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In this work, we investigate spectral complexity and Krylov complexity in quantum billiard systems at
finite temperature. We study both circle and stadium billiards as paradigmatic examples of integrable and
nonintegrable quantum-mechanical systems, respectively. We show that the saturation value and timescale
of spectral complexity may be used to probe the nonintegrability of the system since we find that when
computed for the circle billiard, it saturates at a later timescale compared to the stadium billiards. This
observation is verified for different temperatures. Furthermore, we study the Krylov complexity of the
position operator and its associated Lanczos coefficients at finite temperature using the Wightman inner
product. We find that the growth rate of the Lanczos coefficients saturates the conjectured universal bound
at low temperatures. Additionally, we also find that even a subset of the Lanczos coefficients can potentially
serve as an indicator of integrability, as they demonstrate erratic behavior specifically in the circle billiard
case, in contrast to the stadium billiard. Finally, we also study Krylov entropy and verify its early-time
logarithmic relation with Krylov complexity in both types of billiard systems.
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I. INTRODUCTION

The precise characterization of chaos in the quantum
realm is an outstanding problem. The challenges involved
in combining quantum mechanics and chaos were pointed
out by Einstein in 1917, who noted that the Bohr-
Sommerfeld quantization rule of the old quantum theory
did not work in the case of classically chaotic systems [1].
In the case of integrable systems, the orbits in phase space
lie on a torus and the quantization condition can be imposed
by requiring the cross sectional area of the torus to be an
integral multiple value of Planck’s constant. For chaotic
systems, however, the orbits are irregular and unpredict-
able, exploring a constant-energy surface in phase space

uniformly. In particular, the orbits do not lie in a torus and
hence there is no natural area to enclose an integral multiple
of Planck’s constant. It was not until the early 1970s that
the significance of Einstein’s observation was fully appre-
ciated, and the fundamental difficulty in semiclassically
quantizing chaotic systems was addressed with the devel-
opment of periodic-orbit theory [2].
Perhaps one of the most useful ways to characterize

quantum chaotic behavior is through the statistics of the
spacing between consecutive energy eigenvalues, the so-
called level spacing statistics, which (normally) differs
significantly depending on whether the system is chaotic or
integrable. In chaotic systems, the level spacing statistics
obeys a Wigner-Dyson distribution, mimicking the behav-
ior observed in random matrix theories, while in integrable
systems the level spacing statistics is expected to follow a
Poisson distribution. In systems that have a well-defined
classical limit, it is possible to obtain information about the
spectrum from a complete enumeration of the periodic
orbits using Gutzwiller trace formula [2,3]. One particular
successful application of the Gutzwiller trace formula was
its use in the derivation of the level spacing statistics of
integrable and chaotic systems [4,5]. Level spacing sta-
tistics described by random matrix theory (RMT) also
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occurs in nonintegrable systems without a strict classical
limit. Because of that RMT universality is usually consid-
ered as a defining feature of chaotic systems.1 However,
a general mechanism explaining the emergence of RMT
universality in chaotic systems without reference to semi-
classical concepts is still missing.
Another useful way to diagnose chaos is through the

spectral form factor (SFF)

SFFðtÞ ≈ jZðβ þ itÞj2 ¼
X
n;m

e−βðEnþEmÞþitðEn−EmÞ; ð1:1Þ

which, like the level spacing statistics, only depends on
the spectrum of the system. Here β ¼ 1=T is the inverse
temperature, and En are the eigenvalues of the system.
In random matrix theories, SFF as a function of time
displays a typical slope-dip-ramp-plateau behavior. The
same behavior is expected to occur in chaotic systems,
while in integrable systems one expects a different
behavior.2

Out-of-time-order correlators (OTOCs) [10] have
received a lot of attention recently, due to their connection
with black hole physics, and also for providing a useful
way to diagnose scrambling, especially in the context of
many-body quantum systems. See, for instance, the recent
review [11]. In chaotic systems with a well-defined form of
semiclassical limit, OTOCs are expected to decay expo-
nentially with time [12], in a timescale that is much smaller
than the timescale at which the ramp appears in the SFF.
Because of that, OTOCs are usually considered to be an
early-time notion of quantum chaos, while the level spacing
statistics and the SFF are considered to be intermediate
or late-time notions of quantum chaos. The exponential
behavior of OTOCs resembles the divergence of the
distance between initially nearby trajectories in phase space
of classically chaotic systems, but the parameter character-
izing such divergence in the quantum case, known as
quantum Lyapunov exponent, is in general different from
its classical counterpart [13]. Moreover, the exponential
behavior of OTOCs also occurs in integrable systems near a
saddle point [14,15]. This suggests that one should dis-
tinguish the notions of chaos and scrambling. In fact, it has
been suggested that scrambling is a necessary condition for
chaos, but itself is not a sufficient condition [16]. In many-
body systems that do not have a well-defined classical
limit, like spin chains and quantum circuits, scrambling is
defined in terms of the late-time vanishing of OTOCs,

which happens in a nonexponential fashion. In those cases,
one can distinguish chaotic from integrable systems based
on the scrambling properties of the system (integrable
systems do not scramble). Such criterion, however, encoun-
ters limitations as one decreases the system size. In those
cases, finite-size effects prevent OTOCs to decay to zero,
but their residual value can still provide useful insights into
the chaotic dynamics [17].
In recent years, the notion of Krylov complexity has

emerged as a promising tool in the study of quantum chaos,
showing connections both with OTOCs and with SFF,
and hence providing a bridge between early-time and late-
time manifestations of quantum chaotic behavior. In its
original formulation, the Krylov operator complexity mea-
sures the rate of growth of operators under Heisenberg time
evolution. In this case, the problem can be mapped to a
one-dimensional tight-binding model. The position n of the
particle in the chain, known as Krylov chain, measures the
complexity of the time-evolved operator. The model is
characterized by hopping terms bn which control the
probability of the particle moving in the chain. The hopping
terms are known as Lanczos coefficients, and it has been
proposed that these coefficients grow as fast as possible in
chaotic models as one moves along the Krylov chain [18].
In the context of lattice models, it is possible to show that
the maximal possible growth of the Lanczos coefficients is
linear, i.e., bn ¼ αnþ γ. Under a few assumptions (ther-
malizing system), one can show that the maximal growth
of Lanczos coefficients implies an exponential growth of
Krylov complexity, i.e., CKðtÞ ∼ e2αt. The connection of
Krylov operator complexity with OTOCs comes from the
fact that at infinite temperature one can prove that the rate
of growth of the Lanczos coefficients bounds the quantum
version of the Lyapunov exponent [18]

λL ≤ 2α: ð1:2Þ

The authors of [18] conjecture that the above inequality is
also valid at finite temperature.
Moreover, it has been suggested that the following

relation should be valid [19]

λL ≤ 2α ≤ 2πT; ð1:3Þ

which provides a tighter bound than the Maldacena-
Shenker-Stanford (MSS) bound on chaos [20]. In QFTs
on noncompact space, the maximal growth of Lanczos
coefficients occurs universally due to the unbounded
continuous spectra [19,21,22], and the exponential growth
of Krylov operator complexity is not a suitable measure of
chaos in this case. In 2d holographic CFTs on a compact
space S1, the Krylov operator complexity is sensitive to
scaling dimensions of primary states [23].
The notion of Krylov state complexity, also known as

spread complexity, measures the spread of a wave function

1There are, however, a few systems for which this criterion
does not work. This is the case of geodesic flows on hyperbolic
surfaces, which are classically chaotic, but their level spacing
statistics exhibit properties that are more similar to integrable
systems. See, for instance, [6,7].

