þ, interpolatingbetween
diffusive behavior ω ¼ −iDk2 þ � � � at small k, and a
constant value ω ¼ −i=τ þ � � � at large k. Even though
ωðkÞ obeys both of the conditions (5), Eq. (21) is not causal
because the third condition (6) is not obeyed. The covariant
equation is

ðuμ∂μ −Dð1þ τuα∂αÞΔμν
∂μ∂νÞφðt;xÞ ¼ 0: ð22Þ

Choosing the boost velocity v along k, one finds modes
which behave as ωðk → ∞Þ ¼ k=vþ � � �, with an acausal
leading order term, and an unstable subleading term.
Alternatively, the dispersion relation ωðkÞ ¼ −iDk2=ð1þ
τDk2Þ has a simple pole at k2 ¼ −1=ðτDÞ, while, as
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emphasized in [4,6], simple poles in dispersion relations are
forbidden by causality. See also Ref. [12] for related
comments.
As another example, consider a hyperbolic version of the

diffusion equation, sometimes called the telegraph equation,

�
c2s
D
∂t − c2s∂i∂i þ ∂

2
t

�
φðt;xÞ ¼ 0: ð23Þ

Here 0 ≤ cs ≤ 1 determines the wave front speed, and D is
the diffusion constant. The dispersion relation at short
wavelength, ωðkÞ ¼ �csjkj þ � � �, is causal. The mode
counting condition (6) is obeyed as well; hence Eq. (23)
is causal. The modes are also stable for all k (for positiveD),
hence the covariant equation,

�
c2s
D
uμ∂μ − c2sΔμν

∂μ∂ν þ uμuν∂μ∂ν

�
φðt;xÞ ¼ 0; ð24Þ

is stable, and its dispersion relations ωðkÞ satisfy Eq. (2). At
negative D, the theory would be causal but unstable.
As another example, consider dispersion relations deter-

mined by Fðw; qÞ ¼ 0, where

Fðw;qÞ¼ 8q2−16iw−8iq2w−16w2þ4iw3þðq2−w2Þ2;
ð25Þ

where w≡ ωΓ, q≡ kΓ, in terms of some dimensionful
parameter Γ. At small k, there is a diffusive mode, and three
stable gapped modes. The dispersion relations satisfy both
(5) and (6); hence this linear theory is causal. However, this
theory is unstable at large k, because there are modes for
which limk→∞ ImðωÞ ¼ þ∞.
As a stable example, consider dispersion relations

determined by Fðw; qÞ ¼ 0, where

Fðw;qÞ ¼ 4q2 − 4iw− 4iwq2 − 8w2 þ 4iw3 þ ðq2 −w2Þ2;
ð26Þ

where again w≡ ωΓ, q≡ kΓ, in terms of a dimensionful
parameter Γ. At small k, there is a diffusive mode
ωðkÞ ¼ −iΓk2 þOðk4Þ, and three gapped eigenfrequen-
cies with negative imaginary parts: one gapped mode is
purely imaginary, and two gapped modes are off the
imaginary axis. At large k, the eigenfrequencies are

ωðkÞ ¼ �k −
i
Γ
� 1 − i

Γ
1

ð2ΓkÞ1=2 þ…; ð27Þ

providing an example of the expansion (15) in a causal and
stable theory. The theory (26) is stable in all reference
frames and may be viewed as another way to modify the
diffusion equation at short distances in a way that preserves
causality.

As our next example, consider a classical theory ofMüller-
Israel-Stewart type, applied to hydrodynamics of conformal
fluids [13]. The polynomial Fðω; kÞ which determines the
dispersion relations in the rest frame of the fluid is given by
Fðω; kÞ ¼ Fshearðω; kÞ2Fsoundðω; kÞ. The shear factor is
Fshearðω; kÞ ¼ iω − γk2 þ τω2, where γ is the diffusion
constant for transverse momentum density, and τ is the
stress relaxation time. The sound factor is Fsoundðω; kÞ ¼
ω2 − 1