2For many-body localized systems, the ramp is absent [8],
while for noninteracting disordered models, one finds an ex-
ponential ramp [9].

CAMARGO, JAHNKE, JEONG, KIM, and NISHIDA PHYS. REV. D 109, 046017 (2024)

046017-2



minimized over all possible basis of the Hilbert space [24].
The minimum is uniquely attained by the Krylov basis. For
a maximally entangled state, the Krylov state complexity
only depends on the spectrum of the Hamiltonian and it was
shown to be a suitable probe of late-time chaos, having
nontrivial connections with the SFF [24,25]. Moreover, at
early times, Krylov state complexity matches the so-called
spectral complexity, whose definition is inspired by the
result obtained for the regularized volume of the black hole
interior in two-dimensional models of quantum gravity [26]
and which shares also intimate connections with other
spectral quantities such as the SFF.
This nontrivial connection with OTOCs and SFF and

potential connections with holography led to a wealth of
studies of Krylov complexity for states and/or operators
in different settings, ranging from quantum many-body
systems [24,27–45], gauge theories [46], holographic
models [47,48], conformal field theories (CFTs) [21,49],
Lie groups [50–53], matrix models [54], models of quan-
tum quenches [55] and open quantum systems [56–59].
Krylov complexity has been extensively studied in the

context of many-body quantum systems. In particular, the
original paper [18] has in mind the thermodynamic limit
with many degrees of freedom. However, it remains largely
unexplored in the context of simple quantum mechanical
models with a few fields which are classically chaotic. This
includes, for example, the case of dynamical billiards,
which are paradigms for the study of classical and quantum
chaos. At the same time, the surprising connection between
Krylov state complexity and spectral complexity may be
seen as an indication that the latter could also be used to
understand the chaotic properties of quantum many-body
systems. In this work, we study Krylov operator complexity
as well as spectral complexity for the stadium and circle
billiards at finite temperatures.
Furthermore, in addition to investigating Krylov com-

plexity, we also examine Krylov entropy [27].3 While these
two quantities have been explored in the literature in
various scenarios, we aim to further contribute to the
understanding of their dynamics within simple quantum
mechanical models that have a well-established history in
the study of quantum chaos: billiard systems.

A. Summary of our results

Note that the billiard systems are bosonic systems whose
Hilbert spaces are infinite-dimensional spaces. To extract
the features of chaos with finite degrees of freedom, we
truncate the high-energy eigenstates of the system. This
truncation introduces a saturation of the Lanczos coeffi-
cients, but the first Lanczos coefficients display a linear

behavior (bn ¼ αnþ γ) from which we can extract the
slope α. Notably, we observe that the universal bound (1.3)
is saturated at finite and sufficiently low temperatures both
for the stadium and circle billiard. However, as we decrease
the temperature we note a striking difference between the
two billiards: while the linear behavior of the Lanczos
coefficients persists in the chaotic case (stadium billiard), the
behavior of the Lanczos coefficients becomes completely
erratic and nonlinear with n in the integrable case (circle
billiard). We also study the corresponding early-time behav-
ior of the Krylov complexity and Krylov entropy for
different choices of operators. We checked that our numeri-
cal results satisfy basic consistency checks, including the
normalization condition of wave functions, the Ehrenfest
theorem, and universal relations with Krylov entropy. We
observe that the operator growth tends to increase slowly at
low temperatures and the qualitative features of our results
do not depend on the choice of operator.
Studying the time behavior of the spectral complexity for

both circle and stadium billiards, we find that the spectral
complexity initially grows as CS ∝ c1 log coshðc2t=βÞ,
where c1 and c2 are constants, and then saturates (oscillates
wildly around a constant value) in both cases. However, the
saturation occurs much earlier in the chaotic case (stadium
billiard), as compared to the integrable case (circle billiard).
The phenomenon can be explained in terms of the tendency
of level clustering (repulsion) in the spectrum of integrable
(chaotic) systems. We also discuss possible generalizations
of the concept of spectral complexity, which do not involve
the full spectrum of the system, but only some symmetry
sectors.
This paper is organized as follows. In Sec. II, we review

the method to calculate the spectral complexity, the Krylov
complexity and Krylov entropy. In Sec. III, using the
formulas derived in Sec. II, we study the time evolution of
the spectral and Krylov complexity/entropy for the billiard
systems. Section IV is devoted to conclusions.

II. REVIEW OF THE FORMALISM

A. Spectral complexity

One of the earlier attempts to resolve the puzzle of the
growth of the black hole interior for times beyond usual
thermalization scales resulted in the well-known holo-
graphic “complexity ¼ volume” proposal [60,61]. In it,
the computational complexity of the thermofield double
(TFD) state was proposed to be dual to the volume of a
maximal codimension-1 slice of the black hole interior, i.e.,
the Einstein-Rosen bridge (ERB). While both quantities
exhibit an initial early-time growth, computational com-
plexity is expected to saturate at times which are exponen-
tially large in the entropy of the system [62–64]. However,
until recently it was an open problem to establish whether
the volume of the black hole interior would also exhibit a
saturation at late times.

3The physical meaning of the Krylov entropy may not be clear.
For instance, see [27], where authors examined Krylov entropy
within the scrambling and postscrambling regime for chaotic
systems.
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This was shown in [26], where authors computed the
nonperturbative volume of the black hole interior via the
gravitational path integral in two-dimensional models
of gravity including higher-topology contributions. The
regularized volume, which exhibits the aforementioned
late-time saturation, led authors to define a new spectral
quantity in the boundary theory dual to the volume of the
ERB. To be precise, for quantum systems with discrete
nondegenerate energy spectrum, authors defined the fol-
lowing quantity:

CSðtÞ ≔
1

DZð2βÞ
X
p≠q

�
sin ðtðEp − EqÞ=2Þ

ðEp − EqÞ=2
�
2

e−βðEpþEqÞ;

ð2:1Þ

where ZðβÞ is the thermal partition function, fEpg are the
discrete energy eigenvalues and D is the dimension of the
Hilbert space H. This quantity, dubbed the spectral com-
plexity of the TFD state, is expected to have a similar
behavior to the volume of the ERB for chaotic systems with
random-matrix (spectral) statistics, namely an initial early-
time linear growth and a late-time saturation. This was
shown in the case of the Sachdev-Ye-Kitaev (SYK) model.
It should be noted that the microcanonical definition of

the spectral complexity (ERB volume) is related to the
microcanonical SFF in the following way:

SFFðtÞ ¼ d2CSðtÞ
dt2

þ constant: ð2:2Þ

Note, however, that this quantity depends only on the
energy spectrum of the Hamiltonian, and more specifically,
on the difference between distinct energy levels.
While spectral complexity was introduced in the context

of two-dimensional models of holography, one may take
the approach of studying this spectral quantity, beyond
holography, in quantum systems at finite number of degrees
of freedom. Furthermore, following the original motivation,
one may view this quantity directly as a measure of the
computational complexity of the canonically defined TFD
state of the system. As we will discuss in Sec. III B of this
work, the saturation timescale and value of this quantity
may in fact be sensitive to the breaking of integrability in
quantum mechanical systems such as billiards.

B. Krylov complexity and entropy

In this section, we review two operator growth quantities,
Krylov complexity [18] and Krylov entropy [27].

1. Lanczos algorithm and operator growth

Operator growth in the Heisenberg picture. In a quantum
system with Hamiltonian H, the time evolution of an
operator OðtÞ is governed by the Heisenberg equation,

∂tOðtÞ ¼ i½H;OðtÞ�; OðtÞ ¼ eiHtO0e−iHt; ð2:3Þ

where O0 ≔ Oð0Þ. Formally, we can rewrite the operator
OðtÞ as a power series

OðtÞ ¼ O0 þ it½H;O0� þ
ðitÞ2
2!

½H; ½H;O0�� þ…;

≔ Õ0 þ itÕ1 þ
ðitÞ2
2!

Õ2 þ…; ð2:4Þ

where the initial operator Õ0 ≡O0 can be seen as evolving
in time within the operator space spanned by the operators
fÕ0; Õ1; Õ2;…g. This expression shows how an initial
“simple” operator may grow increasingly more “complex”
through its commutation with the Hamiltonian. Additio-
nally, a more “chaotic”H may lead to a more complexOðtÞ
as compared to a less “chaotic” one.

Krylov basis and Lanczos algorithm. Given the initial
operator Õ0 in (2.4), one typically studies its evolution by
using the Gelfand-Naimark-Segal (GNS) construction of
the operator algebra, whereby one constructs a Hilbert
space HO spanned by the states fjÕnÞg, obtained by the
successive application of the Liouvillian superoperator
L ≔ ½H; ·� on the initial state jÕ0). This Hilbert space,
known as the Krylov space, admits an orthonormal basis
jOn), known as the Krylov basis, which can be obtained by
performing the Gram-Schmidt orthogonalization procedure
of the original basis. This procedure is known as the
Lanczos algorithm and in order to perform it we require an
inner product in Krylov space. Since we are interested in
understanding the physics at finite temperature and we
would like to connect our results to the study of quantum
chaos, we will work with the Wightman inner product.

ðAjBÞ ¼ 1

Z
Tr
�
e−Hβ=2A†e−Hβ=2B

�
; Z ¼ Trðe−βHÞ;

ð2:5Þ

where β is the inverse temperature. After inserting the
completeness relation

P
l jlihlj ¼ I, we obtain the

expression

ðAjBÞ ¼ 1

Z

X
m;l

e−
β
2
ðEmþElÞA†

mlBlm; ð2:6Þ

where we introduced the shorthand notation Aml ¼
hmjAjli for the matrix elements.
With the definition of the inner product, we can construct

the Krylov basis following the Lanczos algorithm:
(1) Define jA0Þ ≔ jÕ0) and normalize it with b0 ≔ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðA0jA0Þ

p
to find the orthonormal basis element

jO0Þ ≔ b−10 jA0).
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(2) Define jA1Þ ≔ LjÕ0), and normalize it with b1 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðA1jA1Þ
p

. Define the normalized basis element
jO1Þ ≔ b−11 jA1).

(3) For n ≥ 2, given jOn−1) and jOn−2), construct the
successive basis element

jAnÞ ¼ LjOn−1Þ − bn−1jOn−2Þ: ð2:7Þ

It can be normalized by setting bn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðAnjAnÞ

p
and by defining the nth basis element as
jOnÞ ≔ b−1n jAn).

(4) Stop the algorithm when bn becomes zero.
The Lanczos algorithm thus yields the Krylov basis fjOnÞg
and the normalization coefficients fbng known as the
Lanczos coefficients.

Krylov complexity and entropy. Once we have obtained the
Krylov basis fjOnÞg with the Lanczos algorithm, we can
use it to write the GNS state jOðtÞÞ as

jOðtÞÞ ≔
X
n

inφnðtÞjOnÞ; ð2:8Þ

where the functions fφnðtÞg are known as the transition
amplitudes. These describe the distribution of the operator
across the Krylov basis, illustrating how the operator is
allocated within the Krylov space. By multiplying both
sides of (2.8) with ðOnj, we obtain an explicit expression
for φnðtÞ

φnðtÞ ¼ i−nðOnjOðtÞÞ;
X
n

jφnðtÞj2 ¼ 1; ð2:9Þ

where the second relation shows the conservation of
probability in the Krylov basis.
Note that using (2.6), the inner product in (2.9) can be

further expressed as

ðOnjOðtÞÞ ¼ 1

Z

X
m;l

e−
β
2
ðEmþElÞeitðEl−EmÞhmjO†

njlihljO0jmi;

ð2:10Þ

where we used OðtÞ ¼ eiHtO0e−iHt in (2.3). It is important
to note that the computation of the Wightman inner product
(2.10) only requires the numerical integration of hmjOnjli,
where fOng are obtained via the Lanczos algorithm. As a
result, we can efficiently compute the transition amplitudes
φnðtÞ in (2.9).
The dynamics of the operator growth may be concep-

tualized as a particle moving along a chain. As the particle
progresses further along the chain, it engages with increas-
ingly complex states within the Krylov basis. This can be
seen by noting that by substituting (2.8) into the Heisenberg
equation (2.3) leads to the recursion relation,

∂tφnðtÞ ¼ bnφn−1ðtÞ − bnþ1φnþ1ðtÞ; ð2:11Þ

subject to the boundary conditions φnð0Þ ¼ δn0 and
b0 ¼ φ−1 ¼ 0. The Lanczos coefficients can be interpreted
as hopping amplitudes that allow the initial operator to
traverse the “Krylov chain,” while the functions φnðtÞ can
be visualized as wave packets moving along this chain [18].
This motivates a natural definition of complexity as average
position on the chain as well as the entropy,

Krylov complexity∶ CK ≔
X
n

njφnðtÞj2;

Krylov entropy∶ SK ≔ −
X
n

jφnðtÞj2 log jφnðtÞj2; ð2:12Þ

where the amplitudes φnðtÞ are given by (2.9). Krylov
complexity computes the average position of the distribu-
tion on the Krylov basis, whereas Krylov entropy quantifies
the level of randomness within the distribution [30].

Numerical procedure for Krylov complexity and entropy.
In order to compute the transition amplitudes (2.9), and
consequently the Krylov complexity and Krylov entropy
(2.12), we need to find the matrix elements hmjO†

njli and
hljO0jmi. This requires that we find the energy eigenvalues
and eigenfunctions for a given Hamiltonian H, i.e., solve
the Schrödinger equation. Thus, the numerical approach
that we will follow can be summarized as follows:
(1) Numerically solve the Schrödinger equation and

obtain the corresponding energy eigenvalues fEng
and eigenfunctions fψng.

(2) For different m and l, compute hmjO0jli ¼R
dxψ†

mO0ψl numerically.
(3) Implement the Lanczos algorithm by writing the

Wightman inner product involved in each step as a
function of hmjO0jli, then substitute in hmjO0jli
obtained by step 2.