3
k2 þ iωk2ð1

3
τ þ 4

3
γÞ − iτω3. The shear modes

obey the telegraph equation, and the large-k dispersion
relations are ωshearðkÞ ¼ � ffiffiffiffiffiffiffi

γ=τ
p

kþ � � � For the sound
mode, the large-k dispersion relations are ωsoundðkÞ ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
3
þ 4

3
γ=τ

q
kþ � � �, and ωsound ¼ −i=ðτ þ 4γÞ þ � � � All

modes are stable, and causality of the linearized theory is
preserved for γ=τ < 1=2. The large-k expansions proceed in
integer powers of 1=k. The reason is that the propagation
velocities are different for the three modes, hence each mode
admits a Puiseux expansion (9) with r ¼ 1.
As a final example, let us look at large-k dispersion

relations arising from the singularities of retarded functions
of the energy-momentum tensor in strongly coupledN ¼ 4
supersymmetric Yang-Mills theory [14,15]. There are
infinitely many modes labeled by integer n, whose
large-k expansion at real k yields

ω�
n ðkÞ ¼ �jkj � cne∓iπ=3ðπTÞ4=3jkj−1=3 þ…; ð28Þ

where T is temperature, and cn is a positive constant
whose value depends on which components of the energy-
momentum tensor give rise to the retarded function in
question. While classical causality is consistent with the
leading term, covariantly stable classical theories cannot
describe the subleading jkj−1=3 term because of the frac-
tional power. This is not surprising: the N ¼ 4 super-
symmetric Yang-Mills theory is not classical, and the
holographic description of this 3þ 1-dimensional theory
which gives rise to Eq. (28) proceeds in terms of partial
differential equations for functions of five (rather than four)
variables. In general, in a quantum or statistical theory,
limk→∞ ωðkÞ may depend on the phase of k, and there is no
reason for the Puiseux expansion (9) to apply.4 Thus no
covariantly stable classical hydrodynamic theory in 3þ 1

4As another explicit example, one can consider 2þ 1
-dimensional quantum field theories that are dual to anti-de
Sitter gravity in 3þ 1 dimensions. In such theories, the paper [16]
found that the dispersion relation of the shear mode goes as
ωshearðkÞ ∼ Ck4 at large real k, with a non-zero constant C. On the
other hand, at large imaginary k, the functionωshearðkÞ can not grow
faster than k in order to be consistent with covariant stability
(assuming ωshear stays on the positive imaginary axis at purely
imaginary k, as seems to be the case). Thus, in such holographic
theories, the large-k limit ofωshearðkÞ depends on the phase of k.We
thank S. Grozdanov for bringing Ref. [16] to our attention.
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dimensions would be able to mimic the subleading behav-
ior in the dispersion relations (28).
Let us summarize our results. In this paper, we have

explored the consequences of the covariant stability con-
straint (2) for large-k dispersion relations arising in linear
classical theories. The necessary and sufficient conditions
of causality are given by Eqs. (5) and (6). While the first
equation (5) has long been used as a criterion of causality,
the second equation in (5) has perhaps not been as
appreciated. For example, the standard reference [6]
assumes that ImðωÞ vanishes at large k, which is too
restrictive for causal classical systems, and does not hold in
causal theories of relativistic hydrodynamics. The condi-
tion (6), while simple to state, has not received significant
attention in the physics literature. It says that the number of
eigenmodes ωðkÞ must be equal to

g≡Ojkj½Fðω ¼ ajkj;k ¼ sjkjÞ�; ð29Þ

where Ojkj is the order of the polynomial in jkj and gives
the number of modes in the large-k limit. The number of
modes in a system is fixed regardless of the value of jkj,
and so if there are g modes in the large-jkj limit, there are
also g modes in the small-jkj limit. This is another
perspective on why, in relativistic viscous hydrodynamics,
nonhydrodynamic (gapped) modes are required to ensure
causality—the number of hydrodynamic (gapless) modes is
simply not high enough to have a causal theory.
Our final new result is that all terms in the large-k