(4) Through the Lanczos algorithm, obtain the Krylov
basis jOn) and Lanczos coefficients bn.

(5) Calculate the transition amplitudes φn using (2.9).
The corresponding Krylov complexity and entropy
can then be obtained by substituting φn into (2.12).

In this work, we will choose the initial operator to be the
position operator O0 ≡ x. We checked that we obtain
qualitatively similar results for other choices of operators,
namely, x2, p, and p2.

Analytic expression for the operator growth at early times.
By solving Eq. (2.11) at early times, the authors in [35]
found analytic expressions for Krylov complexity and
entropy in the following way. First, by imposing the
boundary condition at t ¼ 0 in (2.11), one finds that
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φnð0Þ ¼ δn0; φ̇nð0Þ ¼ b1δn1; φ̈nð0Þ ¼ −b21δn0 þ b1b2δn2; ð2:13Þ

which yields

CKð0Þ ¼ 0; ĊKð0Þ ¼ 0; C̈Kð0Þ ¼ 2b21;

SKð0Þ ¼ 0; ṠKð0Þ ¼ 0; S̈Kð0Þ ¼ −2b21 log ðb21t2Þ − 4b21: ð2:14Þ

These initial conditions together with (2.12) give rise to the
equations,

CK ¼ b21t
2 þ…; SK ¼ −b21t2 log ðb21t2Þ þ b21t

2 þ…;

ð2:15Þ

where the ellipses denote higher-order corrections in t.
Note that using (2.15), one can also find the universal
logarithmic relation between CK and SK at early times as

SK ¼ −CKðtÞ logCKðtÞ þ CKðtÞ þ…: ð2:16Þ

In Sec. III C, we will analyze our numerical findings
alongside the corresponding analytic formulas given by
Eqs. (2.15) and (2.16).

III. THE BILLIARD SYSTEMS

A. Quantum mechanics of stadium billiards

We consider a stadium billiard [65–69] as a represen-
tative example of a two-dimensional nonintegrable (i.e.,
chaotic) system. The Hamiltonian of such system is
given by

H ¼ p2
x þ p2

y þ Vstadðx; yÞ;

Vstadðx; yÞ ¼
�
0 ðx; yÞ∈Ω
∞ else

; ð3:1Þ

where the domain Ω is shown in Fig. 1. The stadium
consists of semicircles with radii R together with straight
lines of length 2a. The area A of the stadium is given by

A ¼ πR2 þ 4aR: ð3:2Þ

We fix the area of the billiard to 1 following existing
literature which deals with the study of Krylov complexity
and thermal OTOCs in the same system [70,71].
It is worth noting that the parameter a=R, where

a=R ¼ 0 corresponds to the circle billiard, serves as a
meaningful and relevant deformation parameter in the
context of the stadium billiards [72–74]. It can be observed
that the circle billiard displays characteristics of an inte-
grable system, such as a vanishing Lyapunov exponent [71]
while the stadium billiard (a=R ≠ 0) is considered non-
integrable with a finite Lyapunov exponent.

1. The quantum mechanics in the billiard

In order to study the quantum mechanics in the billiard,
we consider the Schrödinger equation,

−
d2

dx2
ψnðx; yÞ −

d2

dy2
ψnðx; yÞ þ Vstadðx; yÞψnðx; yÞ

¼ Enψnðx; yÞ; ð3:3Þ

where the potential is given in (3.1). We numerically solve
this equation and obtain the energy eigenvalues En and
eigenstates ψnðx; yÞ. In Fig. 2, we display the energy
eigenvalues for the stadium billiard with a=R ¼ 1 and
circle billiard with a=R ¼ 0. We also plot the first few
eigenstates of standard/circle billiards in Fig. 3.
Note that in order to calculate the Krylov complexity and

entropy of the quantum billiards, we need to truncate the
sum, for instance, in (2.12). In this paper, we set n ≤
Ntrunc ¼ 100 as in [70,71]. Furthermore, we also choose
a=R ¼ 1 for the representative result of the stadium
billiard, i.e.,

Stadium billiard∶
a
R
¼ 1; Circle billiard∶

a
R
¼ 0:

ð3:4Þ

B. Spectral complexity

In this section we discuss how the spectral complexity
(2.1) behaves in the billiard systems. The essentialFIG. 1. Geometry of the stadium billiard.
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ingredient is the energy spectrum, which we obtain numeri-
cally following Eq. (3.3) for Ntrunc ¼ 100.
In Fig. 4, we show how its behavior at infinite temper-

ature changes as we tune the value of a=R. Here we observe
a distinct feature in the late-time regime; the spectral
complexity saturates at a later timescale for the circle
(integrable) billiards as compared to the stadium (non-
integrable) billiards. In particular, this shows that even a
small breaking of integrability, by virtue of a change of

the ratio a=R, leads to a change in the saturation timescale
and value of the spectral complexity. As a consequence,
this finding may reveal the importance of the saturation
timescales and value of spectral complexity as a distin-
guishing factor between integrable and nonintegrable
systems.
The late-time behavior of the spectral complexity can be

understood as follows. At infinite temperature (β ¼ 0), the
spectral complexity is given by

FIG. 3. Eigenfunctions of the quantum billiard systems for n ¼ 1, 7, 50. Upper panels (a)–(c): the stadium billiard (a=R ¼ 1). Lower
panels (d)–(f): the circle billiard (a=R ¼ 0).
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FIG. 2. Eigenvalues of the quantum billiard systems. (a) the stadium billiard (a=R ¼ 1). (b) the circle billiard (a=R ¼ 0).
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CSðtÞjβ¼0 ¼
1

D2

X
p≠q

�
sin ðtðEp − EqÞ=2Þ

ðEp − EqÞ=2
�
2

≤
1

D2

X
p≠q

�
1

ðEp − EqÞ=2
�
2

: ð3:5Þ

This expression shows that the complexity is bounded by
the energy difference ΔE ≔ Ep − Eq. In other words, the
saturation value of the complexity can be larger whenΔE is
small. However, in chaotic systems, the presence of level
repulsion prevents ΔE from becoming zero. As a result, the
saturation value of the complexity for the stadium billiard
can be smaller compared to the circle billiard.
We note, however, a stark contrast with results for

Krylov complexity in spin systems with integrability-
breaking terms [33,40] as well as for Krylov state complex-
ity for maximally entangled states in billiards at infinite
temperature [70]. In the first case, the Krylov complexity
achieves a maximum saturation value for chaotic
Hamiltonians with random matrix spectral statistics given
by K=2 where K is the dimension of the Krylov space [30].
In the absence of integrability-breaking terms, the saturation
value of Krylov complexity is smaller than this maxi-
mum value. In the latter case, the Krylov state complexity
for the circle billiard has the lowest saturation value
compared to the stadium billiards, which do not appear to
have a monotonically decreasing behavior as the ratio a=R is
increased. We comment more on these differences in Sec. IV.
Regarding the saturation value of complexity, it should

be noted that even in the case of operator growth in spin
chains, the saturation value does not strictly follow a
monotonous behavior as the parameter which introduces
the integrability-breaking term is increased. This can be
understood from the perspective of the energy level
statistics, which does not have a smooth transition from
Poissonian (integrable) to GOE (nonintegrable) statistics
as measured, for example, by the so-called r-parameter

(see e.g., Fig. 2 of [40]). This also occurs in billiards (see
e.g., Fig. 2 of [70]).
Another difference is the timescale at which the satu-

ration occurs; the saturation of Krylov complexity for states
and operators occurs at the same timescale, as computed in
the aforementioned works, whereas for spectral complexity
the saturation timescale for the nonintegrable billiards
occurs several orders of magnitude earlier than the one
for the integrable one.
In Fig. 5, we compare the temperature dependence of

spectral complexity for the stadium (a=R ¼ 1) and circle
(a=R ¼ 0) billiards. Finally, we find that the spectral com-
plexity decreases as the temperature is lowered for both
the stadium and circle billiards. This decreasing behavior is
a common feature shared with the operator complexity
explored in the following section and is consistent with the
fact that lower temperatures have a higher exponential
suppression according to (2.1).
Furthermore, in both cases we also find that the early-

time behavior of the spectral complexity is given by CS ∝
c1 logðcoshðc2t=βÞÞ at finite temperature.

C. Operator growth

1. Lanczos coefficients and universal bound
on its growth

By numerically implementing the Lanczos algorithm
(presented in Sec. II B 1) we are able to obtain the Lanczos
coefficients (bn) for the stadium and circle billiards at
different temperatures. The results are summarized in
Fig. 6. We find that the bn grow for small n and reach a
saturation value (approximately of Emax=2 ≈ 700) for large
n, in both types of billiards.4

FIG. 4. Spectral complexity at infinite temperature with a=R ¼ 0, 0.1, 0.3, 0.5, 0.7, 0.9, 1 (black, purple, blue, green, yellow, orange,
red). (a) Spectral complexity. (b) Spectral complexity at t ¼ 1010.

4In the case of the circle billiard, the bn fluctuate heavily at low
temperatures. We also find such a strong fluctuation by another
method, namely the moment method. This is discussed in
Appendix A 2 a.
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To validate our numerical approach for computing the
Lanczos coefficients, we compare our numerical approach
with analytical methods in two scenarios where the latter
approach exists. First, in Appendix A 1, we consider the
simple harmonic oscillator to demonstrate the consistency
between our numerical results and the corresponding
analytical outcomes. Furthermore, in Appendix A 2 a, we
illustrate the agreement between the Lanczos coefficients
obtained using the Lanczos algorithm in Sec. II B 1 and
those acquired through the moment method.
Figure 6 reveals an additional feature: the fluctuations in

bn are less pronounced in the stadium billiard compared to
the circle billiard. This becomes more apparent at lower
temperatures (see for instance the blue data corresponding
to T ¼ 10). In other words, our results support the obser-
vation made in [70] regarding the “detectability” of differ-
ent billiard types (e.g., stadium vs circle) through an
analysis of the variance of the Lanczos coefficients.

Notably, our findings extend this observation to finite
temperature and small n, given that the original observation
was made at infinite temperature.
Furthermore, we also find a regime in n for which the bn

exhibit a linear growth, whose growth rate satisfies the
generalized chaos bound [18,28], i.e.,

bn ≈ αn; α ≤ πT: ð3:6Þ

In both the stadium and circle billiards, we find that the
growth rate α saturates the bound (1.3) at low temperatures
T, i.e., α ¼ πT, see Fig. 7. Of course, due to the heavy
fluctuations, as mentioned above, one may not simply
read off the linearity for the case of circle billiard at low
temperature. Our analysis of the growth rate of the Lanczos
coefficients at finite temperature uncovers a novel
aspect, (3.6), that was not investigated in the analysis
conducted at infinite temperature in [70].

FIG. 6. Lanczos coefficients bn at T ¼ 10, 20, 40, 100 (blue, green, orange, red). The solid lines are linear fitting curves (3.6).
(a) Stadium billiard ða=R ¼ 1Þ. (b) Circle billiard ða=R ¼ 0Þ.
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FIG. 5. Temperature dependence of spectral complexity at T ¼ 10, 20, 40, 100 (blue, green, orange, red). (a) Stadium billiard
ða=R ¼ 1Þ. (b) Circle billiard ða=R ¼ 0Þ.
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2. Krylov complexity and entropy

We now turn to the study of Krylov complexity and
entropy. In order to determine the relevant time window in
which we can trust our numerical results for these two
quantities, we first discuss the normalization condition
(2.9), namely

P jφnðtÞj2 ¼ 1.

In Fig. 8, we show the normalization condition of both
billiards and find that the normalization condition is
satisfied up to t ≤ 0.08. It is important to mention that
in our numerical calculations, we have set the maximum
value of n for bn as nmax ¼ 100. However, it is noteworthy
that by considering larger values of nmax, one can observe
an expanded time window as well as the emergence of
vanishing bn for higher n. Additional insights on this matter
can be found in Appendix A 2 b and [70]. This implies that
our chosen cutoff value of nmax ¼ 100 is sufficient for the
purpose of our early-time analysis.

Krylov complexity and entropy at early-times. We now
study the Krylov complexity and entropy within the time
window 0 ≤ t ≤ 0.08. In Figs. 9 and 10 we show the results
for Krylov complexity and entropy respectively for differ-
ent values of temperature and for both types of billiard
systems. In particular, the red datasets (corresponding to
T ¼ 100) are qualitatively consistent with the infinite
temperature case discussed in [70].
Our main findings can be summarized in three aspects.

Firstly, the operator growth, characterized by CK and SK ,
exhibits a temperature-dependent behavior, gradually

FIG. 7. The temperature dependence of the growth rate of bn.
The solid line is α ¼ πT and dots are obtained from the linear
fitting of bn. The bound is saturated at low temperature.

FIG. 8. The normalization condition at T ¼ 10, 20, 40, 100 (blue, green, orange, red). The insets show near t ≈ 0.1. (a) Stadium
billiard ða=R ¼ 1Þ. (b) Circle billiard ða=R ¼ 0Þ.

FIG. 9. Krylov complexity at T ¼ 10, 20, 40, 100 (blue, green, orange, red). Dots are numerical data and the dashed lines are the
analytic early-time results (2.15). (a) Stadium billiard ða=R ¼ 1Þ. (b) Circle billiard ða=R ¼ 0Þ.
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(or slowly) increasing as the temperature is lowered.
Secondly, we have discovered that the stadium billiard
exhibits quantitatively different behavior compared to
the circle billiard, particularly at sufficiently low temper-
atures (as indicated by the blue data in the figures). This
implies that one may observe distinguishable features in the
operator complexity even during the early-time regime
by reducing the temperature. Lastly, we validated our
numerical results by showing their agreement with the
analytical early-time results presented in Sec. II B 1:
namely Eq. (2.15).
Furthermore, we have also confirmed that our numerical

results capture the logarithmic relation between Krylov
complexity and entropy, Eq. (2.16), during the early-time
regime. This can be seen in Fig. 11.
To conclude this section, we remark a connection

between spectral complexity and Krylov complexity of
states. In [25] it was shown that the Krylov state complexity
of the time-evolved TFD state was related to the spectral
complexity (2.1) via an Ehrenfest theorem in Krylov space.
To be precise, the spectral complexity CSðtÞ can be seen as
an approximation to the Krylov complexity of the TFD

state at early times for Hamiltonians belonging to the
β̃-Hermite (Gaussian) ensemble with Dyson index β̃ in the
limit where the dimension of the Krylov space is large.
The Ehrenfest theorem of Krylov complexity states the

following:

∂
2
t CKðtÞ ¼ −½½CKðtÞ;L�;L�; ð3:7Þ

which in terms of the Lanczos coefficients and transition
amplitudes is given by [39]

∂
2
t CKðtÞ ¼ 2

X
n

�
b2nþ1 − b2n

�jφnðtÞj2: ð3:8Þ

This expression can be derived from (2.11) and (2.12). To
confirm this relation in our numerical computations, we
plot both sides of (3.8) for stadium and circle billiards at
T ¼ 10 in Fig. 12, which show complete agreement.
Therefore, within the precision of our numerical compu-
tations, the Ehrenfest theorem of Krylov complexity is
valid at early times.