expansion of ωðkÞ before the first nonvanishing even-
integer term in (1=k) must be integer, and odd, as stated in
Eq. (7). This constrains the appearance of any terms with
noninteger powers of (1=k) to be after the first term with an
even-integer power of (1=k). An example of a causal and
stable classical theory with fractional powers of (1=k) in the
large-k expansion of ωðkÞ is given by Eq. (26). It may be
possible to constrain terms beyond the first even-integer
term using other methods, something which would present
an interesting area for future exploration.
If a system is shown to be causal and stable in one

inertial reference frame, it is causal and stable in all inertial
reference frames [7]. With the constraints (5) and (6) in
hand then, there is a simple algorithmic procedure to be
enacted in the rest frame of a rotationally-invariant system,
which checks whether a given system of linear partial
differential equations represents causal dynamics:

(i) Take all fields proportional to expð−iωtþ ikxÞ, and
determine the polynomial Fðω; kÞ which gives rise
to the dispersion relations;

(ii) Check whether the order of the polynomial Fðω; kÞ
in ω is equal to g in Eq. (29);

(iii) Find the large-k wave velocities a by solv-
ing ∂

g=∂kgFðω ¼ ak; kÞ ¼ 0;
(iv) If all large-k velocities a are real with −1 ≤ a ≤ 1,

the theory is causal;

(v) Further, if the roots ofFðω; kÞ ¼ 0 satisfy ImðωÞ ≤ 0
for all real k, the theory is covariantly stable.

The important new point in the above procedure is
ensuring that the condition in step (ii) is satisfied. Point (iv)
can be assured by imposing that ∂g=∂kgFðω ¼ ak; kÞ is a
polynomial in a with real roots which obeys Schur’s
stability criterion. Point (v) can be assured by demanding
that Fðω ¼ iΔ; kÞ is a polynomial in Δ which obeys the
Routh-Hurwitz stability criterion.
We hope that the procedure outlined above will be

helpful for exploring causal and covariantly stable effective
classical descriptions, such as covariantly stable theories of
relativistic hydrodynamics.

Note added. Recently, we received a preliminary version of
the preprint [17], whose results have overlap with ours, and
appears on arXiv on the same day.
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APPENDIX A: REAL-SPACE CONSTRAINTS

Consider a system of n linear partial differential equa-
tions of order m with constant coefficients,5

Aμ1μ2…μm
AB ∂μ1∂μ2…∂μmδU

B

þ Bμ1μ2…μm−1
AB ∂μ1∂μ2…∂μm−1

δUB þ � � �
þ CABδUB ¼ 0: ðA1Þ

The matrices A;B;…; C are constant real n × n matrices,
and δUAðxÞ, with A ¼ 1;…; n, are the unknown functions.
The causal structure is defined by the flat-space Minkowski
metric ημν, and the unknown functions δUA transform
under representations of the Lorentz group, so that the
Eq. (A1) are Lorentz-covariant. The system of partial
differential equations is causal if, given initial conditions
with compact support, the solution at a later time has
compact support only within the causal future of the

5While the following analysis can be repeated for mixed-order
systems, it is more complicated. For simplicity, we restrict
ourselves to systems of partial differential equations of the same
order.
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initially supported region. In other words, this means that
the characteristics of the theory (which define the wave
fronts of the theory) lie within the light cone. The
characteristics of the theory are determined by the charac-
teristic equation [18],

Qðξμ1 ;ξμ2 ;…;ξμmÞ≡detðAμ1μ2…μmξμ1ξμ2…ξμmÞ¼ 0; ðA2Þ

where the covectors ξμ are normal to the characteristics.
Alternatively, if characteristics are level-sets of a scalar
function ϕðxÞ, then ξμ ¼ ∂μϕ. Subluminal propagation
speeds correspond to the normals ξμ ¼ ðξ0; ξÞ pointing
outside the light cone, i.e. ημνξμξν ≥ 0, i.e. the ξμ satisfying
the characteristic Eq. (A2) must be spacelike. Therefore, in
a given reference frame, one can find the solutions to the
characteristic equation of the form ξ0 ¼ ξ0ðξÞ, and impose
the following constraints on these solutions:

jReðξ0ðξÞÞj
jξj ≤ 1; Imðξ0ðξÞÞ ¼ 0: ðA3Þ

The first condition imposes that ξμ is spacelike; the second
condition demands that the characteristics be real, and
therefore the system is not elliptic. Once Eqs. (A3) are true
in a given reference frame, they will of course continue to
hold in all reference frames. However, in a given reference
frame, it may so happen that there are solutions to the
characteristic equation (A2) which are not of the form
ξ0 ¼ ξ0ðξÞ. Any solution that cannot be written as ξ0 ¼
ξ0ðξÞ is necessarily of the form fðξÞ ¼ 0, for all ξ0. Such
solutions to the characteristic equation do not constrain ξ0,
which can be arbitrarily large. Therefore, characteristics of
this type will stray outside the light cone, and a classical
theory in which the characteristic equation (A2), in a given
reference frame, contains a ξ0-independent factor fðξÞ will
violate causality. A simple way to eliminate such acausal
theories is to impose a condition on the number of solutions
to the characteristic equation that are of the form
ξ0 ¼ ξ0ðξÞ,

numðξ0ðξÞÞ ¼ Ojξj½Qðξ0 ¼ ajξj; ξ ¼ sjξjÞ�≡ g; ðA4Þ

where a is an arbitrary real constant, s is a unit vector, and
Ojξj denotes the (maximum) order of the polynomial in jξj.
The condition (A4) combined with condition two of (A3)
ensures hyperbolicity of the system, while condition one
of (A3) ensures causality.
The conditions (A3), (A4) came from demanding that the

roots of the characteristic equation (A2) are such that the
system is causal. One can rewrite these conditions in terms
of the quantity Vμ ¼ ξμ=jξj, noting that jξj ≠ 0 unless
ξμ ¼ 0. Then the constraints become

jReðV0ðξÞÞj≤ 1; ImðV0ðξÞÞ¼ 0; numðV0ðξÞÞ¼ g:

ðA5Þ

Now, let us consider the dispersion relations. Plane waves
δUB ¼ δŨBðKÞ exp½iKμxμ�, where Kμ ¼ f−ω;kg, solve
the original Eq. (A1) as long as

FðKμÞ≡ det½Aμ1μ2…μm
AB ðiÞmKμ1Kμ2…Kμm

þ B
μ1μ2…μðm−1Þ
AB ðiÞm−1Kμ1Kμ2…Kμðm−1Þ

þ � � � þ CAB� ¼ 0; ðA6Þ

solving which gives rise to ω ¼ ωðkÞ. As shown in the
main text, covariant stability6 (2) implies that ωðkÞ is
at most linear at large k. Then one can define
V 0
μ ¼ limk→∞KμðkÞ=jkj, which is finite. Dividing through

(A6) by jkjg [where, for equations of the form (A1), g is
simply m × n] and taking the large-k limit yields

det½Aμ1μ2…μm
AB V 0

μ1V
0
μ2…V 0

μm � ¼ 0; ðA7Þ

which is again the characteristic Eq. (A2), now written in
terms of V 0

μ. As discussed in the main text, covariant
stability in classical theories implies that

lim
jkj→∞

jReωðkÞj
jkj ≤ 1; lim

jkj→∞

ImωðkÞ
jkj ¼ 0;

numðωÞ ¼ OjkjðFðajkj; sjkjÞÞ ¼ g; ðA8Þ

which one can equivalently write as

jReðV 0
0ðkÞÞj ≤ 1; ImðV 0

0ðkÞÞ ¼ 0;

numðV 0
0ðkÞÞ ¼ OjkjðFðajkj; sjkjÞÞ ¼ g: ðA9Þ

The constraints (A5) imposed on Vμ to render the theory
causal from the point of view of characteristics are the same
as the constraints (A9) on the large-k dispersion relations.
Therefore, demanding that the large-k dispersion relations
obey the constraints (A9) amounts to requiring that the
theory is causal.

APPENDIX B: CONVERGENT EXPANSION

For an isotropic system, let us choose the wave vector k
along x, and define k≡ kx. Then the spectral curve of the
system is a finite-order polynomial in ω and k. The
polynomial is of order m in ω, and may generically be
written in the form,

6One could, instead, simply demand the constraints (5), (6),
without the additional conditions of covariant stability; the
linearity of ωðkÞ then follows.
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Fðω; kÞ ¼ amðkÞωm þ am−1ðkÞωm−1

þ � � � þ a1ðkÞωþ a0ðkÞ; ðB1Þ

where the various anðkÞ are themselves polynomials in k of
order ln. We are interested in the behavior of the large-k
expansion of the eigenfrequencies of the system. In order to
proceed, we define v≡ 1=k and aim to construct an
expansion about v ¼ 0. If any of the ln are nonzero, then
Fðω; kÞ diverges as v → 0. Let us denote the largest
of the ln by lF, and define a new spectral curve
Gðω; vÞ≡ vlFFðω; 1=vÞ, so that Gðω; v ¼ 0Þ is a poly-
nomial in ω.
We are interested in solvingGðω; vÞ ¼ 0, and expressing

the solution as ω ¼ ωðvÞ in a neighborhood of ðω0; v0Þ.
For noninfinite ω0 and v0, we have the following expan-
sions. If the first derivative of G with respect to ω at
ðω0; v0Þ does not vanish, the analytic implicit function
theorem gives the Taylor series expansion for ωðvÞ about
v ¼ v0,

∂G
∂ω

ðω0; v0Þ ≠ 0∶ ωðvÞ ¼
X∞
n¼0

cnðv − v0Þn: ðB2Þ

If the first (p − 1) derivatives of G with respect to ω at
ðω0; v0Þ vanish, but the pth derivative does not, we have the
Puiseux series expansion for ωðvÞ about v ¼ v0,

∂G
∂ω

ðω0; v0Þ ¼ 0;
∂
2G
∂ω2

ðω0; v0Þ ¼ 0;…

∂
pG
∂ωp ðω0; v0Þ ≠ 0∶ ωðvÞ ¼

X∞
n¼0

cnζn; ðB3Þ

where ζs ¼ ðv − v0Þ, and where s is a positive integer
which is less than or equal to the integer p ≥ 2. There may
be multiple expansions each with their own si such thatP

si ¼ p. If s > 1, then the Puiseux expansions in that
branch will be related to one another, being of the form,

ωjðvÞ ¼
X∞
n¼0

cne2πinj=sζn; ðB4Þ

where j ¼ f0; 1;…; s − 1g. We are interested in the
behavior of ω in the neighborhood of v0 ¼ 0. However,
for causal physical systems ω0 may not necessarily be
finite: for example, for the wave equation with propagation
speed cs, we have ωðvÞ ¼ �ðcs=vÞ → ∞; hence such ωðvÞ
cannot be represented by a series of the form (B3).
In order to handle expansions in causal physical systems

such as the wave equation, we define the new variable
u≡ ωvq, where q is an as-yet unspecified real number, and
aim to construct an expansion for uðvÞ about v ¼ 0 and a
finite u ¼ u0. Expressed in terms of u, the spectral curve is

Gðv−qu; vÞ ¼ vrmbmðvÞum þ � � � þ vr1b1ðvÞuþ vr0b0ðvÞ;
ðB5Þ

where rn ≡ lF − ln − nq, and the bnðvÞ≡ anð1=vÞvln are
polynomials in v; we have bnð0Þ ≠ 0 and finite for all n.
Suppose one sets q to be some sufficiently large number.