FIG. 10. Krylov entropy at T ¼ 10, 20, 40, 100 (blue, green, orange, red). Dots are numerical data and the dashed lines are the analytic
early-time results (2.15). (a) Stadium billiard ða=R ¼ 1Þ. (b) Circle billiard ða=R ¼ 0Þ.

FIG. 11. The logarithmic relation between Krylov complexity and entropy at T ¼ 10, 20, 40, 100 (blue, green, orange, red). We find
our data is consistent with (2.16) at early time. (a) Stadium billiard ða=R ¼ 1Þ. (b) Circle billiard ða=R ¼ 0Þ.
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IV. CONCLUSION

In this paper, we studied the behavior of the Lanczos
coefficients, Krylov operator complexity, and spectral
complexity for circle and stadium billiards at finite temper-
ature. The quantum mechanics of dynamical billiard is
described in terms of bosonic operators, and the associated
Hilbert space is infinite dimensional. To extract features
of chaos with finite degrees of freedom, we truncate the
spectrum. Such truncation introduces a saturation of the
Lanczos coefficients that implies a (featureless) linear
growth of the Krylov complexity as a function of time.
However, before saturation, the Lanczos coefficients grow
linearly (bn ¼ αnþ γ), and one can study the behavior of
the slope α as a function of the temperature T. For finite and
sufficiently low temperatures, we find that the growth rate
of the Lanczos coefficients satisfies the bound (1.3) for
both circle and stadium billiards. However, as we further
decrease the temperature, the behavior of the Lanczos

coefficients for the circle billiard (integrable case) becomes
erratic and nonlinear, while the linear behavior persists for
the stadium billiard (chaotic chase); see Figs. 6 and 7. This
is consistent with the results recently reported in [70].
We also studied the early-time behavior of the corre-

sponding Krylov operator complexity. The reason to only
consider the early-time behavior is as follows. Since we
truncate the spectrum of the billiards at some energy Emax,
the Lanczos coefficients saturate around Emax=2, and the
associated Krylov complexity grows linearly with time
after the saturation. Such a linear behavior is just a
reflection of the truncation of the spectrum, and we do
not expect it to contain information about the dynamics of
the system. Having this in mind, we only studied the early-
time behavior of the Krylov operator complexity, because it
is only in this region that we expect to extract physical
information about the dynamics of the system.
We checked that our numerical results satisfy basic

consistency conditions, like the normalization of the wave
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FIG. 12. Both sides of the Ehrenfest theorem (3.8) for stadium and circle billiards at T ¼ 10. (a) Left hand side of the Ehrenfest
theorem for stadium billiard ða=R ¼ 1Þ at T ¼ 10. (b) Right hand side of the Ehrenfest theorem for stadium billiard ða=R ¼ 1Þ at
T ¼ 10. (c) Left hand side of the Ehrenfest theorem for circle billiard ða=R ¼ 0Þ at T ¼ 10. (d) Right hand side of the Ehrenfest
theorem for circle billiard ða=R ¼ 0Þ at T ¼ 10.

CAMARGO, JAHNKE, JEONG, KIM, and NISHIDA PHYS. REV. D 109, 046017 (2024)

046017-12



functions in the specified time window, the Ehrenfest
theorem, and the universal early-time relation with
Krylov entropy. We also verified that the qualitative
features of our results do not depend on the choice of
operators (we compare x, x2, p, and p2). Finally, we
observe that the operator growth, Krylov complexity and
entropy, tend to increase more slowly as we decrease the
system’s temperature. The results for circle and stadium
billiards are in general qualitatively similar, but they
display some differences at very low temperatures (see
Figs. 9 and 10).
We studied the time behavior of the spectral complexity

for both circle and stadium billiards, finding a sharp
difference between them. For both cases, the spectral
complexity initially grows as CSðtÞ ∝ c1 log coshðc2t=βÞ,
where c1 and c2 are constants,5 and then it stops growing
and starts to oscillate wildly around a constant value. We
refer to this behavior as “saturation.” We observe that the
spectral complexity saturates much earlier in the chaotic
case (stadium billiard), as compared to the integrable case
(circle billiard); see Figs. 4 and 5. This different behavior
may be attributed to the different spectral statistics of
integrable (or chaotic) systems.
It is interesting to compare the time behavior of spectral

complexity with the observed behavior for Krylov operator
complexity in systems displaying a chaotic-integrable
transition. The authors of [40] observed that, when the
dimension of the Krylov space is K the late-time saturation
value of Krylov operator complexity for chaotic systems is
around K=2, while the saturation value is smaller than K=2
in integrable systems. The basic idea is that in chaotic
systems the Krylov space is fully explored, while only a
fraction of the Krylov space is explored in integrable
systems. This contrasts with our result for spectral com-
plexity, in which case the saturation occurs a comparatively
much larger times for integrable systems. At first, this may
not appear to be a problem since the spectral complexity is
not directly related to the growth of operators. Therefore,
it is not necessary for it to replicate the qualitative behavior
of Krylov operator complexity. However, considering
that it serves as a measure of complexity and exhibits
similar behavior to Krylov state complexity at early times,
it might be reasonable to expect that the spectral complexity
would also reflect qualitative aspects of other complexity
measures.
The difference in behavior between spectral and Krylov

operator complexity is probably due to the fact that the
spectral complexity, in its original definition, has as input
the full spectrum of the system, while the analysis

performed in [40] for integrable systems focus on the
sector of fixed parity and total magnetization. It might be
interesting to investigate the behavior of spectral complex-
ity for some sectors of the circle billiards, for instance,
states with a fixed angular momentum, and check if it
matches the behavior observed in [40]. We are currently
investigating this.
This study can be extended in several directions,

including, for instance: (i) studying Krylov state complex-
ity for scar states in billiards; and (ii) studying the behavior
of spectral complexity in systems that display chaotic-
integrable transition, like the mixed field Ising model [75]
or the mass-deformed SYK model [76].