Then each of the vrn in (B5) will have negative exponents,
and Gðv−qu; vÞ will diverge when v ¼ 0. Similarly to how
Gðω; vÞ was defined in the first place, we can define a new
spectral curve which is a finite polynomial at v ¼ 0. Since
for sufficiently large q, rm will be the most negative of the
rn, we can define

Hmðu; vÞ≡ v−rmGðv−qu; vÞ ¼ bmðvÞum
þ � � � þ vr1−rmb1ðvÞuþ vr0−rmb0ðvÞ: ðB6Þ

As rm is the most negative of the rn for sufficiently large q,
rn − rm ≥ 0 for all n, and thus,

Hmðu0; 0Þ ¼ bmð0Þum0 ¼ 0: ðB7Þ

Therefore, there will be m expansions u ¼ uðvÞ of the
form (B3) about the point ðu ¼ 0; v ¼ 0Þ, which is non-
infinite. Thesem expansions are convergent by the Puiseux
theorem. We may now ask the follow-up question: for
which values of q are there nonzero u0 ¼ uðv ¼ 0Þ?
This question is relevant because u0 ¼ uðv ¼ 0Þ is the

first term of the expansion uðvÞ, and so upon transforming
back to ωðvÞ, we find that ωðvÞ ¼ u0v−q þ � � �, where the
dots refer to terms that are of higher-powers in v. In other
words, u0 is the coefficient of the highest-order term in the
large-k expansion of ω ¼ ωðkÞ, and therefore the values of
q which yield nonzero u0 are the respective orders in k at
which the large-k expansions ω ¼ ωðkÞ begin. For exam-
ple, the wave equation has ω ¼ �cs=v ¼ �csk, and one
finds that Hm¼2ðu0; 0Þ ¼ 0 has nonzero solutions u0 ¼ �1
when q ¼ 1.
One can use the method of Newton’s polygon [10] to

determine which values of q lead to expansions of uðvÞ
with uð0Þ ≠ 0 (as well as what the si are for each branch, a
feature we will not make use of here). To start with, by
plotting the various linear functions rn of (B5) against q,
one finds that the only values of q for which nonzero
solutions u0 ¼ uðv ¼ 0Þ exist are those for which the lines
rnðqÞ intersect one another.
It is quite straightforward to show that this must be the

case. Consider a value q ¼ q0 where rnðq0Þ are all differ-
ent; i.e. the lines rnðqÞ do not intersect at q0. Then there
exists some rn1 which is the most negative of all the rn at q0.
Then we can define a new spectral curve,

Hn1ðu; vÞ≡ v−rn1Gðv−qu; vÞ ¼ vrm−rn1bmðvÞuv
þ � � � þ vr1−rn1b1ðvÞuþ vr0−rn1b0ðvÞ: ðB8Þ
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Since rn1 is the most negative, rn − rn1 is positive for all n
except n1. Therefore,

Hn1ðu0; 0Þ ¼ bn1ð0Þun10 ¼ 0; ðB9Þ

which gives u0 ¼ 0; therefore, the expansion ωðvÞ can not
start at a value of q where an intersection does not occur.
However, this does not necessarily mean that there are

nonzero u0 at every value of q for which there is an
intersection of the rn. Suppose there are two rn, call them
rn2ðqÞ and rn3ðqÞ, which intersect, but that at the intersection
point q0 both rn2 and rn3 are larger than themost negative rn,
which we once again label rn1ðqÞ. Then we can once again
define Hn1 by (B8), and rn2 − rn1 ¼ rn3 − rn−1 > 0, and so
we again find that

Hn1ðu0; 0Þ ¼ bn1ð0Þun10 ¼ 0: ðB10Þ

Therefore, the only values of q for which there exist nonzero
values of u0 are those for which the most negative rn, call it
rn1 , has an intersection. Since the rnðqÞ are linear functions of
q, which of the rn is the most negative changes across the
intersection. In other words, considering the envelope of the
set of rnðqÞ from below, there exist nonzero values of u0
whenever the slope of the envelope changes. In general, the
number of non-zero solutions to Hn1ðu0; 0Þ ¼ 0 at the
intersection will be equal to the magnitude of the change
of the slope of the envelope across the intersection.
The intersection of two linear functions rn1 and rn2 with

integer coefficients on the lower envelope occurs at

q0 ¼
ln1 − ln2

n2 − n1
: ðB11Þ

We can similarly consider an additional line, rn3 , which
intersects at that point. Then

q0 ¼
ln1 − ln2

n2 − n1
¼ ln1 − ln3

n3 − n1
¼ ln2 − ln3

n3 − n2
; ðB12Þ

and, in general, there can be an arbitrary number of lines
intersecting at q0. The analytic implicit function and
Puiseux theorems guarantee the existence of convergent
expansions of ωðkÞ in the k → ∞ limit. Using the argument
in the main body of the paper, one can see that covariant
stability implies that the first term of the expansion is an
integer power of 1=k; hence q is integer and q ≤ 1.
Finally, as an additional note, one can see from (B12)

that the only way for q0 ¼ 0 for all modes is if ln is the
same for every term of Fðω; kÞ. Since lm ¼ 0 by (6), this
implies that for any Fðω; kÞ with non-trivial k-dependence,
there must be at least one mode with nonzero propagation
speed limk→∞ ω=k, i.e. at least one mode with q0 ¼ 1.
To finish the Appendix, we provide a brief example.

Given the spectral curve,

Fðω; kÞ ¼
�
ω2 −

1

2
k2
�
ðiωÞ − ω2 − iωþ 1

4
k2; ðB13Þ

we can see that Gðω; vÞ≡ v2Fðω; 1=vÞ ¼ iv2ω3 − v2ω2−
iv2ω − i

2
ωþ 1

4
. We therefore find that

Gðv−qu; vÞ ¼ iv2−3qu3 − v2−2qu2 −
1

2
iv−qð1þ 2v2Þuþ 1

4
:

ðB14Þ
We can read off from Gðv−qu; vÞ that r3 ¼ 2–3q,
r2 ¼ 2 − 2q, r1 ¼ −q, and r0 ¼ 0. For large values of q,
the most negative rn will be r3, and so n1 ¼ 3 for large q. If
we plot these rnðqÞ against q (as shown in Fig. 1), we will
see that r3 intersects r1 at q ¼ q0 ¼ 1. To the left of q ¼ 1,
the most negative rn is r1, and so the magnitude of the
change of slope is 2. We therefore expect to find two
nonzero values for u0 when q ¼ 1.
Setting q ¼ 1, then, we can see that r3ðq ¼ 1Þ ¼ −1.

Defining H3ðu; vÞ ¼ vGðv−1u; vÞ, we find that

H3ðu; vÞ ¼ iu3 − vu2 −
1

2
ið1þ 2v2Þuþ v

4
; ðB15Þ

and so

H3ðu0; 0Þ ¼ iu0

�
u20 −

1

2

�
¼ 0; ðB16Þ

and therefore, as expected, we do indeed find two nonzero
solutions for u0, as well as one zero solution. These values
of u0 give the large-k expansions ωðkÞ ¼ �k=

ffiffiffi
2

p þOð1Þ.
Proceeding to lower the value of q, we see that r1 (which is
the most negative rn for 0 < q < 1) intersects with r0 at

FIG. 1. An example of plotting rn vs q for the polynomial
ðω2 − 1

2
k2ÞðiωÞ − ω2 − iωþ 1

4
k2. The envelope of rn is indicated

by a dotted line. For q > 1, r3 is the smallest rn. At q ¼ 1, there is
an intersection. The slope changes from −3 to −1, indicating
there are two modes which have q ¼ 1. Then, r1 is the smallest
until it intersects r0 at q ¼ 0. The slope changes from −1 to 0, and
so there is one mode which has q ¼ 0. From there on, r0 is the
smallest.
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q ¼ 0. Since the magnitude of the change of the slope of
the envelope is one, we expect one solution for u0 when
q ¼ 0. Setting q ¼ 0 in r1, we see that r1 ¼ r0 ¼ 0. Then
H1ðu; vÞ ¼ Gðu; vÞ, and we find that

H1ðu0; 0Þ ¼ −
i
2

�
i
2
þ u0

�
¼ 0; ðB17Þ

which yields one non-zero solution, as expected. This value
of u0 gives the large-k expansion ωðkÞ ¼ −i=2þOð1=k2Þ.
The most negative rn for q < 0 is r0, which does not have
any more intersections as q → −∞, and therefore the
overall number of expansions is 2þ 1 ¼ 3, as expected
for a system with m ¼ 3.
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