Note added. While this paper was in preparation, [70]
appeared, which has some overlap with the present work. In
both works, some part is devoted to the study of Krylov
operator complexity in billiard systems. Our work focuses
on finite temperature effects, which allow us to verify
nontrivial bounds on the rate of growth of Lanczos
coefficients, while [70] focuses on the infinite temperature
case. Moreover, we also introduce the analysis of spectral
complexity as a novel measure of probing quantum chaos.
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5At finite temperature the spectral complexity initially grows
as CSðtÞ ∝ c1 log coshðc2t=βÞ, where c1 and c2 are constants, and
at infinite temperature (β ¼ 0) as CSðtÞ ∝ c̃1 log coshðc̃2tÞ, where
c̃1 and c̃2 are different constants.
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APPENDIX: MORE ON OPERATOR GROWTH

1. Simple harmonic oscillator: Analytical
vs numerical results

In this section, we examine the Krylov complexity and
entropy of a simple harmonic oscillator. Our primary
objective is to demonstrate the consistency between our
numerical method and the analytic results. By comparing
the numerical and analytic outcomes, we aim to establish
the reliability and accuracy of our computational approach
in the main text.
Consider the Hamiltonian for a simple harmonic oscil-

lator,

H ¼ p2

2
þ ω2

2
x2; ðA1Þ

which gives the energy eigenvalues as

En ¼
�
nþ 1

2

	
ω: ðA2Þ

The partition function can be evaluated in a straight-
forward way

Z ¼ Trðe−βHÞ ¼
X
n

e−βEn ¼
csch



βω
2

�
2

: ðA3Þ

a. Vanishing Lanczos coefficient

We perform the Lanczos algorithm to obtain the Lanczos
coefficients bn of the simple harmonic oscillators. We
obtain bn for n ¼ 0, 1, 2 analytically (as we will show
shortly, the Lanczos algorithm should stop at n ¼ 2).
As in the main text, we are interested the initial reference

operator to be position operator as

A0 ≔ x: ðA4Þ

In order to obtain the first Lanczos coefficient b0 we need to
compute the matrix elements xml ¼ hmjxjli.
Writing the position operator in terms of the creation (a†)

and annihilation operators (a) as

x ¼
ffiffiffiffiffiffi
1

2ω

r �
aþ a†

�
; ðA5Þ

one finds

xml ¼hmjxjli¼
ffiffiffiffiffiffi
1

2ω

r � ffiffiffi
l

p
δm;l−1þ

ffiffiffiffiffiffiffiffiffiffiffi
lþ1

p
δm;lþ1

�
: ðA6Þ

Therefore, using (2.6) together with (A6), the first
Lanczos coefficients can be obtained as

b0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA0jA0Þ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Z

X
m;l

e−
β
2
ðEmþElÞðxmlÞ2

s

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Z

csch2


βω
2

�
4ω

vuut ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
csch



βω
2

�
2ω

vuut
; ðA7Þ

where (A3) is used in the last equality. Consequently, the
first element of the Krylov basis becomes

O0 ≔ b−10 A0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ω sinh

�
βω

2

	s
x; ðA8Þ

where we used (A4) and (A7).
Continuing with the Lanczos algorithm, the second

Lanczos coefficient, b1, can also be obtained by evaluating

hmjA1jli ¼ hmj½H;O0�jli ¼ b−10 ðEm − ElÞhmjA0jli;
ðA9Þ

where we used O0 ≔ b−10 A0 in the second equality. Note
that we can compute (A9) using (A6) and (A7). Thus, b1
becomes

b1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA1jA1Þ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Z

X
m;l

e−
β
2
ðEmþElÞhmjA1jli2

s

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2

Z

csch


βω
2

�
2

vuut ¼ ω: ðA10Þ

The corresponding element of the Krylov basis is

O1 ≔ b−11 A1 ¼ ω−1½H; x�: ðA11Þ

Next, we consider the third (and last) Lanczos coef-
ficient, b2, by

hmjA2jli ¼ hmj½H;O1� − b1O0jli
¼ ðEm − ElÞhmjO1jli − b1hmjO0jli
¼ b−11 ðEm − ElÞhmjA1jli − b1b−10 hmjA0jli;

ðA12Þ

which can be evaluated with (A6), (A7), (A9), and (A10).
Thus, b2 becomes

b2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA2jA2Þ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Z

X
m;l

e−
β
2
ðEmþElÞhmjA2jli2

s
¼ 0:

ðA13Þ
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Since the Lanczos coefficients hit zero, we stop the
algorithm.
In summary, we obtained the following Lanczos coef-

ficients for a simple harmonic oscillator

b0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
csch



βω
2

�
2ω

vuut
; b1 ¼ ω; b2 ¼ 0; ðA14Þ

together with the Krylov basis elements

O0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ω sinh

�
βω

2

	s
x; O1 ¼ ω−1½H; x�: ðA15Þ

Note that by setting ω ¼ 1 in (A14) and (A15), we
reproduce the result in [77].
Solving the Lanczos algorithm numerically, one can

also study bn. In Fig. 13, we display the numerically
obtained bn at ω ¼ 1, which is consistent with our analytic
results (A14). For instance,

Analytic results∶ b0jβ¼1 ≈ 0.97955;

b0jβ¼0.5 ≈ 1.40688: ðA16Þ

b. Periodic Krylov complexity and entropy

Next, we evaluate ðOnjOðtÞÞ in (2.10) for each n in order
to obtain the amplitudes φn (2.9) and consequently Krylov
complexity and entropy (2.12).
For this purpose, we first compute

hmjO0jli ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ω sinh

�
βω

2

	s
hmjxjli

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh

�
βω

2

	s 
 ffiffiffi
l

p
δm;l−1 þ

ffiffiffiffiffiffiffiffiffiffiffi
lþ 1

p
δm;lþ1

�
;

ðA17Þ

where we used (A8) in the first equality and (A6) in the
second equality. At the same time,

hmjO1jli ¼ b−11 hmjA1jli
¼ ω−1b−10 ðEm − ElÞhmjA0jli

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh

�
βω

2

	s
ðEm − ElÞ

×
� ffiffiffi

l
p

δm;l−1 þ
ffiffiffiffiffiffiffiffiffiffiffi
lþ 1

p
δm;lþ1

�
; ðA18Þ

where we used (A9) and (A6).
Then, using (A17) for n ¼ 0, we find

φ0 ¼ ðO0jOðtÞÞ ¼ 1

Z

X
m;l

e−
β
2
ðEmþElÞeitðEl−EmÞhmjO0jli2

¼ 1

Z

csch


βω
2

�
2

cosðωtÞ ¼ cosðωtÞ; ðA19Þ

where we used (A3) in the last equality. Similarly, using
(A18) we find for n ¼ 1,

φ1 ¼ i−1ðO1jOðtÞÞ

¼ i−1

Z

X
m;l

e−
β
2
ðEmþElÞeitðEl−EmÞhmjO1jlihljO0jmi

¼ −1
Z

csch


βω
2

�
2

sinðωtÞ ¼ − sinðωtÞ: ðA20Þ

Therefore, together with (A19) and (A20), the Krylov
complexity and entropy (2.12) of a simple harmonic
oscillator can be expressed as

CKðtÞ¼ sin2ðωtÞ;
SKðtÞ¼−cos2ðωtÞ logðcos2ðωtÞÞ− sin2ðωtÞ logðsin2ðωtÞÞ:

ðA21Þ
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FIG. 13. Numerically obtained Lanczos coefficient at ω ¼ 1 and β ¼ ð1; 0.5Þ (a), (b).
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In Fig. 14, we display the numerically obtained Krylov complexity and entropy consistent with our analytic result (A21).

c. More on operator dependence

Following the procedure described above, one can also find the initial operator dependence for a simple harmonic
oscillator. In particular, we focus on the following three cases: (I) single operator—x or p; (II) quadratic operator—x2 or p2;
and (III) mixed quadratic operator—xp or px. We summarize our results as follows:

d. Lanczos coefficients

x or p∶ b0 ¼

8>>><
>>>:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
csch

�
βω
2

�
2ω

r
ðfor xÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−ωcsch
�
βω
2

�
2

r
ðfor pÞ

; b1 ¼ ω;

b2 ¼ 0;

x2 or p2∶ b0 ¼

8><
>:

1
2ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3csch2

�βω
2

�q
ðfor x2Þ

ω
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3csch2

�βω
2

�q
ðfor p2Þ

; b1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8ω2

5þcoshðβωÞ
q

;

b2 ¼ 2ω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þcoshðβωÞ
5þcoshðβωÞ

q
; b3 ¼ 0;

xp or px∶ b0 ¼ i coth
�
βω
2

�
2

; b1 ¼ 2ωsech
�βω
2

�
;

b2 ¼ 2ω tanh
�βω
2

�
; b3 ¼ 0:

ðA22Þ

We find that bn ¼ 0 at n ¼ 3 for the quadratic/mixed operator case, unlike the single operator case. Furthermore, we also
report on the case of a more general mixed quadratic operator, c1xpþ c2px

c1xpþ c2px∶ b0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
1

4
ðc1 − c2Þ2 −

1

4
ðc1 þ c2Þ2csch2

�
βω

2

	s

b1 ¼
2

ffiffiffi
2

p ðc1 þ c2Þωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c21 þ 6c1c2 þ c22 þ ðc1 − c2Þ2 coshðβωÞ

p ;

b2 ¼
2ωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðc1þc2Þ2csch2
�
βω
2

�
ðc1−c2Þ2

r ; b3 ¼ 0: ðA23Þ
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FIG. 14. Numerically obtained Krylov complexity and entropy at ω ¼ β ¼ 1 (red dashed line). The black solid line is analytic
formula (A21).
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e. Krylov complexity

x or p∶ CKðtÞ ¼ sin2ðωtÞ;

x2 or p2∶ CKðtÞ ¼
2

5þ coshðβωÞ
�
sin2ð2ωtÞ þ 8

3þ coshðβωÞ
5þ coshðβωÞ sin

4ðωtÞ
�
;

xp or px∶ CKðtÞ ¼ sech2
�
βω

2

	�
sin2ð2ωtÞ þ 8tanh2

�
βω

2

	
sin4ðωtÞ

�
: ðA24Þ

We also present a more general crossed operator case, c1xpþ c2px, as

c1xpþ c2px∶ CKðtÞ ¼
2ðc1 þ c2Þ2

c21 þ 6c1c2 þ c22 þ ðc1 − c2Þ2 coshðβωÞ
sin2ð2ωtÞ

þ
32ðc21 − c22Þsinh2



βω
2

�
ðc21 þ 6c1c2 þ c22 þ ðc1 − c2Þ2 coshðβωÞÞ2

sin4ðωtÞ: ðA25Þ

We also found the analytic expression for the Krylov
entropy. However, its analytic expression is not so illumi-
nating so we do not display it here.
Basically, our observations are twofold. First, Krylov

complexity is periodic in time in all cases. Second, a β
dependence appears for the quadratic/mixed operator case.
In Fig. 15 we show the Krylov complexity.

2. Billiard systems

a. Lanczos coefficients by moment method

In this section, we briefly review another method to
compute the Lanczos coefficients, which we call the
moment method [18,22,27,33,78].
Using the autocorrelation function φ0ðtÞ from the

Lanczos algorithm (2.9), one can define the moment μ2n
as the coefficients of the Tayler series of φ0ðtÞ as

φ0ðtÞ≔
X∞
n¼0

μ2n
ðitÞ2n
ð2nÞ! ; μ2n ≔

1

i2n
d2nφ0ðtÞ
dt2n

����
t¼0

: ðA26Þ

Then, using the definition of the inner product (2.10) for
φ0ðtÞ, the moments (A26) can be written as

μ2n ¼
1

Z

X
m;l

ðEl − EmÞ2ne−
β
2
ðEmþElÞhmjO†

0jlihljO0jmi:

ðA27Þ

Furthermore, using the determinant of the Hankel
matrix of the moments, there exists a nonlinear relation
between the Lanczos coefficients bn and the moments μ2n
given by

b2n1 � � � b2n ¼ det ðμiþjÞ0≤i;j≤n; ðA28Þ

where μiþj is the Hankel matrix constructed from the
moments. Alternatively, this relation can also be expressed
via a recursion relation,
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FIG. 15. Krylov complexity at ω ¼ 1; β ¼ 1=2. Black dashed lines are analytic result (A24) and red solid lines are numerical result.
(a) single operator case, x or p. (b) quadratic operator case, x2 or p2. (c) crossed operator case, xp or px.
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MðjÞ
2l ¼ Mðj−1Þ

2l

b2j−1
−
Mðj−2Þ

2l−2
b2j−2

with l ¼ j;…; n;

Mð0Þ
2l ¼ μ2l; b−1 ¼ b0 ≔ 1; Mð−1Þ

2l ¼ 0;

bn ¼
ffiffiffiffiffiffiffiffiffi
MðnÞ

2n

q
; ðA29Þ

where the initial reference operator is assumed to be
normalized.
Utilizing the moment method above, (A27)–(A29), we

display the Lanczos coefficients for the billiards problems
(3.1) in Fig. 16. One can see that Lanczos coefficients from
Lanczos algorithm (dots) are consistent with the one from
the moment method (lines).

b. Enlarged time window

In this section, we examine the dependence of the choice
of nmax on the Lanczos coefficient bn. In the main text, we
utilized a fixed value of nmax ¼ 100 and observed that the
normalization condition is satisfied up to t ≈ 0.08. Here, we
present results demonstrating that by increasing the value of
nmax, the time window for which the normalization con-
dition holds can be expanded. For instance, in Fig. 17, we
set nmax ¼ 1000 (left figure) and observe that the normali-
zation condition can now be satisfied up to t ≈ 0.7 (center
figure), allowing for the computation of the Krylov com-
plexity within an extended time range (right figure). This
suggests that by selecting a larger value of nmax ¼ 1000, as
explored in [70], one can investigate the late-time behavior
of the Krylov complexity.

FIG. 16. Lanczos coefficients at T ¼ 10, 20, 40, 100 (blue, green, orange, red). Dots are obtained by Lanczos algorithm, while the
solid lines are evaluated by the moment method. (a) Stadium billiard ða=R ¼ 1Þ. (b) Circle billiard ða=R ¼ 0Þ.

FIG. 17. Stadium billiard (a=R ¼ 1) at T ¼ 100. (a) bn. (b) Normalization condition. (c) Krylov complexity.
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